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Understanding Statistical Power 
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This article provides an introduction to power analysis so that readers have a basis for 
understanding the importance of statistical power when planning research and interpreting 
the results. A simple hypothetical study is used as the context for discussion. The concepts 
of false findings and missed findings are introduced as a way of thinking about type I and 
type II errors. The primary factors that affect power are described and examples are 
provided. Finally, examples are presented to demonstrate 2 uses of power analysis, 1 for 
prospectively estimating the sample size needed to insure finding effects of a known 
magnitude in a study and 1 for retrospectively estimating power to gauge the likelihood that 
an effect was missed. ) Orfhop Sports Phys Ther 2OOl;3 l:3O7-3 1.5. 
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eaders of the Journal may be accustomed to seeing authors 
report a P value. If P < 0.05, then the authors consider 
their results statistically significant and conclude that their 
research hypothesis is likely to be true. Conversely, when a 
,result is not statistically significant, the authors may con- 

clude that their research hypothesis is likely to be false. Should we 
agree with them? How do we know if the research hypothesis is true or 
if it is false? 

HYPOTHETICAL STUDY 

Before answering these questions, we will present an example of a re- 
search hypothesis and a simple study based on that hypothesis. This ex- 
ample will provide context for the points that we will make later. Al- 
though we will limit our discussion to the simplest of designs, our com- 
ments extend to more complex designs as well (for more extensive 
treatment of complex designs, see Cohen2 and Cohen & Cohens). 

Our research hypothesis is that there will be a difference in range of 
motion (ROM) at the knee depending upon whether subjects receive 
contract-relax exercises or passive stretching exercises. In conducting 
our hypothetical study, we would begin by randomly selecting a subset 
of subjects from a predefined population of individuals presumed to 
have limited ROM. Ideally, this would be a random sample so that the 
results of our study would generalize to other people with similar ROM 
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limitations. Then we would ran- 
domly assign each subject to lof 2 
treatment groups. Randomly as- 
signing subjects to treatment 
groups is necessary in order to 
make the groups similar before 
the study begins; without random 
assignment (eg, letting subjects 
pick their own groups), there is 
the possibility of bias, that is, the 
groups could be different before 
we begin treatment. In our study, 
subjects in treatment group 1 
would receive contract-relax exer- 
cises and subjects in treatment 
group 2 would receive passive 
stretching exercises. 

After the exercise program was 
completed, we would measure the 
knee ROM of each subject, calcu- 
late the average and standard devi- 
ation of the ROM values for each 
group, and calculate the value of 
a statistic called the t ratio. The t 
ratio provides a way of gauging 
how large the mean difference be- 
tween the groups is relative to the 
variability within the groups. A p  
pendix 1 summarizes the t test in 
the form of a signal-to-noise ratio. 
Appendix 2 defines statistical sig- 
nificance. 

Missed Findings? 

Now consider the question of 
whether we can believe a result 
that is not statistically significant. 
How do we know that the re- 
searchers did not miss finding s u p  
port for their research hypothesis, 
which is actually true, because the 
signal was weak relative to the 
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Conclusion 
Group .rr d i f f m t  

(Do reject null) 

- I rnllEna(P) 

M i d  Finding 

Gmup M not d~ffercnt 

(NUII i s  true) 

False Finding I - I 

Gmup are drfferenl 

(NUN IS ram 

FIGURE 1. Schematic representation of conditions associated with correct 
and incorrect conclusions. 

noise? Our question can be answered by turning to 
the concept of statistical powex One simple definition 
of the power of a statistical test is the probability that 
the test will yield a statistically significant result when 
the research hypothesis, in reality, is true. In other 
words, power is the ability to detect a difference in 
knee ROM between treatment groups when a differ- 
ence really exists. Stated in terms of the null hypoth- 
esis, power is the probability of correctly rejecting a 
false null hypothesis. 

Examining Types of Errors 

A common way to represent the possible outcomes 
of research associated with the results of statistical 
tests under different sets of conditions is provided in 
Figure 1. The term reality refers to the actual state of 
affairs in the population regarding the effect of the 
treatment being studied. The term researcher's conclu- 
sion refers to the researcher's inference about the 
population, based on the results of studying a small 
subset, or sample, of the population. In Figure 1, the 
same possibilities are listed for both reality and the 
researcher's conclusion. In the case of our hypothetical 
study, the possibilities for reality and for the res~arch- 
erS conclusion regarding the effect of the treatments 
are not different, meaning that contract-relax exer- 
cises and passive stretching exercises are equally ef- 
fective, and different, meaning that one type of exer- 
cise is more effective than the other. 

The key to understanding type I and type I1 errors 
is to examine the consequence of each combination 
of conditions, as represented by the 4 shaded cells of 
Figure 1. For example, the top left cell represents 
the outcome for the combination whereby the re- 
searcher concludes that the 2 treatments are not dif- 
ferent and, in fact, they are not different. Because 
the 2 conditions are the same, the researcher's con- 
clusion is considered correct. Note that for the lower 
right cell, the conditions for both reality and the r e  
searcher's conclusion are likewise the same, that is, the 
researcher concludes that the treatments are differ- 

ent and, in fact, the treatments really are different. 
Once again, the researcher's conclusion is consid- 
ered correct because it is in agreement with reality. 

This is not true for the 2 remaining cells because. 
in both cases, the researcher's conclusion deviates 
from reality. Figure 1 indicates that a type I error oc- 
curs when the researcher erroneously concludes that 
there is a difference between treatments, and a type 
I1 error occurs when the researcher erroneously con- 
cludes that there is not a difference between treat- 
ments. No one actually knows what is true in terms 
of the reality part of Figure 1. If we did, we would 
not need to conduct the study. Instead, we make in- 
formed judgments about reality that are based upon 
the research study. We try to design this judgment 
task in such a way that we keep the probability of 
making mistakes acceptably low. The symbols a (al- 
pha) and p (beta) represent the probability of mak- 
ing the respective types of error. The a level is also 
known as the criterion of acceptability and is set by 
the researcher to protect against a type I error. 

POWER 

One definition for statistical power is the probabili- 
ty of not making a type I1 error. Based upon Figure 
1, we know that the probability of making a type I1 
error is p. We also know that the researcher has only 
2 possible choices for a conclusion: groups are not 
different or groups are different. Therefore, the total 
probability for the 2 choices is 1. Accordingly, if the 
probability of making a type I1 error is p, then the 
probability of not making a type I1 error is 1 - P. 
Thus, the expression 1 - p may be considered a 
mathematical definition of power. Having considered 
the elements of Figure 1 in some detail, a second def- 
inition for power may be easier to understand: power 
is the probability that the test will correctly yield a 
statistically significant result (ie, we reject the null hy- 
pothesis) when the null hypothesis, in reality, is false. 

Recall that our research hypothesis is posed as a 
difference between the 2 types of stretching exercises 
and then focus on the bottom right cell of Figure 1. 
Note that the combination of conditions represented 
by the cell is groups are different for both reality and 
researcher's conclusion. A difference in reality is consis- 
tent with the null hypothesis being false, and the 
researcher's conclusion of groups are different would 
have been based upon a statistically significant test of 
differences between the groups who received the 2 
different types of stretching exercises (ie, rejection of 
the null hypothesis). The probability associated with 
the bottom right cell is 1 - p, or power. Power r e p  
resents the probability of making a correct decision, 
and it is advisable to optimize the amount of power 
in a study. 
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Ho: True 

FIGURE 2. Sampling distribution under the assumption of a true null hy- 
pothesis (H,). M, and M, represent group means. Alpha (a) level represents 
the criterion of acceptability and a is the area associated with a type I 
error. 

FACTORS AFFECTING POWER 

The 4 primary factors that affect the power of a 
statistical test are a level, difference between group 
means, variability among subjects, and sample size. 
Figures 2-5 aid our explanation of the relationship 
between power and each of these 4 factors. If we 
measured ROM on everyone in our stretching exer- 
cise study, we could plot the distribution of ROM 
scores, and the shape of the curve should look some- 
thing like Figure 2. In this case, however, Figure 2 
represents a special type of distribution known as a 
sampling distribution of mean differences under the 
assumption that the null hypothesis is true (ie, 
groups are not different in reality). 

We can begin to understand the difference be- 
tween a distribution of scores and a sampling distri- 
bution by thinking about the source of the data for 
each. As we just noted, the data for constructing a 
distribution of scores can be obtained by measuring 
ROM for every subject in the study. What about the 
sampling distribution of differences between means? 
Conceptually, we would randomly select N subjects 
from a population, randomly assign each subject to 1 
of 2 groups, measure ROM on every subject, calcu- 
late the mean for each group, and then find the dif- 
ference between the means. The value of the differ- 
ence between the 2 means would represent 1 data 
point for constructing our sampling distribution. We 
would get additional data by repeating the process of 
sampling, testing, and calculating the difference be- 
tween the means. After we repeated the process 

many times, we would have enough data to construct 
a distribution of differences between the means of 2 
groups, as in Figure 2. 

Having described a conceptual process for generat- 
ing a sampling distribution, we will focus on some 
key points regarding the process and the distribu- 
tion. One of the most important points to note 
about the process we described for generating the 
sampling distribution is that we would not have pro- 
vided any type of treatment to either group of sub- 
jects; all we would have done was randomize and 
measure. Consequently, we would have no explana- 
tion for any differences between the means of the 
groups other than chance or variation that would or- 
dinarily occur. In some instances, one group's scores 
would have exceeded the other group's scores, but it 
would have been just a matter of chance and not 
due to anything that was systematically done to one 
group and not to the other. On average, however, 
there should be no difference between the groups. 
The mean of the distribution should be zero and the 
peak of the distribution should be at the mean be- 
cause there would have been no difference for most 
of the samples. The fact that Figure 2 represents a 
bell-shaped curve and not just a vertical line at zero 
implies that, in some cases, there were differences be- 
tween the means of the 2 groups and that the size of 
the differences ranged from relatively small to rela- 
tively large. Thus, the sampling distribution repre- 
sents the expected distribution of differences be- 
tween means when the null hypothesis is true, or as 
is sometimes stated, the differences that would be ex- 
pected to occur due to chance alone. The shape of 
the distribution tells us that as the mean differences 
deviate from the expected difference of zero, they 
become more rare. That matches our intuition. This 
distribution is useful because it tells us what to ex- 
pect in the way of "noise." For a signal to be detect- 
ed (ie, for us to see the effect of our treatment clear- 
ly), it must stand out against the noise or the varia- 
tion in differences between means that occurs any- 
way. The idea of viewing a statistical test as a 
signal-to-noise ratio is summarized in Appendix 1. 

Alpha (a) Level 

In a sampling distribution, we know the magnitude 
of differences between means that can occur even if 
the null hypothesis (H,) is true. We can use this in- 
formation to decide whether the difference between 
the means in our study is unusually large under the 
assumption that the null hypothesis is true. If our 
obtained difference were rare under the null hypoth- 
esis-if it is quite distant from the mean of the sam- 
pling distribution-then we would reject the null hy- 
pothesis. But what do we mean by "rare?" In this 
case, rare is defined by the a level. Note in Figure 2 
that we have included a vertical line, labeled a level. 
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Mean Mean Mean 
Ho: True HR1. True HRZ: True 

FIGURE 3. Rir  of sampling distributions. The distribution on the left is 
based on the assumption that the null hypothesis (Hd is true in reality; the FIGURE 4. Set of 3 sampling distributions. The distribution on the left is 
distribution on the right is based on the assumption that the research hy- based upon the assumption that the null hypothesis (H,) is true in reality; 
pothesis (H,) is true in reality. Alpha (a) level represents the criterion of the 2 on the right are based upon the assumption that the research hy- 
acceptability and a is the area associated with a type I error. represents potheses (H,, and H,) are true in reality. Alpha (a) level represents the 
the area associated with a type II error. criterion of acceptability and a is the area associated with a type I error. 

This is the same a level described in Appendix 2 
that protects against type I errors. Using Figure 2, we 
can see that the concept of P = 0.05 is related to the 
fact that 5% of the area under the curve is to the 
right of the vertical line (also known as the rejection 
region). Recalling that the magnitude of differences 
between the means of 2 groups (M, - M,) is repre- 
sented on the x-axis, we know that if the difference 
between 2 means is larger than the difference coinci- 
dent with the a level, then there is a 5% or less 
chance that the difference was simply due to chance. 
Therefore, we would consider the result statistically 
significant (something rare or out of the ordinary). 
In other words, if our obtained result would have oc- 
curred under the null hypothesis with a probability 
of 0.05 or less, then we call it rare enough to reject 
the null hypothesis. By rejecting the null hypothesis 
because our result falls in the rejection region, we 
implicitly find the alternative, our research hypothe- 
sis, to be more plausible. 

The a level is one of the factors that affects power 
(Figure 3). Once again, we have included the sam- 
pling distribution of the difference between the 
means under the assumption that the null hypothesis 
(H,) is true; it is represented by the curve on the 
left of Figure 3 (dashed line). We have added a sec- 
ond sampling distribution on the right (solid line) to 
represent the differences between the means under 
the assumption that the research hypothesis (H,) is 
true. The second distribution would have been con- 
structed in the same way that we previously described 
for the null hypothesis; however, the mean of the dis- 
tribution would reflect the fact that the treatments 
do produce differences in ROM. Furthermore, the 
distribution would be bell-shaped because every 
study would not produce precisely the same differ- 
ence. Sometimes the mean difference in knee ROM 

between groups would be larger, sometimes smaller, 
and the more the difference deviates from the ex- 
pected difference, the less likely or frequent the dif- 
ference becomes. 

Look carefully at Figure 3 and notice 3 areas of in- 
terest delineated by the vertical line: a, P, and power 
(1 - p). It is now possible to appreciate the effect of 
the a level on power by thinking about what changes 
if the vertically oriented a level line is moved hori- 
zontally. If the line is moved to the left, then the 
area labeled a becomes larger, the area labeled P be- 
comes smaller, and, most importantly, the area la- 
beled 1 - p becomes larger. The net effect is an in- 
crease in power. Conversely, if the a level line is 
moved to the right, a becomes smaller, P becomes 
larger, and the 1 - P area becomes smaller. The net 
effect is a &crease in power. Although the a level af- 
fects power, researchers typically do not set the a lev- 
el any higher than 0.05 because they do not want to 
increase power at the expense of increasing the like- 
lihood of a type I error and contributing faI.se$nd- 
ings to the research literature (Figure 1). 

Difference Between Group Means 

The second factor that affects power is the differ- 
ence between the means of the 2 groups. In studies 
like our hypothetical example, the magnitude of the 
difference between the means of the 2 groups at the 
end of the study is, in fact, the "signal" of interest in 
the study. We will use Figure 4 to help explain how 
this affects power. Figure 4 is essentially the same as 
Figure 3, except that we have added a third distribu- 
tion. On the left, we still have the original sampling 
distribution (dashed line) of the means under the as- 
sumption that the null hypothesis (H,) is true, but 
on the right we now have 2 different sampling distri- 
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butions (solid lines) of the means under the assump 
tion that the research hypothesis (H,) is true. Each 
represents a different assumption about the differ- 
ence between our 2 treatments. In the distribution 
on the far right, the treatments are clearly more dif- 
ferent in their typical effect than is true for the dis- 
tribution in the middle. This is represented by the 
horizontal displacement of the distributions, and it is 
easily seen by comparing the vertical lines designat- 
ing the means of the distributions. How is power af- 
fected by this difference in the magnitude of the 
treatment effect? Intuition tells us that a larger dif- 
ference between the means should be easier to de- 
tect and distinguish from the null hypothesis distri- 
bution. Our intuition is correct, as we can appreciate 
by once again considering the areas designated a, P, 
and 1 - p. As the distance between the null hypoth- 
esis and research hypothesis distributions increases, 
the a area does not change, but the f3 area decreases 
with a corresponding increase in the 1 - P area. 
Thus, as the difference in reality between the treat- 
ments increases, power also increases. 

Variability Among Subjects 

The third factor that affects power is variability 
among subjects. The concept of variability arises 
from the fact that human beings are not identical. 
For example, we are not all the same height or 
weight, and we do not all have the same ROM at the 
knee. In all of the curves we have used to represent 
distributions, the width of the curve is a function of 
the variability among subjects. The wider the curve, 
the greater the variability; conversely, the narrower 
the curve, the less the variability. But how does vari- 
ability affect power? Notice in Figure 5 that the dif- 
ference between group means, as represented by the 
distance between the 2 means, is the same for the 
pair of distributions on the top as for the pair of dis- 
tributions on the bottom. Notice also that the distri- 
butions on the bottom are wider than those on the 
top. There is more overlap of the distributions on 
the bottom than for those on the top, and as the 
overlap increases, so does the area designated as P. 
The net effect is that 1 - P, our index of power, or 
our ability to detect a real difference, decreases as 
variability increases. This makes sense because the 
variability reflects noise, and with more noise it is 
more difficult to detect the signal. Actually, the vari- 
ability in the figures is the variability of the differ- 
ences between the means, not the variability of the 
individual subjects; however, this sampling variability 
is a function of the variability of the subjects, and so 
the conclusions about the effect of variability on 
power hold. If the samples on which means are 
based are quite variable, then the means, too, will 
vary considerably and so, too, will the differences be- 
tween the group means. 

Mean Mean 
Ho: True HR: True 

Mean Mean 
Ho: True HR: True 

FIGURE 5. Set of 4 sampling distributions. The means for the 2 distribu- 
tions on the left are identical, as are the means for the 2 distributions on 
the right. Note, however, the difference in the width of the distributions; 
the variability is greater for the 2 lower distributions than for the 2 upper 
distributions, and the size of the area labeled f3 is larger for the bottom 
pair than for the top pair of distributions. Thus, 1 - f3, or power, is greater 
for the top pair of distributions than for the bottom pair of distributions. 

Sample Size 

The last major determinant of power that we will 
discuss is sample size. Practically speaking, the easiest 
way to increase power is to increase sample size (ie, 
the number of subjects included in the study). Intu- 
itively, that sounds right-the more people we have, 
the more precise the results, and the easier it should 
be to detect a signal amid the noise. One way to un- 
derstand this concept is to consider how sample size 
affects the confidence we have in a single mean. For 
example, suppose that we want to know the typical 
knee ROM for adults. We could select a random 
sample of 10 adults from the population, measure 
their ROM, and calculate the average. How close 
would this average be to the average of all adults in 
the population? It might be close, but it might be far 
off. By chance alone, we might have measured a rela- 
tively young and healthy sample, and the average 
ROM might be a bit higher than is generally true for 
the population at large. If we repeated this exercise 
many times, we could build a distribution of means, 
all from random samples of 10. This would be a sam- 
pling distribution (similar to those in Figures 2-5) 
that would tell us how much variability in the means 
we could expect just by chance alone. We might ex- 
pect a large variance with a small sample size and a 
high likelihood that one random sample could be 
quite different from another. 

Now suppose that we measure again, but we in- 
crease our sample size to 1000. The odds that any 
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are low. Random samples are more representative of Alpha (a) level The criterion level of acceptability for a type I 
their populations as sample size increases, which is error; typically expressed as a probability val- 
why readers trust opinion polls based on a sample of ue (eg, a = 0.05). 

1000 more than they trust opinion polls based on Effect size (d An index used to express the size of the differ- 

samples of 10. The effect on the sampling distribu- ence between group means, relative to ordi- 
nary within-group variation (eg, d = (M, - 

tion of increasing sample size is to decrease the vari- M,)ls, where d is effect size, M ,  and M, are 
ability of the sample means. Because each large sam- means, and s is the pooled standard 
ple is not that much different from other large sam- 
ples, the means do not vary much either. Sample size 
affects power by influencing the variability of the 
sampling distribution of mean differences. 

In summary, power is greatest when the a level, 
difference between group means, and sample size 
are large and the variability among subjects is small. 
Although greater power is achieved with a larger, 
rather than a smaller, a level, recall that the likeli- 
hood of making a type I error is also increased when 
a is set at a high level. Assuming researchers do not 
want to risk contributing falsefindings to the litera- 
ture, they will seldom set the a level above 0.05. In- 
stead, they will attempt to insure a large mean differ- 
ence by selecting 2 treatment conditions that are 
likely to produce substantial differences, minimize 
variability among subjects by narrowly defining the 
population of interest, carefully controlling the mea- 
surement setting, and using a large sample size. 

EFFECT SIZE 

The difference between group means and variabil- 
ity are often combined into one number that is 
called an egect sire. There are quite a number of 
ways to define effect but most represent 
some way of standardizing the effect magnitude so 
that effect sizes from different studies can be com- 
pared. Standardizing the effect size is important if 
you want to compare the results of different studies 
in which the same basic question is addressed but in 
which the scaling properties of the measurements 
used are different. The most typical way to standard- 
ize a difference between group means is to divide it 
by the standard deviation within the groups. The re- 
sult is a difference between group means represent- 
ed in standard deviation units, just as a r scoreX r e p  
resents an individual score in standard deviation 
units. Recalling that the variability (ie, the standard 
deviation) arises by chance, or noise within the 
groups, we can see that an effect size estimate is real- 
ly a standardized signal-tcmoise ratio. T ratios ( A p  
pendix 1) should not be confused with effect sizes. 
They both represent signal-tenoise ratios, but they 
are calculated in different ways and are used for dif- 
ferent purposes. An effect size simply tells how large 
the mean difference is relative to ordinary variation. 
The t ratio takes that idea one step further and al- 
lows us to decide if the difference is improbable, giv- 
en ordinary variation. There is a P value associated 

deviation of both groups). 
Sample size (M The total number of subjects included in the 

analysis of the data. 

with the t ratio, but an effect size is typically used as 
a descriptive measure of difference. 

Ordinarily, the a level is set by convention and the 
effect size is determined by past research or experi- 
ence. This leaves sample size as the most common 
way to increase power and leads to one of the most 
common questions in research design: "How large a 
sample is large enough?" A technique called power 
analysis can be used to help answer that question. 

POWER ANALYSIS 

Power analysis is a technique based upon the inter- 
relationships among power, a level, effect size, and 
sample size. The relationships among these factors 
are such that values for any 3 of the factors can be 
used to estimate the last. For example, if you are 
planning a study and you know the a level, effect 
size, and desired power level, you can estimate the 
number of subjects required. Although the example 
just cited is prospective in nature, power analysis can 
also be used retrospectively. 

Assume you read an article and the results indicat- 
ed that there was no significant difference between 
the treatments. You would want to know if there was 
enough power in the study to warrant the conclu- 
sion; that is, you would want to make sure that the 
researchers did not just miss finding a real differ- 
ence. You could use information from the article 
about the a level, effect size, and sample size to esti- 
mate the level of power present in the study (Table). 
Much of the work of power analysis is performed by 
referring to tables,' using simple  formula^,^ or rely- 
ing on software,' but first we need to gather the val- 
ues for all of the relevant indices. 

Estimating Sample Size 

First we will consider an example of using power 
analysis to estimate the sample size (N) required to 
yield statistically significant results from a study. The 
value for the a level is generally set at 0.01 or 0.05. 
For our example, we will use a = 0.05. Since we 
have not yet conducted the study, we do not know 
how large of a difference in ROM will be produced 
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by giving contract-relax exercise to one group and 
passive stretching exercise to the other group. For 
the sake of our example, assume that a similar study 
had been conducted and that the authors reported 
means of 100 and 92, respectively, for the 2 treat- 
ment groups, and a standard deviation of 5. Given 
the data reported, we could calculate a standardized 
index of effect size (4 using the formula d = (M, - 
M,)/s, where MI is the mean of group 1, M, is the 
mean of group 2, and s is the pooled standard devia- 
tion of both groups. In our example, d would be 
equal to (100 - 92)/10 or d = 0.80. If no data are 
available, we might choose to use one of the conven- 
tional values for effect size proposed by Cohen.' Ac- 
cording to Cohen, values of 0.80, 0.50, and 0.20 are 
considered large, medium, and small effect sizes, re- 
spectively. Note, though, that relying on such crude 
benchmarks should be avoided if information specif- 
ic to your research area is available. If we expected 
very little difference in ROM between the 2 exercise 
groups, we would be wise to select a small effect size. 
Conversely, if we expected a large difference in ROM 
between the 2 exercise groups, we would select the 
large effect size. Next, we would need to specify the 
level of power considered acceptable for our study. 
Recall that power can be defined as 1 - P where P 
represents the probability of making a type I1 error 
(ie, a missed finding). When choosing a power level, 
the researchers must decide how willing they are to 
make a type I1 error. By convention, the minimum 
power value typically used is 0.80. Now that we have 
all of the indices required, we would use the appro- 
priate table2(p54) and learn that the number of sub- 
jects required for our study is 20 in each group. If 
we were to obtain that sample size, we would have an 
80% probability of rejecting the null hypothesis if 
the null hypothesis is in fact incorrect and if our as- 
sumptions about effect size were correct. 

Estimating Power 

When a study has already been completed, power 
analysis typically answers whether or not the level of 
power present in the study was adequate to justify 
the conclusions. Because power analyses make sure 
that we do not miss findings, the adequacy of power 
is important to consider when authors report results 
that are not statistically significant and they use the 
results to support a view that the treatments studied 
are either not differentially effective or are ineffec- 
tive. 

In our ROM study, what happens to power if the 
effect size and sample size are both smaller in a new 
study than in our original, hypothetical study? If the 
researchers used only 8 subjects in each group in- 
stead of 20 subjects and the effect size was only 0.50 
instead of 0.80, then at the same a level of 0.05, the 
power level would be 0.25 instead of 0.80. Given the 

new set of indices, it is much more likely that a type 
I1 error would occur and we would erroneously con- 
clude there was no difference between the treat- 
ments; unless, of course, we decided not to accept 
the result due to inadequate power. 

SUMMARY 

We cannot know if the research hypothesis is true 
or false with absolute certainty, but we can attempt 
to reduce the probability of being wrong. By setting 
the a level at 0.05 or less, researchers protect against 
type I errors with a specified degree of certainty. In 
so doing, researchers limit the contribution of false 
findings to the literature when the null hypothesis is 
true. By maximizing the power in a study, research- 
ers protect against type I1 errors with a specified de- 
gree of certainty and decrease the likelihood that 
they will miss important findings. There are, however, 
practical issues that occasionally limit the amount of 
power that can be achieved in a study. Although 
power can be increased by increasing the a level, re- 
searchers generally will not sacrifice protection 
against type I errors just to reduce the likelihood of 
a type I1 error. Instead, they will increase effect size 
and sample size. The problem with increasing effect 
size is that comparisons among some types of treat- 
ment may never be expected to yield large differ- 
ences. Even if large differences can be produced, 
they may not be meaningful if their production re- 
lied on procedures not likely to be encountered in 
practice. Stated differently, there is a difference be- 
tween statistical significance and practical signifi- 
cance. In their zeal to produce statistically significant 
results, researchers should not resort to tactics that 
reduce the practical significance of their findings. 
The search for statistical significance should not be- 
come an absurd end in itself. Consider Thompson's 
view:I0 "Statistical significance testing can involve a 
tautological logic in which tired researchers, having 
collected data on hundreds of subjects, then conduct 
a statistical test to evaluate whether there were a lot 
of subjects, which the researchers already know, be- 
cause they collected the data and know they are 
tired. " W4.W 

Maximizing sample size may be either too costly, in 
terms of time and money, or impossible, if the popu- 
lation of interest is relatively small. Researchers are 
challenged to design a study that affords the optimal 
balance of all the factors that affect power. Readers 
are challenged to assess whether the researchers ade- 
quately protected against type I and type I1 errors 
and, thereby, insured against both falsefindings and 
missed findings. 
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APPENDIX 1 

Signal-to-Noise Ratio 

Readers can think of the difference between the group means (the numerator of the t ratio) as a signal 
that you are trying to detect and the variability within groups (the denominator) as the noise that makes it 
difficult to detect the signal. Noise in the data (eg, excessive variability in range of motion [ROM] scores) 
limits your ability to detect the signal. In the case of our experimental data, noise could arise even though all 
of the subjects in a group received the identical treatment because there could still be random differences in 
ROM among the subjects. The t test can be thought of as a signal-to-noise ratio. If we want to be able to 
detect the signal, then we want the signal to be strong (ie, large between-group difference) and the noise to 
be weak (ie, small within-group variability), that is, we would want the t ratio to be as large as possible. A 
large t ratio tells us that the difference in knee ROM between the groups is greater than what occurs within 
the groups by chance alone. 

The next question to answer is, "How large of a difference between groups is large enough?" To answer 
the question, we would refer to a table of critical values for the t ratio and learn whether the value we o b  
tained for t is likely to have occurred by chance or whether our signal (mean difference between groups) was 
large enough relative to the noise (within-group variability) to make the treatment effect noticeable or dis- 
tinct. If the probability assigned to the t ratio we obtained in our experiment were less than 0.05, then we 
would conclude that the group difference is unusual relative to what might ordinarily be expected to occur 
by chance (and thus the low Pvalue). Accordingly, we would conclude that there is  a difference in knee 
ROM depending upon the type of exercises. If the Pvalue was greater than 0.05, then we would conclude 
that there is no statistically significant difference in the effect of the 2 types of exercise for increasing ROM. 
The difference we obtained is consistent with the variability expected to occur anyway. 

APPENDIX 2 

Statistical Significance, Alpha Level, and Null Hypothesis 

The acceptable level of a type I error is known as the alpha (a)  level and specifies how much of a chance 
the researchers are willing to take that they will falsely conclude that one type of exercise treatment is better 
than the other. Most researchers are unwilling to take more than a 5% chance of making this type of mis- 
take, so they will set the a level at a probability value of P = 0.05. As noted in the first paragraph of this 
article, authors report Pvalues along with the results of statistical analyses. The Pvalue they report is the 
probability that they would make a mistake if they concluded that the research hypothesis was true when, in 
fact, there really is no difference between the groups (ie, there really is no signal, just noise). Once they 
know the Pvalue for their result, they can compare the obtained Pvalue to the criterion a level. At this 
point, the rule for deciding is really quite simple: if P < a ,  then reject the null hypothesis and conclude that 
the research hypothesis is more plausible. Up to this point in our discussion, we have focused on the re- 
search hypothesis. By convention, however, a statistical test is on the null hypothesis. Logically speaking, a re- 
search hypothesis must be tested indirectly by trying to disconfirm the null hypothesis. An example of a null 
hypothesis is: "If the treatments are equally effective, then there will be no difference in range of motion 
when the study is over." If there are range of motion differences at the conclusion of the study, then authors 
will reject the null hypothesis in favor of the more plausible alternative that one treatment is more effective 
than the other treatment. Nickerson7 provides a comprehensive but readable treatment of null hypothesis 
testing, describing the logic behind it and the interpretational difficulties that have made it a controversial 
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procedure. In our hypothetical study, assume we set the a level at the conventional level of P = 0.05 and 
that the Pvalue derived from our results was 0.03. Because 0.03 is less than 0.05, we would conclude that the 
difference between the groups is too large to have occurred just by chance. The more plausible conclusion is 
that the difference was produced by the intervention and that the 2 types of stretching exercises are not 
equally effective interventions for increasing range of motion. We can never be completely sure that we have 
not made a type I error. A difference as large or larger than we found could have occurred just by chance 
(ie, just due to the variability that occurs ordinarily), but it is not likely ( P  = 0.03). 
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