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2.3 Adding Probabilistic Assumptions

The usual treatment of linear regression adds many more probabilistic assump-
tions, namely that

Y | ~X ⇠ N ( ~X · �,�2) (2.41)

and that Y values are independent conditional on their ~X values. So now we
are assuming that the regression function is exactly linear; we are assuming that
at each ~X the scatter of Y around the regression function is Gaussian; we are
assuming that the variance of this scatter is constant; and we are assuming that
there is no dependence between this scatter and anything else.

None of these assumptions was needed in deriving the optimal linear predictor.
None of them is so mild that it should go without comment or without at least
some attempt at testing.

Leaving that aside just for the moment, why make those assumptions? As
you know from your earlier classes, they let us write down the likelihood of the
observed responses y1, y2, . . . yn (conditional on the covariates ~x1, . . . ~xn), and then
estimate � and �2 by maximizing this likelihood. As you also know, the maximum
likelihood estimate of � is exactly the same as the � obtained by minimizing the
residual sum of squares. This coincidence would not hold in other models, with
non-Gaussian noise.

We saw earlier that b� is consistent under comparatively weak assumptions
— that it converges to the optimal coe�cients. But then there might, possibly,
still be other estimators are also consistent, but which converge faster. If we
make the extra statistical assumptions, so that b� is also the maximum likelihood
estimate, we can lay that worry to rest. The MLE is generically (and certainly
here!) asymptotically e�cient, meaning that it converges as fast as any other
consistent estimator, at least in the long run. So we are not, so to speak, wasting
any of our data by using the MLE.

A further advantage of the MLE is that, as n ! 1, its sampling distribution is
itself a Gaussian, centered around the true parameter values. This lets us calculate
standard errors and confidence intervals quite easily. Here, with the Gaussian
assumptions, much more exact statements can be made about the distribution of
b� around �. You can find the formulas in any textbook on regression, so I won’t
get into that.

We can also use a general property of MLEs for model testing. Suppose we have
two classes of models, ⌦ and !. ⌦ is the general case, with p parameters, and !
is a special case, where some of those parameters are constrained, but q < p of
them are left free to be estimated from the data. The constrained model class !
is then nested within ⌦. Say that the MLEs with and without the constraints
are, respectively, b⇥ and b✓, so the maximum log-likelihoods are L(b⇥) and L(b✓).
Because it’s a maximum over a larger parameter space, L(b⇥) � L(b✓). On the
other hand, if the true model really is in !, we’d expect the constrained and
unconstrained estimates to be converging. It turns out that the di↵erence in log-
likelihoods has an asymptotic distribution which doesn’t depend on any of the
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model details, namely

2
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; �2

p�q (2.42)

That is, a �2 distribution with one degree of freedom for each extra parameter
in ⌦ (that’s why they’re called “degrees of freedom”).10

This approach can be used to test particular restrictions on the model, and so
it is sometimes used to assess whether certain variables influence the response.
This, however, gets us into the concerns of the next section.

2.3.1 Examine the Residuals

By construction, the errors of the optimal linear predictor have expectation 0
and are uncorrelated with the regressors. Also by construction, the residuals of a
fitted linear regression have sample mean 0, and are uncorrelated, in the sample,
with the regressors.

If the usual probabilistic assumptions hold, however, the errors of the optimal
linear predictor have many other properties as well.

1. The errors have a Gaussian distribution at each ~x.
2. The errors have the same Gaussian distribution at each ~x, i.e., they are in-

dependent of the regressors. In particular, they must have the same variance
(i.e., they must be homoskedastic).

3. The errors are independent of each other. In particular, they must be uncor-
related with each other.

When these properties — Gaussianity, homoskedasticity, lack of correlation —
hold, we say that the errors are white noise. They imply strongly related prop-
erties for the residuals: the residuals should be Gaussian, with variances and
covariances given by the hat matrix, or more specifically by I � x(xTx)�1xT

(§1.5.3.2). This means that the residuals will not be exactly white noise, but they
should be close to white noise. You should check this! If you find residuals which
are a long way from being white noise, you should be extremely suspicious of
your model. These tests are much more important than checking whether the
coe�cients are significantly di↵erent from zero.

Every time someone uses linear regression with the standard assumptions for
inference and does not test whether the residuals are white noise, an angel loses
its wings.

2.3.2 On Significant Coe�cients

If all the usual distributional assumptions hold, then t-tests can be used to decide
whether particular coe�cients are statistically-significantly di↵erent from zero.

10 If you assume the noise is Gaussian, the left-hand side of Eq. 2.42 can be written in terms of various

residual sums of squares. However, the equation itself remains valid under other noise distributions,

which just change the form of the likelihood function.
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Pretty much any piece of statistical software, R very much included, reports the
results of these tests automatically. It is far too common to seriously over-interpret
those results, for a variety of reasons.

Begin with exactly what hypothesis is being tested when R (or whatever) runs
those t-tests. Say, without loss of generality, that there are p predictor variables,
~X = (X1, . . . Xp), and that we are testing the coe�cient on Xp. Then the null
hypothesis is not just “�p = 0”, but “�p = 0 in a linear, Gaussian-noise model
which also includes X1, . . . Xp�1, and nothing else”. The alternative hypothesis
is not just “�p 6= 0”, but “�p 6= 0 in a linear, Gaussian-noise model which also
includes X1, . . . Xp�1, but nothing else”. The optimal linear coe�cient on Xp will
depend not just on the relationship between Xp and the response Y , but also on
which other variables are included in the model. The test checks whether adding
Xp really improves predictions more than would be expected, under all these
assumptions, if one is already using all the other variables, and only those other
variables. It does not, cannot, test whether Xp is important in any absolute sense.

Even if you are willing to say “Yes, all I really want to know about this variable
is whether adding it to the model really helps me predict in a linear approxima-
tion”, remember that the question which a t-test answers is whether adding that
variable will help at all. Of course, as you know from your regression class, and
as we’ll see in more detail in Chapter 3, expanding the model never hurts its
performance on the training data. The point of the t-test is to gauge whether
the improvement in prediction is small enough to be due to chance, or so large,
compared to what noise could produce, that one could confidently say the variable
adds some predictive ability. This has several implications which are insu�ciently
appreciated among users.

In the first place, tests on individual coe�cients can seem to contradict tests on
groups of coe�cients. Adding multiple variables to the model could significantly
improve the fit (as checked by, say, a partial F test), even if none of the coe�cients
is significant on its own. In fact, every single coe�cient in the model could be
insignificant, while the model as a whole is highly significant (i.e., better than a
flat line).

In the second place, it’s worth thinking about which variables will show up as
statistically significant. Remember that the t-statistic is b�i/se(b�i), the ratio of the

estimated coe�cient to its standard error. We saw above that V
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�1 ! n�1�2v�1. This means that the standard errors will shrink as
the sample size grows, so more and more variables will become significant as we
get more data — but how much data we collect is irrelevant to how the process
we’re studying actually works. Moreover, at a fixed sample size, the coe�cients
with smaller standard errors will tend to be the ones whose variables have more
variance, and whose variables are less correlated with the other predictors. High
input variance and low correlation help us estimate the coe�cient precisely, but,
again, they have nothing to do with whether the input variable actually influences
the response a lot.

To sum up, it is never the case that statistical significance is the same as
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scientific, real-world significance. The most important variables are not those with
the largest-magnitude t statistics or smallest p-values. Statistical significance is
always about what “signals” can be picked out clearly from background noise11.
In the case of linear regression coe�cients, statistical significance runs together
the size of the coe�cients, how bad the linear regression model is, the sample
size, the variance in the input variable, and the correlation of that variable with
all the others.

Of course, even the limited “does it help linear predictions enough to bother
with?” utility of the usual t-test (and F -test) calculations goes away if the stan-
dard distributional assumptions do not hold, so that the calculated p-values are
just wrong. One can sometimes get away with using bootstrapping (Chapter 6)
to get accurate p-values for standard tests under non-standard conditions.

2.4 Linear Regression Is Not the Philosopher’s Stone

The philosopher’s stone, remember, was supposed to be able to transmute base
metals (e.g., lead) into the perfect metal, gold (Eliade, 1971). Many people treat
linear regression as though it had a similar ability to transmute a correlation
matrix into a scientific theory. In particular, people often argue that:

1. because a variable has a significant regression coe�cient, it must influence the
response;

2. because a variable has an insignificant regression coe�cient, it must not influ-
ence the response;

3. if the input variables change, we can predict how much the response will change
by plugging in to the regression.

All of this is wrong, or at best right only under very particular circumstances.
We have already seen examples where influential variables have regression coef-

ficients of zero. We have also seen examples of situations where a variable with no
influence has a non-zero coe�cient (e.g., because it is correlated with an omitted
variable which does have influence). If there are no nonlinearities and if there are
no omitted influential variables and if the noise terms are always independent of
the predictor variables, are we good?

No. Remember from Equation 2.6 that the optimal regression coe�cients de-
pend on both the marginal distribution of the predictors and the joint distribution
(covariances) of the response and the predictors. There is no reason whatsoever to
suppose that if we change the system, this will leave the conditional distribution
of the response alone.

A simple example may drive the point home. Suppose we surveyed all the cars
in Pittsburgh, recording the maximum speed they reach over a week, and how
often they are waxed and polished. I don’t think anyone doubts that there will
be a positive correlation here, and in fact that there will be a positive regression

11 In retrospect, it might have been clearer to say “statistically detectable” rather than “statistically

significant”.
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coe�cient, even if we add in many other variables as predictors. Let us even
postulate that the relationship is linear (perhaps after a suitable transformation).
Would anyone believe that polishing cars will make them go faster? Manifestly
not. But this is exactly how people interpret regressions in all kinds of applied
fields — instead of saying polishing makes cars go faster, it might be saying
that receiving targeted ads makes customers buy more, or that consuming dairy
foods makes diabetes progress faster, or . . . . Those claims might be true, but the
regressions could easily come out the same way were the claims false. Hence, the
regression results provide little or no evidence for the claims.

Similar remarks apply to the idea of using regression to “control for” extra
variables. If we are interested in the relationship between one predictor, or a few
predictors, and the response, it is common to add a bunch of other variables to
the regression, to check both whether the apparent relationship might be due to
correlations with something else, and to “control for” those other variables. The
regression coe�cient is interpreted as how much the response would change, on
average, if the predictor variable were increased by one unit, “holding everything
else constant”. There is a very particular sense in which this is true: it’s a predic-
tion about the di↵erence in expected responses (conditional on the given values
for the other predictors), assuming that the form of the regression model is right,
and that observations are randomly drawn from the same population we used to
fit the regression.

In a word, what regression does is probabilistic prediction. It says what will
happen if we keep drawing from the same population, but select a sub-set of
the observations, namely those with given values of the regressors. A causal or
counter-factual prediction would say what would happen if we (or Someone)
made those variables take those values. Sometimes there’s no di↵erence between
selection and intervention, in which case regression works as a tool for causal
inference12; but in general there is. Probabilistic prediction is a worthwhile en-
deavor, but it’s important to be clear that this is what regression does. There are
techniques for doing causal prediction, which we will explore in Part III.

Every time someone thoughtlessly uses regression for causal inference, an angel
not only loses its wings, but is cast out of Heaven and falls in extremest agony
into the everlasting fire.

12 In particular, if our model was estimated from data where Someone assigned values of the predictor

variables in a way which breaks possible dependencies with omitted variables and noise — either by

randomization or by experimental control — then regression can, in fact, work for causal inference.
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2.5 Further Reading

If you would like to read a lot more — about 400 pages more — about linear
regression from this perspective, see The Truth About Linear Regression, at http:
//www.stat.cmu.edu/~cshalizi/TALR/. That manuscript began as class notes
for the class before this one, and has some overlap.

There are many excellent textbooks on linear regression. Among them, I would
mention Weisberg (1985) for general statistical good sense, along with Faraway
(2004) for R practicalities, and Hastie et al. (2009) for emphasizing connections
to more advanced methods. Berk (2004) omits the details those books cover, but
is superb on the big picture, and especially on what must be assumed in order
to do certain things with linear regression and what cannot be done under any
assumption.

For some of the story of how the usual probabilistic assumptions came to have
that status, see, e.g., Lehmann (2008). On the severe issues which arise for the
usual inferential formulas when the model is incorrect, see Buja et al. (2014).

Linear regression is a special case of both additive models (Chapter 8), and of
locally linear models (§10.5). In most practical situations, additive models are a
better idea than linear ones.

Historical notes

Because linear regression is such a big part of statistical practice, its history has
been extensively treated in general histories of statistics, such as Stigler (1986)
and Porter (1986). Farebrother (1999) is especially clear on transition from the
first appearance of the method of least squares, where it was used to find param-
eters when there were more equations than unknowns13, to more general linear
modeling. I would particularly recommend Klein (1997) for a careful account of
how regression, on its face a method for doing comparisons at one time across
a population, came to be used to study causality and dynamics. The paper by
Lehmann (2008) mentioned earlier is also informative.

The derivation of the optimal linear predictor in §2.1, assuming nothing beyond
wanting to use a linear prediction function and v being invertible, is standard in

13 The classic cases where astronomy and “geodesy”, the measurement of the exact shape of the Earth

(important for physics and for navigation). Take astronomy: if you have a model of the orbit of a

planet, and plug in values for the parameters, you get a prediction for the position of the planet in

the sky every night. Going the other direction, every observation gives you an equation with the

unknown parameters on one side, and known, measured values of the planetary position on the

other side. Even with a very complicated model with dozens of adjustable parameters, a few years

worth of nightly observations gives you more equations than unknowns. With more equations than

unknowns, there’s usually no solution that fits all the data exactly. The literally-ancient approach to

this embarrassing problem, going back to the ancient Greeks and to the Babylonians before them,

was to try to select the best, most reliable observations, discarding the bad ones, until you had just

as many observations as unknowns, and then solving for the parameters. The crucial innovation in

the 1700s was to realize that least squares gave us a way of trying to use all the observations, giving

parameter values that generally fit well but not perfectly, because even the best observations are

imperfect. In this context, the emphasis on linear equations made sense, because of the form of the

models the astronomers and geodesists were using.

http://www.stat.cmu.edu/~cshalizi/TALR/
http://www.stat.cmu.edu/~cshalizi/TALR/
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the theory of time series (Ch, 23) and stochastic processes, going back there at
least to Kolmogorov (1941) and Wiener (1949). Special cases were known in the
1930s in factor analysis (Ch. 16), though I believe all of them also, unnecessarily,
assumed Gaussian distributions for all variables. It’s possible someone else got
there first, but if so, I haven’t been able to find it. In spatial statistics, the
same ideas were re-discovered by D. G. Krige in the 1950s (Krige, 1981), and
popularized by Georges Matheron under the name “kriging” (Matheron, 2019),
which has stuck in geostatistics.

Exercises

2.1 1. Write the expected squared error of a linear predictor with slopes ~b and intercept b0

as a function of those coe�cients.

2. Find the derivatives of the expected squared error with respect to all the coe�cients.

3. Show that when we set all the derivatives to zero, the solutions are Eq. 2.6 and 2.5.

2.2 Show that the expected error of the optimal linear predictor, E
h
Y � ~X · �

i
, is zero.

2.3 Convince yourself that if the real regression function is linear, � does not depend on the

marginal distribution of X. You may want to start with the case of one predictor variable.

2.4 Run the code from Figure 2.5. Then replicate the plots in Figure 2.6.

2.5 Which kind of transformation is superior for the model where Y | X ⇠ N (
p
X, 1)?


