{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 01-29 Relationships & Similarity\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introduction\n", "\n", "So far, we spent explored how to **summarize single variables** in our datasets using measures of *central tendency*: the mean, median, mode, and measure of *spread*: variance, standard deviation, standard error (standard deviation of a *sampling distribution*).\n", "\n", "When we have a column of numbers – say, students' test scores or reaction times from an experiment – we can *compress* that information into a meaningful summary: the mean tells us about the typical value, the variance describes spread, the median gives us the middle value, etc. These are all ways of **aggregating** - *thoughtfully throwing away information to gain insight* - one of the **4 fundamental concepts** we learned about (aggregation, learning, sampling, & uncertainty). \n", "\n", "But this approach misses something crucial – it doesn't tell us anything about how the variables **change together**. \n", "\n", "How might we come up with a *new statistic* that summarize this change?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Thinking About Similarity\n", "\n", "Consider a real-world example that many of you have first hand experience with šŸ˜…: \n", "\n", "How would we **summarize the relationship** between the number of *hours* you spend working on an assignment, and the *score* you receive on an assignment?\n", "\n", "Just as we can compress a one column of numbers into a single meaningful value (like the mean), perhaps we can *compress the relationship* between these two variables in a way that tells us how \"similar\" their patterns are.\n", "\n", "This notion of **summarizing similarity** is foundational to many of the concepts we'll learn later in this course.\n", "\n", "Let's think about what it means for 2 variables to be \"similar.\"\n", "\n", "If *hours* and *score* are **similar** then we should be able to express that in a number that reflects how the \"move together:\" do students who study *more* tend to score *higher*?\n", "\n", "Let's play with some data to make this concrete - we'll load a data with observations from 100 students measuring study habits and performance. These data contain a column called `study_time` for the number of hours students prepared and `test_score` for the score they received on their exam:\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "shape: (100, 3)
studentstudy_timetest_score
strf64f64
"A"23.820262100.0
"B"17.00078680.523981
"C"19.8936987.08253
"D"26.204466100.0
"E"24.3377996.944346
"RRRR"18.53286695.350268
"SSSS"15.052597.822906
"TTTT"23.929352100.0
"UUUU"15.63456100.0
"VVVV"17.009947100.0
" ], "text/plain": [ "shape: (100, 3)\n", "ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”¬ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”¬ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”\n", "│ student ┆ study_time ┆ test_score │\n", "│ --- ┆ --- ┆ --- │\n", "│ str ┆ f64 ┆ f64 │\n", "ā•žā•ā•ā•ā•ā•ā•ā•ā•ā•ā•Ŗā•ā•ā•ā•ā•ā•ā•ā•ā•ā•ā•ā•ā•Ŗā•ā•ā•ā•ā•ā•ā•ā•ā•ā•ā•ā•ā•”\n", "│ A ┆ 23.820262 ┆ 100.0 │\n", "│ B ┆ 17.000786 ┆ 80.523981 │\n", "│ C ┆ 19.89369 ┆ 87.08253 │\n", "│ D ┆ 26.204466 ┆ 100.0 │\n", "│ E ┆ 24.33779 ┆ 96.944346 │\n", "│ … ┆ … ┆ … │\n", "│ RRRR ┆ 18.532866 ┆ 95.350268 │\n", "│ SSSS ┆ 15.0525 ┆ 97.822906 │\n", "│ TTTT ┆ 23.929352 ┆ 100.0 │\n", "│ UUUU ┆ 15.63456 ┆ 100.0 │\n", "│ VVVV ┆ 17.009947 ┆ 100.0 │\n", "ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”“ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”“ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Import a helper function we provide to generate some data\n", "from helpers import generate_student_data\n", "\n", "# This function returns a polars DataFrame\n", "df = generate_student_data()\n", "df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's create a scatter plot of the relationship we want to *summarize*:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwEAAAMBCAYAAAC3H7gVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AAC470lEQVR4nOzdeXhU5fk38O85ZyYzhCyAJCRhcYEERMUEgwhikeCKlSIal4JKtVXcl1YFu7i+ajeXivqz1qK0FJUKKKhQISwiKgZBXCALgoEkkERlSAyznuf9Y5hhkkwms5w5s30/1+XlMDnLMzNZnvuc+7lvSQghQEREREREKUOO9QCIiIiIiEhfDAKIiIiIiFIMgwAiIiIiohTDIICIiIiIKMUwCCAiIiIiSjEMAoiIiIiIUgyDACIiIiKiFMMggIiIiIgoxTAIICIiIiJKMQwCiIiIiIhSDIMAIiIiIqIUwyCAiIiIiCjFMAggIiIiIkoxDAKIiIiIiFIMgwAiIiIiohTDIICIiIiIKMUwCCAiIiIiSjGGWA+AEkNrayuqqqq8/x4+fDgyMzNjOCIiIiIiCheDAApKVVUVZsyY4f33woULUVpaGsMREREREVG4mA5ERERERJRiGAQQEREREaUYBgFERERERCmGQQARERERUYphEEBERERElGIYBBARERERpRgGAUREREREKYZBABERERFRimEQQERERESUYhgEEBERERGlGAYBREREREQphkEAEREREVGKYRBARERERJRiGAQQEREREaUYBgFERERERCmGQQARERERUYphEEBERERElGIYBBARERERpRhDrAcQ737/+9/jjTfewOzZs3HXXXcF3FZVVSxduhTLli1DVVUV2tvbkZOTg9GjR+PKK6/EmDFjejyfFscgIiIiIgqEQUAA77//Pt54442gtm1tbcXNN9+MzZs3d3i+oaEBDQ0NeOeddzBr1izMmTMnqscgIiIiIuoJg4BurF+/vscr/x5CCNx5553eyfuECRNw1VVXoX///tixYwdeeukl1NfXY/78+ejXrx9uuOGGqByDiIiIiCgYXBPgxyuvvIJbbrkFDocjqO2XL1+OjRs3AgCmT5+Ol19+Geeccw6Ki4tx1VVXYcmSJRg2bBgAYN68edi/f39UjkFEpBdVFQAAq0OgzabC6hAdntfrGOEcT8vzBjqWq5uveZ4P93X2dG7P8bs7v6qKiM8drp7GrOdnF85xA22nxuB99z2mwyXgDHBuh0vb98zfWIIZR7jH1fozD2cMWr+2WOOdAB979uzBE088gbVr1wIAFEWBy+Xqcb/58+cDADIyMnDfffd1+XqfPn3w0EMPYcaMGbDZbFiwYAHuvfdezY9BRBRtqhBwqUBNsxNVTQ60Wo/+4cs0Sxiea0RhjgGKDMiSFLVjhHU8CVAFUK3Bebs7Z06GjLIiMyQAtS09j8fpEpCDfJ2Bzp2TIWNSoRl2p4AkAU6nwK4A5x/W3wADBCCFdu5wBfMZDe3vnpJs2GVDS5satc8u1HEFc/7igWk4tq8Ch0sEPJZW77sqBCAApwrUW1woyFYAALt6eH8NsoSKGitsThH2e+ZvLC4V2HcwuHFE+jMWzrHi7bXFC0kIkXihSxQsXLgQjz/+uPfq/7BhwzBr1iz87ne/A4BuFwbv3bsX55xzDgDg4osvxl/+8pduz3HBBRdg9+7dGDhwICoqKjQ9RrRVVlZixowZ3n8vXLgQpaWlup2fiGJPCIEGiwvra21wqt1vZ5CBicNMKMhWIHX6Y6jFMcI93k+GmZCXpeB/O61oafO/cTDn7e6cORkyzh1hRqPFhQ92BTeegmwFlnYX+qQHfp2Bzu0573dtLhyToQR//qEmFPRRIAFBnTtcoXxGZw01IT+742ek5WcX7rgCnT/kzz3C910IAQGg/qALO/Y7UDY8+HN3fn9Dfc/8jaXB4sJXjaGNI9yfsXCOFa5ovbZ4wnSgI7744gs4HA6kpaXhxhtvxJIlSzBkyJAe99uyZYv38RlnnBFw29NPPx0AUF9fj7q6Ok2PQUQUTaoQqLe4UFEd+I8g4L46WVFtQ4PF5b5iqeExIhnT2mob9h9yoazQDFM398F7Om935zQZgEmF7onCuprgx9NgcSGrl4Km1u5fZ6Bze8574JAL2b2U0M5f4z6/S6DHc4cr1M9oXU3Xz0irzy6ScXV3/rA+9wjed1UIuIQ7APhotw0/GRbauTu/v6G8Z/7GUm9x4cNvQh9HOD9j4RwrXNF6bfGGQcARJpMJ5eXlWLlyJe6++26YTKag9qutrfU+Pu644wJuO3jwYO/jmpoaTY9BRPEpHvJZteBSgQ21NgQ7agFgfa0NLp8/mlocI9Ixbai1QZaAwhxjWOft7pyFOUZIEvDBrtDHowrAJdDt6wx0bs95m9vU8M+vAtGar2j1GWnx2UVjXBF97mG87+LI98kHu2wYFsG5fV9HsO9ZZ573MNxxhPozFs6xwhWt1xZvGAQc8cADD+DRRx/FwIEDQ9rPd4FuQUFBwG3z8/P97qfFMYgovqjCvRBvZ5MTS7e3442t7Vjy+WG8sbUdS7e3Y2eTEw6XSIirRarqznPu6SpYZ84j+byexYuRHkOrMdW2OFGUa0Cgm/X+ztvdOSUARbkG7GoJ//XlZip+X2egc/ued1hO+OevPbJfNBaKavkZRfLZRWNckX7uob7vqirgVIFdLU641MjP7fs+9vSe+RtLTXPk4wj2ZyycY4UrWq8tHnFh8BGyHF48ZLFYvI979+4dcNv09HTv49bWVk2PEQxPv4FwVFVVhbUfUSoSQqAxQD5rq1Wgss6ObfvsCZE/KssSqpqCq5bWWXWTAyPz3FcctTiGlmPKz1bQYOm++EPn83Z3zvxsBRkmGVVN1ojGAwjIsv/vA3/n9pz34GE7RuYZNTi/tqLxGYX72UVjXAA0+tyDI8sSTLL750ir7znf9zGU8XjeQ+2+9zseV4tjhStary0eMQiIkN1u9z42m80Bt/X9uu9+WhwjGG+++SbmzZsX0j5EFBr1yGKytdU93z725I+WFbkX68VrRQmrQ3SohBGKQ1YBp8t9BTOSY9icAibD0fcn0jEdtqvINktosATezve83Z0z2yyh3a5G9vocAhlpcpfX6eF7bgnuAKAox4DDDgGjHPn5D9tVGBUJBkW778FofEbhfnbRGBcAXd93h8t9d7HVKjAoW5vP3Pd9DPSedeZ5D7UYRzA/Y+EcK1zRem3xiOlAEVIUxfu4pyt5voWYfO88aHEMIooP8ZDPqjVnhLe0XUJEfAyHq+P+ER9PRdATr57OaVCkkNMFuo5HwKB0fZ2+5zYZgJPzjbjk1F44Z7gZeVkyXKrQ6Pzuz0lL0fqMwvnsojEuvd93VQjv+bQ6d+f3sbv3rDPPe6jJOIL4GQvnWOGK1muLR7wTECHf9Byr1Yq0tLRut7XZbN7HvttpcQwiir1I81lH5Bq6TQeJJUOEY1IkCSLCaxbGTpOVSMdklN01+kM5b3fndLoEDJG+PlmC09X1dfqO42enpEOScKT+vxWDshWclG/U6Pzuz0lL0fqMwvnsojUuPd93WZJgkN3n1eoz7/w+dveedeZ5DzUZRxA/Y+EcK1zRem3xiEFAhHxz+A8fPoysrKxut21vb/c+zs7O1vQYwbj00ksxbty4kPbxqKqqwsMPPxzWvkSpIh7yWaPBbJSQaZbCui2eZZaOXDVFRMfofEs90jH1SpNh6WHfzuft7pwWq0B6mhzZ6zNKaLOrGGLw/2c5TXE3LPKtU24xuc/rUCM/f6807e8sR+MzCvezi9a49HzfjYoEo+Ieuxbfc53fx0DvWWee91CT7/0gfsbCOVa4ovXa4hGDgAj5VhNqbGzEgAEDut22sbHR+9h3Oy2OEYyCgoIeqw8RUfjiIZ81GlTV3V20si60dUgAUJRr9FbIiPQYvndJIh1Tm01FY4CFpf7O2905Gy0utNnUiMbjTkGQurxO4Og6k3U1HdPMPOft00uJ+Pw2p4BRhqZ3oqLxGYX72UVrXHq+76oq4FDdP0db6uwRn7vz+xjoPfM3Fq3GEczPWDjHCle0Xls8YlJ5hAoLC72Pe2retXfvXu/jYcOGaXoMIoq9eMhnjQZZllCYYwj51rhBBgpz3ClOWhxDqzEN629AdZMz4LoNf+ft7pwCQHWTE0P7h//6mlpdfl8n0P06EwF306jCHANqm8M//7Aj+2k9WdH6M4rks4vGuCL93EN932VZgkEGhvY3QJEjP7fv+9jTe+ZvLIU5kY8j2J+xcI4Vrmi9tnjEICBCxcXF3sW8lZWVAbfdvHkzAHet/0GDBml6DCKKvXjIZ40WRQYmDjMFrM/uS4J7e8Xnr4wWx4h0TD8ZZoIqgJrm7tO2Ap23u3PWNDsgBHDW0NDHI0uAIsHv+QKtMzEZgGP7GSBJQE6G7D5eOOeXgWgVptLqM9Lis4vGuCL63MN436Uj3ydnDTWhNoJz+76OYN+zzjzvYbjjCPVnLJxjhStary3eJMAQ41t+fj6Ki4sBAKtWrUJbW5vf7SorK7F7924AwPnnn6/5MYgo9jy5pOGI9/xRWZJQkK2grMjU41UxgwyUFbn7H/iWPdXiGJGMaVKRCXlZCipqrLA5wztvd+e0OYGKGivysxWcXRj8eAqyFRw67EJuZjfnC7DOxNOtdneLE3lZCtIMEgr6KJgUwvtRkK1AkRC18rRafEZafXZajwuI7HMP532XJQmKBAzso2Dc8SZsqA393L6vI5T3zN9YCrIVnHlC6OMI52csnGOFK1qvLd5IQiRAu8oY+eSTT3DNNdcAAGbPno277rrL73bvvPMO7r77bgDAT3/6U/z5z3/uUL7TYrHg5z//OWpra2E0GvHee+9h8ODBmh8jmiorKzFjxgzvvxcuXIjS0lLdzk+UCFTV3SE4nPzR0iFpcVsdyJcqBFxHqhlVNTk6rIHIMksoyjV6b6V390dQi2OEdTwJUAVQrcF5uztn/wwZk4vMkODuyhrMeOQA57M6BN7Y2t7leQnApcW9YFQkqMJTMcgBk0FCWaHZp4pQ4PMjigGAr2A+o2H9DVCFe1Ld0qZG7bMLdVzBnP/UgWk4tq8ClwjuWJG+76oQgHBXFqu3uFBwpHlZoM/c9/21O0XY75m/sbhU98L1YMYR6c9YOMeKt9cWLxgEBBBsEAAA119/PTZu3AgAKC0txTXXXIMBAwagqqoKL774Iurr6wEAd999N2688caoHSNaGAQQBcfhEli8tT2kMqEGGSgvSY/rdKDOPAvebE53AyOj4r6TEcpCOC2OEc7xtDxvoGMJAIosweYQcKjupl4mowSXKqDIwZ2vzaZiyeeHuzx/4gADSoekdakYBLjThApzjCjKNSDDJOOwXYVLwDu2NpuKb7934qR8/ctMd/d+ed4TPT+7YMYVyvkB950b72vxfO5+ttGK7zGdLgFI7rREf+NTBWB1avee+RtLMOPQ8mdMr4sm0XptscbqQBp55plnMHv2bHz66aeorKz0m9s/a9Ys3HDDDVE9BhHFlieXtCKIjsFAYuWP+vL8sTMZOqYxhfJHUItjhHM8Lc8bzLFMRgm+GcXKka8Fcz5/60xMBqB4UBrq/VQMAtwpKl82OvBVowP52Qqyze7Skscdo0CCjHe/OgyrExiWY9Q9Ba2790uJwWcXznGD2c77Wjp97tGYIPoe07fxl7/xyQAylOiNx3O8nsYR7nG1/szDGYPWry3WGARoJCMjAwsWLMCyZcvw9ttvY+fOnWhtbUXfvn1RUlKCGTNm4Iwzzoj6MYgotnzzWdfX2gLeETAcCRgKspUeu4VTavJXN70wxwgheu5MLQA0WFxosLj//fV+By4rTsewHCO+bHTA4YrPkrREpA+mA1FQmA5EFJp4yGelxNd5nYkE4JJTe6HuB1fYa0+G9FWw9PPDuHx0OoMAohTGOwFERFEgSxJkBRiRa8DIPGNS5I9SZDyfudUh4FQFDLIEszHw94KnZvm2fXY4VSA/W0GGSUZVkzWsMXg6Uw/NURgAEKU4BgFERFEUD/msFFuB7gplmiUM7+GukO86k2yzhHa7GlFn6sN2FSccE//dTIkouhgEEBERRYkQAo0WV7frQ1qtApV1dmzbZ+92fYjvOpPvflRDqjzlj0N1NxdjAECU2hKsHgUREVFiUIVAvcWFiurAC8QBd733imobGiwudw34TiRJQn62gpPyjUiLsJRsmiJFrUMwESUOBgFERERR4FJ7ruDjSwBYX2uDq5uAQZYkKEfWEUTSmdpslLgYnYgYBBAREWlNVQVqmp0hp+44j6wd8DSB6u7Yw3ONYY2rKNcY8NhElDoYBBAREfXAM3G2OgTabCqsDtHh+c5kWUJVkyOsc1U3OQLm63sqBhlC/AtukIHCHAPXAhARAC4MJiIi6la4lX2sDhFRBR+bM3Ajr1TpTE1E0cNfB0RERH54Kvss3tqOyjp7l0m9p7LP4q3taLS44Nt70xlhyo3DFXh/34pBPd0RMMhAWZG78hDXAhCRB4MAIiKiTiKt7GOIMOXGGEQFIE/FoPKSdJQOSeuyWDjLLKF0SBrKS9KR76f0KBGlNqYDERERdRJuZZ/yknTICrwVfMJJCcoyS0F382VnaiIKF+8EEBER+dCiso/eFXx8O1NnmGRvEMEAgIi6wyCAiIjIhxaVfVjBh4jiHYMAIiIiH1pU9gGOVvAJdjrPCj5EpCf+qiEiIvKhVWUfVvAhonjGhcFEREQ+tKzs41vBx1+vgSyzhCKfXgOs4ENEemEQQERE5EPryj6s4ENE8YjpQERERD6iVdmHFXyIjvL8nFgdAm02FVaH6PA8RR/vBBAREfnwVPbZts8eUplQVvYh6pkqBFxHyul2To/LNEsY7pMex/Ux0cU7AURERJ2wsg+R9oQQaLS4sHhrOyrr7F1S7lqtApV1dize2o5GiwtC8K5ANPHXFRERUSes7EOkLVUI1FtcqKi29XiHzakCFdU2NFhcUBkIRA2DACIiIj98K/uUDklDprnjBD/LLKF0SBrKS9KRn62wsg9RAC4V2FBrQ7BTegFgfa0NrhA7d1PwuCaAiIioG6zsQxQ5VRWoaXaGtMYGcN8RqGl2YkQu19pEA+8EEBER9YCVfYjCJ8sSqpocYe1b3eTgz1mUMAggIiIioqixOkRYfTcA4JBVwObkuoBoYBBARERERFHjjLD2v8PFICAaGAQQERERUdQYIkznMSpMB4oGBgFEREREFDVmo9SlulawssySdw0OaYtBABERERFFjaoKDM81hrVvUa4RaoTpROQfgwAiIiIiihpZllCYY+ix8V5nBhkozGF50GhhEEBElCQ8V8usDoE2mwqrQ3R4nogoVhQZmDjMhGCn8xLc2yucqUYNm4URESU4VQi4jjTVqWpydCjFl2mWMDzXiMIcAxTZ3fyKiEhvsiShIFtBWZEJ62ttARuHGY4EDAXsxB1VDAKIiBKYEAKNFle3f1RbrQKVdXZs22fnH1UiiilJkpCfraC8JN3vRYsss4Qin4sW/F0VXQwCiIgSlCoEGiwurK22oaeEH6cKVFTbUFZkQn62wjsCRBQTsiRBVoARuQaMzDPC5hRwuASMirsKkKoKrgHQCTOtiIgSlEsFNtT2HAB4CADra21wBbgNT0SkB89E32SQkGGSvWVAGQDoh0EAEVECUlWBmmZnwLxaf5xH1g5wsTARUWpjEEBElIBkWUJVkyOsfaubHLzaRrrSu3IVK2UR9YxrAoiIEpDVITosqAvFIauAzSnYhZOiTu/KVayURRQ8BgFERAnIGeEVTYeLQQBFl96Vq1gpiyg0TAciIkpAhgjTeYxKdCc/TMdIbaoQqLe4UFEduB48cLRyVYPFBVWE9/2h9/mIkgHvBBARJSCzUUKmWQorJSjLLEXtLgDTMQgIv3JVeUk6ZCX+z0eUDHgngIgoAamqwPBcY1j7FuUao3JF3pOOsXhrOyrr7F0CFE86xuKt7Wi0uCB4FTYp6V25ipWyiMLDIICIKAHJsoTCHAMMIf4WN8hAYY5B8+pATMcgD70rV7FSFlF4GAQQESUoRQYmDjMh2CmMBPf2ShR+87NxGXloUbkqns9HlCwYBBARJShZklCQraCsyNTjHQGDDJQVuSuiaJ2Lz3QM8qVF5ap4Ph9RsuDCYCKiBCZJEvKzFZSXpPtdjJtlllDksxg3GiURI03HGJkX3toGik96V66K90pZRPGKQQARUYKTJQmyAozINWBknhE2p4DDJWBU3FWAVFVENe852HQMCUB+toJsswSDIsHpErAkceMyz/tudQg4VQGDLMFsjP7nEWt6V66K10pZRPGOQQARUZLwTCxNho4Tm2hPOHtKxzAZgMIcI4pyDcgwyWi3q3Cq7hSl9DQ54nSOeJPqZVI9lasq6+wh7+upXBXK96ze5yNKFgwCiIgoIoHSMXIyZEwqNEOSgF0tTlQ1WZN6UsyutUcrV23bZw9pnUi4lav0Ph9RsuDCYCIiiognHaOznAwZ544wo7nNhTe3JX/vAJZJPUrvylXxVCmLKFHw25+IiCLir3GZyQBMKjSj0eLCuprUmBSzTOpReleuipdKWUSJhEEAERFFxF/jssIcIyQJ+GBXakyKWSa1K9/KVaVD0rrcLcoySygdkobyknTka5AWpff5iBId1wQQEVHEPOkYFdU2AEBRrgG7WsKfFI/ITaxcbZZJ9U/vylWxrpRFlEh4J4CIiCLmm44xqI+CDJMc0aQ40SZq7FobmG/lqgyT7K1eFa3PWe/zESUi3gkgIiJNeNIx8rIUTSbFiVS/XYuutYn0eoko8fFOABERaUaWJCiypMmkOJGway0RJRoGAUREpLlUmBR7FvPanaLbMqnBYNdaIooFBgFERKS5ZJ4Uq8K92HRnkxNLt7fj9c/a0WZTu5RJDZanay0RkZ4YBBARkeb89Q4IVjxPij0dgRdvPdr8TACobnJiaH9DjzXqO2PXWiKKFQYBRESkOX+9A4IRz5PiQB2Ba5odEAI4ayi71hJRYuCvHiIiigpP74BkmRQH6ghscwIVNVbkZys4u5Bda4ko/sXpr1oiIkp0vr0DEn1SHExH4JY2Ff/baUVOhoJLi9m1lojiG/sEEBFR1Hh6B5SXpKOm2YmqJkeH/gFZZglFuUYU5higyIjbSXGwHYFb2lS89UU7CnOMKDrStfawQ4VLBbvWElFcYRBARERRJUsSZAUYcWRSbHO6q+sk0qQ4lOZnNifwZaMDXzU6kJ+tINssoWRQGgwKu9YSUfxgOhAREenCM/k1GSRkmGRvGdBEmBSH0/xMAGiwuLDjgBNWZ3xWOyKi1MUggIiIqAep0PyMKFY8JYGtDoE2mwqrQ3R4nqKD6UBEREQ98DQ/CzYlyFe8Nz8jihVVCLhU+F0vlGmWMNxnvVA8FgxIdAwCiIhiyJMPb3UIOFUBgyzBbEyMPPlU4ml+VllnD3lfT/Mzfp5ER3ka762v7dp3AwBarQKVdXZs22fHxGHuymHxWjggUTEIICKKAV4BSyye5mfb9tkDlgntLJ6bnxHFiioEGiwurK3233fDl1MFKqptKCsyIT9OSwgnKq4JICLSmecK2OKt7aiss3dJMfFcAVu8tR2NFheEYF5sPEi25mdEsRKo8Z4/AsD6WhtcIQTg1DP+aiIi0pEqBOotLlRU+78F7stzBazB4oLKQCDmkqn5GVGsBNN4zx/nkTunXCysHQYBREQ64hWwxObb/IwdgYlCF2zjPX+qmxxMrdMQ1wQQEekk0itgI3KZWx4PkqH5GVGshNJ4r7NDVgGbU7DalkZ4J4CISCe8ApZcErn5GVGshNN4z5fDxXQgrTAIICLSiRZXwIiIEhkb78UPBgFERDrhFTAiSnWexnvhYOM9bTEIICLSCa+AEVGq8zTeC4en8R5pg0EAEZFOeAWMiFKdp/FeT2V2O2PjPe0xCCAi0gmvgBERsfFevODbSUSkE14Bo1jzBJJWh0CbTYXVITo8T6QHNt6LD+wTQESkI88VsIrq4BqG8QpY8vP0FbA6BJyqgEGWYDZq229AFQKuI/0mqpocHapUZZolDM81ojDHAEUGJ1qkC9/Ge/6+L7PMEop8vi/ZeE97DAKIiHTkewVsfa0tYOMww5GAoYCdZ5OSXhNzIQQaLa5uv99arQKVdXZs22fn9xvpio33YotBABGRzngFjPSamKtCoMHiwtog7jw5VaCi2oayIhPymXpBOvJtvOdbAIEBQHQxCCAiigFeAUtdek7MXSqwoTa41DMAEADW19pQXpIOWQnpVESUYJhlSkQUQ75XwDJMsvcqmL8AgIs6k0O4E3NXgNQxf1RVoKbZGTDlzB/nkRQlfl8RJTfeCSAiinNc1Jk8Ip2Yj8gNvkqULEuoanKEMUqgusmBkXnhlbMlosTAIICIKI5xUWdy0XNibnWIDgFjKA5ZBWxOwQZ1REmM6UBERHFKFQL1FhcqqgNXEQKO5o43WFxQBdM44pUWE/NgOSNM53G4+H1ElMwYBBARxSm9csdJP3pOzA0RLiw3KrwLQJTMGAQQEcUhLupMTnpOzM1GCZnm8M6XZZaYCkSU5BgEEBHFoUhzx1leND7pOTFXVYHhueEt7i3KNTKQJEpyDAKIiOKQnrnjpB89J+ayLKEwxwBDiH/pDTJQmBN8FaJUxrK9lMhYHYiIKA5pkTvOdI7o8jR0szoEnKqAQZZgNgZu9OaZmG/bZw8p1SvcibkiAxOHmVARRGMyAJDg3l7hJcKAWLaXkgGDACKiOKMKwUWdcSzSCaCeE3NZklCQraCsyNRtmVkPw5FxscxsYCzbS8mCsT4RURwRQuD7H1Uu6oxTngng4q3tqKyzd0nZ8kwAF29tR6PFBeGnXKvvxLynVB2DDJQVuSeS4V5RliQJ+dkKykvSUTokrcv3VZZZQumQNJSXpCOfE9aAWLaXkgnvBBARxQlVCDRYXFhXbcO0U3theK4RlXX2kI/jyR1nTre2PJ/P2iCu4HsmgGVFJuT7mcD7Tsz93VHIMkso8rmjEOnEXJYkyAowIteAkXlG2JwCDpeAUXEHjPx+CU64ZXvLS9IhK9EcGVHoGAQQEcUJzwRDBVDd5MRJ+UbdcsepZ1pPAGMxMfccz2ToeLeI3y89i7Rs74hc/lxSfGE6EBFRHOg8wahpdkAI4KyhJgQ7beCizuiJZt8G34l5hkn2Ts45YYwvLNtLyYZ3AjT2ww8/4F//+hfWrl2Luro62O12FBQUYPz48Zg5cyaGDh0acH9VVbF06VIsW7YMVVVVaG9vR05ODkaPHo0rr7wSY8aM0emVEJGeOk8wbE6gosaK80aYcXahCR/s4qLOWIp0AjgyL7yyoBQ/tCjby7U6FE8YBGho48aNuPvuu2GxWDo8v2fPHuzZswdvvPEG7r33Xlx77bV+929tbcXNN9+MzZs3d3i+oaEBDQ0NeOeddzBr1izMmTMnaq+BiGLD3wSjpU3F/3ZaUVZoxqXF6djVEv3c8WgLp6xmPOAEkFi2l5INgwCNbNmyBbNnz4bD4b5SNGHCBJSXlyM/Px91dXVYsGABtm/fjsceewyHDh3Cbbfd1mF/IQTuvPNObwAwYcIEXHXVVejfvz927NiBl156CfX19Zg/fz769euHG264QffXSETR090Eo6VNxVtftKMwx4iiI7njh+0qHCpglIFeaTLabCpUIWCU4jcPKNHrqnMCSCzbS8mGQYAGnE4n5syZ4w0AbrnlFtx+++3er5966qm48MIL8etf/xorV67ECy+8gMmTJ2PkyJHebZYvX46NGzcCAKZPn47HH3/c+7Xi4mJceOGFmDFjBmprazFv3jxMnToVeXl5Or1CIoq2QBMMmxP4stGBrxodyM9WkG2WYFAkOF0CFqu7ZOXlo9MDHj+WV+CToa46J4DkKdsbzh0hlu2leBS/l40SyLp161BXVwcAGD9+fIcAwMNgMOCxxx5Dnz594HK58Oc//7nD1+fPnw8AyMjIwH333ddl/z59+uChhx4CANhsNixYsEDrl0FEMRRMXwABoMHiwo4DTnzR4MCOA040WFzIDDDBUIW74szOJieWbm/HG1vbseTzw3hjazuWbm/HziYnHC4RtTrmyVJXnX0bSFUFhueGt7bDU7aXKJ4wCNDARx995H18zTXXdLtd7969ccEFFwAAPv74Y3z33XcAgL179+Lrr78GAEyaNAl9+vTxu39paSmOP/54AMDKlSu1GDoRxYloTDC0aGwVqXDLarpCrMITbZwAkixLKMwx9NjgrTOW7aV4xSBAA/X19d7Hp556asBtCwsLAbirAG3btg2Aez2BxxlnnBFw/9NPP917Ts/dByJKfFpPMOLhCnw0y2rqjRNAAgDlSBUulu2lZMBvSw141gIAQHp64Lxcg+HoMow9e/YAAGpra73PHXfccQH3Hzx4sPdxTU1NCKMkonin5QQjHq7AJ1tddU4ASZYkFGQrKCsy9RgQGmSgrMi9xiUeF7sTcWGwBvr27et9vH///oAT+cbGRu/j5uZm7z4eBQUFAc+Vn5/f4Vyh8JQaDUdVVVVY+xFR8HwnGN0tovUI1BcgXjqbJltZTa0+H0pskiQhP1tBeUm632pXiVa2l1IXgwANFBcXY/ny5QCA//3vfwHLd1ZUVHgft7e3A0CHvgK9e/cOeC7fOw2tra0hjfPNN9/EvHnzQtqHiPSlxQQjXhpbJWNZTU4ACXAHhLICjDhSttfmdC/ANyruReDx3veCCGAQoIkLLrgAf/7zn2G1WvHiiy+irKwMw4YN67LdggULUF1d7f230+kEANjtdu9zZrM54Ll8v+67HxElj0gnGPFyBT5Zy2pyAkgens/ZZOhYAYqfPyUC3YOAQ4cOobKyEp9//jn27NmDxsZGtLa2wm63w2w2IyMjA4MGDcLxxx+P4uJinHbaaejVq5fewwxJ//79cfPNN+PJJ59EW1sbfv7zn+O2227D+eefj759+2Lv3r34z3/+g3//+98YMGAADhw4AAAwGt1X2xRF8R6rp6tGvtU7ZJmJpkTJLNwJRrxcgU/2uuqcABJRItMlCLDb7Xj33XexdOlSbNmyBS6XK+D227dv9z5WFAUTJkzA1KlTce6553onzvHmhhtuwP79+/Gf//wHFosFjz76KB599NEO2wwaNAhPPPEEZs6cCeBoao9vio/VakVaWlq357HZbN7Hgbbz59JLL8W4ceNC2sejqqoKDz/8cFj7EpG+4uUKvKesZmVd6HctPWU1OaEmIoqOqAYBbW1tePXVV7FgwQIcOnQIAEKuQ+10OrF+/XqsX78e/fv3x9VXX40ZM2b0mDuvN0mS8MADD2D8+PF48cUX8eWXX3pfa05ODqZNm4bZs2d3KCfav39/AB3XARw+fBhZWVndnsezjgAAsrOzQxpjQUFBjwuPiSjxxcsVeE9ZzW377CEtUmZZTSKi6ItKECCEwH/+8x/87W9/w6FDhzpM/IcOHYoRI0Zg+PDhOOGEE9CnTx9kZGSgd+/esNlsaG9vR2NjI/bt24evv/4aX3zxhbcefnNzM5566inMnz8fN910E2bOnBl3KTHnnnsuzj33XBw6dAjNzc3IzMxETk6ON81n165d3m0HDRoEABg4cKD3ucbGRgwYMKDb4/tWFwq0HRGlrni6Au8pq1lRHVy5UpbVJCLSh+ZBQFVVFebOnYsdO3ZACAFJkjB+/Hj89Kc/xYQJE5Cbm9vjMUaNGtXh3/v27cO6deuwfPlyfP755/jhhx/w+OOPY8mSJXjkkUdwyimnaP0yIpaVleX3iv7WrVu9j0eOHAngaAMxAKirq0NxcXG3x927d6/3sb/Fx0RE8XQFnmU1KRBPwGl1CDhVAYMswWzk4moiPWgaBPzzn//E008/DbvdjvT0dPz85z/HVVdd1eFKdzgGDRqEmTNnYubMmfjmm2+wYMECvPXWW9i5cyeuuuoq3HHHHfjVr36l0asI3d69e/Hmm2/iu+++w6WXXtrtJF4IgTVr1gAAhgwZ4m38VVxcDEmSIIRAZWUlpk6d2u25Nm/eDMDdL8BzJ4GIqLN4ugLPsprUmSoEXEf6UnT+fsg0Sxju8/3ARltE0aFpEPCnP/0JBoMB11xzDWbPno1+/fppeXgAwAknnIAHH3wQt912G1588UUsWrQITz75ZEyDAIfDgRdeeAGAeyFzd0HAu+++610TMG3aNO/z+fn5KC4uxtatW7Fq1Srce++9yMjI6LJ/ZWUldu/eDQA4//zztX0RRJRU4u0KPMtqkocQAo0WV7ffl61Wgco6O7bts/POEFEUaXrN5+yzz8Y777yD+++/PyoBgK9jjjkG999/P959911MmjQpqufqyQknnICioiIAwJIlS1BTU9Nlm6qqKjz00EMA3GP3VAjyuPrqqwEABw8exAMPPABV7fib0WKx4IEHHgDgLi3aeX8ios58r8CXDklDprnjRCrLLKF0SBrKS9KRr9NEy7esZoZJ9i5C1ioAUI+UR7U6BNpsKqwO0eF5vY5B/qlCoN7iQkV14MAUcHewrqi2ocHighpiUREi6pkkQi3XQ36tW7cON954IwCgT58++NWvfoVTTz0VTqcTGzduxMKFC3H48GEoioIXXngBEydO7HKM66+/Hhs3bgQAlJaW4pprrsGAAQNQVVWFF1980XsX4e677/aeSy+VlZWYMWOG998LFy5EaWmprmMgovB5rrQn6xV4LdJLmKISfQ6XwOKt7SGvVSkvSY/b5nFEiYpBgIZeffVV/PGPf+y2D0JmZiaeeOIJnHPOOX6/3tbWhtmzZ+PTTz/t9hyzZs3CnDlzdL81yiCAiOKVEAINAdJLPAKlPWlxDApMVQV2NjnDqlpVOiQNI3JZNpZIS7p3DE5m1157LUpLS7FgwQJs3rwZzc3NMBqNOO6443D22Wdj5syZOOaYY7rdPyMjAwsWLMCyZcvw9ttvY+fOnWhtbUXfvn1RUlKCGTNm4IwzztDxFRERxTf1yOR9bRALoD3pJWVFJuRnK96r+Vocg3omyxKqmhxh7Vvd5MDIvPhsFkqUqHQLAtra2vDtt9+ipaUFbW1tsNvtkCQJaWlp3lr6xx57LHr16qXXkKLipJNOwh//+Mew95dlGdOnT8f06dM1HBURUXJyqcCG2uAqIAGAALC+1obyknTIinbHoJ5ZHSKsBnYAcMgqYHMKzRrZEVGUg4Bdu3bh7bffxurVq7F79+4euwVLkoRjjz0WZ555JqZPn+6to09ERNSZqgrUNDtDyi8H3Ffza5qdGJHr/hMY6TGYohIcZ4QLqx0uBgFEWopKEPDdd9/hsccew3vvveed+Aez9EAIgT179mDPnj1YuHAhJk2ahAcffDCoBmNERJRatEovScUUlVg06TJEeFwuDCbSluZBwK5du/CrX/0KjY2NHSb+WVlZyM/Px4ABA2A2m2EymSCEgN1uh9VqxYEDB9DQ0IDW1lbvPmvXrsX27duxYMECnHDCCVoPlYiIEpgW6SWyhJRKUYllBSSzUUKmWQrr/c4ySwn1PhMlAk2DAJvNhjvuuAMNDQ0AgAEDBuAXv/gFJk6ciOOPPz6oY3zzzTdYt24dXnnlFTQ1NaGlpQU33XQT3nrrLZjNZi2HS0RECUyL9BJjhDn9iZSiEusmXaoqMDzXGFZ1oKJcY9h3KWJx14MoEWgaBCxZsgS1tbWQJAnjxo3Ds88+i969e4d0jBNOOAEnnHACLr/8ctxyyy345JNPUFdXh9deew2zZs3ScrhERJTAtEgviXQOmCgpKvFQAUmWJRTmGLBtnz3kPgGFOaGvvWDfB6LANO0Y/O677wIA+vbti2eeeSbkAMBXRkYGnn32WW/n4VWrVmkyRiIiSg6e9JJweNJLjErkx0gE4VZAcoW4YLonypE+C8G+axLc2yshzlY8dz0Wb21HZZ29SwqS567H4q3taLS4glq3SJRsNA0Cdu/eDUmScMEFFyAzMzPi42VlZeGCCy6AEAK7du3SYIRERJQsPOkl4fCkl2hxjHgXaRUlLV+jLEkoyFZQVmSCoYcZiEEGyorcaUmhXKlXhUC9xYWK6sCN34Cjdz0aLC6oDAQoxWgaBBw8eBCAey2AVnJycgAAhw8f1uyYRESU+DzpJT1NJjvzTS/R4hjxLtIqSlq/RkmSkJ+toLwkHaVD0rrcickySygdkobyknTkh7EuIV7uehDFO03XBPTp0wffffcd9uzZo9kxa2trAbhTjIiIiHx50ksqgsh1B/ynl2hxjHgWj026ZEmCrAAjcg0YmWeEzSmOLNR2p1hFsgiYfR+IgqPpr7CTTz4ZQgisWrUKjY2NER+vpqYG77//PiRJwqhRozQYIRERJRMt0kv0SFGJFVUITaooRYtnwm0ySMgwyd5gI9yJeLzd9SCKZ5oGAZdccgkAd+rOrFmz8PXXX4d9rC+//BI33HAD7HZ3KbFp06ZpMUQiIkoyWqSXRDtFJRaEEDhkVVOmAhKgzV0PolShaTrQ+eefjwkTJmDjxo2oq6vDpZdeivHjx2PixIkoLi7GoEGDvNV+OrNYLKivr8f27duxfv16rF+/3rta/8wzz8Q555yj5VCJiCiJaJFeEq0UlVjwlAStOuDE5OHmlGnSpcVdj0R6vUSR0Lxj8DPPPIObb74Zn3zyCQBg06ZN2LRpk/friqKgV69eMJlMkCTJ2zHYc8XfwxMAnH766Xj22We1HiYRESUh3/QS38lcKJN3LY4Ra57FsS4VaLOpMWnSFQta9I4gShWaL2vq3bs35s+fj/vvvx/HHHMMhBAd/nM6nWhtbcV3332HlpYWWCwW2Gy2Ltv1798fDz74IF599VX06tVL62ESERElJd/FsQJAdZMTQ/sndwUkDy16RxClCs3vBACALMu45pprcNVVV2HDhg3YuHEjvvrqK3z77bewWCwA0KUxxzHHHINhw4ZhxIgROPvsszF27FjIcoKUXiAiIooTnRfH1jQ7MDLPiLOGmrCuJjkrIHl4+j6kwl0PokhFJQjwMBqNmDx5MiZPnux9zm63o62tDXa7HbIsIz09Hb17906IRVZERETxrvPiWJsTqKix4rwRZpxdaMIHuwI30TIcKZlakCALoH15+j5s22cPqUxoIt71IIpUVIMAf9LS0rpdHExERESR8bc4tqVNxf92WlFWaMalxenY1eJEVZOjQ7CQZZZQlGtEYY4BioyECwA8kr3vA5FWdA8CiIiIKHq6Wxzb0qbirS/aUZhjRNGRCkiH7SocKmCUgV5pMtpsKiQgIXogdMfT92FSkQkbanu+6/GTBL3rQRSpqAcBP/74IzZs2IDt27dj9+7d+O6779Da2upNB0pLS0NmZib69++P4447DieddBLOOOMM3i0gIiIKg2dxrL+SoDYn8GWjA181OpCfrSDbLMGgSHC6BCxWgTabimmj0mMwau2oQqClzYX+vZUe73oM62+AKoCWNheOyUiMBnBEWolaELBr1y4899xzWLNmTZfynz2RZRkTJ07ErbfeipEjR0ZphERERMknmMWxAkCDxYUGS8fnS4ekJfziWJcKrK6yQZHR412PLxsdqGl2wKUC5SXpkJVYj55IP1EJAv7+97/jmWeegaqqXaoABcPlcmHt2rVYt24dZs+ejdtvvz0KoyQiIko+qbw41rc8qlMNfNej0eLqsGagptmJEbmJ/fqJQqF5EPDss8/i+eef907++/Xrh3HjxuHUU09FQUEBcnNzYTabYTabIYSAzWaD1WpFU1MT6uvr8fnnn+Ojjz7CDz/8ACEEXnjhBTidTtx9991aD5WIiCgpperi2M7lUYHu73p0Vt3kLqVKlCo0DQJ27NiB//u//4MQAgaDAb/5zW/w85//HGlpaSEdx26341//+heeeuopOJ1O/OMf/8A555yDUaNGaTlcIiKipORZHFtWZML6IBbHJmpJ0M46l0cNxSGrgM0p2DCMUoamMf9rr70Gl8sFSZLw5JNPYtasWSEHAIC7jOj111+Pv/zlLwDcjcX+85//aDlUIiJKEuqRkphWh3thq9UhOjyfqiRJQn62gvKSdJQOSevSSTfLLKF0SBrKS9KRnwQBAOC/PGooHK7U/p6h1KLpnYCPP/4YkiRh7NixOO+88yI+3gUXXIBx48bho48+wqeffqrBCImIKFmoQsClunO5O1d/yTRLGO5T8z5Vq77IkgRZAUYcWRxrcwo4XAJGRYLJICX8IuDOuiuPGiyjkjzvBVFPNL0T0NTUBAAoLS3V7JinnXYaAKC5uVmzYxIRUWITwr2wc/HWdlTW2bukgLRaBSrr7Fi8td29ADSMIhXJxDPRNxkkZJhkb8pLMgUAwNHyqOHIMktMBaKUEpUlQE6nU7Nj2Ww2AAgrrYiIiJKPKgTqLS5UVAfOdQfcFWIqqm1osLigahgIMAUpPnnKo4ajKNfIz49SiqZBwODBgyGEwIYNGzQ5nqqqWLNmDQBg4MCBmhyTiIgSm0sFNtQGV/UGcFeHWV9rgyuEcpndUYU7nWZnkxNLt7fjja3tWPL5YbyxtR1Lt7djZ5MTDpfQNOCg4HnKoxpCnN0kQ3lUolBpGgScddZZANxVgl588cWIj/eXv/wF33zzDSRJwtlnnx3x8YiIKLH51oEPhfPI2oFIrvQyBSkxeMqjBjudT5byqESh0vRb/pprrkHv3r0BAE8//TRuvvlmfP755yEf5+uvv8ZNN92E+fPnAwB69+6NmTNnajlUIiJKQP7qwAeruskR9pXeeEhBouD4lkft6Y6AQQbKitzlUVN18TilLk2rAw0YMACPP/447rrrLqiqirVr12Lt2rXIysrCqFGjMGjQIOTl5XmbhUmSBJvNhsOHD3ubhX3xxRf47rvvAMDbb+Dxxx9HTk6OlkMlIqIEFKs68OGmIJWXpENWQj4dRci3PKq/6lFZZglFPtWjkqE8KlGoNO8YfN555+Gll17C3LlzceDAAQCAxWLBxo0bgz6G5xbqoEGD8PDDD2P8+PFaD5OIiBKQFnXgQw0CIk1BGpHLXPNYSLXyqESh0jwIAIDx48dj1apVeP3117Fs2TLs2LEj6NxISZJw2mmnYcqUKbjssstgMpmiMUQiIkpAsagDH2kK0si88KrVkDZ8y6P6BoAMACjVRSUIAACz2Yxrr70W1157Lb777jt89dVX+Pbbb9Hc3IzW1lbY7XYoioL09HSkp6cjJycHhYWFKCoqQlZWVrSGRURECcxTBz6clKBw68DHKgUpEXmurlsdAk5VwCBLMBt51Z0oHkUtCPB1zDHH4Cc/+YkepyIioiTmqQNfWWcPeV9PHfhQJ6OxSEFKNOzeTJR4dAkCiIiItOCpA79tnz2kHP1I6sDHIgUpkXhKp66v9V85yVM6dds+OyYOc1fi4UJcothjVVwiIkooeteB96QghSPcFKREwdKpRImLQQARESUUvevAe1KQwuFJQUpWsezeDMD73lodAm02FVaH6PA8EXWP6UBERJRw9KwDH4sUpEQQy9KpXINAFDkGAURElJD0rAPvSUGqqA7uqnekKUiJIFalU7kGgUgbSfzriYiIUoFvHfgMk+zNwdfyCrzeKUiJQIvSqaHiGgQi7Wh6J2Dy5MlaHq4DSZKwevXqqB2fiIgoED1TkBJBLEqnhrsGobwkHbIS8hCJkpqmQUB9fT0kSerSHTjSX4RCiKT/ZUpERPFPzxSkeKd36dRYrkEgSkaapgO99NJLGDBgAAD3xN8zcRdCRPQfERFRPNEjBSne6V06NdI1CKn02RAFQ9M7AWeddRb++9//4oYbbsDXX38NSZIwadIkPP/887yST0RElET07t6sxRqEZO7ZQBQqzRcG9+/fH/Pnz8fQoUMhhMC6devw97//XevTEBERUQx5Sqf2tFC6s3BLp2qxBoGIjopKdaDs7Gw8++yz6N27N4QQeO6557Br165onIqIiIhiRM/uzXqvQSBKdlErEXrCCSfgwQcfBAA4HA788Y9/jNapiIiIKAb0LJ2q9xoEomQX1T4BF198MUaPHg0hBD744ANs2bIlmqcjIiIinfmWTi0dktZlop5lllA6JA3lJenIj6Bxl2cNQjg8axCI6KiodwyeM2cO7rzzTgDAe++9h9NOOy3apyQiIiId6VE61bMGYds+e0hlQsNdg0CU7KIeBIwaNQoVFRXRPg0RERHFmG/pVN/0G60m4J41CBXVwTUMi2QNAlGy448FERERJQQ91yAQJbuo3wkgIiIi0orvGoSaZieqmhwd+gdkmSUU5RpRmGOAIoN9ioi6wSCAiIiIEooeaxCIkh2DACIioijzTEqtDgGnKmCQJZiNnKxGKtprEIiSGYMAIiKiKFGFgEuF37SVTLOE4T5pK8xbJyI9MQggIiKKAiEEGi0urK+1+S1p2WoVqKyzY9s+OyYOcy9g1TJ/nXcfiCgQBgFEREQaU4VAg8WFtUGUsnSqQEW1DWVFJuRrUMmGdx+IKBgsEUpERKQxlwpsqA2ulj0ACADra21whdAEy+9xjtx9WLy1HZV19g4BAHD07sPire1otLggBLvoEqUqBgFEREQaUlWBmmZnSF1tAfcdgZpmJ1Q1vIm5KgTqLS5UVPtPP+p8ropqGxosLqgMBIhSEoMAIiIiDcmyhKomR1j7Vjc5ws7Xj9XdByJKTJoGAdu3b0dDQ4OWhyQiIuqW56q51SHQZlNhdYgOz8eC1SG6pOEE65BVwOYMfd9Y3X0gosSl6cLge+65B3V1dbjuuutwzz33eJ/3BAbZ2dno3bu3lqckIqIUFM+LX50RTqgdLtGh5n0wIr37MDLPGNa+RJS4NL0T0NTUBADIysrq8HxZWRkmT56MN954Q8vTERFRCor3xa+GCMtvGpXQ94/F3QciSmyaBgEOh/sqRHt7u5aHJSIiApAYi1/NRgmZ5vACgSyzFPJdAECbuw9ElFo0DQL69esHAFizZg0DASIi0lwiLH5VVYHhueGl1xTlGsPKz4/F3QciSmyargkYNWoUVq9ejV27dmHSpEk4/vjjkZaW5v36okWLsHbt2rCOLUkSXn31Va2GSkRECSbSxa8jcg26dMqVZQmFOQZs22cPaawGGSjMCW+MnrsP4aQEhXv3gYgSm6ZBwLXXXouKigoIIXDo0CF8/vnn3q8JIbB3717s3bs35OMKITRtpU5ERIknkRa/KjIwcZgJFUF0DAYACe7tlTDvz3vuPlTW2UPe13P3QY8AiYjih6bpQGPGjMFf//pX5OfnQwjh/c/D97lQ/iMiIkqkxa+yJKEgW0FZkQmGHv7SGmSgrMiEgmwl7EpGnrsPPZ3L37nDvftARIlN0zsBAHDhhRfiwgsvxKFDh/Djjz/C5XLhnHPOgSRJuPHGG1FeXq71KYmIKAXEovRmJCRJQn62gvKSdL+lTLPMEop8SplGesdb77sPRJTYNA8CPLKysrqUCs3OzsbAgQOjdUoiIkpiibj4VZYkyAowIteAkXlG2JwCDpeAUXHn4WuZhuN792F9beDqSYYjAUNBtsJ0W6IUFbUgwNeYMWMAAHl5eXqcjoiIklAiL371TPRNho7j0DoNR++7D0SUuHQJAv71r3/pcRoiIkoCnqvjVoeAUxUwyBLMRgkuVWD88Sasq7HC5gztmKm0+FXPuw9ElLh0CQI6U1UVH3/8MTZv3oy9e/fCYrFAlmVkZmZi8ODBGD16NMaNGwejkW3MiYhShSoEXEfKeXa+gp1pljD8yBXsn52SjooaK1ragqu/mSyLX7sLjrqb1Ot194GIEpPuQcCKFSvw9NNPo76+PuB2/fr1w3333YepU6fqNDIiIooVIQQaLa5uc9lbrQKVdXZs22fHT4aZcN4IM/63s+dAIBkWvwYbHCkywq4uRESpR9dfi48++ijuuece1NfX91gW9LvvvsN9992H3//+93oOkYiIdKYKgXqLCxXVgRezAu7GX2urbdh/yIWyQjNMAS5laVF6M9Y8wdHire2orLN3WQ/hCY4Wb21Ho8XFstpEFDTd7gT8/e9/x7///W9IkgQhBAoKCnD++edjxIgR6NOnD1RVxQ8//IAdO3Zg9erVaGxshBAC//3vf1FYWIhrrrlGr6ESEZEOPGksLhXYUBtcWUsAEHBvX16SjrMLzdi025aUi19VIdBgcWFtECU/nSpQUW1DWZEJ+Qkc9BCRfiShw2WD/fv347zzzoPdbofBYMCvf/1rzJo1q9tfzEIIvPrqq/jzn/8Ml8uFtLQ0/O9//2N1oRiqrKzEjBkzvP9euHAhSktLYzgiIkpUvuktx/ZT8O33rrA63ZYOScPwXAMUWUrKxa8Ol8Dire093h3xZZCB8pL0mJRDJaLEoks60KJFi2C32yFJEubOnYtf/OIXAa/MSJKEWbNm4Xe/+x0AwOFw4PXXX9djqEREFEW+6S0NFhd6p8moanKEdazqJgcUn8WvGSbZuwA20QMAVRWoaXaGFAAA7jsCNc1OqBE2ViOi5KdLEPDhhx8CAIYNG9bhanJPrrrqKhQWFgIAPvjgg6iMjYiI9NE59z/bLKHdroZV9x8ADlkFbM7knOzKshRRcJToQRARRZ8uQcC+ffsgSRImTJgQ8r5nnXUWhBDYs2eP9gMjIiLddM79NyhSyFe6O3O4kjMIsDoEgyMiiipdgoC2tjYAQN++fUPeNzs7GwBgs9k0HRMREenHX3qL0yVgiPCvULLmvjsjTOdJ1uCIiLSjSxDQp08fAOixN4A/DQ0NAI4GA0RElHj8pbdYrALpaTIyzeFN5LPMHZtgJRNDhOk8yRocEZF2dAkCioqKIIRARUVFSFf0rVYr1qxZA0mSMGzYsCiOkIiIoslfekujxYU2m4rhueF1hy/KNSbtAlizUWJwRERRpUsQMHHiRABAS0sLHn/88aD3e+yxx9DS0tLhGERElHj8pbcIANVNTgztbwg5LcggA4U5hqRdAKuqgsEREUWVLkHAZZdd5k0Jev3113HHHXdg37593W6/d+9e3HHHHVi8eDEkSUJ2djbKy8v1GCoREUVBd+ktNc0OCAGcNdSEYKfzEoCJw0xQdO15ry9ZllCYw+CIiKJHl47BvXv3xsMPP4w77rgDAPC///0P77//Pk488USceOKJyM7OhiRJ+OGHH7Bz507s2LEDQggIISDLMh566CFkZGToMVQiIooCT3pL55QgmxOoqLHivBFmnF1owge7bAErBhlkdwBQkK0kbCfgYClHXmtFEB2DgdQIjohIO7p0DPZ466238Nvf/hZOp9N98gAdgwEgLS0Nv//973kXIA6wYzARRUJVBXY2ObvtDNw/Q0ZZoRmSBOxqcaKqydEhYMgySyjKNaIwxwBFBuQkDwA8hBBosLiwvpbBERFpS5c7AR4/+9nPcMopp2DevHlYvXo17Hb/fwwMBgPOP/98zJ4929ssjIiIEpcnvWXbPrvfyWxLm4q3vmhHYY4RRbkGjMwz4rBdhUN1dwM2GSSoqggpzcWzvdUh4FQFDLIEszH048SSJEnIz1ZQXpKOmuaegyMGAEQULF2DAAA44YQT8OSTT8Jms+Gzzz7Dvn37cPDgQQgh0KdPHwwZMgSnnnoqevXqpffQiIgoinpKb7E5gS8bHfiq0YH8bAXZZgnDcw3ecpfBTtxVIeBS4XfSnGmWMDzB7ijIkgRZAUYcCY5sTgGHS8CohBccEREBMQgCPEwmE8aNGxer0xMRkc5kSUJBtoKyIlPA9BYBoKnVhRMHmJBplkO6ui2EQGOA9JlWq0BlnR3b9tkTLn3GM9H33Bnp/DwRUSi4fIiIiHTjm95SOiStSy38LLOE0iFpKC9JR36IE3RVCNRbXKioDpw/DwBOFaiotqHB4oKq39I4IqK4EbM7AURElJqild7iUoENtcFV0gHcdxzW19pQXpIOWQn5dERECY13AoiIKCZ801syTLI3xSWcAEBVBWqanT3eAejMeWTtAJtrEVGqYRBAREQJT5YlVDU5wtq3usmRlHn1nsDG6hBos6mwOkSH54kotTEdiIiIEp7VIbo0IgvWIauAzSk6LLZNZMlWHYmIooNBABFRHEiGmvax5Izw6rbDlRxBQDJXRyIibTEI0Njhw4fx+uuv4/3330dNTQ3a29uRlZWFkSNH4mc/+xmmTJkCRel+BZqqqli6dCmWLVuGqqoqtLe3IycnB6NHj8aVV16JMWPG6PhqiCjaeNVWG4YIAyVPL4JEph7pLry2mz4MvjzVkcqKTMjPVvi9RZSCJCFYG00re/bswezZs7F79+5utzn99NMxb948ZGdnd/laa2srbr75ZmzevNnvvpIkYdasWZgzZ45mYw5WZWUlZsyY4f33woULUVpaqvs4KHWkwpVxcWTSFqhmPgAYjjTZStartlp91ku3t4eVEpRlljBtVHrI+8Ubh0tg8db2kBZHG2SgvCQ9KYIgIgoN7wRopL29Hb/85S+xd+9eAMCYMWNw5ZVXIj8/H3v27ME///lP1NbWYvPmzbj11luxYMGCDn/MhRC48847vQHAhAkTcNVVV6F///7YsWMHXnrpJdTX12P+/Pno168fbrjhhpi8TqJoS5Ur47xqq+1nraoCw3ONqKyzhzyOolxjwgeXkVZHGpFrSOjXT0Sh06U60Lx58zBv3jxs27Yt5H3Xrl2LW265Bbfccov2A9PQv//9b28AMHXqVPzrX//CT3/6U5x22mm49NJLsXTpUowfPx4AsHnzZqxatarD/suXL8fGjRsBANOnT8fLL7+Mc845B8XFxbjqqquwZMkSDBs2DID7/dy/f7+Or45IH5585sVb21FZZ+9yVdeTz7x4azsaLS4k8o3McGvau0Kc5MUrrT9rWZZQmGOAIcS/agYZKMxJ/AkwqyMRUah0CwKee+45bN26NeR9a2pqsGbNmrACCD2tX7/e+3jOnDldbtmnpaXh3nvv9f57zZo1Hb4+f/58AEBGRgbuu+++Lsfv06cPHnroIQCAzWbDggULNBs7UTxIpW6vqV7TPlqftXIkbSrY6awE9/ZKEhTL1qI6EhGllrj/1XfgwAEA7nz5eNbS0gIAyMrKwjHHHON3m+OPP977uLm52ft47969+PrrrwEAkyZNQp8+ffzuX1pa6j3GypUrtRg2UdxIpSvjqX7VNlqftSxJKMhWUFZk6vGOgEEGyorc6yySIb1Ki+pIRJRaNFsT4HK58PLLL8Nu7z4fc+PGjfjxxx+DOp6qqqivr8fy5cshSRL69++v1VCjIjc3F3v27MGhQ4fQ3NyMnJycLtt888033sd5eXnex1u2bPE+PuOMMwKe5/TTT8fu3btRX1+Puro6DBkyRIPRE8VWquUzp3JN+2h/1pIkIT9bQXlJut+1BllmCUU+aw2SZaE1qyMRUag0CwIURcGPP/6Iv//9736/LoTApk2bsGnTppCOK4SAJEkoKyvTYphRM3nyZO+i3r/+9a944oknOnzd5XLhL3/5i/ffU6ZM8T6ura31Pj7uuOMCnmfw4MHexzU1NQwCKClEemV8ZJ5R4xFFVyrXtNfjs5YlCbICjMg1YGSeETangMMlYFQkmAzJVWHKw2yUkGmWwq6OlKjfT0QUPk3TgW6++WYMHDgQQogO/3l0fj6Y/wCguLgYd955p5ZD1dxVV12F008/HQCwdOlSXHvttXjnnXfw2Wef4a233kJ5eTk+/PBDAMCVV16Jn/zkJ959fRf5FhQUBDxPfn6+3/2IElmq5TOn8lVbPT9rz0TfZJCQYZK9E91kCwCAo9WRwuGpjkREqUXTEqEmkwnPP/88vvrqqw7Pz507F5IkYcqUKZgwYUKPx5EkCbIsIyMjA4MGDUJRUZGWw4wKk8mEl156CS+//DLmz5+Pjz/+GB9//HGHbXJycnDvvfdi6tSpHZ63WCzex7179w54nvT0o7WsQ10n0dDQgIaGhpD28aiqqgprP6JgpNqV8VS+aptqn7U/0eiB4amOtG2fPeQ+AclQHYmIQqd5n4CioqIuk/a5c+cCAE4++WRccsklWp8ybtTW1mLHjh1ob2/3+/WWlha89957OOmkkzB06FDv877rKMxmc8Bz+H490PoLf958803MmzcvpH2I9JBqV8ZTuaZ9qn3WvqLdA8NTHakiiN4TQHJVRyKi0OnSLOzWW28FAJSUlOhxuphYt24d7rjjDlitVvTr1w+33347Jk+ejD59+qChoQFvv/02XnrpJVRUVOCzzz7Dyy+/jJNPPhmAez2FR0+L1HzTq2SZv7kpOaTalfFUvmqbap+1h6cvQnfdoT19Ebbts4fdHdq3OlKqd6Emop7pGgQkq6amJtx1112wWq3o27cvXn/99Q4Ldo877jjcfvvtGDt2LK6//nocPHgQt912G1auXAmTydQhxcdqtSItLa3bc9lsNu/jQNsRJZJUvDKeqldtU/Gz1rM7dKpWRyKi0OkSBCS7ZcuWeVOAbr/99m4r9owdOxYzZszAK6+8goaGBqxZswZTpkzpsA7g8OHDyMrK6vZcvqlG2dnZIY3z0ksvxbhx40Lax6OqqgoPP/xwWPsS9SQVr4yn6lXbVPysw+2LUF6SDlnpcfMugqmO5NlOy3UJRJRYdAkCtMpDj9c7Ctu3b/c+njx5csBtzz33XLzyyisAgG3btmHKlCkYOHCg9+uNjY0YMGBAt/s3NjZ6Hwfazp+CgoIeqw8RxUoqXhlP1au2qfRZx7IHhm91JE8alSoEXCJ66xKIKHHoFgRo8ccrXoMA36vzmZmZAbf17Sbsqe5TWFjofa6urg7FxcXd7r93717v42HDhoU6VKK4lbJXxlOwpn0qfdbx1ANDj3UJRJQ4dLuuEk5/AH+9BuJR3759vY/r6uoCbnvgwAHvY09AUFxc7P1FW1lZGXB/T0Oy/Px8DBo0KKzxEsUr3yvjpUPSkGnuOAHJMksoHZKG8pJ05CfZBCWVatoDqfNZx0sPDFUI1FtcqKgOHHQBR9clNFhcUOP87y8RhU+XOwGPP/54j9sIIWCz2dDc3IwvvvgCmzZtgqqquPDCC/Hb3/42rivhnH766VixYgUA4K233sKIESO63Xb58uXex2PGjAHgntAXFxdj69atWLVqFe69915kZGR02beyshK7d+8GAJx//vlavgSiuJGKV8ZTVSp81vHSF0HvdQlEFP90CQLC6Q3w1Vdf4dZbb8V7772HzMxMPPTQQ1EYmTYuuugiPP300/j+++/x6quv4vTTT8ekSZO6bLd8+XK8+eabAIATTjgBZ555pvdrV199NbZu3YqDBw/igQcewJ///OcOgY/FYsEDDzwAADAajZg5c2aUXxVRbPnLZ/Z9npJHMn/W8dAXIZbrEogofsXt5fWTTjoJf/vb3wAAb7zxBj755JMYj6h7GRkZ+H//7/9BlmW4XC7cdNNN+PWvf43Vq1dj+/btWL16NX7961/jnnvugRACZrMZTzzxBAyGozHYRRdd5O2mvGLFClx99dVYtWoVtm3bhtdffx2XXHIJamtrAQC33XYbBg8eHJPXSkREwfP0RQiHVn0RIl2XwACAKDlJIs4T7q+77jps2rQJU6ZMwZNPPhnr4QT0/vvvY86cOWhra+t2m5ycHDz11FPeVCBfbW1tmD17Nj799NNu9581axbmzJmje35sZWUlZsyY4f33woULUVpaqusYiIgSjaoK7GxyhtUXoXRImiZX4a0OgTe2+u9kH4wrRqcnbJM2Iupe3PcJOOWUU7Bp0yZs27Yt1kPp0bnnnovTTjsNixYtwoYNG7B79278+OOPyMzMRGFhIcrKynD55Zd36AvgKyMjAwsWLMCyZcvw9ttvY+fOnWhtbUXfvn1RUlKCGTNm4IwzztD5VRERUbjioS9CvKxLIKL4EvdBgOeKd0tLS4xHEpx+/frhlltuwS233BLW/rIsY/r06Zg+fbrGIyMioliIdV+EeFiXQETxJ27XBHhs2bIFAAJ20SUiIopXvn0RDD381TXIQFmRu0a/Vs264mFdAhHFn7i+E7B48WJ8+umnkCQJJ598cqyHQ0SU0DwlN60OAacqYJAlmI3JUYoz3sWyO7SqCgzPNYa1LqEo18jvD6IkpUsQsGzZsqC2E0LAbrfj+++/x6ZNmzo0zpo6dWqURkdElNxUIeA6Uu6x8+Qz0yxhuM/kU6urz9RVrPoixMO6BCKKP7oEAZFWsxkzZgymTJmi4YiIiFKDEAKNFhfW1/rvFNtqFaiss2PbPjsmDnOnoSRqd95EEYu+CLFel0BE8Ue3H28hRMj/AcDFF1+M559/Xq9hEhElDVUI1FtcqKj2HwD4cqpARbUNDRYX1PiuHE1hiPW6BCKKP7rcCbj11luD3laSJPTq1Qu5ubk444wz0L9//yiOjIgoeblUYENtcFd+AUAAWF9rQ3lJOmQlmiOjWIjlugQiij9xFwQQEVHkVFWgptkZUg444L4jUNPs1KRJFcWfWK1LIKL4w2w/IqIkJMsSqpocYe1b3eTgRDDJ+a5LyDDJ3rUJ/NyJUkfMS4Q6HA5YLBbIsoyMjAykpaXFekhERAnP6hAdUj1CccgqYHOySywRUTKLSRDw0Ucf4c0338Snn36KpqamDl/Lzc3F6NGjcdFFF+Gcc86JxfCIiBKeU41sca/DxSCAiCiZ6RoEfP/997jnnnuwadMm73OiUxWKpqYmrFy5EitXrsT48ePxxz/+kYuDiYhCZIgwrcOoMAAgIkpmuq0J+P7773HFFVdg06ZNHcqAGgwG9OvXD9nZ2VAUpcPXPvzwQ1x++eU4ePCgXsMkIkoKZqOETHN4E/kss9TjXQD1yJ0Gq0OgzabC6hAdniciovim252A3/zmN9i7dy8AICMjA1dffTUuvPBCFBYWesuQOZ1O1NTUYOXKlVi4cCHa2trQ2NiIOXPm4P/+7//0GioRUcJTVYHhuUZU1tlD3rco19htlRh2HyYiSg663AnYuHEjNm3aBEmSMGTIECxbtgx33HEHioqKOtQhNhgMOPHEE3HXXXfhrbfewrHHHgshBNavX98hhYiIiAKTZQmFOYYeG0N11jsNGJ579PpQ5yv9LhX4qtGBLxrsXRYee7oPL97ajkaLq0u6JxERxQ9dgoAVK1YAABRFwXPPPYdBgwb1uM/AgQMxb948GAzuP0ZvvfVWVMdIRJRsFBmYOMyEYK/H52bI+NmodKgC2NnkxNLt7XhjazuWfH4Yb2xtx9Lt7ahpduLEPCN+dko6+mf4/xPC7sNERPFPlyDgs88+gyRJOOuss1BYWBj0foWFhTjrrLMghMBnn30WxRESESUfWZJQkK2grMjU4x2BvEwZ551oxv5DLize2o7Kuu6v9L+5rR3NbS6cN8LcbSDg6T7sCrFZGRER6UOXIKC5uRkAcNJJJ4W8r2efAwcOaDomIqJUIEkS8rMVlJeko3RIWpfFwllmCWOPTcM5w81osLiwttrWY5dhpwqsq7Fh/yEXygrNMHWzuszTfZiLhYmI4k/Mm4UFS1GUWA+BiCghyZIEWQFG5BowMs8Im1PA4RIwKu4qQKoq4BLAhlobgp2uC7i3v6w4HYU5RnzZ6L87cXWTAyPzjJq9FiIi0oYudwJycnIAAF999VXI+3r2Ya8AIqLIeKr9mAwSMkxyhzKgNc3OHu8AdOZUgdoWJ4pyDd2uO/B0HyYioviiSxBQXFwMIQQ++OADfPPNN0Hvt2vXLnzwwQeQJAklJSVRHCERUeqSZQlVTf6v5PekusmBDJOM/Ozu79Y6XAwCiIjijS5BwM9+9jMAgMvlwq233hpUfv+BAwdwyy23wOl0AgCmTJkS1TESEaUqq0N0WQQcrENWgcN2FdkBGpOx+zARUfzRJQg488wzMWbMGAghsHv3bkydOhXPPfccampqOtSRFkKgpqYG8+bNw9SpU/Htt99CkiQUFxfj7LPP1mOoREQpxxnhwl2HChi6megH032YiIj0p9vC4D/96U/4+c9/jsbGRhw6dAjz5s3z9gHIzMyEJEk4dOiQ98o/4A4KcnNz8fTTT+s1TCKilGPw0xk4FEYZcHaT8hOo+zAREcWOLncCACA/Px+vv/46TjvtNAghvP85HA788MMP+P777+FwODp8bfTo0Vi8eDEGDBig1zCJiFKO2Sh1KR0arCyzhF5pMix+0okMMlCYY2AAQEQUh3QtEZqbm4uFCxdi48aNWLFiBT7++GPs37+/Q0pQfn4+TjvtNFxyySU488wz9RweEVFKUlWB4blGVNbZQ963KNeINpuKRourw/MS3N2KFd0uNRERUShi0idgwoQJmDBhAgD3YuGDBw9CCIHs7GwYjawnTUSkJ1mWUJhjwLZ99pDKhBpkYFh/A75sdHToL2CQ3QFAQbYCSeJdACKieBTzZmGKouCYY46J9TCIiFKacmTiXlEdXMMwCcBPhpmgCqCm2V1eNMssoSjXiMIcAxQZDACIiOKYpjdqt2/fruXhgvbFF1/E5LxERMlCliQUZCsoKzLB0MNfBoMMlBWZMDBbgSwBF53UC1eMTse0UekYkWuAUZEgMwAgIoprmgYBV155JebOnRtUHwAtNDc347e//S2uuOIKXc5HRJTMJElCfraC8pJ0lA5J67JYOMssoXRIGspL0pF/JNUnrVP3Ya0WAatHypZaHQJtNhVWh+jwPBERRUbTdKDc3FwsXboUK1euxMyZM3Hdddehb9++Wp4CgLuR2Pz58/Haa6/BarUiLy9P83MQEaUiWZIgK8CIXANG5hlhcwo4XAJGxV3vP9rlPlUh4FKBmmYnqpocHZqYZZolDPdJN+LdBiKi8Gl6J2D58uW46KKLcPjwYfzjH/9AWVkZ5s6diy1btkR8bFVVsWHDBtx1112YPHkyXn31VVitVpSVlWHZsmWRD56IiLw8E31TlK70+yOEQKPFhcVb21FZZ+/SxbjVKlBZZ8fire1otLg6VJYjIqLQSCIKv0VXr16Nxx57DA0NDd6FYQMGDMBPfvITjBs3DiNGjMBxxx3X46Kx3bt34/PPP8eHH36IjRs34uDBgwDcfyhycnIwd+5cTJkyRevhkx+VlZWYMWOG998LFy5EaWlpDEdERMlEFQINFhfWhrAwuazIhPxshXcEiIjCEJUgAABsNhvmz5+P+fPnw2KxuE/m84s6LS0Nxx57LLKzs5GZmYn09HTY7Xb8+OOPOHDgAOrr62G1Wr3be4aZlZWF6667DrNmzYLZbI7G0MkPBgFEFE0Ol8Dire0hlygtL0mHUWEQQEQUqqiVCDWZTJg9ezZmzpyJ119/HW+88Qa+/fZb79dtNhtqamq63b9zbHLcccfhqquuQnl5OdLT06M1bCIi0pmqCtQ0O0MKAADAeWTtwIhcdiUmIgpV1PsEZGRk4Prrr8f111+PLVu2YM2aNfjkk09QVVUFp9PZ/cAMBpx88skYO3YsJk+ejFGjRkV7qEREFAOyLKGqyRHWvtVNDozMY5NJIqJQ6dos7LTTTsNpp50GALDb7di7dy8aGxvR2toKu90Os9mMjIwMDBw4EIMHD4aiKHoOj4iIYsDqEF0WAQfrkFXA5hTehctERBScmHUMTktLw9ChQzF06NBYDYGIiOKAM8La/w4XgwAiolBpWiKUiIgoVIYI8/m5MJiIKHQMAoiIKKbMRqlLd+JgZZkl3gUgIgoDgwAiIoopVRUYnhve4t6iXCPUCNOJiIhSEYMAIiKKKVmWUJhjgCHEv0gGGSjMYXlQIqJwMAggIqKYU2Rg4jATgp3OS3Bvr/CvGBFRWPjrk4iIYk6WJBRkKygrMvV4R8AgA2VFJhRkK5Al3gUgIgpHzEqEEhHFG1UVkGUJVoeAUxUwyBLMRsn7PEWXJEnIz1ZQXpKOmmYnqpocHfoHZJklFOUaUZhjgCK7tyciovAwCCCilKcKAZcKvxPPTLOE4T4TT155ji5ZkiArwIhcA0bmGWFzCjhcAkbFXQWIARkRkTYYBBBRF6l0RVwIgUaLC+trbXCqXb/eahWorLNj2z47Jg5zp6DwCnT0eb7PTIaOJUCT7fuPiChWGAQQkVeqXRFXhUCDxYW11Tb0VGTSqQIV1TaUFZmQz1x0IiJKcFwYTEQAjl4RX7y1HZV19g4BAHD0ivjire1otLggROLXZnepwIbangMADwFgfa0NLj93DIiIiBJJTIKAvXv34vnnn8f111+PCy+8EGeeeSYWLlzo/fqDDz6I1157DXa7PRbDI0o5qhCot7hQUe0/JcaX54p4g8UFNYEDAVUVqGl29vh6O3MeuVMSjQZVnmNaHQJtNhVWh+jwPBERkVZ0TQc6fPgwHnnkEbz11ltQVfdfXiEEJEnqMOFfuXIlXn/9dbz00kv461//iuLiYj2HSZRywr0iXl6SDlmJ5siiR5YlVDU5wtq3usmBkXnhdbj1J9XSsIiIKPZ0uxPQ2tqKK6+8EkuXLoXL5U4l8JdO8OOPP+LgwYMAgPr6esyaNQuVlZV6DZMo5cTjFXE9WB2iS8pTsA5ZBWxObV53KqZhERFR7OkWBPzmN79BVVUVhBA45phjcOedd2LBggVdtktLS8OcOXNwzDHHAACsVivuvfdeHD58WK+hEqWUSK+IJ2q1FmeEwYvDFflkPBXTsIiIKD7oEgRs2rQJ69evhyRJGDNmDFatWoXZs2fj9NNP77Kt0WjErFmz8O6776K0tBQA0NjYiKVLl+oxVKKUEy9XxPVmiDB4MSqRBz9cmExERLGiSxDw1ltvAQB69eqFJ598EhkZGT3uk5WVhaeeegpmsxkAsGbNmqiOkShVxcMVcUD/RbFmo4RMc3gT+Sxzx9r14UjVNCwiIooPuiwM3rJlCyRJwqRJk5CTkxP0fjk5OTjnnHOwYsUKVFVVRXGERKkr1lfEY7UoVlUFhucaUVkXehWyolxjxI3T4mlhMhERpR5d7gS0tLQAAIYOHRryvscffzwAwGKxaDomInKL5RXxWC6KlWUJhTkGGEL8LWiQgcIcQ8RrIVI1DYuIiOKDLkGAorhrCHrKgobCZrMBgDctiIi05bkiLgEoyFZw4gADTikw4sQBBhRkKwg01fVcEQ/rvHGwKFaRgYnDTAFfoy8J7u0VDX5zxksaFhERpSZd0oFyc3OxZ88e7NixI+R9P/nkE+8xiEh7sixheK4Bx/ZV0Nsko92uwqm6r3inp8los6mobnKiptkBm/PofpFeEY+H3gSyJKEgW0FZkQnrawMHI4YjAUNBtgJJg7SkWKdhERFRatMlCBg7dix2796NDRs2oL6+HgMHDgxqv4qKCnz++eeQJMlbKYiItKUKAVUA3/7gQlWT1W9O/kn5RozMM6KixoqWNjXiK+KRLoodkRt5Oo6HJEnIz1ZQXpLud11ClllCkc+6BC0CAOBoGlY4KUFaLEwmIqLUpksQMH36dLz22mtwOp24/fbb8c9//hPZ2dkB9/nggw9w7733ev89derUaA+TKOV4cvK7uwruycnfts+Os4aacN4IMyqqrDgp3xjRFfF4WxQrSxJkBRiRa8DIPCNsTgGHS8CouCfbkS4C9ifWC5OJiCi16RIEjBo1ClOnTsXbb7+Nr7/+GhdddBFmzJiBkSNHerex2Wz49ttvsX37dqxYsQIbNmyAEMJbVei0007TY6hEKUMVAg0WF9ZW95yS41SBdTU2TCoy4ZzhZkCK7Iq4Fotio3El3DOpNhk6XmmPxmTbszB52z57SHdEtFqYTEREqU0SOvWgt9vtmDVrFj777LOgJg+eYRUWFmLRokVB9Rag6KmsrMSMGTO8/164cCFTtBKcwyWweGt7yBPQ8pL0iPPR22wqlnwefhfw6af2QoZJt4bnUaMeuRNT0SkQkwDkZyvINkswKBKcLgGLVWC/xYVJRSbkZyualkslIqLUo8udAABIS0vDq6++ir/85S9YuHAhnE73CkPfgMA3HpEkCVOmTMFDDz3EAIBIY7HOyeeiWLfOC5MVGSjMMaIo14AMP4u0HS4Bg4brEoiIKHXpFgQAgNFoxNy5c3Hddddh2bJl2Lx5M3bt2gWLxQKn04ns7GwMGjQIY8aMwbRp08LqK0BEPYt1Tj4XxR7lWZh8eUk6BABVALtanN0u0nYvUBa8E0BERBHRJQhoa2tD7969vVevBgwYgBtvvBE33nijHqcnok5inZPPRbEdyZIESXb3TdgQxCJtLUuV6sXzmVkdAk5VwCBLMBujs+iaiIh6pksQ8Oc//xlr1qzBeeedh/Lycpx44ol6nJaIuqFFo6pIggAuiu0o1EXaFdU2lCXI2gBVCLiOpJF1Lr/a8e4G4v61EBElE11W1n388cdoaWnBokWL8O233+pxSiIKIB5y8mPZrTfehNs4zRV6E3ZdeUrQLt7ajso6e5e7T567G4u3tqPR4oJOdSqIiAg6BQEHDhzwPj7zzDP1OCURBeDJyQ+HVjn5votiDT38JjLIQFmROwUm2a4WR7pIW43wrk60qMKd3lRRHbgTM3D07kaDxQWVgQARkS50CQL69OnjfWy3h54DTETa8uTkh8OTk68F3269pUPSugQmWWYJpUPSUF6SjvwEy4EPVqSLtOM1NSpZ724QESULXYKAyy+/3Pt4wYIFepySiALw5OT3dAW+s2jk5MuSBKMiYUSuAZeMSscVo9Mx/dReuGJ0OqaNSseIXAOMipR0dwA8tFikHW+S9e4GEVEy0SUImD17NmbOnAkhBP7+97/jwQcfRHV1tR6nJqJuxFtOvm+33gyT7E05itcr3VrRYpF2vEnWuxtERMlEl+pAL7/8MgYMGICzzjoLH3zwAV5//XW8/vrrSE9PR0FBAbKysqAoSsBjSJKEV199VY/hEqWEzo2qAl21NRwJGBKtLGUiiIdF2lqLdQlaIiLqmS5BwF//+lfvxMHzfyEEfvzxR9TW1va4vxCCEw+iKPDNyfdXwjHLLKHIp4Qjfw61l4yN02JdgpaIiHqmW8fg7kq/sSQcUWzJkgRZAUbkGjAyzwibU8DhEjAq7gkmmzlFVzI2TkvGuxtERMlGlyBgzZo1epyGiCLgm5PvexU23iaYySYZG6cl490NIqJko0sQMHDgQD1OQ0SUkDyLtCuC6BgMaLtI23MnweoQcKoCBlmC2RjZHaBkvLtBRJRsdEsHIiIi/2KxSFsVAq4jJTk7rwXJNEsY7rMWJNTyrMl4d4OIKNnELAiwWq3YunUr9u7di4MHD0KWZWRlZWHw4MEYNWoUevfuHauhERHpTs9F2kIINFpc3QYcrVaByjo7tu2zhx1wxPLuBhER9Uz3IODbb7/Fc889h/feew9Op9PvNoqi4Oyzz8bdd9+NE044QecREhH1LBppNHos0laFQIPFhbVBTM6dKlBRbUNZkQn52UpIdwRYgpaIKL7pGgS89957uP/++2G1WgNWBXI6nVizZg0+/PBDPPjgg/jZz36m4yiJiLoXzTQaj2gu0napwIba4K7OA4AAsL7WhvKSdMiB27l0wRK0RETxS7cg4IMPPsBvfvMbqKrqrft/4okn4sQTT0SfPn2gqip++OEH7NixA1VVVRBC4PDhw7j//vuRl5eHsWPH6jVUIiK/9EijiSZVFahpdoaUpw+47wjUNDsxIjf0fH2WoCUiik+6BAGHDx/G3Llz4XK5AACTJk3C3LlzMWTIEL/b7969G3/605+wdu1auFwu3HPPPVi1ahV69eqlx3CJiLrQK40mmmRZQlWTI6x9q5scGJlnjOjcAEvQEhHFC12WYC1evBgtLS2QJAnTp0/HCy+80G0AAADHH388XnjhBVx22WUAgObmZixZskSPoRIR+RVuGo0rxKvu0WR1iLBq9wPAIauAzcnmjkREyUKXIGDt2rUAgGOOOQZ/+MMfgt7vd7/7Hfr37w8AWL16dVTGRkTUk0jTaFQ1PibPzgjH4XDFx+sgIqLI6RIE1NTUQJIklJWVwWw2B72f2WzG5MmTIYTAzp07ozhCIqLuRZpGEy8pL4YIx2FU4uN1EBFR5HQJAg4ePAgAGDRoUMj7FhQUAABaW1u1HBIRUdCSJY3GbJSQaQ5vIp9l7pjLT0REiU2XIMDT+OuHH34IeV9PAJGRkaHlkIiIgpYsaTSqKjA8N7zFvUW5xrhJayIiosjpEgQMGTIEQghs3Lgx5H09+wwcOFDrYRFRivFMYq0OgTabCqtDdHi+O8mSRiPLEgpzDDCE+JvfIAOFOaGXByUiovilS4nQ8ePH44svvkBtbS0WL16M8vLyoPZ7/fXXvesJxo8fH+VRElGyirTBlyeNJpyUoHhLo1GOdOetCKLUKQBIcG+v6HLJiIiI9KLLr/UrrrgCBoM73njooYewcOHCHvdZuHAhHnnkEQCAoii4/PLLozpGIkpOngZfi7e2o7LO3mUi72nwtXhrOxotLr/dzJMpjUaWJBRkKygrMvV4R8AgA2VF7qZn8dLrgIiItKHLnYCCggLceOONeO655+ByufDoo4/ilVdewTnnnIMTTzwR2dnZkCQJP/zwA3bu3In3338f9fX13s7Cv/zlLzF48GA9hkpESUSrBl+eNJpt++whlQmN1zQaSZKQn62gvCTd792RLLOEIp+7I/HU9ZiIiLShSxAAALfccgsOHDiA//73v5AkCfv27cMrr7zS7faeq3E/+9nPcOedd+ozSCJKKuE2+CovSYesdPxasqXRyJIEWQFG5BowMs8Im1PA4RIwKu70JVUVcRe8EBGRdnT78yTLMh599FE8+uijyM/PhxAi4H/5+fl45JFH8MQTT+g1RCJKIlo3+ErWNBrPRN9kkJBhkr3rFxgAEBElN93uBHhcdtllmDZtGrZs2YKPP/4Y+/btw8GDByGEQHZ2No499liUlpZi7NixUBSl5wMSEfkRaYOvkXld1wAwjYaIiJKF7kEAABgMBowdOxZjx46NxemJKAVo0eDLX1UfptEQEVEyiEm26ieffILKykq/X1uzZg1+//vfY/369TqPiih+hFvPno6KdoMvptEQEVEi0/VOwKeffoo//OEP2LNnDy6++GKUlpZ22Wb79u1YvHgx/vvf/2L48OF44oknMGLECD2HSRQzkdazp6OSpcEXERFRNOh2J2DNmjX4xS9+gT179kAIgT179vjdbt++fQDc1YF27tyJGTNmYNu2bXoNkyhmtKhnT0d5GnyFI94afBEREWlNlzsBLS0tmDNnDpxOJwDg2GOPxdSpU/1ue++992LixIlYtGgRtm7dih9//BF33XUXVqxYgd69e+sx3JA9++yzmDdvXsj7XXLJJV2qH6mqiqVLl2LZsmWoqqpCe3s7cnJyMHr0aFx55ZUYM2aMVsOmOKJVPXs6ytPgq7LOHvK+ngZfTO0hIqJkpcudgP/85z9obW2FJEmYOnUqli9fjpkzZ/rddsCAAZg6dSoWLVqEa665BgCwf/9+LF68WI+h6spo7Fh9pLW1Fddeey3uv/9+bN68GRaLBQ6HAw0NDVixYgWuvvpqlkxNUuHWs3eFWP4ylXgafPVUzrOzeG3wRUREpCVd7gR88MEHAICBAwfi0UcfRVpaWlD7zZkzB+vXr0ddXR3ef/99zJo1K4qjDN+VV16Jc845p8ft9u3bh7vuugsOhwM5OTm45ZZbvF8TQuDOO+/E5s2bAQATJkzAVVddhf79+2PHjh146aWXUF9fj/nz56Nfv3644YYbovZ6SF+R1rMfkcsJa3eSrcEXERGRVnQJAvbs2QNJknD22WcHHQAA7gZjZWVlmD9/Pmpra6M4wsjk5OQgJycn4DZ2ux33338/HA4HZFnGX//6V+Tl5Xm/vnz5cmzcuBEAMH36dDz++OPerxUXF+PCCy/EjBkzUFtbi3nz5mHq1Kkd9qfEFY169uTm2+Brfa0tYKBlOBIwFGQrrO9PRERJT5frXYcPHwYA9O/fP+R9+/btCwBob2/XdEx6mzdvHr7++msAwHXXXdelR8L8+fMBABkZGbjvvvu67N+nTx889NBDAACbzYYFCxZEecSkFy3q2VP3fBt8lQ5J67JYOMssoXRIGspL0pGXpeCwQ7AkKxERJT1d7gRkZ2fj+++/R11dXcj7NjY2eo+RqHbu3ImXX34ZADBkyBDcdtttHb6+d+9eb4AwadIk9OnTx+9xSktLcfzxx2P37t1YuXIl7r333qiOm/ShRT17VrIJrKcGXzanQHWTA182OmBz1y9gSVYiIkpqutwJGDFiBIQQWLNmDVpbW4Pez2azYc2aNZAkCUVFRVEcYXQ98sgj3spIv/vd72A2mzt8fcuWLd7HZ5xxRsBjnX766QCA+vr6sIIqij+sZ68f3wZfvdMkHHaoWFttxRuftWPL3qMBAMCSrERElNx0CQLOPfdcAMChQ4dw//33w+VyBbXfww8/jKamJgDA5MmToza+aFq9erW3O/KZZ56JiRMndtnGd73DcccdF/B4gwcP9j6uqanRZpAUU6xnrz9VCNRbXFj+hRV7D7oCLhr2lGRtsLigMhAgIqIkoUsQcMkll3gXsa5evRrl5eVYvXo17Pau9bsdDgc2bNiAmTNnYsmSJZAkCQMGDEB5ebkeQ9Xcs88+6318++23+91m//793scFBQUBj5efn+93P0pcnnr24fDUs6fQsCQrERGlOl3WBJhMJjz++OO44YYb4HQ6sWPHDtx2221QFAUDBw705vsfOnQI+/bt894pEELAZDLhySefDKmqULzYtGkTdu7cCcCdxlNcXOx3O4vF4n3cU0O09PR07+NQUqsAoKGhAQ0NDSHt41FVVRXWftQzTz37bfvsIZUJZT378LAkKxERkU5BAACMGzcOL774Iu699160tLQAAJxOZ5e8dt+82wEDBuCvf/0rRo8erdcwNeWp+AMAv/zlL7vdzveOSOf1Ap35ft3fnZRA3nzzzbA6G1P0sZ69fliSlYiISMcgAADGjx+P//3vf1i6dCnWrFmDzZs3exfMegdkMGDEiBG4+OKLcdlll/V4ZTxe7dq1y9skbfjw4X7XAngoiuJ93FN9ct8gSZY5A0wWrGevHy1KsnIdBhERJTpdgwDAnc4yY8YMzJgxAw6HA9999x1aWlrgcrmQmZmJgoKCHq+GJ4IVK1Z4J+zTp08PuK1vio/Vag2Y+mSz2byPEzFFirrnW8++ptmJqiZHh8lqlllCkU/JSgYA4WFJViIiohgEAb6MRiPy8vKSsvPt+++/D8A9UbvwwgsDbut7t+Pw4cPIysrqdlvfpmmh9k649NJLMW7cuJD28aiqqsLDDz8c1r4UvJ7q2auqYD56hFiSlYiIKMZBQLLas2ePt3xnaWkpBgwYEHD7gQMHeh83NjYG3N7TPA1Aj8ftrKCgoMfqQxQffOvZ+151ZgAQOU9J1nBSgliSlYiIkkVcBAG1tbV46623sGfPHjgcDhQWFuKiiy7CiBEjYj20sKxZs8b7uKe7AABQWFjofVxXV9dtFSHA3V3YY9iwYeENkCiFeUqyVtaFtrAeOFqSlcEYEREluqgFAS0tLXj55Zexbt06pKWl4a233uqyjcPhwAMPPIBly5Z1WPC6fv16/OMf/0B5eTkeeOCBDgtnE8Gnn37qfTx27Ngety8uLoYkSRBCoLKyElOnTu12282bNwNw9wsYNGhQ5IMlSjEsyUpERBSlZmGfffYZpkyZgldeeQW7d+/2dv3tbM6cOVi6dClUVYUQost/ixcvxo033hh0h+F4sW3bNgBAZmYmhg4d2uP2+fn53qv/q1atQltbm9/tKisrsXv3bgDA+eefr8lYiVKRpyRrsNN5lmQlIqJko/mftB07duD6669Ha2ur9+q+v6ZWq1atwjvvvAPAvXg2Ozsbd9xxB55//nnMmTMHBQUFEELgww8/xD//+U+thxk1Bw4cwA8//AAAOOWUU4Ku4HL11VcDAA4ePIgHHngAqtrxEqXFYsEDDzwAwL2geubMmRqOmii1+JZkNfTwW9AgA2VF7pKsMisyERFRktA8Heixxx7D4cOHIUkSCgsLcdNNN+HMM8/ssp2naZUQApmZmfj3v//dITd+2rRpuPrqq1FTU4Pnn38el112Gfr27av1cDW3Z88e7+MhQ4YEvd9FF12EJUuWYOPGjVixYgX279+Pa665BgMGDEBVVRVefPFF1NfXAwBuu+02DB48WOuhE6UUlmQlIqJUpmkQUFlZiU8//RSSJGHs2LH4+9//7reW/c6dO1FTU+P9o3rttdd2CAAAoE+fPvjDH/6Aq6++GlarFatXr0Z5ebmWw40K3+o9+fn5Ie37zDPPYPbs2fj0009RWVmJysrKLtvMmjULN9xwQ8TjJCKWZCUiotSlaTrQhg0bALg74D7++OPdNrOqqKgA4L4LIEkSfv7zn/vdbsyYMTjuuOMAdKy4E89+/PFH7+NQ+x9kZGRgwYIFePzxxzFu3Dj07dsXBoMBOTk5OO+88/Dqq69i7ty5vCJJpDHfkqwZJtlbBpQBABERJStN7wRs3rwZkiRhzJgxAa+Cf/TRRwDct9dPOukk9OvXr9ttx4wZgz179uDbb7/VcqhR4+mGHC5ZljF9+vQeuwwTEREREYVL0zsBnipAJ554YrfbOBwObN++3Xs1u6cOtrm5uQCA5uZmjUZJRKlGVd25/laHQJtNhdUhOjxPRESUajS9E/D9998DcOfzd+fLL7+EzWYDAO9dg0CMRiMAwGq1ajNIimueHGyrQ8CpChhkCWYjc7MpPKoQcKnwu/A30yxhuM/CX1b+ISKiVKJpECDL7hsLger6+zbSUhQFp512WsBjfvfddwAAs9mswQgpXnGyRloTQqDR4sL6WpvfpmCtVoHKOju27bNj4jB3CVCutyEiolShaTpQ//79ARyduPvzySefADi6HiA9PT3gMWtqagAAOTk5Go2S4o1nsrZ4azsq6+wdAgDg6GRt8dZ2NFpcHbpLE/mjCoF6iwsV1f4DAF9OFaiotqHB4oLK7y0iIkoRmgYBxx57LIQQ+PLLL/1+va2tzbt4GIDf/gG+WltbUVlZCUmSguq8S4mHkzWKBpcKbKi1IdjvEgFgfa0Nrh6+B4mIiJKFpkHAT37yEwDA9u3bUVtb2+Xry5cvh8Ph8F7JPffccwMe7+WXX4bT6QQAlJaWajlUihOcrJHWVFWgptnZY1DZmfNIOhoXCxMRUSrQNAg477zzkJaWBiEE7rrrLhw4cMD7terqajz33HOQJAmSJGH48OEBqwhVVlZi/vz5AACDwYALL7xQy6FSHOBkjaJBliVUNTnC2re6ycEF6ERElBI0XRg8YMAAXHvttXjppZdQW1uLCy64AGPHjoXVasXWrVtht9u9DcLmzJnj9xiHDh3Cf/7zH7z44ouw2WyQJAkzZ87EgAEDtBwqxYFIJ2sj84waj4iSgdUhuqwrCdYhq4DNKbzNwoiIiJKVpkEAANx6663YuXMnPvjgA1itVqxfvx4AOizm/OUvf4kzzjijy76XX345vvzySwghvNsPGTIEt9xyi9bDpDjAyRpFgzPCO0QOF7+viIgo+WmaDgQAJpMJL7zwAq6//nqYzeYOE/p+/frh97//PX7961/73ddisUBVVe/2hYWFWLhwITIyMrQeJsUBLSZrRJ0ZIkznMSoMAIiIKPlpficAcOfw33PPPbj55puxbds2HDx4EAMGDMCoUaOQlpbW7X79+vXDt99+i5ycHFxxxRW4/vrr0atXr2gMkeIAJ2sUDWajhEyzFNZdpiyzxLsARESUEqISBHj07t27xzKgvh599FGkpaVh8ODBURwVxQtO1igaVFVgeK4RlXX2kPctyjWyOzUREaUEzdOBIjF06FAGACnEM1kLh2eyRtSZLEsozDHAEOJvN4MMFOYYGAAQEVFKiKsggFILJ2sULYoMTBxmQrDfIRLc2yv8jUhERCmCf/IopjhZo2iQJQkF2QrKikw9BpkGGSgrMqEgW4EsMbAkIqLUENU1AUQ98Z2sra+1BWwcZjgSMBRkK5A4WaMeSJKE/GwF5SXpqGl2oqrJ0WH9SZZZQlGuEYU5Bigy+D1FREQphUEAxRwnaxQtsiRBVoARuQaMzDPC5hRwuASMinthORcBExFRqmIQQHGBkzWKJs/3jsnQsaoUv6eIiChVMQiguMLJGhEREVH0cXklEREREVGKYRBARERERJRiGAQQEREREaUYXdYELFu2DABwyimnYOjQoSHtu2XLFqxatQoOhwMPPPBAFEZHRERERJRadLkTMGfOHMydOxcbNmwIed9PP/0UCxYswOrVq6MwMiIiIiKi1BP36UCtra0AAIvFEuOREBERERElB83SgVwuF1asWAEhRLfbfPnll97UoGCOV19fj4ULFwIA+vTpo8EoiYiIiIhIsyBAURR89tlneOONN/x+XQiBd999F++++25IxxVCQJIknHnmmVoMk4iIiIgo5WmaDvTrX/8affv2hRCiw38enZ8P5j8AGDx4MO666y4th0pERERElLI0rQ6UlZWFp556Cp9++mmH5+fNmwdJkjB+/HiUlJQEdSxFUZCRkYFBgwZh/PjxMJlMWg6ViIiIiChlaV4idOzYsRg7dmyH5+bNmwcAmDBhAn7xi19ofUoiIiIiIgqBLn0Cpk2bBkmSUFhYqMfpiIiIiIgoAF2CgCeeeEKP0xARERERURB0CQKC9eOPP2LdunXYv38/BgwYgLPOOgvZ2dmxHhYRERERUVLRNQhobW3FokWL8OWXX+Jvf/tbh699+OGHuPvuu3Ho0CHvc7169cIdd9yBa6+9Vs9hEhERERElNd2CgK+++grXX3+9t/Ov1WqF2WwGAOzfvx+33norDh8+3GGf9vZ2PPHEE7Db7fjVr36l11CJiIiIiJKapn0CumO323HzzTfj4MGD3tr/dXV13q+/9NJLOHz4MCRJQkZGBi6//HKcc845kGUZQgjMmzcP+/bt02OoRERERERJT5cgYNmyZThw4IC3QtD8+fMxbNgwAIDL5erQRfj//u//8PDDD2PevHl46qmnALiDiKVLl+oxVCIiIiKipKdLELB+/XoAQO/evfGvf/0LZ5xxBmTZferPPvsMP/zwAyRJwoknnojS0lLvfueffz7Gjh0LIQQ2bNigx1CJiIiIiJKeLkHAjh07IEkSzjvvPPTp06fD13wn92effXaXfYuLiwEADQ0NURwhEREREVHq0CUI+P777wEAgwcP7vK1jRs3eh+PGzeuy9d79+4NAN4FxUREREREFBldggAPz6Jgj++++w47d+4EAJjNZu9Vf1/79+/3fp2IiIiIiCKnSxCQm5sLANi9e3eH5z/44AMIISBJEk4//XQYjcYu+3722WcAgIKCgugPlIiIiIgoBegSBJSUlEAIgbVr13pz+10uFxYuXOjdZvLkyV32e/PNN7Fz505IkuT3LgEREREREYVOl2ZhF198Md566y38+OOPuOKKKzBlyhR88cUX+OKLLwC4U30uuOAC7/bbtm3D8uXLsWjRIu9z06ZN02OoRERERERJT5cgYMKECTj77LOxbt06tLS0YMGCBd6vSZKEW265BVlZWd7nbrrppg6NxaZNm4bRo0frMVQiIiIioqSn28Lgp59+GtOnT4ckSRBCQAgBo9GIm266Cb/85S87bDt06FBvAHDFFVfgkUce0WuYREQhUVX37yqrQ6DNpsLqEB2eJyIiike63AkA3Ck/jz32GG6//XZ88cUXUBQFxcXF6NevX5dtf/KTn2DkyJG49NJLMXz4cL2GSEQUNFUIuFSgptmJqiYHWq1HJ/2ZZgnDc40ozDFAkQFZkmI4UiIioq50CwI88vLykJeXF3CbG264QafREBGFTgiBRosL62ttcKpdv95qFaiss2PbPjsmDjOhIFuBxECAiIjiiK59AoiIEp0qBOotLlRU+w8AfDlVoKLahgaLC6pgehAREcUP3e8EAO6raFu2bMFnn32G+vp6HDp0CBdffDHKysoAAEuWLMGoUaMwbNiwWAyPiKhbLhXYUGtDsFN6AWB9rQ3lJemQlWiOjIiIKHi6BwHLli3Dc889h3379nV4ftSoUd7HzzzzDJqbm3HBBRfgD3/4A/r06aPzKImIulJVgZpmZ493ADpzHlk7MCLXAFlmWhAREcWerulAv/3tbzF37lzs27fPWyFIdLpFbrfb0dTUBCEE3nvvPZSXl+PAgQN6DpOIyC9ZllDV5Ahr3+omBwMAIiKKG7oFAU899RTefPNN76R//PjxuPXWW7ts53A4MGnSJO+/9+7di7vuukuvYRIRdcvqEB2qAIXikFXA5uS6ACIiig+6BAHffPMN/vGPf0CSJAwYMACLFi3CP//5T79BQO/evfH8889j4cKFyMnJAQBs3boVq1ev1mOoRETdckZY+9/hYhBARETxQZcg4PXXX4fL5YIkSXj22WdRXFzc4z6jR4/Gc8895y2rt3z58iiPkogoMEOE6TxGhelAREQUH3QJAjZt2gRJkjBu3LgOC4B7csopp2DChAkQQuCLL76I4giJiHpmNkrINIc3kc8ySzAZGAQQEVF80CUI2L9/PwCEFAB4jBw5EgDw3XffaTomIgqfeiQtxuoQaLOpsDpEh+eTlaoKDM81hrVvUa4x6d8fIiJKHLqUCLXb7QAAs9kc8r5Go/sPriyzrxlRrKlCwHWk3GVVk6PDItlMs4ThuUYU5higyICchB1yZVlCYY4B2/bZQyoTapCBwhyWByUiovihy8z6mGOOAQB8++23Ie/79ddfAwD69eun6ZiIKDRCCDRaXFi8tR2VdfYuVXJarQKVdXYs3tqORourS/nfZKHIwMRhJgQ7nZfg3l7hdQwiIoojuvxZGjVqFIQQqKiowOHDh4Peb9euXdiwYQMkScIpp5wSxRESUSCqEKi3uFBRbevxCrhTBSqqbWiwuKAmYSAgSxIKshWUFZlg6OE3qEEGyopMKMhWkvLOCBERJS5dgoALL7wQAGCxWPDggw8GtU9TUxNuu+02OJ1OAMB5550XreERUQ9cKrCh1oZgp/QCwPpaG1whdtZNFJIkIT9bQXlJOkqHpHVZLJxlllA6JA3lJenIz1a8Vc6IiIjihS5rAs4//3ycfPLJ+PLLL/H222/j+++/x+zZs3HSSSd12fbAgQNYsWIF/vGPf+DgwYOQJAlDhw71BhJEpC9VFahpdoaUAw+47wjUNDsxIjc5c+FlSYKsACNyDRiZZ4TNKeBwCRgVdxUgVRVJ+bqJiCg5SEKnxN36+npcccUVaGlp6XBVTAgBSZKQm5sLIQSam5u9zwNARkYGXnvtNQwbNkyPYVI3KisrMWPGDO+/Fy5ciNLS0hiOiPS0dHt7WJ1ys8wSpo1Kj8KIiIiIKBKapgPNnTsXc+fOxcaNG7t8beDAgVi0aBFOPvlkCCG8/3kCgqamJjQ3N3ufB4AhQ4bgX//6FwMAohiyOkRYAQAAHLIK2JzJty6AiIgo0WmaDrR06VJIkoSioiJMmDChy9cHDx6MN954AytXrsSbb76Jzz77rMtCYYPBgJNOOgnTpk3D9OnTYTKZtBwiEYXIGWFte4dLsEkWERFRnNFlTYAvWZYxZcoUTJkyBS6XCw0NDTh48CBcLheysrJQUFAQVj8BIooOQ4R57UaFAQAREVG80T0I8KUoCgYPHozBgwfHchhEFIDZKCHTLIW9JoB3AYiIiOIP29cQUUCqKjA81xjWvkW5RqgRphMRERGR9hgEEFFAsiyhMMfQY2OszgwyUJiTnOVBiYiIEh2DACLqkSIDE4eZEOx0XoJ7e4W/YYiIiOIS/0QTUY9kSUJBtoKyIlOPdwQMMlBWZEJBtgKZnXKJiIjiUlQWBi9atAhr167V9JiSJOHVV1/V9JhEFDxJkpCfraC8JB01zU5UNTk6LBbOMksoyjWiMMcARUaHpoBEREQUX6ISBOzduxd79+7V7Hi+TcWIKHZkSYKsACNyDRiZZ4TNKeBwCRgVdxUgVRVcA0BERJQAohIEeDr+ElFy8kz0TYaOJUAZABARESWGqAQBF110kd+OwUREREREFHtRCQJOPvlkXHLJJdE4NBERERERRYjVgYiIiIiIUgyDACIiIiKiFMMggIiIiIgoxTAIICIiIiJKMQwCiIiIiIhSjOZBAHsEEBERERHFN01LhC5YsAAAMGTIEC0PS0REREREGtI0CDj99NO1PBwREREREUUB1wQQEREREaUYBgFERERERCmGQQARERERUYphEEBERERElGIYBBARERERpRgGAUREREREKYZBABERERFRimEQQERERESUYhgEEFHYVFUAAKwOgTabCqtDdHieiIiI4pOmHYOJKDWoQsClAjXNTlQ1OdBqPTrpzzRLGJ5rRGGOAYoMyJIUw5ESERGRPwwCiCgkQgg0WlxYX2uDU+369VarQGWdHdv22TFxmAkF2QokBgJERERxhelARBQ0VQjUW1yoqPYfAPhyqkBFtQ0NFhdUwfQgIiKieMIggIiC5lKBDbU2BDulFwDW19rg6iFgICIiIn0xCCCioKiqQE2zs8c7AJ05j6wd4GJhIiKi+ME1ARqrqanBa6+9hk2bNmH//v1QVRUDBw7EWWedhVmzZiE/P7/bfVVVxdKlS7Fs2TJUVVWhvb0dOTk5GD16NK688kqMGTNGx1dC1JEsS6hqcoS1b3WTAyPzjBqPiIiIiMLFIEBDzz//PJ577jk4nc4Oz+/atQu7du3Cf//7Xzz55JOYOHFil31bW1tx8803Y/PmzR2eb2hoQENDA9555x3MmjULc+bMieprIOqO1SE6VAEKxSGrgM0pYDJwgTAREVE8YBCgkXnz5uHZZ58FAPTt2xfXXXcdSkpK4HQ6sXLlSrzxxhtoa2vD7bffjiVLlmDo0KHefYUQuPPOO70BwIQJE3DVVVehf//+2LFjB1566SXU19dj/vz56NevH2644YaYvEZKbc4I03kcLgYBRERE8YJBgAZ27NiBF154AQAwcOBAvPrqqxg8eLD36+PGjcPIkSPxhz/8AVarFc888wz+9re/eb++fPlybNy4EQAwffp0PP74496vFRcX48ILL8SMGTNQW1uLefPmYerUqcjLy9Pp1RG5GeTIJvBGhQEAERFRvODCYA387W9/g9PphCRJePrppzsEAB5XXHEFioqKAAAVFRWwWq3er82fPx8AkJGRgfvuu6/Lvn369MFDDz0EALDZbFiwYEE0XgZRQGajhExzeBP5LLPEuwBERERxhEFAhH744Qd88MEHAIDzzz8fo0aN6nbb66+/Hpdffjmuu+46tLe3AwD27t2Lr7/+GgAwadIk9OnTx+++paWlOP744wEAK1eu1PAVEAVHVQWG54a3uLco18jqQERERHGE6UAR2rRpExwOd8WUn/70pwG3nTZtGqZNm9bhuS1btngfn3HGGQH3P/3007F7927U19ejrq4OQ4YMCW/QRGGQZQmFOQZs22cPqUyoQQYKcwyQI0wnIiIiIu3wTkCEdu7c6X3sexdAVVUcOHAA33zzDX788cdu96+trfU+Pu644wKeyzfNqKamJozREkVGkYGJw0wIdjovwb29wt80REREcYV3AiLkmYwbjUbk5uaipaUFzz77LN577z1YLBYAgKIoGDNmDG677TaUlpZ22H///v3exwUFBQHP5dtjwHc/Ir3IkoSCbAVlRSasr7UFvCNgOBIwFGQrkCTeBSAiIoonDAIidPDgQQDuRb3btm3D7Nmzvc95uFwufPzxx/jkk09w77334rrrrvN+zRMoAEDv3r0Dnis9Pd37uLW1NeSxenoOhKOqqiqs/Sj5SJKE/GwF5SXpqGl2oqrJ0aF/QJZZQlGuEYU5BigyGAAQERHFIQYBEfKk+thsNsyePRsWiwVXX301rrzySgwZMgTff/893nvvPfztb39De3s7/vjHPyIvLw9TpkwBANjtdu+xzGZzwHP5ft13v2C9+eabmDdvXsj7EXUmSxJkBRiRa8DIPCNsTgGHS8CouKsAqargGgAiIqI4xkzdCB0+fBgA0N7ejoMHD+KRRx7B7373OwwbNgxpaWnIy8vDL37xC8yfPx9Go7uyyhNPPAGbzQbAnSrk0dMVUyGOXm2VZX50FHueib7JICHDJHvLgDIAICIiim+cSUbI9+r8uHHjUF5e7ne74uJiXHbZZQCAAwcOYNOmTQA6pvj49g7wxxM4AEBaWlrYYyYiIiKi1MZ0oAhlZGR4H5933nkBty0rK8OiRYsAANu2bcOkSZM6rAM4fPgwsrKyut3f01sAALKzs0Me66WXXopx48aFvB/gXhPw8MMPh7UvEREREcUXBgERysnJ8T7Oy8sLuK1v9Z8ffvgBADBw4EDvc42NjRgwYEC3+zc2NnofB9ou0Pl7qkBERERERMmP6UARGj58uPexb6Uff3wX83qu+BcWFnqfq6urC7j/3r17vY+HDRsW0jiJiIiIiDwYBESouLjY+9i3+68/vg2+Bg0a5N3fsyC4srIy4P6bN28G4O4X4NmfiIiIiChUDAIiNG7cOG9K0HvvvYeWlpZut126dCkAd0WgsrIyAO4JvSeQWLVqFdra2vzuW1lZid27dwMAzj//fK2GT0REREQpiEFAhBRFwfXXXw8AaGtrw29+8xtv7wBfr776Kj766CMAwLnnnovc3Fzv166++moA7sZjDzzwAFS1YxtWi8WCBx54AIC7M/HMmTOj8lqIiIiIKDVwYbAGrr32Wqxbtw4ff/wxPvroI1xyySW49tprceKJJ6K1tRVvv/02VqxYAQDo168f/vCHP3TY/6KLLsKSJUuwceNGrFixAvv378c111yDAQMGoKqqCi+++CLq6+sBALfddhsGDx6s+2skIiIiouQhCd8OVBQ2q9WK++67DytXrux2m+OOOw7PPfec30W9bW1tmD17Nj799NNu9581axbmzJnTY1OxaKisrMSMGTO8/164cCFKS0t1HwcRERERRY53AjRiNpvxzDPPYNOmTXjzzTfx2WefoaWlBZmZmTj22GPx05/+FNOmTevQF8BXRkYGFixYgGXLluHtt9/Gzp070drair59+6KkpAQzZszAGWecofOrIiIiIqJkxCBAY+PHj8f48ePD2leWZUyfPh3Tp0/XeFREREREREdxYTARERERUYphEEBERERElGIYBBDR/2/vzgOqqhP+j39AFkNRNBFFMiqXzMbtwcxwxZRcStPMBXVsbMq1zLG0xr3Hh2oyzcwWt8m19FHMrVxSUXJBxyVHch1X3EUJUOQC9/cHP85zr7JvFzjv118Hzvfc+70cvnA+53wXAABgMoQAAAAAwGQIAQAAAIDJEAIAAAAAkyEEAAAAACZDCAAAAABMhhAAAAAAmAwhAAAAADAZQgAAAABgMoQAAAAAwGQIAQAAAIDJEAIAAAAAkyEEAAAAACZDCAAAAABMhhAAAAAAmAwhAAAAADAZQgAAAABgMoQAAAAAwGQIAQAAAIDJEAIAAAAAkyEEAAAAACZDCAAAAABMhhAAAAAAmAwhAAAAADAZQgAAAABgMoQAAAAAwGQIAQAAAIDJEAIAAAAAkyEEAAAAACZDCAAAAABMhhAAAAAAmAwhAAAAADAZQgAAAABgMoQAAAAAwGQIAQAAAIDJEAIAAAAAkyEEAAAAACZDCAAAAABMhhAAAAAAmAwhAAAAADAZQgAAAABgMoQAAAAAwGQIAQAAAIDJEAIAAAAAkyEEAAAAACZDCAAAAABMhhAAAAAAmAwhAAAAADAZQgAAAABgMoQAAAAAwGQIAQAAAIDJEAIAAAAAkyEEAAAAACZDCAAAAABMhhAAAAAAmAwhAAAAADAZQgAAAABgMoQAAAAAwGQIAQAAAIDJEAIAAAAAkyEEAAAAACZDCAAAAABMhhAAAAAAmAwhAAAAADAZQgAAAABgMoQAAAAAwGQIAQAAAIDJEAIAAAAAkyEEAAAAACZDCAAAAABMhhAAoFClplolSYkWq+LvpSrRYrX7PgAAKHoujq4AgNIp1WpVSqp08nqyjl+zKC7x/y76Pcs6qW5VV9X2dlEZZ8nZycmBNQUAwHwIAQAKnNVq1eXYFIWfuqfk1Af3xyVatf98kg5dTFLrWu7yrVhGTgQBAACKDN2BABSoVKtV0bEp2noi4wBgKzlV2nrini7FpijVSvcgAACKCiEAQIFKSZV2nLqnnF7SWyWFn7qnlGwCAwAAKDiEAAAFJjXVqpPXk7N9AnC/5P8/doDBwgAAFA1CAIAC4+zspOPXLHk69sQ1i5ydGRcAAEBRIAQAKDCJFqvdLEC58UeiVfeSeRIAAEBRIAQAKDDJ+ezOY0khBAAAUBQIAQAKjEs+u/O4lqE7EAAARYEQAKDAlHV1kmfZvF3IVyjrJHcXQgAAAEWBEACgwKSmWlW3qmuejq1T1ZXZgQAAKCKEAAAFxtnZSbW9XeSSy78sLs5SbW8XZgcCAKCIEAIAFKgyzlLrWu7K6eW8k9LKl+GvEQAARYZ/uwAKlLOTk3wrllFQHfdsnwi4OEtBddzlW7GMnJ14CgAAQFFxcXQFAJQ+Tk5Oql6xjHo29tDJ68k6fs1it35AhbJOqlPVVbW9XVTGOa08AAAoOoQAAIXC2clJzmWkJ6u66KlqrrqXbJUlxSrXMmmzAKWmWhkDAACAgxACABSq9At9dxf7KUAJAAAAOA5jAgAAAACTIQQAAAAAJkMIAAAAAEyGEAAAAACYDCEAAAAAMBlCAAAAAGAyhAAAAADAZAgBAAAAgMkQAgAAAACTIQQAAAAAJkMIAAAAAEyGEAAAAACYDCEAAAAAMBlCAAAAAGAyhAAAAADAZAgBAAAAgMm4OLoCKBnu3Llj9/Xx48cdVBMAAADzqlu3rjw9PfP9OoQA5MiFCxfsvp4yZYqDagIAAGBeS5YsUUBAQL5fh+5AAAAAgMkQAgAAAACToTsQciQoKMju65o1a+qhhx5yUG1Kt+PHj9t1t5owYYLq1q3rwBohrziXpQfnsvTgXJYOZj6PBfU5CQHIkerVqyskJMTR1TClunXrFkjfPzge57L04FyWHpzL0oHzmHt0BwIAAABMhhAAAAAAmAwhAAAAADAZQgAAAABgMoQAAAAAwGQIAQAAAIDJEAIAAAAAkyEEAAAAACZDCAAAAABMhhAAAAAAmAwhAAAAADAZQgAAAABgMoQAAAAAwGRcHF0BAPZ8fX01fPhwu69RMnEuSw/OZenBuSwdOI/552S1Wq2OrgQAAACAokN3IAAAAMBkCAEAAACAyRACAAAAAJMhBAAAAAAmQwgAAAAATIYQAAAAAJgMIQAAAAAwGUIAAAAAYDKsGAwUA+Hh4XrjjTdyVLZFixaaN29eIdcIuTF+/HgtX75cgwcP1jvvvJNl2dTUVIWFhWn16tU6fvy47ty5I29vbzVp0kS9e/dW06ZNi6jWyEhOzyVttni5ceOGli1bpoiICJ05c0Z37txR+fLlVbt2bbVr106vvvqqPDw8Mj2edll85Odc0i5zhxAAFAPHjh1zdBWQR5s3b9by5ctzVDYuLk5Dhw5VZGSk3fcvXbqkS5cuaf369Ro4cKDGjh1bGFVFNnJzLmmzxceWLVs0duxYxcXF2X3/1q1bioyMVGRkpBYuXKgvv/xS9erVe+B42mXxkd9zSbvMHUIAUAxERUVJkqpUqaK5c+dmWbZ8+fJFUSXkQHh4eLZ3/tNZrVaNHDnSuNBo0aKF+vTpoypVquj333/XnDlzFB0drQULFqhy5co5vpuFgpGbcynRZouLyMhIjRw5UhaLRa6urnr11VfVpk0beXl56fLlywoLC9O2bdsUHR2tv/zlL1q1apWqV69uHE+7LD7yey4l2mVuEQKAYuD333+XJD311FMZ3t1A8fPPf/5Tn376qSwWS47Kr127VhEREZKk7t27KzQ01NjXqFEjdezYUSEhITp16pRmzZqll156SdWqVSuUusNebs+lRJstDqxWqyZPnmxcNM6bN0/NmjUz9jdo0EDBwcH68ssvNXPmTMXExOjTTz/VtGnTjDK0y+KhIM6lRLvMLQYGAw4WHx+v8+fPS0r7w4Xi7ezZsxo8eLBCQ0NlsVhUpkyZHB23YMECSWl3n8aMGfPAfi8vL02ePFmSdO/ePS1cuLDgKo0M5fVc0maLh0OHDunUqVOSpN69e9tdNNoaOnSo6tSpI0natGmT7ty5Y+yjXRYPBXEuaZe5RwgAHOzYsWOyWq2SxJ2LYm7JkiXq0qWLtm3bJkmqVauWcYGQlQsXLhiPqdu2bSsvL68MywUEBOixxx6TJP38888FU2lkKK/nUqLNFhf79u0zttu1a5dpOScnJwUGBkqSkpKS9J///EcS7bI4ye+5lGiXeUEIABws/Z+QJNWvX9+BNUF2jhw5IovFIjc3N7355ptatWqVatasme1x//rXv4ztZ599NsuyzzzzjCQpOjrauKuFgpfXcynRZouLBg0aaPDgwXr55ZeNi/TMpF8cSml39CXaZXGS33Mp0S7zgjEBgIOl92H09PRUSkqKQkNDFRERoQsXLsjFxUWPPvqo2rVrpwEDBqhChQoOrq25ubu7q2fPnhoyZIhq1KiR4+PSH3NLkr+/f5ZlH3nkEWP75MmTOb4wRe7k9VxKtNni4tlnn8324j3d3r17je308027LD7yey4l2mVeEAIAB0u/e2GxWNSlSxe7wYn37t1TVFSUoqKitHjxYn3xxRfMV+1AEydOlLNz7h+gXrlyxdj29fXNsqztbBe2x6Fg5fVcSrTZkiY8PNy4QKxTp44xsJd2WfJkdi4l2mVeEAIAB0pKStLp06clSYmJifL09NTAgQPVrFkzVahQQWfOnNHKlSsVGRmpW7duadCgQVq6dKmefvppB9fcnPJ60RgbG2tslytXLsuytovg3D9XNgpOXs8lbbZkiYmJ0cSJE42vBw0aZGzTLkuWrM4l7TJvCAGAA508edK4W+Hv76958+bJz8/P2N+wYUN169ZN06ZN07fffqt79+7pvffe07p16/J8EYOil5SUZGyXLVs2y7K2+22PQ/FAmy05EhISNGTIEF2+fFlSWr/+l156ydhPuyw5sjuXtMu8IQQADvTkk09q8+bNunjxomrWrGn3R8vWqFGjtG/fPh08eFCnT5/W9u3bFRQUVMS1RV7ZTj3p5OSUZVnbQW9m/udUXNFmS4a4uDi98cYbOnTokCSpWrVq+uyzz+zaFO2yZMjJuaRd5g2/yYADlSlTRjVr1tRzzz2X6R8tKe0fVK9evYyvd+3aVRTVQwGx7UqQmJiYZVnb2S7c3NwKrU7IG9ps8Xft2jX1799fBw4ckJS2euz8+fPl7e1tV452Wfzl9FzSLvOGEACUELbzHkdHRzuwJsgt2/7Gd+/ezbKs7eI3FStWLLQ6ofDRZovesWPH1LNnT2PwaLVq1bRw4UI98cQTD5SlXRZvuTmXuUG7/D+EAKCEoE9qyWU7jV16n9bM2O738fEptDqh8NFmi1Z4eLj69OljzN7z+OOPa+nSpZleNNIui6/cnsvcoF3+H0IA4EBRUVHatGmTli1blu2dqJs3bxrbVapUKeyqoQDVrl3b2M5uoaELFy4Y27Vq1Sq0OiFvaLPFU1hYmIYOHWrcsW/SpImWLVuW5RoQtMviKS/nknaZNwwMBhxozpw52rBhg6S0GQ2aN2+eaVnb1S0bNGhQ6HVDwWnUqJGcnJxktVq1f/9+u1kt7hcZGSkpbV7yrPq2wjFos8XPqlWr9MEHHxiDdzt27KhPPvkk2777tMviJ6/nknaZNzwJABzIdoXE1atXZ1ru7t27+v777yVJrq6u6tChQ2FXDQWoevXqatSokSRp48aNio+Pz7Dc/v37debMGUlScHBwUVUPuUCbLV727duncePGGReN/fr10/Tp03M0eJd2Wbzk51zSLvOGEAA4UKdOneTl5SVJWrNmjbZs2fJAGYvFojFjxhgDmPr27fvAzAgo/vr37y9Jun37tiZOnKjU1FS7/bGxscZCOK6ururXr1+R1xHZo80WH/Hx8Xr33XeVkpIiSerRo4fGjx+f7XSftmiXxUN+zyXtMm/oDgQ4kKenpyZOnKhRo0YpNTVVb731lnr27KkOHTqofPnyOnHihBYuXKgTJ05ISnt0+c477zi41siLzp07a9WqVYqIiNC6det05coVDRgwQD4+Pjp+/Li++eYb45/TiBEj9Mgjjzi4xsgIbbb4WLx4sTFg19vbW6+++qoxk0xWqlevblww0i6Lh/yeS9pl3jhZbVfAAOAQq1ev1qRJk7Ic0NSiRQtNnz5dFSpUKMKaITt79+7VgAEDJEmDBw/O8h9LfHy8Bg8erH379mVaZuDAgRo7dmyu7maiYOTmXNJmHa9NmzbZzuqTkdDQUHXv3t34mnbpeAV1LmmXucOTAKAY6Natm5o1a6YlS5YoIiJC58+fV1JSkqpUqaIGDRqoa9euateunaOriXwqX768Fi5cqNWrV2vNmjU6duyY4uLiVKlSJTVu3FghISF2fVtRfNFmHSsmJiZPF40ZoV06VkGeS9pl7vAkAAAAADAZBgYDAAAAJkMIAAAAAEyGEAAAAACYDCEAAAAAMBlCAAAAAGAyhAAAAADAZAgBAAAAgMkQAgAAAACTIQQAAAAAJkMIAAAAAEyGEAAAAACYDCEAAAAAMBlCAAAAAGAyhAAAAADAZAgBAAAAgMkQAgAgB5KTkx1dBQAACoyLoysAAAUtKipKW7Zs0a5du3TlyhXFxMTI1dVVDz/8sGrUqKHAwEC1a9dOjz32WI5eLzw8XPPmzdPChQsLueY5179/f0VGRkqSfvnlF/n5+RXZe3/xxReaNWtWgbxWaGiounfvrrp160qSatSooa1btxbIa5dUFotFvXr10tGjRzVjxgx17NjR2BcUFKTo6GhJ0vHjxx1VxVLhww8/1OLFi9W3b19NnDjR0dUBihwhAECpcfnyZYWGhmrjxo0P7Lt3757i4+N17tw57dq1S9OmTVO3bt30t7/9TVWqVMn0Nd966y1t3LhRNWrUKMyqA4aZM2fq6NGjCggIsAsAKFgjRozQunXrtHTpUrVp00atW7d2dJWAIkUIAFAqXL16VSEhIcZdUnd3dzVr1ky1atWSl5eXkpOTdePGDR08eFC///67UlNTtWrVKh04cEBLlizJNAhkFCjMLjAwUB4eHpnu37Bhg/79738bZQMDAzMt+6c//anA61eSHT16VPPmzZOTk5PGjh3r6OqUal5eXhoyZIhCQ0M1btw4/fTTTypfvryjqwUUGUIAgBLParXqrbfeMgJA+/btNWXKFFWuXDnD8vv379d7772n6OhonT17VsOGDdP3338vJyenoqx2idWkSRM1adIk0/0nT540QkDjxo01aNCgbF+Tri1pv8eTJ09WSkqKXnjhBQJSEejbt6++++47Xbp0SbNmzSJ4wVQYGAygxNuzZ48OHTokSapXr55mzJiRaQCQpICAAM2fP19ly5aVJB06dEjbtm0riqoCmVq3bp0OHz4sSRo2bJiDa2MObm5u+utf/ypJWrRokS5cuODgGgFFhxAAoMTbvXu3sf3iiy/KxSX7h5z+/v7q1q2b8fX27dsLoWZAzqSkpBiDrZs2bao6deo4uEbm0a1bN5UrV07JycmaPXu2o6sDFBm6AwEo8W7fvm1s3717N8fHBQYGauXKlapYsaJSU1ON71+8eFHt2rWzKxsdHZ3hDDarVq3S+++/L0kaPny4RowYken77d27VwMGDJAkvfzyy/roo48yLJeamqoNGzYoLCxMR48eVXx8vLy9vdW8eXMNHDgwywvEnj176rfffpP0fzPvZGXfvn3q16+fJKldu3YOuwjKanagsWPHKiwsTB4eHjp48KCSk5MVFham1atX6/Tp00pMTJSPj49at26t1157TdWrVzeO3b17t5YuXarDhw8rJiZGXl5eatKkiV5//XU1aNAg23qdPn1ay5cvN2aaSkxM1MMPP6wGDRqoU6dOCg4OLpBuZJs3b9bZs2clSa+88kqOj0tISNCSJUuM4y0Wi3x8fNSsWTP17dtXTz75ZLavER8fr5UrV2r79u06ceKEYmNjVa5cOfn5+alFixbq3bu33c/0frmZsSirWa1s29IPP/ygRx99VJ988ol++eUXpaSkqGbNmurQoYOGDBliHHPx4kWtWLFCu3bt0pkzZ5SYmKgKFSrIz89PzZs31yuvvKJHHnkkyzp5eHioU6dOWrFihdasWaORI0fKx8cn6x8aUAoQAgCUeLb/sNeuXavXXntN5cqVy/a49u3bG33Xi4vY2FgNGzZM+/bts/v+pUuXtHLlSq1Zs0bjx4/P9Phu3boZIWD9+vXZhoC1a9ca2127ds1HzYvGtWvXNGLECKP7V7qzZ8/q7NmzWrdunebPn686deroww8/1NKlS+3KXb9+XRs3btSWLVv00Ucf6aWXXsrwfVJTU/WPf/xD3333nVJSUuz2Xb58WZcvX9bGjRvVsGFDzZw5U9WqVcvX51q2bJkkydXVVR06dMjRMUeOHNGwYcN09epVu++n/yxWrlypsWPHqn///pm+xqZNmzR+/Hi7IC2lBevbt2/r3//+t+bPn68RI0bojTfeyN2HygeLxaLXX3/drn1GRUXZXdCvWLFCkydPlsVisTv25s2bunnzpg4fPqy5c+dq6NCh2Xav6tKli1asWKHk5GQtX748yzAPlBaEAAAlXuvWrTVz5kxJaRdA/fr104gRI9SqVassuwZldgfXy8tL7733niTpk08+kSRVrFhRb775piTJ09OzIKtvuHPnjkJCQnTy5ElJaf2Vn3/+edWuXVtxcXHatm2bzpw5o0mTJmVah06dOik0NFQWi0W7d+/WzZs39fDDD2dY1mKxGLMfVahQQW3bti2Uz1VQUlJSNHjwYB09elTlypVTcHCwatasqWvXrmnt2rWKi4vTzZs3NW7cODVq1EhLly6Vu7u72rdvr1q1aunWrVvasGGDrl+/rpSUFE2YMEGBgYEZ/nz+9re/acOGDZLSfk+aN2+uhg0bys3NTefPn9fWrVsVGxurw4cP69VXX9WKFSvyfPf48uXL2rNnj6S0rkBZzbxk689//rMSEhLk6emp9u3b65FHHlFsbKw2b96s6OhoJScna+rUqapbt66eeeaZB47/8ccfNWbMGFmtVkmSt7e3goKC5Ovrq9u3b2vnzp06deqUkpKSNG3aNF25ckUTJkzI02fMrW+++SbDgP7CCy9ISnuCNX78eKPuTZs2VePGjeXp6alr165pz549OnnypJKTkzVz5kz5+vrq5ZdfzvT9mjRpIg8PD925c0dhYWGEAJgCIQBAiff0008rODjYuKCNiorSkCFDVLFiRQUGBuqZZ55RQECAatWqlaOuG+XLlzdmtEkPAbbfKyxff/21EQD8/Pw0Z84cPf7448b+0aNHa9asWZo9e7ZiY2MzfI1KlSqpdevW2rJli1JSUvTzzz8rJCQkw7I7duww7gB37NhRbm5uBfuBCti9e/d09OhRNW7cWF999ZUqVapk7OvXr5+6du0qi8WiI0eO6MiRI/L399fcuXPt7h4PHTpUISEhOnXqlO7evat169bpz3/+s937LFy40AgAfn5+mjlzpurXr29X5o8//tC4ceO0ceNGXb16VaNHj9aiRYvy9Llsuz81b948x8clJCQoODhY//M//2M3teWoUaM0bNgw7dy5U1arVd9+++0DIeD06dP6+9//blxE9+rVS++//74eeugho8yYMWO0ePFihYaGKiUlRUuWLFGjRo0yfXpSkHbu3CkPDw9NnDhRzz//vBISErRhwwa1adNGkvTVV18ZdZ80aZL69Oljd7zVatVnn32mb7/9VlJa28oqBLi5uSkgIEA7duxQdHS0jh07lqOuVEBJxsBgAKXCxx9/rGbNmtl9LzY2Vhs2bNCkSZPUpUsXNWvWTMOGDdOSJUt0+fJlB9U0Y7dv39aCBQskpXUJmT17tl0AkKQyZcro7bffzraLj+2AZ9vuPvez3VcUF3YFwcPDQ7NmzbILAJL0xBNP6Pnnnze+dnJy0ueff/5Af3AvLy+7bi33321OTEw0xkW4u7tr/vz5DwQAKe3JyWeffabatWtLkiIjI427+bm1d+9eYzs3F57169fX9OnTH5jb3t3dXZMmTTIC74EDBx449ssvvzS60XTo0EFTpkyxCwBS2s+wf//+Gj16tPG9GTNmKDk5Ocd1zI8PP/xQ3bp1U/ny5eXj46PXXnvNeEqS3h2sQoUKDwSA9LqPGjVKvr6+ktK6kV2/fj3L96tXr56xbXtOgNKKEACgVHjooYf03XffacKECfL29s6wTGxsrLZs2aIpU6aobdu2ev3113X06NEirmnGdu7cqaSkJElpAy3TB8pm5O2335azc+Z/vlu3bi0vLy9JaRdL6YM2bcXHxxvTovr5+em//uu/8lH7otOlS5dMF3azvYBu1KhRphfUtj/bmJgYu32bN2/WrVu3JEmdO3fWo48+mmldXFxc7ALFjz/+mP0HyED6GI7765adAQMGqEyZMhnu8/PzMwJQQkKC/vjjD2NfYmKiNm/eLCntYjm961tmBg4caKyYHR0dneewkxteXl7q1KlTpvvTu/klJCToxIkTGZZxcnLSP//5T0VEROjgwYOZ/l1IZzvg3vacAKUVIQBAqeHk5KSQkBBt375dc+bMUd++feXv759hWavVqp07d6pnz56aP39+0VY0A7t27TK2W7ZsmWXZatWq6amnnsp0v5ubmzp37iwp7XOuX7/+gTKbN29WYmKipLSnACVlobSsFtCy7duf1c/HdtB4evBKZzsg++mnn862PraLpmV0xz07iYmJxlMpDw+PXI0ryC642YalhIQEY/vgwYPG537qqaeynT3H2dnZbrDy/YPWC0PDhg2zDLpNmzaVlDZOpF+/fpo1a5aioqKMLkLpHn300Wwv/tM98cQTxvaZM2fyUGugZGFMAIBSx8XFRa1atVKrVq0kSVevXtX+/fu1d+9e7d69W+fPnzfKpqSk6OOPP1alSpWy7DNc2Gzv1ttejGSmTp06Wc5s1K1bNy1ZskRS2ixB98/sUhK7AklS1apVM91ne1e8QoUKmZbLKvCcOnXK2J4yZYqmTJmS47pl9MQlO5cuXTK205/e5NT9XaLuZzso3naGo4sXLxrbOe1+ZFuuKBbUsp06NCMjRozQrl27dOfOHcXGxuqLL77QF198oYcffliBgYFq2bKlWrVqlaufacWKFY3t4tZdECgMPAkAUOr5+Pioc+fOmjJlijZv3qy1a9eqe/fudheD06dPf+CucFG6efOmsZ3VBWy67C4AGzRoYIwpOHbsmE6fPm3su379utGlo2HDhnrsscfyUmWHSF/lOTuZdZPJTmYDrnPCYrHkap0KKa1bVrr7+/ZnJ7fl06V3d5LsL3yzYvv7lp+fUU5lNwPXk08+qQULFjwQmG/evKk1a9bo3XffVWBgoAYNGqTw8PBcv2dcXFzuKw2UMDwJAGA6derUUWhoqJ577jlj0OPVq1e1e/dutW7dutDe9/6uCrZy2x3H1dU12zJdu3bV9OnTJaXd+R85cqSktCcD6XeGS8LaALYKu9uS7aDX1157LcddSdLlNnzYBs+crG1R0HL687R9kpCfc5BVG7CVk1W/GzVqpHXr1mnXrl3atGmTwsPDdeXKFWN/cnKyIiIiFBERoZ49e+rDDz/Msu62U7NaLBZZrdYS000OyAtCAIASbf369VqwYIFu3rypDh06GCuO5sSLL76olStXavfu3ZLS1hjITwjI7gLn3r17me6rUqWKMT3o/Qs3ZcT2DnJmunbtqhkzZshqteqnn34yQkD69Jeurq7q2LFjtq9jJrZ3xlu0aKEWLVoU6vu5u7sb20X1JMr2M9o+FciKbbmsnlRld+GcVRvIC2dnZ7vzdPr0ae3Zs0cRERH69ddfjfdbsWKFAgIC7GbOyqpu7u7uBACUenQHAlCi3blzR0eOHNGlS5fyNGuJ7Wws9688mhO2gxezu4jLaorC9NlXJOn48ePZvq9t957MVK9e3Zgf/uzZs/rPf/6jGzduGDOftGzZUpUrV872dczEdpBsTmaISU1NzVf3GNsuPbaDdwtTzZo1je2c/K5J0u+//25s3z+Q2PZiOT9toCA88cQTCgkJ0VdffaUdO3bo2WefNfatWbMmy2Pv3LljbOe1qxVQkhACAJRotjOkHDt2TPv378/V8efOnTO20+d8zw3bPur3Tzd5vyNHjmS6L30RJEnasmVLlq8TFxdnzJOeHds7n1u3btX27duNJxYlrStQUQgICDC2169fn+3Tna1btxqL0aWvKJ0bvr6+RpC8evVqro/Pi4YNGxrdyaKiouwGymckNTXV7nfSdkYkSXbrC2TVBq5fv14gA24PHDigwYMHq3379po4cWKm5by8vIynX5LsugplxLZu2Q1MBkoDQgCAEu3xxx+3Ww31gw8+0LVr13J07G+//WYMGqxSpUqGq7Wm9/G27RNty3a2mj179ig1NTXDcleuXMnyTmTLli2NgYm7d++2mzL0fnPnzs3xANTg4GCjr/PWrVuNz1uhQgUFBQXl6DXM5IUXXjAuak+dOqXvv/8+07JJSUn6/PPPJaUFs5zM6nQ/d3d3Va9eXZJ09+5d3bhxIw+1zh0PDw8FBwdLSuu+8+mnn2ZZfuHChcYFcuXKlR9oJ7Zt4Ndff830ddJX782vhx56SNu2bdP58+f1yy+/ZNk1znbAfXbTr9rOmlSSBssDeUUIAFDijRs3znh8f+7cOXXv3l1hYWGZdu9JSUlRWFiYBg0aZFy0v/vuu3Jzc3ugbPrrxsTE2HUXSPenP/3JKBMdHa0ZM2Y8UObcuXP661//muHx6cqWLat33nlHUtqF2ciRIxUZGflAuSVLluTqYqpcuXLGSrqHDh1SRESEpLSL3Yw+r9lVqlRJAwYMML6eOnWqli9f/kC5uLg4vfvuu8ZCVeXKldNf/vKXPL1no0aNjO2oqKg8vUZuvfnmm8b537hxoyZMmPBAsLRarVq2bJk++eQT43tjxox54PfGNhR8/vnnD0whmpqaqjlz5mjx4sUFUvd69eoZ60Bcv35do0ePtlsMLd2NGzf0j3/8w/jadq2DjNh2ebI9J0BpxcBgACVe3bp19fXXX+v1119XYmKirl+/rrFjx+q///u/9dxzz8nPz09eXl5KSEjQxYsXtWfPHrs7hCNGjMh0wKCfn59iY2OVlJSkQYMGqW3btkpOTtbQoUMlpQ2u7devn77++mtJ0jfffKOdO3cqMDBQbm5uOnbsmMLDw5WcnKw2bdpo7969md7F79Onj7Zv364dO3YoNjZWAwYMUMuWLdWwYUNZLBbt3LnTWOHY399fZ8+ezdHPp1u3blqzZo1SUlKMIEJXoMy99dZbOnTokPbu3SuLxaLx48dr0aJFatGihTw9PXXhwgX98ssvxlgAZ2dnTZ06NdOVjLPTrFkzY0G33377zVjfojDVqVNHEyZM0Pjx42W1WvXDDz9o69atCgoKkq+vr2JjY7Vz505jsLok9ejRI8N20qNHD33zzTeKi4vTtWvX1KVLF3Xs2FE1a9ZUTEyMtm3bposXL8rNzU0tWrTQ1q1b813/v//97xowYIBSUlK0bds2tWvXTm3btpWfn59cXFx09uxZu6cETz/9tHr06JHla9qOAWnWrFm+6wgUd4QAAKVC06ZN9eOPP+qjjz7Stm3bJKXNoLNp06ZMj6levbo++OCDLO8Q9urVSxMmTJCU1hc5fVXYkJAQY5aV4cOH69y5c/rpp58kpd3Nvf+OblBQkKZNm6bAwMBM38vZ2VmzZ8/WuHHjtHr1almtVu3YsUM7duwwyjg5OWnEiBG6fft2jkNA8+bN5ePjY/Q59/Pzy3a1WTNzcXHR3LlzNXnyZK1cuVJWq1UnTpww7vrbqlixoiZPnpyvWZaCgoI0efJkpaSkKCIiQsOHD89P9XOsZ8+eKl++vCZNmqTbt2/r+vXr+uGHHx4o5+rqqtGjR2vgwIEZvk7lypU1e/ZsDR8+XLGxsUpMTFRYWJhdmYoVK+qjjz7SmTNnCiQEBAQEaPr06frggw8UHx+vP/74Qz/++GOGZZs3b67PPvssyydfiYmJ+te//iVJqlWrlrHGBlCaEQIAlBr+/v76+uuvdfToUW3atEmHDx/W+fPndfPmTVksFnl6eqpq1aqqV6+e2rdvr1atWtlN0ZiRXr16ydXVVYsXL9aZM2ckpfWBvnLlihECXF1dNWPGDL388stauXKlDh48qFu3bsnLy0v169dXjx49su2KkM7V1VUff/yxXnrpJf3www86cOCAbt++LS8vLzVo0EADBgzQs88+q6lTp+b45+Ls7KwuXbpo3rx5ktJWCGb6w6y5ublp6tSp6t+/v1auXKm9e/fqypUrSkhIUPny5VWrVi21bt1ar7zySr5nWPL29lbz5s0VERGh3377TTExMUU2a1PHjh3VokULLV++XOHh4Tp9+rRiY2Pl5uYmf39/tWzZUr169ZKvr2+Wr/PMM89o48aNWrRokbZu3arz58/LarWqRo0aatu2rfr16ycfHx/jd7AgBAcHq0mTJvrf//1f/frrrzp9+rTi4uLk6uqqqlWrqnHjxurYsWOOpv3dtWuXMbNRSVpBG8gPJ2tOV+4AAJRYY8eONe7Obty4Uf7+/o6tEOxs2bJFw4YNkyRNmDBBISEhDq6RubzzzjvasGGD3NzctG3btjx37QJKEgYGA0Apd/fuXaNbVJMmTQgAxVBQUJBxXu7vSoPCFRsba3RR6tq1KwEApkEIAIBSbvXq1cZCVD179nRwbZARZ2dn40nAkSNHcrwOBPJv+fLlSkxMlKurqwYPHuzo6gBFhhAAAKWM7bzp4eHhxjzwlStXVufOnR1VLWTjxRdfVL169SRJc+bMcXBtzCEpKUmLFi2SJPXu3ZtFwmAqDAwGgFLm/fffV2RkpCwWi/EEQEqbCjW7gdBwHCcnJ02aNEm9e/fWli1bdPToUdWvX9/R1SrVli1bpqtXr8rb21tvv/22o6sDFCmeBABAKePj46Pbt2/bBYD27durT58+DqwVcqJRo0bq16+fJNkt0oWC98cffxjre4wfP95YsRswC0IAAJQyAQEB8vX1NaZ5HDVqlGbMmMG0oCXEe++9p3r16mnPnj36+eefHV2dUmvmzJmKiYlRr169FBwc7OjqAEWOKUIBAAAAk+FJAAAAAGAyhAAAAADAZAgBAAAAgMkQAgAAAACTIQQAAAAAJkMIAAAAAEyGEAAAAACYDCEAAAAAMBlCAAAAAGAyhAAAAADAZAgBAAAAgMkQAgAAAACTIQQAAAAAJkMIAAAAAEyGEAAAAACYDCEAAAAAMBlCAAAAAGAyhAAAAADAZAgBAAAAgMn8P2GKshj4qpItAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 384, "width": 384 } }, "output_type": "display_data" } ], "source": [ "import polars as pl\n", "from polars import col\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "sns.set(style='ticks', palette='pastel')\n", "\n", "grid = sns.relplot(\n", " data=df,\n", " kind=\"scatter\",\n", " x=\"study_time\",\n", " y=\"test_score\",\n", " height=4,\n", ")\n", "\n", "grid.set_axis_labels('Study Time (hours)', 'Test Score (out of 100)')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This looks it might be approximately *linear* - as values on the x-axis (study time) *increases*, so do values on the y-axis (test scores)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## A First Attempt: Dot Products\n", "\n", "So our goal is to come up with a single number that captures how well `study_time` and `test_score` *move together*.\n", "\n", "One way to capture this \"moving together\" mathematically is **simply through multiplication**. When two numbers have the same sign (both positive or both negative), their product is positive. When they have opposite signs, their product is negative. This suggests a simple approach: multiply corresponding values and add up the products. In statistics and linear algebra, this is called the **dot product**:\n", "\n", "$$\n", "\\text{dot\\ product}(x, y) = \\sum_{i=1}^n x_i y_i\n", "$$\n", "\n", "Let's try this out in Python - fortunately this is just a common operation that we can use the `np.dot` function from NumPy to do this for us:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Dot product: 139478.581\n" ] } ], "source": [ "import numpy as np\n", "\n", "# Break out the variables into numpy array to work with them directly\n", "study_time = df['study_time'].to_numpy()\n", "test_score = df['test_score'].to_numpy()\n", "\n", "dot_product = np.dot(study_time, test_score)\n", "\n", "print(f\"Dot product: {dot_product:.3f}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### The Problem of Measurement Scale\n", "\n", "However, our simple dot product has a problem: it's sensitive to *scale of the data* - in other words the *units* that each variable is measure in. If we measured study time in hours versus minutes, or test scores in percentages versus raw points, our dot product would change drastically. \n", "\n", "You can see this by adjusting the score and time multipliers in the widget below - they control the *units* of each variable by multiplying them by a constant value. Notice how the scatter plots don't move, but the *axis limits* and *dot product* do.\n", "\n", "The dot product is also senstive to the *amount* of data we have - since we're just multiplying raw values and adding them up - just increasing the sample size will increase the dot product!" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2c7807f681ea43ad8c8f4d6c65163028", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(IntSlider(value=100, description='Sample size', max=500, min=50, step=10), FloatSlider(v…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from helpers import dot_widget\n", "\n", "dot_widget();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We could *average* the products of the two variables instead of *summing* them. This is referred to the **mean inner product** in linear algebra. \n", "\n", "$$ \\text{mean\\ inner\\ product}(x, y) = \\frac{1}{n}\\sum_{i=1}^n x_i y_i $$\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Average Inner (dot) Product: 1394.786\n" ] } ], "source": [ "mean_inner_product = np.dot(study_time, test_score) / len(study_time)\n", "\n", "# OR \n", "\n", "mean_inner_product = np.mean(study_time * test_score)\n", "\n", "\n", "print(f\"Average Inner (dot) Product: {mean_inner_product:.3f}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "It makes the dot product a bit less sensitive to the number of observations: - notice how increasing the sample size just increase the magnitude of the dot product as dramatically as it did before.\n", "\n", "However, it's still sensitive to the scale of the variables!" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7fbe73b0170140e1a5ada188e4d143fd", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(IntSlider(value=100, description='Sample size', max=500, min=50, step=10), FloatSlider(v…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from helpers import dot_avg_widget\n", "\n", "dot_avg_widget();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## A Second Attempt: Co-variance\n", "\n", "The short-coming of the average inner/dot product as a measurement of *similarity* is that we can't tell the difference between whether the summary we get back is due to the scale of our measurements or some *underlying relationship* between them - simply changing the scale of our data changes the \"scale\" of our summary.\n", "\n", "Instead, we might hone-in on a more *specific* measure of similarity: how much these variables move together *with respect to their typical values* - in other words - **how similar are the spreads of these variables**?\n", "\n", "We already know about a measure of spread for a single variable - it's *variance* - the average squared difference between each data-point and its mean.\n", "\n", "$$ var(x) = \\frac{1}{n} \\sum_{i=1}^n (x_i - \\bar{x})^2 $$\n", "\n", "What if we generalized this idea? We could first **center** each variable around it's mean, and *then* compute the average inner product. \n", "\n", "This is known as **co-variance**: it improves the dot product by summarizing *how similarily variables deviate from their means together*\n", "\n", "\n", "$$ \\text{cov}(x,y) = \\frac{1}{n-1} \\sum_{i=1}^n (x_i - \\bar{x})(y_i - \\bar{y}) $$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's calculate it manually:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Covariance: 41.368349718712906\n" ] } ], "source": [ "study_time_centered = study_time - study_time.mean()\n", "test_score_centered = test_score - test_score.mean()\n", "\n", "covariance = np.mean(study_time_centered * test_score_centered)\n", "\n", "print(f\"Covariance: {covariance}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Numpy also provides a `np.cov` function that returns a **covariance matrix** - where each row/column represents a single variable - in this case our matrix is 2x2 because we have 2 variables: study time and test score.\n", "\n", "This matrix contains the *variance* of each variable along the *diagonals* and the *covariance* between each pair of variables along the *off-diagonals*" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 25.39566548, 41.36834972],\n", " [ 41.36834972, 133.55365192]])" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Off diagonals are the same calculation!\n", "# Diagnals are variances of each variable\n", "np.cov(study_time, test_score, ddof=0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can verify this quickly:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Study time variance: 25.395665480373285\n", "Test score variance: 133.5536519193348\n" ] } ], "source": [ "study_time_variance = np.var(study_time, ddof=0)\n", "test_score_variance = np.var(test_score, ddof=0)\n", "\n", "print(f\"Study time variance: {study_time_variance}\")\n", "print(f\"Test score variance: {test_score_variance}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Covariance improves on the raw dot product by measuring how variables deviate from their means together. This value will be far from zero when individual data points deviate by similar amounts from their respective means; if they are deviant in the same direction then the covariance is *positive*, whereas if they are deviant in opposite directions the covariance is *negative*.\n", "\n", "**Visually** you can think about co-variance as the average dot-product, when we *move* the data to the *origin* of the plot - indicated by the dashed black lines below.\n", "\n", "But notice: it *still depends on the scale of our variables*. You can see when you increase the scales, covariance changes because the means of each variable change and therefore their *dispersion* increases." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "def3842f16d047d59bdf05cca237d3dc", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(IntSlider(value=100, description='Sample size', max=500, min=50, step=10), FloatSlider(v…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from helpers import cov_widget\n", "\n", "cov_widget();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## A Third Attempt: Cosine Similarity\n", "\n", "One way we can make our summary statistic **invariant** to the scale of the data is to convert our measurement units, i.e. \"hours\" and \"score\" into a common \"unitless\" measure before we multiply them. A very common choice is to use a unit that reflects \"distance from the origin\". In linear algebra, we call this the **magnitude** or **norm** of a vector - how far the data is spread away from the value `0`.\n", "\n", "This looks a lot like the formula for *variance*, but we're not looking at the \"spread\" around the *mean*, but \"total distance\" from the value 0.\n", "\n", "$$\n", "norm(x) = \\sqrt{\\sum_{i=1}^n x_i^2}\n", "$$\n", "\n", "If we calculate this for both variables and divide the dot product by this value, we get a measure of **cosine similarity**\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "$$\n", "\\cos(x,y) = \\frac{dot\\ product(x,y)}{norm(x) \\times norm(y)} = \\frac{\\sum_{i=1}^n x_i y_i}{\\sqrt{\\sum_{i=1}^n x_i^2} \\sqrt{\\sum_{i=1}^n y_i^2}}\n", "$$" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Study time norm: 161.07647027998854\n", "Test score norm: 892.1586038893493\n", "Cosine similarity: 0.9705844944670725\n" ] } ], "source": [ "study_norm = np.sqrt(np.sum([student**2 for student in study_time])) \n", "test_norm = np.sqrt(np.sum([student**2 for student in test_score]))\n", "\n", "print(f\"Study time norm: {study_norm}\")\n", "print(f\"Test score norm: {test_norm}\")\n", "\n", "print(f\"Cosine similarity: {np.dot(study_time, test_score) / (study_norm * test_norm)}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can check our work using a function from the `scipy` library that returns a cosine *distance*. We just need to substract this from 1 to convert it to a similarity:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Scipy Cosine Similarity: 0.9705844944670723\n" ] } ], "source": [ "from scipy.spatial.distance import cosine\n", "\n", "scipy_cos = 1 - cosine(study_time, test_score)\n", "print(f\"Scipy Cosine Similarity: {scipy_cos:}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This step of normalizing our dot-product makes our new measure **scale invariant**. Notice how changing the scale of each variable does **not** change the calculation of the cosine similarity. " ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e56316d5ddc1414c829835ec725c9640", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(IntSlider(value=100, description='Sample size', max=500, min=50, step=10), FloatSlider(v…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from helpers import cos_widget\n", "\n", "cos_widget();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "While cosine similarity isn't that popular in basic descriptive statistics it plays an important role when we start building models. You might notice that the way we're calculating a **norm** of each variable includes a \"sum-of-squares\" operation. In fact this particular type of \"norm\" is called a **Euclidean norm** or **L2 norm** - because it's fundamentally calculating a value that's akin to the **squared distance** between data points.\n", "\n", "However, there's still one issue with this summary statistic...\n", "\n", "We've achieved *scale invariance* by assuming that 0 is a meaingful reference point for both variables, but our real question concerns how similar variables are **with respect to their typical values**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## A Final Attempt: Correlation\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Making Variables Comparable: Z-Scores\n", "\n", "This is where z-scores come in: when we convert a value to a z-score, we're *normalizing* the data **with respect to its mean**. \n", "\n", "$$ x_{z} = \\frac{x - \\bar{x}}{\\sigma} $$\n", "\n", "Because the denominator here contains standard deviation, which depends upon the *mean* of a variable, we're converting our variable into units that reflect \"standardized distance from the mean\"\n", "\n", "What we're really doing is profound – we have a scale that we can translate *any variable* into the *same* units. \n", "\n", "A z-score of +1 always means one standard deviation above the mean, regardless of whether we're talking about hours, percentages, or milliseconds. When we z-score our variables, we're not just changing their units; we're making them \"speak the same language\" while preserving their relative patterns.\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "from scipy.stats import zscore\n", "\n", "test_score_z = (test_score - test_score.mean())/ test_score.std()\n", "\n", "#OR\n", "study_time_z = zscore(study_time)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's visualize the effect of z-scoring:" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB7AAAASQCAYAAAB1b9D4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3gUVf/+8TshCRBa6B1BKdKL9CpEqigIIlJFUTqCgICFKjyAKB0EFVCkY2hSpfcqHSQUCb1DAoSUTbK/P/LLfDek152Q9+u6nuuZzZ6ZObs7kdz7OXOOg9VqtQoAAAAAAAAAAAAAADtztHcHAAAAAAAAAAAAAACQKGADAAAAAAAAAAAAAEyCAjYAAAAAAAAAAAAAwBQoYAMAAAAAAAAAAAAATIECNgAAAAAAAAAAAADAFChgAwAAAAAAAAAAAABMgQI2AAAAAAAAAAAAAMAUKGADAAAAAAAAAAAAAEyBAjYAAAAAAAAAAAAAwBQoYAMAAAAAAAAAAAAATIECNgAAAAAAAAAAAADAFChgAwAAAAAAAAAAAABMgQI2AAAAAAAAAAAAAMAUKGADAAAAAAAAAAAAAEyBAjYAAAAAAAAAAAAAwBQoYAMAAAAAAAAAAAAATIECNgAAAAAAAAAAAADAFChgAwAAAAAAAAAAAABMgQI2ACBJBQUF2bsLAAAAAAAkOfIvAABA4nCydwcAAOZx7tw5bd26Vfv379edO3f06NEjOTs7K3v27MqfP79q1aold3d3FSlSJFbH27Vrl+bOnasFCxYkcc9jr1OnTjp8+LAkadu2bSpQoECynXv69OmaMWNGohxr3LhxatWqlUqUKCFJyp8/v7Zv354ox06pLBaL2rZtq7Nnz2rKlClq2rSp8VyDBg108+ZNSZKnp6e9uvhS+O6777Rw4UK1b99eI0aMsHd3AAAAgHgh/yYt8m/Sii7/IvW5ffu2mjZtKkdHR61Zs0YFCxa0d5cAIMEoYAMAdPv2bY0bN06bN2+O8FxAQICePXumq1evav/+/frxxx/VsmVLDRw4UDly5IjymJ9//rk2b96s/PnzJ2XXAcO0adN09uxZVa5cmfCehPr27at169Zp8eLFevPNN1WvXj17dwkAAACINfIvXgbkX9jKmzevPv30U02fPl1ffvmlFi1apDRp0ti7WwCQIBSwASCVu3v3rjp06GDcnZo2bVpVq1ZNRYsWlZubm4KCgvTgwQMdP35c//77r0JCQrRy5UodO3ZMixYtijLER/ZlQGpXq1Ytubq6Rvn8hg0bdObMGaNtrVq1omxbtmzZRO9fSnb27FnNnTtXDg4OGjp0qL2781Jzc3NTz549NW7cOH377bfauHGjMmbMaO9uAQAAADEi/yYf8m/SIf8iMp988omWLVum48ePa8GCBfr444/t3SUASBAK2ACQilmtVn3++edGeG/YsKFGjx6tbNmyRdr+6NGjGjx4sG7evCkvLy/17t1bS5culYODQ3J2O8WqVKmSKlWqFOXzFy9eNAJ8xYoV1bVr1xiPyXTYodfxqFGjFBwcrCZNmvDlRjJo3769fv/9d926dUszZszgSxMAAACYHvk3eZF/kwb5F1FxdXVVr169NHLkSE2fPl3NmjVT7ty57d0tAIg3R3t3AABgPwcPHtSJEyckSSVLltSUKVOiDO+SVLlyZc2bN0/p0qWTJJ04cUI7duxIjq4CUVq3bp1OnjwpSerdu7ede5M6uLi46LPPPpMk/fHHH7p+/bqdewQAAABEj/yLlwH5F9F5//33lSdPHvn6+mrq1Kn27g4AJAgFbABIxQ4cOGBsv/POO3JyinlijsKFC6tly5bG4507dyZBz4DYCQ4O1owZMyRJVapUUfHixe3co9SjZcuWypAhg4KCgjRr1ix7dwcAAACIFvkXKR35FzFxdnZWmzZtJElr1qzRtWvX7NwjAIg/phAHgFTM29vb2Pbz84v1frVq1ZKHh4eyZMmikJAQ4+c3btyQu7t7uLY3b95UiRIlJEn58+fX9u3bJUkrV67UV199JUnq06eP+vbtG+X5Dh06pM6dO0uS3nvvPY0fPz7SdiEhIdqwYYNWrVqls2fP6tmzZ8qZM6dq1KihLl26RBvu2rRpo1OnTkmSxo0bp1atWkX7Hhw5ckQdO3aUJLm7u9utgBfZextm6NChWrVqlVxdXXX8+HEFBQVp1apVWr16tS5fvix/f3/lzp1b9erV08cff6y8efMa+x44cECLFy/WyZMn9ejRI7m5ualSpUr69NNPVa5cuRj7dfnyZS1fvlz79+/XnTt35O/vr+zZs6tcuXJq1qyZGjdunChT723ZskVeXl6SQkcax5avr68WLVpk7G+xWJQ7d25Vq1ZN7du31+uvvx7jMZ49eyYPDw/t3LlTFy5ckI+PjzJkyKACBQqodu3a+vDDD8O9py9q0KCBMX1hTFPhderUSYcPH5Ykbdu2TQUKFDCes/1dWrZsmV555RV9//332rZtm4KDg1WoUCE1atRIPXv2NPa5ceOGVqxYof379+vKlSvy9/dX5syZVaBAAdWoUUPvv/++ChYsGG2fXF1d1axZM61YsUJr165V//79mZ4MAAAApkX+/T/k35c3/9rmzLhYsGCBqlWrFu++JUbGlKSrV69q2bJl2r9/v65evSqLxSI3NzeVLl1ab7/9tt5++22lSZMm2mPs3btXa9as0YkTJ3T//n05ODgoR44cqlSpkpo3b646depEue/06dONQQJ79+5VQECAxo8fr/3798vZ2VmFCxdWq1at1LZt23D7WSwWrVmzRlu3btW5c+f06NEjZciQQfnz51edOnXUrl075cmTJ9p+h4SEaPPmzdq4caNOnz6tBw8eyMnJSdmyZVO5cuXk7u6upk2bxvj6W7durZkzZyooKEhz587VqFGjom0PAGZFARsAUjHbYtNff/2ljz/+WBkyZIhxv4YNGxprVZmFj4+PevfurSNHjoT7+a1bt+Th4aG1a9dq2LBhUe7fsmVLI8CvX78+xgD/119/GdstWrRIQM+Tx71799S3b19jyrwwXl5e8vLy0rp16zRv3jwVL15c3333nRYvXhyu3f3797V582Zt3bpV48eP17vvvhvpeUJCQjRx4kT9/vvvCg4ODvfc7du3dfv2bW3evFnly5fXtGnTYgxwMVmyZImk0FHGjRo1itU+p0+fVu/evXX37t1wPw97Lzw8PDR06FB16tQpymP8/fffGjZsWLgvwaTQL8W8vb115swZzZs3T3379lW3bt3i9qISwGKx6NNPPw33+3nu3LlwXxSsWLFCo0aNksViCbfvw4cP9fDhQ508eVK//vqrevXqFeOUdM2bN9eKFSsUFBSk5cuXR/tFHAAAAGBP5N//Q/5NPfk3OSRGxgwJCdHkyZM1d+7cCO/l/fv3tXPnTu3cuVMLFy7UrFmzlCNHjgjHuHXrloYMGWIM/rZ17do1Xbt2TatXr1bNmjX1448/RruEgBT6e9atW7dwAwJOnDgRYW33f//9V/379zcGF4QJ+37g7Nmzmj9/vgYNGmQMTnnRo0eP1LNnzwjXbGBgoJ4/f64bN25ow4YNmjVrlubMmRPtYIC8efPqjTfe0JEjR7R27Vp9+eWXypgxY7SvFQDMiAI2AKRi9erV07Rp0ySFBrmOHTuqb9++qlu3brTTqUU1ctjNzU2DBw+WJH3//feSpCxZsqh79+6SpEyZMiVm9w3Pnz9Xhw4ddPHiRUmh6/O+9dZbKlasmJ4+faodO3boypUrGjlyZJR9aNasmcaNGyeLxaIDBw7o4cOHyp49e6RtLRaLNm/eLEnKnDmz6tevnySvK7EEBwerR48eOnv2rDJkyKDGjRurUKFCunfvnv766y89ffpUDx8+1LfffqsKFSpo8eLFSps2rRo2bKiiRYvq8ePH2rBhg+7fv6/g4GANHz5ctWrVivT9GThwoDZs2CAp9DqpUaOGypcvLxcXF127dk3bt2+Xj4+PTp48qQ8++EArVqyI9127t2/f1sGDByWFTp/m6uoaq/0++ugj+fr6KlOmTGrYsKEKFiwoHx8fbdmyRTdv3lRQUJDGjh2rEiVKqGrVqhH2X7NmjYYMGSKr1SpJypkzpxo0aKB8+fLJ29tbe/bs0aVLlxQYGKgff/xRd+7c0fDhw+P1GuNqzpw5kX651qRJE0mhd04MGzbM6HuVKlVUsWJFZcqUSffu3dPBgwd18eJFBQUFadq0acqXL5/ee++9KM9XqVIlubq66vnz51q1ahUFbAAAAJgW+ff/kH9f3vzbo0cPPX36NMbjLV68WDdu3JAkFStWTGXKlIlXvxIrY37zzTdauXKl8bh48eKqXbu2MmTIoCtXrmjz5s2yWCw6efKkPv74Y/35559Kmzat0f7u3bvq0KGDbt26JUlycnJSnTp1VKpUKTk4OOjs2bPas2ePgoKCtH//frVp00bLly+P8rqXpPHjx0d6N3tYvpakU6dOqUuXLvL19ZUk5cqVS/Xr11e+fPn07NkzHTlyRCdOnFBAQIDGjh2rJ0+eqE+fPhGOOWDAAKN4nTVrVjVo0EAFCxaUxWKRl5eX/v77b1ksFl2+fFmffvqp1q1bJ2dn5yj7Xrt2bR05ckTPnz/Xli1bos31AGBWFLABIBUrU6aMGjdubITRc+fOqWfPnsqSJYtq1aqlqlWrqnLlyipatGisprvKmDGjunbtKun/Arztz5LK7NmzjfBeoEAB/fLLL3r11VeN5wcNGqQZM2Zo1qxZ8vHxifQYWbNmVb169bR161YFBwdr06ZN6tChQ6Rtd+/ebdx527RpU7m4uCTuC0pkAQEBOnv2rCpWrKiffvpJWbNmNZ7r2LGjWrRoIYvFotOnT+v06dMqXLiwfv3113Ajenv16qUOHTro0qVL8vPz07p16/TRRx+FO8+CBQuM8F6gQAFNmzZNpUuXDtfmyZMn+vbbb7V582bdvXtXgwYN0h9//BGv12U7ZVyNGjVivZ+vr68aN26s//3vf+FGIQ8YMEC9e/fWnj17ZLVa9fPPP0coYF++fFnffPONEc7btm2rr776SunTpzfaDBkyRAsXLtS4ceMUHBysRYsWqUKFClGO2k9Me/bskaurq0aMGKG33npLvr6+2rBhg958801J0k8//WT0feTIkWrXrl24/a1WqyZNmqSff/5ZUujvVnRB18XFRZUrV9bu3bt18+ZNnT9/PlbTrwMAAADJjfz7f8i/L2/+/eCDD2I81rJly4zidZYsWTRr1qxYzUYQmcTImJs2bTKK105OThoxYkSE19GnTx917txZ9+7d04ULFzRv3rxwy2QNGDDAKF4XLlxYM2fOVNGiRcMdw9PTU71799b169d148YNDRo0SPPnz4/yte3Zs0c5c+bUqFGjVKNGDT18+FB///23ypcvLyl0WbH+/fsbxeuuXbuqf//+EX5Hdu7cqYEDB+rZs2eaMWOGKleurOrVqxvPHzt2TAcOHJAkvfbaa1q8eLHc3NzCHePatWtq37697t+/Ly8vL23atEnvvPNOlH2vWbOmJk+eLCl0GTIK2ABSIkd7dwAAYF8TJkyIsM6Rj4+PNmzYoJEjR6p58+aqVq2aevfurUWLFun27dt26mnkvL29jcDh7OysWbNmhQvvkpQmTRr169cvxmnRWrZsaWzbTpH2ItvnkqMomRhcXV01Y8aMcOFdCg1Hb731lvHYwcFBU6dOjTAdlZubW7ipsF+8y9ff399YBy1t2rSaN29ehPAuhY7YnzRpkooVKyZJOnz4sDGKPK4OHTpkbMelaFq6dGlNnjw5whRaadOm1ciRI40vq44dOxZh35kzZxrTojVq1EijR48OV7yWQt/DTp06adCgQcbPpkyZoqCgoFj3MSG+++47tWzZUhkzZlTu3Ln18ccfG6Pzw0Z0Z86cOcIXC2F9HzBggPLlyycpdOq9+/fvR3u+kiVLGtu2nwkAAABgNuTf/0P+TR3590WHDx/Wd999Jyn0Wpk0aZIKFSoU7+MlRsb85ZdfjO2BAwdGWoQvUqSIJk6caDxetmyZsb1nzx4dPXrU6Mdvv/0WoXgtha6hPn/+fOO7gP3792v//v3Rvr7p06fL3d1drq6uKliwYLgBKkuWLDHu0G7Tpo0GDx4c6QCPN99801iH2mq1Gmtshzl58qSx/cEHH0QoXktSoUKF1L9/f0mh72lMyxoUL15cjo6hpZ/Dhw8bgwwAICWhgA0AqVz69On1+++/a/jw4cqZM2ekbXx8fLR161aNHj1a9evX16effqqzZ88mc08jt2fPHgUGBkqSGjRooBIlSkTZtl+/fsYf8JGpV6+eERROnDgR6VRRz549044dOySFjrJ+4403EtD75NO8efNI14iSwoffChUqRBmGbd/bR48ehXtuy5Ytevz4sSTp7bff1iuvvBJlX5ycnMJ9GbBmzZqYX0AkwtZse7FvMencubPSpEkT6XMFChQwvrzw9fXVkydPjOf8/f21ZcsWSaGBMWy6wKh06dJF+fPnlyTdvHkz3l9UxIWbm5uaNWsW5fNhUyP6+vrqwoULkbZxcHDQb7/9pr179+r48eNR/nchTPHixY1t288EAAAAMBvy7/8h/6aO/Gvr+vXr6tu3rzEoe9CgQapdu3a8jhUmoRnzzp07RjE2a9as6tixY5Tnql69uqpXr66aNWuqfv36ev78uSRp3bp1RpvOnTsrb968UR6jYMGC6tSpk/HYw8MjyralSpVSxYoVo3z+zz//NLZt7waPTPPmzVW4cGFJodOuh90tLinc9xMvroFtq1mzZlq/fr1Onjypr776KtrzpUuXzhiY4OPjE2F9bgBICShgAwDk4OCgDh06aOfOnfrll1/Uvn174w/rF1mtVu3Zs0dt2rTRvHnzkrejkbAdLVunTp1o2+bJk0elSpWK8nkXFxe9/fbbkkJf5/r16yO02bJli/z9/SWFjj6PzdRyZlC2bNkon7Nd8ym698d2SrGwL03CHDlyxNiOzdpZlSpVMrYju9M5Jv7+/sbdEK6urnFaRyymL11sv+gImwpMko4fP2687lKlSkUYpf8iR0dHNWrUyHhs+x4llfLly0f7JVWVKlUkha4L17FjR82YMUPnzp2LMBr7lVdeibFwHea1114ztq9cuRKPXgMAAADJh/wbivybOvJvmGfPnqlnz57GdPDvvvuuPvnkkzgf50UJzZj79u0ztmvVqhXjFPW///675s+frxEjRhgzjdkOFrfN4FFp2rSpsX348OEo21WoUCHK5+7du2cUhbNmzWoMXo+ObTH8n3/+MbZtly7buHGjPvnkE23cuDHcgHop9LMvWrRouLW/o2Ob1SlgA0iJWAMbAGBwcnJS3bp1VbduXUnS3bt3dfToUR06dEgHDhzQtWvXjLbBwcGaMGGCsmbNate1dGxHidv+cR6V4sWLRzvVUsuWLbVo0SJJ0vr168ONlJZS5vRpkpQrV64on7Md7Zs5c+Yo20X3ZcWlS5eM7dGjR2v06NGx7ltkI/1jYjtaObLptaLz4jRyLwobQS6FXudhwtYIk2I/ZZttu+vXr8e2i/FWoECBaJ/v27ev9u/fr+fPn8vHx0fTp0/X9OnTlT17dtWqVUt16tRR3bp14/SeZsmSxdg22xSLAAAAQFTIv+Tf1JB/JSkkJEQDBw401k4vU6aMxowZE+fjRCahGfPOnTvGdmTTfsckKCjIOIazs3OsjlGsWDE5OzvLYrHo3r17CgwMjLRwHl2+vnz5srH9+PHjON8Vb/uZvv7662rRooVxd/6+ffu0b98+pUmTRmXLljXew7Jly8ZpEIltVrc9HwCkFBSwAQBRyp07t95++21jVPaFCxc0f/58rVq1yhhNO3nyZL399tsxjpJNKg8fPjS2owufYWIqXpYrV06vvvqq/vvvP50/f16XL182vhi4f/++MbK3fPnyKlKkSAJ6nrzSpUsXq3ZRTa0dEx8fn3jtJ0kWi0V+fn4R1pKOzrNnz4ztF9eyjklc24cJmyJOCh8Eo2N7vSXkPYqtTJkyRfv866+/rvnz5+vrr78OF7gfPnyotWvXau3atXJyclL16tXVuXNn1atXL07nfPr0afw7DwAAANgR+Zf8G1spKf9K0sSJE7Vz505JoTOOzZw5M8q7eI8dO6bjx49He7yKFSsad5UnNGPG9Zp+Udgd5VLoexObz9TR0VGZMmUypob39vaOdNBDdP2xPW98vHgNjRkzRtmzZ9eCBQsUFBQkKXTgzIkTJ3TixAlNnz5defLk0bvvvquuXbvGaiCDbVa3vYYAIKWggA0AiLXixYtr3LhxqlmzpgYNGiQpdJT6gQMHYlXoiq8Xp56yFdcpzJydnWNs06JFC02ePFlS6Ijz/v37SwodkR52R26LFi3idF57S+qp3sICliR9/PHHsZ5+OkxcvziwncLNdmq35BLb99P2Du6EfAbR/Q7Ysr17PCoVKlTQunXrtH//fv3999/atWtXuFHvQUFB2rt3r/bu3as2bdrou+++i7bvYdO2SaFfxlit1hQztSAAAAAQFfIv+TcqKSn/rlq1ypj+3tnZWdOmTVOePHmibL9v3z7NmDEj2mP26dMn3LToCcmYtu9lfNj+vsTlcw8JCTG2o1qGK7rPyTbrFy9eXC1btoz1uSWpdOnS4R67uLhoyJAh6tKlizZu3Kht27bp+PHjxnrlUujd6j///LOWL1+u3377TSVLloz2HLZZ/cVp8AEgJaCADQCp1Pr16zV//nw9fPhQjRo10ldffRXrfd955x15eHjowIEDkkLX0klIgI+pOBcQEBDlczly5DCmwYrNCNjYjDpt0aKFpkyZIqvVqo0bNxoBfsOGDZJCQ5/tmkkIf0dy7dq1Vbt27SQ9n+1o8eQKYrav0fZu7OjYtotu9HZMRd/ofgfiw9HRMdzndPnyZR08eFB79+7Vvn37jPOtWLFClStXjjaM2/Ytbdq0FK8BAABgOuTfqJF/4y6l5N9jx45p+PDhxuPhw4frjTfeSNS+hYlvxrTNyfGZ0cv2s3j69KmCg4NjHCBgsVjCnSummcwiY9vvDBkyqGvXrnE+RmRy586tLl26qEuXLnr+/LmOHj2qAwcOaPv27cY61t7e3urXr582bdoUZfFdipjVASClifq/cACAl9rz5891+vRp3bp1y5gWLC5s1/exHREaW7Z/ZMcUwO7fvx/lc/nz5ze2PT09Yzyv7ZRWUcmbN6+qVq0qKfTLif/++08PHjzQqVOnJEl16tRRtmzZYjxOalKwYEFjO+x9ik5ISEiCpl2znTbN19c33seJi0KFChnbsbnWJOnff/81tm3fIyn86PCE/A4khtdee00dOnTQTz/9pN27d6t69erGc2vXro123+fPnxvb8Z2eHQAAAEhK5N+okX/jLiXk31u3bqlPnz7G9dauXTt98MEHMe7Xt29feXp6Rvu/vn37xnic2GZM2/fyv//+i/G4q1at0rBhw/Tzzz/rypUrcnFxUd68eSWF/m7ark8elYsXLxp3UOfKlStexV3bfp8/fz5WAwuePn0apzvOXV1dVbduXQ0ZMkSbN2/WlClTjFkVrl69qhMnTkS7P1kdQEpHARsAUinbUbfnz5/X0aNH47T/1atXje1ixYrF+fy2a1KFrTsUldOnT0f53Jtvvmlsb926NdrjPH36NMY/8MPY3nG6fft27dy50xgpn9KmT0sOlStXNrbXr18f410F27dvV9WqVVW5cmV17949zufLly+f8SXQ3bt347x/fJQvX94Ii+fOndO1a9eibR8SEhLumrSdYk1SuDXPovsduH//vm7fvh2fLodz7Ngx9ejRQw0bNtSIESOibOfm5mbcdSEp3NRvkbHtW4ECBRLcTwAAACCxkX+jR/6NG7Pn3+fPn6tnz57G+tJVqlTRN998E+fzxiQxMqZtTt6/f3+4qbkjs2bNGi1fvlw//vij8fpsf783b94cY79t27yY02OrSJEiypEjhyTJz88vxt9HSerUqZPKlSunBg0aaPfu3cbPx40bp7Zt26pKlSrRfr5NmzZVtWrVjMcxZXXb58nqAFIiCtgAkEq9+uqrxihrSfr666917969WO176tQp7dq1S1LoFGY1atSI0CZsyqaowkeuXLmM7YMHD4Zbf8jWnTt3or0DtE6dOsZ0TwcOHND+/fujbPvrr7/Kz88vyudtNW7c2FgvaPv27cbrzZw5sxo0aBCrY6QmTZo0MQqyly5d0tKlS6NsGxgYqKlTp0oK/VLltddei/P50qZNa4yy9vPz04MHD+LR67hxdXVV48aNJYVO+/fDDz9E237BggVGcTdbtmwRfk9sfwf27dsX5XF+/vnn+HY5nPTp02vHjh26du2atm3bFu10gmFfBEihU5hF58aNG8Z2kSJFEt5RAAAAIJGRf6NH/o0bM+dfq9WqwYMH6/z585JC79qfNm1arNZDj6vEyJjFihUz1nK+f/++PDw8ojzG5cuXdfjwYUlSzpw5Vb58eUnSe++9Z7T5448/oh0AfvPmTS1cuNB43Lx58yjbxsR24MeUKVOiff3r1q3Tv//+q+DgYD148EBly5Y1nrt+/bpOnDihJ0+e6K+//or2nGR1AKkJBWwASMW+/fZbYxqhq1evqlWrVlq1alWUU6IFBwdr1apV6tq1qxG4v/zyS7m4uERoG3bcR48ehZu2KEzZsmWNNjdv3tSUKVMitLl69ao+++yzSPcPky5dOn3xxReSQoNa//79jUBja9GiRXEqBGbIkEFvvfWWJOnEiRPau3evpNCgGtnrTe2yZs2qzp07G4/Hjh2r5cuXR2j39OlTffnll7pw4YKk0Pf5k08+idc5K1SoYGyfO3cuXseIq+7duxuf/+bNmzV8+PAIXwpZrVYtWbJE33//vfGzIUOGRLhubL/4mjp1qq5fvx7u+ZCQEP3yyy/hwnVClCxZUqVKlZIU+sXAoEGD9OTJkwjtHjx4oIkTJxqPGzVqFO1xbadJt/1MAAAAADMh/0aN/Bs3Zs6/U6ZM0ZYtWySFXpdz5sxJsingEytj9urVy9geO3as0X9bt27dUr9+/YxBIl26dDGK8rVr1zbupH7y5Im6dOkS6VTiFy9e1Mcff2wUmmvUqCF3d/c4vWZbXbp0kZubm6TQ399PP/000juod+/eHe4O9Y4dOypr1qzG49atWxvbU6dONQaQvOi3334z8nfevHlVrly5KPvm7++vK1euSAodePPikmYAkBI42bsDAAD7KVGihGbPnq1PP/1U/v7+un//voYOHaoxY8aoZs2aKlCggNzc3OTr66sbN27o4MGD4UZ79u3bN9yIU1sFChSQj4+PAgMD1bVrV9WvX19BQUFGMHF2dlbHjh01e/ZsSdKcOXO0Z88e1apVSy4uLjp//rx27dqloKAgvfnmmzp06FCUo8fbtWunnTt3avfu3fLx8VHnzp1Vp04dlS9fXhaLRXv27NHZs2clSYULF5aXl1es3p+WLVtq7dq1Cg4ONr5EYPq0qH3++ec6ceKEDh06JIvFomHDhumPP/5Q7dq1lSlTJl2/fl3btm0z1v5ydHTU2LFjjWm34qpatWpav369pNC7IurWrZtoryUqxYsX1/DhwzVs2DBZrVYtW7ZM27dvV4MGDZQvXz75+Phoz549unjxorFP69atI/09ad26tebMmaOnT5/q3r17at68uZo2bapChQrp0aNH2rFjh27cuCEXFxfVrl1b27dvT3D/v/nmG3Xu3FnBwcHasWOH3N3dVb9+fRUoUEBOTk7y8vIKN3K+TJky4cJ0ZGzXfLOdzgwAAAAwE/Jv9Mi/cWPG/Ltt2zbjGpOkt99+W2fPntU///wjf3//aKfnzps3r5o1axbnfiVGxmzUqJHatWunJUuWyN/fX3369FHFihVVrVo1pU+fXpcvX9aWLVuM34kqVaqoS5cu4Y4xefJkvf/++7p//768vLzUokUL1alTR6VLl5aDg4POnDmjPXv2GGtQ58mTR99//3249enjKmfOnPr+++/Vu3dvWSwWHT9+XI0bN1b9+vVVtGhR+fr66uTJk+GWLChTpoz69esX7jju7u6qU6eO9uzZo8DAQHXr1k0VK1ZUmTJllDNnTvn4+OjIkSNG9nZwcNDQoUOjvav+zJkzxudNTgeQUlHABoBUrkqVKlqzZo3Gjx+vHTt2SJKePXumv//+O8p98ubNq6+//jraOzPbtm2r4cOHSwpdF+nYsWOSpA4dOihLliySpD59+ujq1avauHGjpNBRxC+OJG7QoIF+/PFH1apVK8pzOTo6atasWfr222+1evVqWa1W7d69O9yaQg4ODurbt6+8vb1jHeBr1Kih3LlzGyNoCxQoEG5tJYTn5OSkX3/9VaNGjZKHh4esVqsuXLhgjDa3lSVLFo0aNUpNmzaN9/kaNGigUaNGKTg4WHv37lWfPn0S0v1Ya9OmjTJmzKiRI0fK29tb9+/f17JlyyK0c3Z21qBBgyIE6zDZsmXTrFmz1KdPH/n4+Mjf31+rVq0K1yZLliwaP368rly5kigF7MqVK2vy5Mn6+uuv9ezZMz158kRr1qyJtG2NGjU0adKkaO+48Pf31z///CNJKlq0qF599dUE9xEAAABIKuTfqJF/48aM+ffF62nZsmWRZtXIVK1aNV4F7MTKmCNGjFCWLFn066+/KigoSMePH9fx48cjtGvQoIEmTpwoJ6fwZY08efLozz//VP/+/XX8+HEFBQVpx44dxu+5rbp162rChAmJcmd6vXr1NG/ePH355Ze6c+eO/Pz8tGHDhkjb1q9fXxMnTlTatGkjPDdlyhT169fPmP0gqtefMWNGffPNN2rSpEm0/bJdpqxhw4ZxeUkAYBoUsAEAKly4sGbPnq2zZ8/q77//1smTJ3Xt2jU9fPhQFotFmTJlUq5cuVSyZEk1bNhQdevWjfQPbltt27aVs7OzFi5caExblCtXLt25c8cI8M7OzpoyZYree+89eXh46Pjx43r8+LHc3NxUunRptW7dOsbpi8M4OztrwoQJevfdd7Vs2TIdO3ZM3t7ecnNzU7ly5dS5c2dVr15dY8eOjfX74ujoqObNm2vu3LmSpHfffVcODg6x3j81cnFx0dixY9WpUyd5eHjo0KFDunPnjnx9fZUxY0YVLVpU9erV0/vvv5/gsJgzZ07VqFFDe/fu1alTp/To0aMkmxrtRU2bNlXt2rW1fPly7dq1S5cvX5aPj49cXFxUuHBh1alTR23btlW+fPmiPU7VqlW1efNm/fHHH9q+fbuuXbsmq9Wq/Pnzq379+urYsaNy585tXIOJoXHjxqpUqZL+/PNP7du3T5cvX9bTp0/l7OysXLlyqWLFimratKnq1asX47H279+vwMBASaG/HwAAAIDZkX8jR/6Nu9SSf2OSGBnTwcFBX3zxhVq0aKFly5Zp//79un37tvz9/ZUtWzZVqFBBrVu3jvYYefLk0dKlS7V9+3Zt2LBBx48f18OHDxUUFKTcuXOrUqVKatGihWrXrp2or79q1arasmWLVq1apR07dujcuXN6/PixHB0dlStXLlWoUEHvvfeeatasGeUxMmbMqLlz52rXrl3666+/dPr0ad27d0+BgYHKmjWrChUqpDfffFOtWrWK1V38YdOQZ8qUiXXsAaRYDlar1WrvTgAAYFZDhw417ordvHmzChcubN8OIZytW7eqd+/ekqThw4erQ4cOdu5R6vLFF19ow4YNcnFx0Y4dO+I9HR4AAAAA+yP/mhv5F7Hx33//GXf7f/TRR/r666/t3CMAiJ/4L/IAAMBLzs/Pz5hKrlKlSoR3E2rQoIHxubw4/TaSlo+PjzGteYsWLSheAwAAACkY+df8yL+IjZUrV0oKneb+o48+snNvACD+KGADABCF1atXy9fXV1LouscwH0dHR2ME+unTp3XixAn7digVWb58ufz9/eXs7KwePXrYuzsAAAAAEoD8a37kX8TE399fK1askCS1atVK+fPnt3OPACD+KGADAPD/PXv2zNjetWuXfvjhB0lStmzZ9Pbbb9urW4jBO++8o5IlS0qSfvnlFzv3JnUIDAzUH3/8IUn68MMPVaBAATv3CAAAAEBckH9TJvIvovPnn3/K29tb6dOnV58+fezdHQBIECd7dwAAALP46quvdPjwYVksFmPkuST17dtXadOmtWPPEB0HBweNHDlSH374obZu3aqzZ8+qdOnS9u7WS23JkiW6e/eucubMqX79+tm7OwAAAADiiPybMpF/EZWAgADNnj1bktSrVy/lzp3bzj0CgIThDmwAAP6/3Llzy9vbO1x4b9iwodq1a2fHXiE2KlSooI4dO0qSvv/+ezv35uX25MkTIxQPGzZMmTJlsnOPAAAAAMQV+TflIv8iMvPnz9f9+/dVunRpffLJJ/buDgAkGAVsAAD+v8qVKytfvnxycXFR4cKFNWDAAE2ZMkUODg727hpiYfDgwSpZsqQOHjyoTZs22bs7L61p06bp0aNHatu2rRo3bmzv7gAAAACIB/Jvykb+ha07d+5ozpw5cnV11Y8//ignJybeBZDyOVitVqu9OwEAAAAAAAAAAAAAAHdgAwAAAAAAAAAAAABMgQI2AAAAAAAAAAAAAMAUKGADAAAAAAAAAAAAAEyBAjYAAAAAAAAAAAAAwBQoYAMAAEQhKCjI3l0AAAAAAMCUyMwAgKTiZO8OAAD+z/Tp0zVjxoxwPxs7dqzef//9OB3n6tWratSoUbifLViwQNWqVUtwHxGe1WpVu3btdPz4cY0bN06tWrWKcZ9169Zp4MCBsT7He++9p/Hjxyekm7py5YoWL16sgwcP6saNG7JarcqdO7cqVKigFi1aqGbNmrE+1unTp7Vo0SIdOXJE9+7dU/r06ZU3b165u7urbdu2yp07d4L6Gl9Hjx7V9u3bdejQId27d0+PHz+Wq6ursmbNqiJFiqh27dpyd3dX3rx5Y3W81atXa8eOHZo6dWqC+rVy5Up99dVXkqQ+ffqob9++CTpeTObMmaNJkybFun1i9Mnb21uLFi3S9u3b5eXlJYvFoly5cqlChQr64IMPVLVq1QQdf/78+cbvAP8tAwAAQEKRvc3vzp07+uOPP7R79+5wGbZatWr68MMPVapUqUQ9X2LlXD8/Py1fvlybNm3SpUuX5Ofnp1y5cqlkyZJq1aqV3N3dE7XfsfXo0SNt3bpVu3bt0qVLl/Tw4UMFBAQoW7Zsyp49u9544w3VrVtXtWrVkqNjzPe83b17V2PHjlXHjh0TnPcaNGigmzdvSpI8PT0TdKz4CggIULNmzXTjxo0k+R0+cOCAli5dqhMnTujhw4fKmDGjChYsqMaNG6tNmzbKkiVLrI6T1NkbAMyEAjYAmNymTZviHKLXr1+fRL3Bi2bPnq3jx4/HaZ9z584lUW8i98svv2jq1KmyWCzhfu7l5SUvLy+tXr1a9evX19ixY5U9e/ZojzV58mTNmTNHVqvV+FlgYKB8fHx0/vx5LVy4UP/73//01ltvJclriczFixf13Xff6dChQxGe8/HxkY+Pj7y8vLRjxw6NHz9enTp1Uu/evZUxY8ZIj+fr66uePXvq0KFDKTL8Jff1dfToUfXr108PHjwI9/Pr16/r+vXr+uuvv/TBBx9o+PDhcnZ2jvPxPT0941SQBwAAAOKD7G0ef//9t4YOHSpfX99wPw/LsH/++ad69Oihzz//PFHOl1g59/Lly+rZs6euXr0a7uc3b97UzZs3tXXrVjVo0EATJ06MMo8mtpCQEM2bN08//fSTnj17FuH5O3fu6M6dOzp79qwWLFigEiVK6Ouvv1b16tWjPOb69es1bNgw+fr6qkOHDknZ/WQzZswY3bhxI9GPa7FYNHz4cK1cuTLczx8/fqzHjx/r1KlT+uOPPzRp0iS98cYb0R4rqbM3AJgNBWwAMLmDBw/K29tbbm5usd5nw4YNSdchGDw8POJ1d+6///5rbA8YMEBOTtH/c1ysWLE4nyPMi3fjlixZUpUrV1bmzJl1+fJlbdu2TRaLRTt27FC3bt20cOFCpU+fPtJjTZ8+XbNnz5YkOTg4qF69eipbtqz8/Py0fft2/ffff/Lx8VH//v01d+7cZLnrwNPTU506dZKPj48kKUOGDKpRo4ZeffVVZcqUSYGBgbpz546OHDlijE6eN2+ejh8/rnnz5snV1TXCMR8/fhxpMTylCLu+XF1d1adPnxjbV6xYMd7nunDhgj777DM9f/5cklS4cGE1aNBAGTJk0JkzZ7R7924FBwdr+fLlkqTvvvsuTscPDAzUoEGDFBgYGO8+AgAAALFB9jaH/fv3q3///goODpYklSpVSnXr1lWaNGl09OhRHTp0SMHBwZo5c6ZcXFzUo0ePBJ0vsXLuvXv39NFHH+n+/fuSpDx58qhhw4bKli2bLl68qK1btyowMFDbt29X//79NWfOHKVJkyZBfY+N4cOHa8WKFcbjEiVKqEKFCsqVK5dcXFz05MkTXbx4Ufv371dgYKA8PT31ySefaNKkSWrSpEmkx9yzZ0+EwQUp2YwZM4zMmtiGDRumVatWSZKcnZ3l7u6uEiVKyNvbW3///bdu376tO3fuqHv37lq6dKmKFi0a6XGSOnsDgBlRwAYAk0qbNq0CAgJksVi0devWWI8Ev3jxoi5evJjEvUvdrFarfvrpJ02bNi3cCO3YCrtDNm/evOrevXtid89w8eJFTZs2zXg8fPhwtW/fXg4ODsbPrly5ot69e+vy5cs6c+aM5s6dG2nR899//9WsWbMkhV6bP/30k2rVqmU8P2DAAP3www+aN2+eLBaLvvrqK23atEkuLi5J9vr8/f3Vs2dPo3jdrl07ffnll8qQIUOk7bdt26avvvpKPj4+On78uL7++mtNmTIlyfpnD8+ePdO1a9ckhX7R07Vr1yQ7l9Vq1dChQ40A3bZtWw0fPjzcgIyjR4+qR48eevr0qZYvX65GjRqpTp06sT7HpEmTdOHChUTvOwAAABCG7G0efn5+Gjp0qFG87tevn3r27Bkuw27atEmDBg2SxWLR1KlT9dZbb0VZ9ItJYubc0aNHG8XrBg0a6Mcffww3YPrixYv67LPPdPv2be3Zs0crVqzQhx9+GK9+x9bixYuN4nWuXLk0efJkVa5cOdK2jx490ujRo7Vx40YFBwdr0KBBKly4sF5//fUk7aM9BQYGaty4cVq8eHGSHH/btm1G8Tpr1qyaN29euKnvBw4cqK+//lrr1q3T06dP9c0332jZsmURjpMc2RsAzCjmBS0AAHZh+4fmxo0bY73funXrJEkuLi4qXrx4ovcrtXvw4IG6deumqVOnxqt4fevWLXl7e0uSSpcunci9C+/3339XUFCQJOnDDz9Uhw4dwgV/SSpSpIgmTpxoPF66dGmkx5oxY4ZCQkIkSf379w8X6iUpTZo0GjJkiBo0aCApdIq0P//8M9FeS2TWrVtnrJNVv359jRw5MsritSS5u7tr5syZxnuwceNGnT9/Pkn7mNz+/fdf47pM6utr27ZtOnv2rKTQUfwjR46MMJtA5cqVNW7cOOOx7YCKmBw8eFC//fabJDH9GQAAAJIM2ds8li9frrt370oKzXi9evWKkGGbNGmiQYMGSQqdHvvFtczjIrFy7vnz57VlyxZJUo4cOSIUr6XQmdVmzJhhvJ6ZM2caeT0pWK1W/fLLL8bjWbNmRVm8lqRs2bJp0qRJxntgsVg0c+bMJOufvV29elXt27dPsuK1pHDX5qhRoyKs2542bVpNmDDByO4nTpzQrl27IhwnqbM3AJgVBWwAMKmiRYsaU0eHTWUWG2GBu169esm2plJq4O/vr1mzZqlhw4bavXu3pNDpquO6RrLt+sRJXWDcu3evsd2uXbso25UuXVrZsmWTJN2/f1+PHz8O9/zjx4+1Y8cOSVLGjBnVvn37KI/Vt29fY3vt2rXx6ndsHThwwNhu2bJlrPapUqWKateubTyOLBymZMl5fYWNJJekzz77TI6Okf9Z2bBhQ2PU/qlTp3TlypUYj/3kyRMNHTpUVqtVJUqUUOPGjROn0wAAAMALyN7mYZsxunXrFmW79u3bGxl227Ztka7tHJPEzLm26xt36tQp0qWqJKlMmTKqX7++pNApxw8ePBjnfseWl5eXbt26JSm0eF62bNkY93F0dFS/fv2Mx3v27EnSIrs9+Pj4aNy4cXr77bd1+vRpSaGDDsqUKZOo5zl//ryRzwsXLqxGjRpF2s7JyUk9e/Y0Hkd2fSVl9gYAM6OADQAm1rRpU0lSUFCQtm7dGmP706dP6+rVq5Kkt99+O07nOnnypEaMGKEmTZqoUqVKKl++vNzd3TV48GDt27cv1sf577//NGXKFHXo0EF16tRRuXLlVL58edWpU0effPKJ5s+fH2247NSpk0qUKGGstRQYGKhFixapY8eOqlmzpsqWLas333xTAwcOjDHsTZ8+XSVKlFCJEiWMEdPxtWHDBk2dOtWYsql06dJatmxZnAvYtutfJ3WB8e+//9batWs1bdq0aKf9slqtCggIMB6/eLfrgQMHjCncqlWrpnTp0kV5rFKlSilnzpySQkcPh02hlhRsv1jy9/eP9X61atWSi4uLcuXKJYvFYvz80KFDKlGihNzd3Y2fHT582LiGOnXqFOnxPD09NXz4cDVs2FBlypRRtWrV1KlTJ/3111+x6s+NGzeMc5QoUSJB62/bXl+JHcBtBQUFGQMIHB0dww0KiEzdunWN7bA7E6IzcuRI3b59W87Ozpo4cSJ3YAMAACBJkb3tn70fPHhg5JksWbKoQoUKUbZ1cXFRjRo1jH6HDTKPi8TMubaDx+vVqxfteW2fj002ii/bvOzn5xfr/cqXL6/MmTMrc+bMypkzp54+fWo8F3bN2BZUO3fuHG2WDQwM1JIlS9SpUydVqVJFZcuWVcOGDTVmzBhjRrWYDB06NMZcHlsLFizQb7/9ZnwXULNmTXl4eBiDWBLLnj17jO26detGmEnAVq1atYzMu2PHjnCDBpI6ewOAmbEGNgCYWLNmzYxpfzZu3BjjWlwbNmyQJLm6uqp+/fpasGBBjOcICAjQsGHDtGbNmgjP3bhxQzdu3NCaNWtUr149/fDDD8qcOXOkx7FYLPruu++0YsUKYwouW/7+/rp375727dunn3/+WbNmzVLFihWj7dv169fVq1evCGvg3r59W+vWrdO6dev04YcfauTIkdGGgcTk5uamnj17qmPHjnJyctKmTZvitH/YtE9SaIExJCREZ86ckaenp/z9/ZU9e3ZVqlRJefLkSXBfXVxcjJAXnd27d8vX11eS9Nprr0W4e8C2z9F9iRCmfPny2rp1q6xWq06dOhWuIJyYcufObWwvX75c77zzjtKkSRPjfl26dNHHH3+cKH2YO3eufvjhh3DXvLe3tw4fPqzDhw9r7dq1xgj75BD2Wbm6uqpIkSIKDAzUqVOndPnyZQUFBSlXrlx64403jLsV4uvq1avGNfPKK68oa9as0bYvX768sX3q1Klo265du1br16+XFDqNX0zXLwAAAJBQZG/7Z2/b3Fm2bNko7zINU758eSM3nDx5Us2aNYv3+RKSc/38/PTff/9JCp0SOqY1o23PFVM2Sgjb7xRu3LihPXv2xHpN5MOHDyfK53z79m199tlnEdaKv3btmv744w+tXLlSP/zwQ4LPEx958uRR//799d577yXJ8eNyfbm6uqpo0aL6999/5evrq0uXLhnXUVJmbwAwOwrYAGBiRYoU0euvv67z588bU5m5ublF2tZqtRpTmLm7u0c7ejhMYGCgPv74Y/3zzz+SQu+8rVOnjkqVKiUHBwddvnxZO3fu1PPnz7Vr1y516NBBS5cujXSd4SFDhhjh0dnZWbVr11aJEiWUIUMGPXnyRCdPntSRI0dktVr16NEj9e3bV5s2bYpyqrXnz5/r008/lZeXlzJnzqy33npLhQoV0pMnT7Rt2zZjtPvSpUtVsmRJffjhhzG+3oTInj27Bg4cqA8//DDKLxJiI2xEeY4cObRhwwbNnTtXt2/fjtCuZs2aGjJkSIzhNyGsVqu2bdumb7/91vhZnz59IrQLe68lqUCBAjEeN2/evMa2l5dXwjoZjXr16snDw0OS9M8//+iTTz5Rz549Va1atWjDdlTPFSpUSIMHD9aTJ080e/ZsSVLBggWN6ddtX5cUup7V9OnTjcdlypQx7u4+ffq0du/erd27dydbaAwMDDS+OClcuLBmzZqlhQsXRpgS3tHRUQ0bNtTgwYNj9XlGxvZzjc0x8uXLF+m+L7p165ZGjx4tKXQNr08++SRe/QMAAADiguxt/+wd19wZ24yRWOeLKudevXpVVqtVkpQ/f/4YC7/JlZfz5s2r4sWLG4MS+vXrpx49euj999+PcUBzVK+hXbt2evPNN7VhwwadOXNGkvThhx+qUKFCkmT8vyTdvXtXbdu2NdY0z5Ahgxo3bqxChQrp4cOH2rp1q27fvq3+/fvHOFghMRUsWFAjRoxQ69atlTZt2iQ7T3yur7Dvi7y8vIzvgpIqewNASkABGwBMrlmzZjp//ryCgoK0ZcsWtWnTJtJ2x44dMwqhsZ3C7McffzQCdKlSpTRt2jQVLFgwXJu7d+9qwIABOnr0qC5cuKAxY8Zo3Lhx4docPHjQCNBZsmTRggULIi28Hjp0SN27d5efn5/u37+v7du369133420b2Ehx93dXePHjw9XNB44cKC++eYbrV69WpI0f/78SEN03759w61VlRD16tWLcSqwmDx69Eh37tyRFDo92pgxY6Jsu3//frVt21YTJ06Mcq2k+Lh165ZWr16tW7du6eDBg7p+/bqk0KLmF198Eemoddvp0Wzveo6KbZsHDx4kQq8j17BhQ5UtW9ZYt+rgwYM6ePCgcubMqTp16qhy5cqqXLmyXnnllVgdL2/evOratatu3LhhFLDDfvaiS5cu6aeffpIU+t4NHz48wjrjx48fV8+ePSMUkF9UoEABeXp6xqqP0fH09DSmGjt37ly49bBthYSEaPPmzTp06JBmzpypypUrx/lcttdEbGYLiM01ERISoiFDhujp06fKkCGDxo8fn6xfZAAAACB1I3vbN3snRcaI7fkSknPj2u8sWbIoXbp08vf31/Pnz/X8+fMo18xOqP79+6t3796yWq3y9fXVjz/+qClTpqhixYqqXr26KleurAoVKih9+vSxOl7Y9wUXL140CtjNmjVTtWrVIrT9/vvvjWurdOnSmj17tnLlymU8/+WXX2r06NH6888/Yzzv+PHjNX78+Fj1MSYtW7ZMlOPEJCHX88OHDxPlOEn5fQwAJAe+FQQAkwtbi0tStNNVh01h5ubmFuOaOFJoSF20aJGk0LuB582bFyFAS6F//M6ePVvZs2eXJK1evTrcSFJJ4dY/6tu3b5R3DVerVi3c9ExhgScqr7zyiiZPnhzhjmcnJycNHz7cCHleXl6R3sVsNrbrE0uh7/tXX32lrVu36vTp09qzZ48mTJigwoULSwqd+m3AgAE6ceJEovXh1KlTmjp1qlasWBGueP3tt9+qW7duke5ju+ZVbIKt7R0I0a25llCOjo6aM2eOihcvHu7n9+/f18qVK/X111+rUaNGql27tgYMGCAPDw89evQoUc49bdo0o1jctWvXCMVrSapYsaKmTZuWbNPbv3h9FSpUSGPGjNGuXbt0+vRp7dixQ8OHDzfWbvP29lavXr2M6yAubK+J2NxxYjuyPaprYu7cuTp8+LAk6Ztvvon0v0cAAABAUiF72zd7xzV3xiZjJOb5osq5cc1GL7az3T+xubu765tvvpGT0//dwxYcHKyjR49qxowZ6tKliypXrqwPPvhAkydP1rFjx4y7yRPi4sWLWrdunSQpc+bMmjNnTrjitRT6+Y0ZM8ZYy/xlE9frIqprIimyNwCkFBSwAcDkChUqpNKlS0uSMZXZi8LuqJRC70p1dnaO8birVq2SxWKRFDoNVHTr6GTKlEmdOnUyzvXXX3+Fe75Jkyb64osv9P777+udd96J9ry269nGFNSim9IpQ4YMKlOmjPHYdlSqWdmugfTaa69p1apV6tKliwoWLCgXFxflypVLLVu2lIeHhypVqiQpdH2z4cOHJ0qIlGTcAW4rJCREo0eP1vvvv6/Lly9HeD4wMNDYjs0UW7ahynbfpJA9e3Z5eHiob9++ypQpU6Rt7t+/r/Xr1+vrr79WnTp11L9//whfBMVFYGCg9uzZIyl0yr5PP/00yrZVq1ZVzZo1432uuLC9vqpUqaJVq1apTZs2ypMnj1xcXJQvXz516NBBq1atMgZJ+Pj4aOzYsXE+l+3nGtcwbrFYIlzP58+f19SpUyWFfsnSunXrOPcJAAAASAiyt32zd3LnzsQ6X1yz0YvnS+rM3KlTJy1fvjzKmbeCgoJ08uRJzZ49W+3atZO7u7uWLVsW6frqsbVt2zZj+/333zcGUb/IwcFBn3/+ebzPY2ZxvS6iuiYSO3sDQEpCARsAUoCwaZrCpjJ70aFDh4wQGdspzI4cOWJs24bRqIQVVKXQKdNs1a9fXz169NDYsWOjXCdMCl1b68aNG8bjsDtYo1KuXLlon7ddtympQ19i6NKlizZs2KCff/5Zv/zyS4QRyGEyZsyoSZMmGV+GeHp66sCBA4nShwYNGmjnzp06c+aMdu/erTFjxhjTUJ0+fVrt27fXtWvXwu2TJk0aYzs2dxPbBqTkmALaxcVFffr00b59+zR9+nS1atUq3LpPtoKCgrRx40a1aNHCGBEeVydOnNDz588lhV6j0V3zUmhBNjkMGTJEf/31l3766SdNmzYtyjXucubMqYkTJxqPd+zYEee1seJ6TbzIdp+AgAANGjRIFotF2bNn13fffRfn4wEAAACJgewdueTI3gnJnfHJJImVc+OTjZI7M5cuXVqLFi3Sxo0bNWDAAFWpUkUuLi6Rtr1586aGDx+uLl266MmTJ/E63759+4ztunXrRtu2UqVKMa7JnRIlJDMn9PqylVwzwgFAUmANbABIAZo2bWoUnDZt2hRhLa6wNbBy5swZ6dpDkbl06ZKx3b179zj15+bNm9E+/+zZM3l5eenatWu6fv26/vvvP3l6eurixYvhgnNMI0GjGqUbxnaar4SMDk4uLi4ueu211/Taa6/F2DZv3rxq0KCBMbp/7969iXInb6FChYzt3Llzq02bNnJ3d1f79u115coVeXt7a/To0fr111+NdrbrccXmy4qAgABjOzZ3JCSWtGnTqlGjRsaa4devX9eRI0d06NAh7d+/X/fu3TPa+vn5afDgwcqePXucpyy7deuWsR2bz/LFKc6Tiqurq4oXLx6r85UrV06lS5c27tret2+fcVd2bM8Vxvbzjoq/v7+x/eIXJRMnTtTFixclSd99950xZSIAAACQ3MjekUuO7B3XjGHbJqpibGzPl5CcG9d+v3i++PQ9vl599VV1795d3bt3l7+/v06cOKEjR47o4MGDOnHiRLhr5tChQ+rTp48WLFgQ5/PYZuZXX301xvbFihXToUOH4nweM3N1dZWPj4+k0Osips85qus5MbM3AKQ0FLABIAXInz+/ypcvr5MnT+rgwYN6/PixMe2YxWIxRoY3adIk1qN3w/6Qjo/IRuGGhIRozZo1Wrx4sc6cORNlqE2TJo2Cg4NjdZ7YTr8lxRzIU6KyZcsaBWzb0fOJLVu2bBo7dqzat28vKbRYfvfuXeXOnVtS+MDk5+cX4/FsA1NU03onh4IFC6pgwYJq1aqVpNA7p3/++WdjOrPg4GD98MMP8vDwiNNxHzx4YGzH5vVFN0WgPZUrV84oYMf1+rK9Jmw/76jYBm3b92zfvn1auHChpNBpC5PrbnUAAAAgMmTvmCVV9k6sjBGf8yUk58a139EdKzmlS5dO1atXV/Xq1dW3b189efJEK1eu1C+//GJk3kOHDmnnzp16880343Tshw8fGtsvrqseGbNm5oSwLWD7+fnF+DnbXhO2s6kl9+8FAJgJBWwASCGaNWumkydPKigoSFu3bjVGgu/bt89Ym6t58+axPp7tyNp+/frFas2nMC+29fX1VZ8+fbR///5wP3dwcFCePHlUtGhRlSlTRlWrVtWNGzc0bNiwWJ8rNcuSJYux/ezZsyQ91xtvvKE8efLozp07slqtOnfunFHAth2Nb3sXc1Tu3r1rbMc0kj85VahQQbNmzdKcOXM0adIkSdKZM2d0+fLlWN1JHSauU3Al513ocZGQ6ysh10SOHDmM7aFDh8pqtcrR0VF58uTR3LlzI90/7A5tSdqwYYPOnDkjSapYsWK4KRYBAACAhCJ720diZYzkOJ/tvrZLg8XmOD4+PkYhMmPGjHEaPJCUMmfOrC5duqhJkybq0KGDMch59erVcS5gvyyZOSFy5syp27dvSwq9LqJaQi5MVNdXcv9eAICZUMAGgBSiSZMmGj9+vKxWa7ipzDZs2CApdKR4hQoVYn28LFmyGKNqmzZtqiJFisS7b2PHjjUCdMaMGfXRRx+pdu3aKlGihDJkyBCu7aJFi+J9npfFs2fPolyf2Javr6+xnZCRs8+fPw83ajcqefPm1Z07d4w+hilatKixHdMUdlL46cLiMi11XPz2229au3atHjx4oE8++URdunSJ9b6fffaZVq5caaz7fOXKlTgVsG1DYGzupnj69Gmsj50YfH19I/zeRdUuTFyvr2LFihnbCbkmwgJ4SEiIZs6cGatzL1261Nju06cPBWwAAAAkKrK3fcQ1Y9i2iU/uTKyc+8orr8jZ2VkWi8U0ednb21t9+vTRgwcP5Ofnpx07dsR6xoA8efLo888/1+DBgyXJyM1xkSNHDl27dk1SaGa2nYI+Mkk9YN8eihYtqlOnTkkKvb7KlCkTbfuorovEyt4AkBLF7l8uAIDd5cmTRxUrVpQkHTx4UN7e3goMDDSmQ3777bfjdLyCBQsa22F/VEcnMDAw0lBx9+5drV69WlLoKNt58+bp888/V6VKlSItoj1+/NjYfhmn/Y5KYGCgGjRooHLlyumNN94INyo2Kp6ensa2bbiOjfPnz+udd95RxYoV1bVr11jtE3Y3gRR+Cq/XX3/d2I7NtWLbpmTJkrE6d1x5e3vr7Nmzunv3rg4fPhynfR0dHcOFQIvFEqf98+fPb2zbfkZRuXz5cpyOHx83b95UvXr1VKZMGdWoUSPcXR5RScj1lS9fPmMquP/++y/GLxxOnDhhbJcuXTpO5wIAAACSE9nbPooXL27cuXv69OkY2588edLYjk/GSKyc6+TkZOQpX1/fGPNfcmQjV1dXHTt2TFeuXNGdO3dilVttlShRwtiOa16WzJmZk1tcri9fX19dunRJUuhnZ1t4JnsDSM0oYANACtKsWTNJoVOQbd++XXv27DH+eI1riK5cubKxvW7duhjbL168WG+88YaqVaum4cOHGz8/ffq0sa5WyZIlVb58+WiPc+jQIWM7JYToxOLi4iJnZ2djPaKdO3dG2z5slHSYmjVrxul8OXPm1MWLF/X8+XOdPHkyxoL59evXdeXKFUmhBd5SpUoZz9WoUcOY1uzgwYMKDAyM8jhnzpzR/fv3JYV+ARE2DXlie+ONN4ztXbt26fr163Ha/+rVq8Z28eLFwz0X03RnFSpUkJubmyTp7NmzxrRgUdm9e3ec+hYfefLkkY+PjywWiwICAnTw4MFo29+5c0fHjh2TFPp5V69ePc7nDJtGLigoSPv27Yu27a5du4ztWrVqGduenp6x+t97771n7LNgwQLj53379o1zvwEAAICYkL2TX5YsWYzZlR48eGAsGxSZgIAAHThwQFJonqlRo0acz5eYOdd2im3b7BOZqLJRYnJxcVHZsmWNxwsXLozT/mF3T0vh7wAOE1Nmtn0/wtaNj8qVK1fCne9lUb9+fWM7pu8E9u7dawxCr1atWoQp1RMjewNASkQBGwBSkMaNGxvTPv3999/avHmzJOm1114LN7ozNlq2bGmEjt27d0cbsnx8fPTrr79KCr3z1XY0rm3Is72DNzLbtm0Ld7dsbO4SfZk0adLE2J47d66x7lVkpk6daryfr7/+eriCbWxkz57d+KIkODhYs2bNirKt1WrVhAkTjMe1a9dWtmzZjMcZMmRQvXr1JIWO4o8u/M6YMcPYti06JraaNWsadzIEBQVp4MCB4abEjs6mTZt04cIFSaFf/Lw4fXiaNGmM7bAviGw5OTmpcePGkkKnvg5bTzsyFy5cMH5Pk1KaNGnk7u5uPP7pp58UEhISZfv//e9/xu9f/fr1lS9fvjif0/aLu9mzZ0c5Mt/2/S5evHiMU6cBAAAA9kb2tg/bjGGbLV+0cOFC4w7zevXqKXv27HE+V2LmXNt+z58/P8q7ZE+dOmUMZs+aNWu4Imdia9u2rbG9cuVKYwr8mAQEBGjOnDnG48jWe7edjjyy3Nm4cWM5OYWuXLpmzRrj7uLIRPc5p2SFChUysm903wtYLBbNnj3beBzT9UX2BpCaUMAGgBQkV65cRlFy//79xh26cR0BLoVOGWy73xdffGFMiWbr/v376t27tzHaOF++fHr//feN523D+61bt/T7779HOEZISIhWrFihAQMGhPu5n59fnPudknXu3NlYa/jq1av6/PPPI6yPHBQUpGnTpmn+/PmSQkc2Dxs2LF7n6927t7G9dOlSzZs3L0Kb58+f6+uvvzZGRTs7O2vQoEGRHissgE6aNEkbN24M93xISIgmTJhgXJM5c+YMF5gTW5o0aTR69GhjZPLJkyfVqlUrbdu2LcrCbWBgoH777Tfj9Tk5OWno0KER2tmuT37nzp1Ii9i9e/c2Psu1a9dq4sSJEb4UunTpknr06BGvKdfio0ePHsZndPToUX377bcR7iLw9/fXt99+a4TndOnSaciQIfE6X7169YypFc+dO6ehQ4caMwyEOXr0qL755hvjcZ8+feJ1LgAAACA5kb3to3Xr1ipQoIAkaceOHZowYUKEPLZp0yZNnjxZUmhets29cZVYObdYsWLGXfv37t1Tr1695OPjE67NxYsX1bdvX+Nu+G7dusnFxSXefY9Jy5YtjTvTQ0JCNGjQII0cOdK4viJz/vx5ffzxx8bd7zVq1NBbb70VoZ1tZr5x40aE5/PmzavOnTtLCs3hn332mVFYDRMcHKzJkyfHalaClKpfv37G9tdff60jR46Eez4gIEBDhw7VuXPnJIX+jjds2DDCccjeAFIrJ3t3AAAQN02bNtXhw4cVEBBg/MEanxAtSaNGjdL58+d16dIl+fr6qlevXipfvryqVaumtGnT6sqVK9q6datxp3DatGn1ww8/KG3atMYxXn31VdWuXVt79+6VFHpn58aNG1WxYkVlzJhRd+/e1e7du41plp2dnY2CXkyjxhNq+vTpxmje/Pnza/v27Ul6vphkz55d48eP1+eff67g4GDt2rVLb731lho3bqz8+fPr4cOH2rFjR7jps7766qtwU87Zsh2NP27cOLVq1Src8zVq1FC3bt30888/S5ImTJigVatWqW7dusqUKZNu3ryprVu36tGjR5JCR1GPGzcu3HFtz9W9e3fNnDlTFotF/fv319KlS1W5cmVjPbiwdavSpEmjcePGRboOmyR16tTJuBvgvffe0/jx42P7FoZTs2ZNff/99xo4cKBCQkLk5eWlXr16KVu2bKpZs6by5MmjzJkz68mTJ/Ly8tKhQ4fCDRj47rvvIp06O2PGjHJzc5O3t7du3rypXr166Y033lD69OnVqVMnSVLu3Lk1fPhwDRkyRCEhIfr111+1detWNWjQQJkzZ5anp6e2bt0qi8WiwoULy8vLK8rXcePGjXB3Ty9YsEDVqlWL8/tRrFgxDR06VGPGjJEkeXh4aN++fWrYsKFy5syp27dva+vWrcYXFk5OTpo4caJeeeWVePXJwcFBo0aN0ocffqjnz59r3bp1+ueff9S4cWNlzpxZZ86c0a5du4wvnN555x3jznUAAADA7MjesZdY2TtdunQaPXq0unXrpqCgIM2bN087d+6Uu7u70qZNq3/++ceYOlySunfvHm6q7Lj2KTFz7ldffaUjR47o/v37OnTokBo3bqymTZsqZ86cunz5sv7++29jgHHVqlX10UcfRXqcQ4cOGcVfKfRu+rCiflw4Ojpq5syZ+uSTT3TixAkFBwdryZIlWrZsmcqXL69SpUope/bsslqtevDggY4dO6YLFy4YBfbXX39d06dPj/TYtv354YcfdPPmTTk7O6tRo0bGlOOff/65Dh48qHPnzunWrVtq1aqVGjRooNdff13Pnj3Ttm3b5OXlJWdnZ+XOnTvSQniYoUOHatWqVZJC37s//vgjzu9HYotNn+rWrauWLVtq9erVevbsmT766CPVq1dPZcqU0dOnT7V582bdunVLkpQ+fXpNmDAh3N3tYcjeAFIrCtgAkMI0btxYY8aMMf4wLV26tAoXLhyvY2XMmFFLlizR4MGDjRHFJ0+e1MmTJyO0zZMnjyZOnBjpVNbff/+9Pv74Y3l6ekqSjh8/ruPHj0doV7x4cY0fP15t27aVxWLRxYsXFRgYmKSjjs3mrbfe0syZMzV06FB5e3vL29tby5Yti9AuU6ZMGjp0aLgR9/ExcOBAZc6cWVOmTFFQUJAuXLgQYeSzJOXIkUMTJkxQ7dq1ozzW559/LovFol9//VUhISE6ePBghLWWXV1dNW7cONWpUydB/Y6tZs2aqVChQho7dqyxpvOjR4+iHcVdrFgxjRgxQlWqVImyTdu2bY1p03bu3KmdO3cqU6ZMRgFbkt59912lT59eX375pfz8/OTl5RXhLvcyZcpo8ODB4b6ASEqdOnVSunTpNGbMGPn7++vOnTuRBumcOXPqu+++S/CUdSVKlNAvv/yifv366cGDB7p9+7Z+++23CO3effdd/e9//0vQuQAAAIDkRPa2j1q1amnSpEn66quv5Ovrq//++0///fdfuDYODg7q2rWr+vfvn+DzJVbOzZUrl37//Xf16NFD165d0+PHj7V48eJIX9+0adPCLV2VVDJkyKAFCxZo3rx5+vnnn/X8+XOFhIREed1IoQOdO3furD59+kRZrG/SpImmT58uHx8feXt766effjLOF1bATp8+vf744w/169dPe/fulcVi0ebNm8NNpe3s7KxRo0Zp27Zt0RawU7KxY8dKklavXq3g4GBt3749wmCKbNmyadq0adEuT0D2BpAaUcAGgBQme/bsqlatmvbv3y8p/iPAw2TOnFmzZ8/W0aNHtXbtWh05ckT37t1TQECAMmfOrBIlSsjd3V3vvfdelOEle/bsWrFihZYtW6ZNmzbp0qVLevbsmdKlS6ecOXPq9ddf11tvvaWmTZvKyclJ1atX1549e+Tn56etW7caU22lFvXr19fWrVu1bNky7dy503i/MmfOrIIFC6p+/fpq3bq1cubMmSjn++yzz9SkSRMtWbJE+/fv1/Xr1xUQECA3NzeVKFHCOF/69OljPNbAgQPVuHFjLVmyRIcOHdK9e/fk6OioggULqnbt2urUqVO81lNOiDJlymjJkiU6cuSItm/frtOnT+vatWvy9vZWUFCQ3NzclDNnTpUvX14NGzZUjRo1jGniotK/f3+5ublp5cqVunHjhtKkSaNcuXLp0aNH4dYHb9iwoTZt2qQFCxZo165dun79upycnFS4cGG988476tChgzFiP7m0adNGb775ppYsWaK9e/fKy8tLz58/l5ubm4oUKSJ3d3e1bt3amAI9oSpXrqyNGzdq4cKF2rZtm65duyY/Pz9lzZpVFStW1AcffBDtwAgAAADAjMje9tO4cWNVqFBBCxcu1M6dO3Xz5k0FBgYaU7t36NBB5cuXT7TzJVbOfe2117Ru3TotXbpUmzdv1uXLl/Xs2TNlyZJFZcqUUcuWLdW0aVNjTfTkkDZtWvXs2VNt27bVpk2bdPjwYV28eFF3796Vn5+fXFxclCNHDhUoUED16tVT48aNlTdv3miPmTNnTi1ZskRTpkzR0aNH9fTpU2XLlk3Pnz8P1y5jxoz69ddftXnzZq1cuVKnTp3Ss2fPlC1bNlWpUkWffPKJSpcuHemU+i8LJycnTZgwQS1bttSff/6pf/75Rw8ePJCzs7OKFCmi+vXrq0OHDuG+Z4gK2RtAauNgDZsXBAAAIJn8999/atq0qdq2bavRo0fbuzsAAAAAAJjGgAEDtH79eu3duzfRBrcDAJCSRFxUAQAAIImFrfOdK1cuO/cEAAAAAABzuXr1qpycnJQ9e3Z7dwUAALuggA0AAJKV1Wo11mWuV6+enXsDAAAAAIB5HD16VGfOnFHt2rXl6MjX9wCA1Il/AQEAQLIaNGiQ9u7dq1atWqls2bL27g4AAAAAAKZw9uxZffbZZ8qYMaO++OILe3cHAAC7YQ1sAACQrLZt26Zr166pU6dOcnJysnd3AAAAAAAwhaCgII0ZM0YdO3ZU0aJF7d0dAADshgI2AAAAAAAAAAAAAMAUmEIcAAAAAAAAAAAAAGAKFLABAAAAAAAAAAAAAKZAARsAAAAAAAAAAAAAYAoUsAEAAAAAAAAAAAAApkABGwAAAAAAAAAAAABgChSwAQAAAAAAAAAAAACmQAEbAAAAAAAAAAAAAGAKTvbuQEp1+/Ztbd++3XhcqFAhpU+f3o49AgAAAADEhZ+fn65du2Y8btCggfLmzWvHHqUu5GoAAAAASNmSKldTwI6n7du3a/To0fbuBgAAAAAgEXXo0MHeXUg1yNUAAAAA8PJJjFzNFOIAAAAAAAAAAAAAAFOggA0AAAAAAAAAAAAAMAWmEI+nggULhns8fPhwlShRwk69AQAAAADElaenZ7gprF/MeUha5GoAAAAASNmSKldTwI4nV1fXcI9LlCihypUr26k3AAAAAICEejHnIWmRqwEAAADg5ZJYuZopxAEAAAAAAAAAAAAApkABGwAAAAAAAAAAAABgChSwAQAAAAAAAAAAAACmQAEbAAAAAAAAAAAAAGAKFLABAAAAAAAAAAAAAKZAARsAAAAAAAAAAAAAYAoUsAEAAAAAAAAAAAAApkABGwAAAAAAAAAAAABgChSwAQAAAAAAAAAAAACmQAEbAAAAAAAAAAAAAGAKFLABAAAAAAAAAAAAAKZAARsAAAAAAAAAAAAAYAoUsAEAAAAAAAAAAAAApkABGwAAAAAAAAAAAABgChSwAQAAAAAAAAAAAACmQAEbAAAAAAAAAAAAAGAKTvbuAAAAML8Qq1V+Fqu9u5EipXd2kKODg727AQAAAACwI3J1/JGrASD1oYANAABi5GexyuOEn727kSK1rpBeGVwI2gAAAACQmpGr449cDQCpD1OIAwAAAAAAAAAAAABMgQI2AAAAAAAAAAAAAMAUKGADAAAAAAAAAAAAAEyBAjYAAAAAAAAAAAAAwBQoYAMAAAAAAAAAAAAATIECNgAAAAAAAAAAAADAFChgAwAAAAAAAAAAAABMgQI2AAAAAAAAAAAAAMAUKGADAAAAAAAAAAAAAEyBAjYAAAAAAAAAAAAAwBQoYAMAAAAAAAAAAAAATIECNgAAAAAAAAAAAADAFChgAwAAAAAAAAAAAABMgQI2AAAAAAAAAAAAAMAUKGADAAAAAAAAAAAAAEyBAjYAAAAAAAAAAAAAwBQoYAMAAAAAAAAAAAAATIECNgAAAAAAAAAAAADAFChgAwAAAAAAAAAAAABMgQI2AAAAAAAAAAAAAMAUnOzdAQAAkkOI1So/i9Xe3UhxXJ0d5ODgYO9uAAAAAADsjFwdP+RqAADijgI2ACBV8LNY5XHCz97dSHE6VnEVMRsAAAAAQK6OH3I1AABxxxTiAAAAAAAAAAAAAABToIANAAAAAAAAAAAAADAFCtgAAAAAAAAAAAAAAFOggA0AAAAAAAAAAAAAMAUK2AAAAAAAAAAAAAAAU6CADQAAAAAAAAAAAAAwBQrYAAAAAAAAAAAAAABToIANAAAAAAAAAAAAADAFCtgAAAAAAAAAAAAAAFOggA0AAAAAAAAAAAAAMAUK2AAAAAAAAAAAAAAAU6CADQAAAAAAAAAAAAAwBQrYAAAAAAAAAAAAAABToIANAAAAAAAAAAAAADAFCtgAAAAAAAAAAAAAAFOggA0AAAAAAAAAAAAAMAUK2AAAAAAAAAAAAAAAU6CADQAAAAAAAAAAAAAwBQrYAAAASSidk4O9uwAAAAAAQIpFrgaA1IcCNgAAQBJyIGcDAAAAABBv5GoASH2c7N0BAACA1CDEapWfxWrvbqQ46Z0d5Mi3FQAAAACQ6pGr44dcDSAlooANAACQDPwsVnmc8LN3N1Kc1hXSK4MLQRsAAAAAUjtydfyQqwGkREwhDgAAAAAAAAAAAAAwBQrYAAAAAAAAAAAAAABToIANAAAAAAAAAAAAADAFCtgAAAAAAAAAAAAAAFOggA0AAAAAAAAAAAAAMAUK2AAAAAAAAAAAAAAAU6CADQAAAAAAAAAAAAAwBQrYAAAAAAAAAAAAAABToIANAAAAAAAAAAAAADAFJ3ucdNiwYVq+fLl69OihL774Isp2u3btUrdu3WJ1zNq1a2vu3LmJ1UUAAAAAAEyLXA0AAAAAeFkl+x3YW7Zs0fLly2PV9vz580ncGwAAAAAAUhZyNQAAAADgZZasd2Dv2rUr2pHhLzp37pwkKUeOHPr111+jbZsxY8YE9Q0AAAAAALMjVwMAAAAAXnbJVsD+7bff9MMPP8hiscR6n3///VeSVKpUKZUsWTKpugYAAAAAgOmRqwEAAAAAqUGSF7C9vLw0fvx47dixQ5KUJk0aBQcHx7jfs2fPdO3aNUmhQRsAAAAAgNSIXA0AAAAASE2SdA3sRYsWqXnz5kbILlq0qEaNGhWrfc+fPy+r1SpJjBIHAAAAAKRK5GoAAAAAQGqTpAXs06dPy2KxyMXFRd27d9fKlStVqFChWO0btk6XJJUuXTqpuggAAAAAgGmRqwEAAAAAqU2STiGeNm1atWnTRj179lT+/PnjtG/YOl2ZMmVScHCwxo0bp7179+r69etycnLSK6+8Ind3d3Xu3FmZM2dOiu4DAAAAAGBX5GoAAAAAQGqTpAXsESNGyNExfjd5h40Ut1gsat68uSwWi/FcQECAzp07p3PnzmnhwoWaPn26qlSpEudz3Lp1S7du3YpX/zw9PeO1HwAAAAAAsUWuBgAAAACkNklawI5vyA4MDNTly5clSf7+/sqUKZO6dOmiatWqKXPmzLpy5Yo8PDx0+PBhPX78WF27dtXixYtVpkyZOJ3Hw8NDM2bMiFcfAQAAAABIauRqAAAAAEBqk6QF7Pi6ePGiMTK8cOHCmjt3rgoUKGA8X758ebVs2VI//vijfv75ZwUEBGjw4MFat25dvMM9AAAAAAAvC3I1AAAAACClMmUB+/XXX9eWLVt048YNFSpUKFzItjVgwAAdOXJEx48f1+XLl7Vz5041aNAgmXsLAAAAAIC5kKsBAAAAACmVKQvYadKkUaFChVSoUKFo2zk4OKht27Y6fvy4JGn//v1xCtqtW7dWjRo14tVHT09PjR49Ol77AgAAAACQlMjVAAAAAICUypQF7LgoWbKksX3z5s047ZsvXz7ly5cvsbsEAAAAAECKQa4GAAAAAJhJil/YKl26dMZ2YGCgHXsCAAAAAEDKQ64GAAAAAJiJKe/APnfunG7cuKGHDx+qZcuWSp8+fZRtHz58aGznyJEjOboHAAAAAICpkasBAAAAACmVKQvYv/zyizZs2CBJKly4cLTraf3zzz/Gdrly5ZK8bwAAAAAAmB25GgAAAACQUplyCvHq1asb26tXr46ynZ+fn5YuXSpJcnZ2VqNGjZK6awAAAAAAmB65GgAAAACQUpmygN2sWTO5ublJktauXautW7dGaGOxWDRkyBDdvHlTktS+fXvlzJkzObsJAAAAAIApkasBAAAAACmVKacQz5Qpk0aMGKEBAwYoJCREn3/+udq0aaNGjRopY8aMunDhghYsWKALFy5ICp3i7IsvvrBzrwEAAAAAMAdyNQAAAAAgpTJlAVsKHS0eGBiokSNHGlOahU1rZqt27dqaPHmy0qdPb4deAgAAAABgTuRqAAAAAEBKZNoCtiS1bNlS1apV06JFi7R3715du3ZNgYGBypEjh8qVK6cWLVrI3d3d3t0EAAAAAMCUyNUAAAAAgJQm2QvY1apVk6enZ6zb582bV4MGDdKgQYOSsFcAAAAAAKQM5GoAAAAAwMvM0d4dAAAAAAAAAAAAAABAooANAAAAAAAAAAAAADAJCtgAAAAAAAAAAAAAAFOggA0AAAAAAAAAAAAAMAUK2AAAAAAAAAAAAAAAU6CADQAAAAAAAAAAAAAwBQrYAAAAAAAAAAAAAABToIANAAAAAAAAAAAAADAFCtgAAAAAAAAAAAAAAFOggA0AAAAAAAAAAAAAMAUK2AAAAAAAAAAAAAAAU6CADQAAAAAAAAAAAAAwBQrYAAAAAAAAAAAAAABToIANAAAAAAAAAAAAADAFCtgAAAAAAAAAAAAAAFOggA0AAAAAAAAAAAAAMAUK2AAAAAAAAAAAAAAAU6CADQAAAAAAAAAAAAAwBQrYAAAAAAAAAAAAAABToIANAAAAAAAAAAAAADAFCtgAAAAAAAAAAAAAAFOggA0AAAAAAAAAAAAAMAUK2AAAAAAAAAAAAAAAU6CADQAAAAAAAAAAAAAwBQrYAAAAAAAAAAAAAABToIANAAAAAAAAAAAAADAFCtgAAAAAAAAAAAAAAFOggA0AAAAAAAAAAAAAMAUK2AAAAAAAAAAAAAAAU6CADQAAAAAAAAAAAAAwBQrYAAAAAAAAAAAAAABToIANAAAAAAAAAAAAADAFJ3t3AAAQsxCrVX4Wq727kSK5OjvIwcHB3t0AAAAAANgRuTr+yNUAACC5UcAGgBTAz2KVxwk/e3cjRepYxVXEbAAAAABI3cjV8UeuBgAAyY0pxAEAAAAAAAAAAAAApkABGwAAAAAAAAAAAABgChSwAQAAAAAAAAAAAACmQAEbAAAAAAAAAAAAAGAKFLABAAAAAAAAAAAAAKZAARsAAAAAAAAAAAAAYAoUsAEAAAAAAAAAAAAApkABGwAAAAAAAAAAAABgChSwAQAAAAAAAAAAAACmQAEbAAAAAAAAAAAAAGAKFLABAAAAAAAAAAAAAKZAARsAAAAAAAAAAAAAYAoUsAEAAAAAAAAAAAAApkABGwAAAAAAAAAAAABgChSwAQAAAAAAAAAAAACmQAEbAAAAAAAAAAAAAGAKFLABAAAAAAAAAAAAAKZAARsAAAAAAAAAAAAAYAoUsAEAAAAAAAAAAAAApkABGwAAAAAAAAAAAABgChSwAQAAAAAAAAAAAACmQAEbAAAAAAAAAAAAAGAKFLABAAAAAAAAAAAAAKZAARsAAAAAAAAAAAAAYAoUsAEAAAAAAAAAAAAApkABGwAAAAAAAAAAAABgChSwAQAAAAAAAAAAAACmQAEbAAAAAAAAAAAAAGAKFLABAAAAAAAAAAAAAKZAARsAAAAAAAAAAAAAYAoUsAEAAAAAAAAAAAAApkABGwAAAAAAAAAAAABgChSwAQAAAAAAAAAAAACmQAEbAAAAAAAAAAAAAGAKFLABAAAAAAAAAAAAAKZAARsAAAAAAAAAAAAAYAoUsAEAAAAAAAAAAAAApkABGwAAAAAAAAAAAABgChSwAQAAAAAAAAAAAACmQAEbAAAAAAAAAAAAAGAKFLABAAAAAAAAAAAAAKZAARsAAACmlc7Jwd5dAAAAAAAgxSJXA0iJKGADAADAtBzI2QAAAAAAxBu5GkBK5GTvDgAAAAAxCbFa5Wex2rsbKVJ6Zwc58o0FAAAAAKRq5Or4I1cDyY8CNgAAAEzPz2KVxwk/e3cjRWpdIb0yuBC0AQAAACA1I1fHH7kaSH5MIQ4AAAAAAAAAAAAAMAUK2AAAAAAAAAAAAAAAU6CADQAAAAAAAAAAAAAwBQrYAAAAAAAAAAAAAABToIANAAAAAAAAAAAAADAFCtgAAAAAAAAAAAAAAFOggA0AAAAAAAAAAAAAMAUK2AAAAAAAAAAAAAAAU7BLAXvYsGEqUaKEJk+eHGPbkJAQeXh4qFOnTqpatarKlCmj+vXra+DAgTpy5Egy9BYAAAAAAHMhVwMAAAAAXlZOyX3CLVu2aPny5bFq+/TpU/Xq1UuHDx8O9/Nbt27p1q1bWr9+vbp06aKhQ4cmRVcBAAAAADAdcjUAAAAA4GWWrAXsXbt26YsvvohVW6vVqv79+xshu3bt2mrXrp1y5Mihf//9V7/88otu3ryp+fPnK1u2bOrWrVtSdh0AAAAAALsjVwMAAAAAXnbJNoX4b7/9pt69e8tiscSq/V9//aW9e/dKklq1aqW5c+fqrbfeUoUKFdSuXTutXLlSRYsWlSTNmDFDd+7cSbK+AwAAAABgb+RqAAAAAEBqkOQFbC8vL/Xo0UPjxo2TxWJRmjRpYrXf/PnzJUkZM2bUkCFDIjzv5uamUaNGSZICAgK0YMGCxOs0AAAAAAAmQa4GAAAAAKQmSVrAXrRokZo3b64dO3ZIkooWLWqE4+hcv35d586dkyTVr19fbm5ukbarXLmyihQpIknatGlT4nQaAAAAAACTIFcDAAAAAFKbJC1gnz59WhaLRS4uLurevbtWrlypQoUKxbjfP//8Y2xXr1492rZVq1aVJN28eVPXrl1LWIcBAAAAADARcjUAAAAAILVxSsqDp02bVm3atFHPnj2VP3/+WO936dIlY7tw4cLRti1YsKCxffHixVgFeQAAAAAAUgJyNQAAAAAgtUnSAvaIESPk6Bj3m7zv3LljbOfLly/atnnz5o10PwAAAAAAUjpyNQAAAAAgtUnSAnZ8QrYk+fj4GNsZMmSItq2rq6ux/fTp0zid59atW7p161bcOvf/eXp6xms/AAAAAABii1wNAAAAAEhtkrSAHV+BgYHGdrp06aJta/u87X6x4eHhoRkzZsStcwAAAAAAmBy5GgAAAACQUsVvKHcSS5MmjbHt4OAQbVur1Wpsx3dkOgAAAAAALxNyNQAAAAAgpTJlMrWdvszf3z/atgEBAca2i4tLkvUJAAAAAICUglwNAAAAAEipTDmFuO36XH5+fsqcOXOUbZ8/f25sZ8mSJU7nad26tWrUqBH3Dip0ra7Ro0fHa18AAAAAAJISuRoAAAAAkFKZsoCdP39+Y/v27dvKnTt3lG1v375tbEfXLjL58uVTvnz54t5BAAAAAABMjFwNAAAAAEipTDmFeLFixYzta9euRdv2+vXrxnbRokWTrE8AAAAAAKQU5GoAAAAAQEplygJ2hQoV5ODgIEk6evRotG0PHz4sScqbN68KFCiQ5H0DAAAAAMDsyNUAAAAAgJTKlAXsvHnzqkKFCpKkzZs369mzZ5G2O3r0qK5cuSJJaty4cXJ1DwAAAAAAUyNXAwAAAABSKlMWsCWpU6dOkiRvb2+NGDFCISEh4Z738fHRiBEjJEnOzs7q2LFjsvcRAAAAAACzIlcDAAAAAFIiJ3t3ICpvv/22Vq5cqb1792rdunW6c+eOOnfurNy5c8vT01Nz5szRzZs3JUl9+/ZVwYIF7dxjAAAAAADMg1wNAAAAAEiJTFvAlqSpU6eqR48eOnLkiI4ePRrpul1dunRRt27d7NA7AAAAAADMjVwNAAAAAEhpTF3AzpgxoxYsWKDVq1dr7dq1On/+vJ4+faqsWbOqYsWK6tChg6pXr27vbgIAAAAAYErkagAAAABASpPsBexq1arJ09Mz1u0dHR3VqlUrtWrVKgl7BQAAAABAykCuBgAAAAC8zBzt3QEAAAAAAAAAAAAAACQK2AAAAAAAAAAAAAAAk6CADQAAAAAAAAAAAAAwBQrYAAAAAAAAAAAAAABToIANAAAAAAAAAAAAADAFCtgAAAAAAAAAAAAAAFOggA0AAAAAAAAAAAAAMAUK2AAAAAAAAAAAAAAAU6CADQAAAAAAAAAAAAAwBQrYAAAAAAAAAAAAAABToIANAAAAAAAAAAAAADAFCtgAAAAAAAAAAAAAAFOggA0AAAAAAAAAAAAAMAUK2AAAAAAAAAAAAAAAU6CADQAAAAAAAAAAAAAwBQrYAAAAAAAAAAAAAABToIANAAAAAAAAAAAAADAFCtgAAAAAAAAAAAAAAFOggA0AAAAAAAAAAAAAMAUK2AAAAAAAAAAAAAAAU6CADQAAAAAAAAAAAAAwBQrYAAAAAAAAAAAAAABToIANAAAAAAAAAAAAADAFCtgAAAAAAAAAAAAAAFOggA0AAAAAAAAAAAAAMAUK2AAAAAAAAAAAAAAAU6CADQAAAAAAAAAAAAAwBQrYAAAAAAAAAAAAAABToIANAAAAAAAAAAAAADAFCtgAAAAAAAAAAAAAAFOggA0AAAAAAAAAAAAAMAUK2AAAAAAAAAAAAAAAU6CADQAAAAAAAAAAAAAwBQrYAAAAAAAAAAAAAABToIANAAAAAAAAAAAAADAFCtgAAAAAAAAAAAAAAFOggA0AAAAAAAAAAAAAMAUK2AAAAAAAAAAAAAAAU6CADQAAAAAAAAAAAAAwBQrYAAAAAAAAAAAAAABToIANAAAAAAAAAAAAADAFCtgAAAAAAAAAAAAAAFOggA0AAAAAAAAAAAAAMAUK2AAAAAAAAAAAAAAAU6CADQAAAAAAAAAAAAAwBQrYAAAAAAAAAAAAAABToIANAAAAAAAAAAAAADAFCtgAAAAAAAAAAAAAAFOggA0AAAAAAAAAAAAAMAUK2AAAAAAAAAAAAAAAU6CADQAAAAAAAAAAAAAwBQrYAAAAAAAAAAAAAABToIANAAAAAAAAAAAAADAFCtgAAADASyydk4O9uwAAAAAAQIpFrgaSHwVsAAAA4CXmQM4GAAAAACDeyNVA8nOydwcApA4hVqv8LFZ7dyPFcXV2kAN/IQEAEgH/FsdPemcHOfJvMQDABPi3PH7I1QCAxMK/xfFDrkZ8UMAGkCz8LFZ5nPCzdzdSnI5VXMU/7QCAxMC/xfHTukJ6ZXDhX2MAgP3xb3n8kKsBAImFf4vjh1yN+GAKcQAAAAAAAAAAAACAKVDABgAAAAAAAAAAAACYAgVsAAAAAAAAAAAAAIApUMAGAAAAAAAAAAAAAJgCBWwAAAAAAAAAAAAAgClQwAYAAAAAAAAAAAAAmAIFbAAAAAAAAAAAAACAKVDABgAAAAAAAAAAAACYAgVsAAAAAAAAAAAAAIApUMAGAAAAAAAAAAAAAJgCBWwAAAAAAAAAAAAAgClQwAYAAAAAAAAAAAAAmAIFbAAAAAAAAAAAAACAKVDABgAAAAAAAAAAAACYAgVsAAAAAAAAAAAAAIApUMAGAAAAAAAAAAAAAJgCBWwAAAAAAAAAAAAAgClQwAYAAAAAAAAAAAAAmAIFbAAAAAAAAAAAAACAKVDABgAAAAAAAAAAAACYAgVsAAAAAAAAAAAAAIApUMAGAAAAAAAAAAAAAJgCBWwAAAAAAAAAAAAAgClQwAYAAAAAAAAAAAAAmAIFbAAAAAAAAAAAAACAKVDABgAAAAAAAAAAAACYAgVsAAAAAAAAAAAAAIApUMAGAAAAAAAAAAAAAJgCBWwAAAAAAAAAAAAAgClQwAYAAAAAAAAAAAAAmAIFbAAAAAAAAAAAAACAKTjZuwMx2bVrl7p16xartrVr19bcuXOTuEcAAAAAAKQc5GoAAAAAQEpi+juwz58/b+8uAAAAAACQYpGrAQAAAAApienvwD537pwkKUeOHPr111+jbZsxY8bk6BIAAAAAACkGuRoAAAAAkJKYvoD977//SpJKlSqlkiVL2rk3AAAAAACkLORqAAAAAEBKYuopxJ89e6Zr165JCg3aAAAAAAAg9sjVAAAAAICUxtQF7PPnz8tqtUoSo8QBAAAAAIgjcjUAAAAAIKUxdQE7bJ0uSSpdurQdewIAAAAAQMpDrgYAAAAApDSmXgM7bJ2uTJkyKTg4WOPGjdPevXt1/fp1OTk56ZVXXpG7u7s6d+6szJkz27m3AAAAAACYC7kaAAAAAJDSmLqAHTZS3GKxqHnz5rJYLMZzAQEBOnfunM6dO6eFCxdq+vTpqlKlSpyOf+vWLd26dSteffP09IzXfgAAAAAAJBdyNQAAAAAgpTFtATswMFCXL1+WJPn7+ytTpkzq0qWLqlWrpsyZM+vKlSvy8PDQ4cOH9fjxY3Xt2lWLFy9WmTJlYn0ODw8PzZgxI6leAgAAAIAULp2Tg727AMQbuRoAAACAvZGrER+mLWBfvHjRGBleuHBhzZ07VwUKFDCeL1++vFq2bKkff/xRP//8swICAjR48GCtW7dOjo6mXtobAAAAQArhQM5GCkauBgAAAGBv5GrEh2kL2K+//rq2bNmiGzduqFChQuFCtq0BAwboyJEjOn78uC5fvqydO3eqQYMGydxbvOxCrFb5Waz27kaK5OrsIAf+hQIAACkcfw/GX3pnBzny96BdkKthJvx3NP7I1QAA4GXA34PxlxpztWkL2GnSpFGhQoVUqFChaNs5ODiobdu2On78uCRp//79sQ7arVu3Vo0aNeLVP09PT40ePTpe+yLl8bNY5XHCz97dSJE6VnFV6vrPKgAAeBnx92D8ta6QXhlc+IvQHsjVMBP+Oxp/5GoAAPAy4O/B+EuNudq0Bey4KFmypLF98+bNWO+XL18+5cuXLym69P/Yu+/oKKr3j+OfUAKhxkCA0ASlgzSBgITesSEdAaWI9CpKUYqogEpRmnT4UqRHQJDeJAgh9N57QocEAiF1f3/kZH67pG36Bt6vczzO7tyZuTt7d8gzz517AQAAAABINYirAQAAAAC24pWY1CpjxozGclBQUArWBAAAAACA1Ie4GgAAAABgK2z2CewzZ87o1q1bevjwoZo1ayYHB4doyz58+NBYzpkzZ3JUDwAAAAAAm0ZcDQAAAABIjWw2gT1nzhz9888/kqRChQrFOKfW4cOHjeWyZcsmed0AAAAAALB1xNUAAAAAgNTIZocQr1q1qrG8du3aaMsFBARo+fLlkqT06dOrYcOGSV01AAAAAABsHnE1AAAAACA1stkEdtOmTeXo6ChJWr9+vbZv3x6pTHBwsIYMGSJvb29J0qeffipnZ+fkrCYAAAAAADaJuBoAAAAAkBrZ7BDiWbNm1ahRozRo0CCFhYWpX79+atWqlRo2bKgsWbLowoULWrRokS5cuCApfIizgQMHpnCtAQAAAACwDcTVAAAAAIDUyGYT2FJ4b/GgoCCNHj3aGNIsYlgzc25ubpo8ebIcHBxSoJYAAAAAANgm4moAAAAAQGpj0wlsSWrWrJlcXV21dOlSeXh46MaNGwoKClLOnDlVtmxZffzxx6pXr15KVxMAAAAAAJtEXA0AAAAASE1sPoEtSS4uLho8eLAGDx6c0lUBAAAAACDVIa4GAAAAAKQWaVK6AgAAAAAAAAAAAAAASCSwAQAAAAAAAAAAAAA2ggQ2AAAAAAAAAAAAAMAmkMAGAAAAAAAAAAAAANgEEtgAAAAAAAAAAAAAAJtAAhsAAAAAAAAAAAAAYBNIYAMAAAAAAAAAAAAAbAIJbAAAAAAAAAAAAACATSCBDQAAAAAAAAAAAACwCSSwAQAAAAAAAAAAAAA2gQQ2AAAAAAAAAAAAAMAmkMAGAAAAAAAAAAAAANgEEtgAAAAAAAAAAAAAAJtAAhsAAAAAAAAAAAAAYBNIYAMAAAAAAAAAAAAAbAIJbAAAAAAAAAAAAACATSCBDQAAAAAAAAAAAACwCSSwAQAAAAAAAAAAAAA2gQQ2AAAAAAAAAAAAAMAmkMAGAAAAAAAAAAAAANgEEtgAAAAAAAAAAAAAAJtAAhsAAAAAAAAAAAAAYBNIYAMAAAAAAAAAAAAAbAIJbAAAAAAAAAAAAACATSCBDQAAAAAAAAAAAACwCSSwAQAAAAAAAAAAAAA2gQQ2AAAAAAAAAAAAAMAmkMAGAAAAAAAAAAAAANgEEtgAAAAAAAAAAAAAAJtAAhsAAAAAAAAAAAAAYBNIYAMAAAAAAAAAAAAAbAIJbAAAAAAAAAAAAACATSCBDQAAAAAAAAAAAACwCSSwAQAAAAAAAAAAAAA2gQQ2AAAAAAAAAAAAAMAmkMAGAAAAAAAAAAAAANgEEtgAAAAAAAAAAAAAAJtAAhsAAAAAAAAAAAAAYBNIYAMAAAAAAAAAAAAAbAIJbAAAAAAAAAAAAACATSCBDQAAAAAAAAAAAACwCSSwAQAAAAAAAAAAAAA2gQQ2AAAAAAAAAAAAAMAmkMAGAAAAAAAAAAAAANgEEtgAAAAAAAAAAAAAAJtAAhsAAAAAAAAAAAAAYBNIYAMAAAAAAAAAAAAAbAIJbAAAAAAAAAAAAACATSCBDQAAAAAAAAAAAACwCSSwAQAAAAAAAAAAAAA2gQQ2AAAAAAAAAAAAAMAmkMAGAAAAAAAAAAAAANgEEtgAAAAAAAAAAAAAAJtAAhsAAAAAAAAAAAAAYBNIYAMAAAAAAAAAAAAAbAIJbAAAAAAAAAAAAACATSCBDQAAAAAAAAAAAACwCSSwAQAAAAAAAAAAAAA2gQQ2AAAAAAAAAAAAAMAmkMAGAAAAAAAAAAAAANgEEtgAAAAAAAAAAAAAAJtAAhsAAAAAAAAAAAAAYBNIYAMAAAAAAAAAAAAAbAIJbAAAAAAAAAAAAACATSCBDQAAAAAAAAAAAACwCSSwAQAAAAAAAAAAAAA2gQQ2AAAAAAAAAAAAAMAmkMAGAAAAAAAAAAAAANgEEtgAAAAAAAAAAAAAAJtAAhsAAAAAAAAAAAAAYBNIYAMAAAAAAAAAAAAAbAIJbAAAAAAAAAAAAACATSCBDQAAAAAAAAAAAACwCSSwAQAAAAAAAAAAAAA2gQQ2AAAAAAAAAAAAAMAmkMAGAAAAAAAAAAAAANiEdCldASSPMJNJAcGmlK5GqpMpvZ3s7OxSuhoAAAAAgBRGXB0/xNUAAAAA4ooE9msiINikNccCUroaqU6HyplEmA0AAAAAIK6OH+JqAAAAAHHFEOIAAAAAAAAAAAAAAJtAAhsAAAAAAAAAAAAAYBNIYAMAAAAAAAAAAAAAbAIJbAAAAAAAAAAAAACATSCBDQAAAAAAAAAAAACwCSSwAQAAAAAAAAAAAAA2gQQ2AAAAAAAAAAAAAMAmkMAGAAAAAAAAAAAAANgEEtgAAAAAAAAAAAAAAJuQLqUrYI2wsDD99ddfWrt2rc6fP6/nz5/L2dlZFStWVNu2bVW5cuWUriIAAAAAADaLuBoAAAAAkFrYfAL76dOn6tWrlw4ePGjxvo+Pj3x8fLRx40Z16tRJQ4cOTaEaAgAAAABgu4irAQAAAACpiU0nsE0mkwYMGGAE2W5ubmrXrp1y5syps2fPas6cOfL29taCBQvk5OSkL7/8MoVrDAAAAACA7SCuBgAAAACkNjY9B/bff/8tDw8PSVLz5s01b9481a9fX+XLl1e7du3k7u6uIkWKSJKmTZumO3fupGR1AQAAAACwKcTVAAAAAIDUxqYT2AsWLJAkZcmSRUOGDIm03tHRUd9//70kKTAwUIsWLUrW+gEAAAAAYMuIqwEAAAAAqY3NJrBv3rypM2fOSJLq1KkjR0fHKMtVqlRJhQsXliRt3rw5uaoHAAAAAIBNI64GAAAAAKRGNpvAPnz4sLFctWrVGMtWqVJFkuTt7a0bN24kab0AAAAAAEgNiKsBAAAAAKmRzSawL126ZCwXKlQoxrIFChQwli9evJhUVQIAAAAAINUgrgYAAAAApEbpUroC0blz546xnDdv3hjLuri4RLldbHx8fOTj4xP3ykk6fvy4xevz58/Haz/J5UWISTcvBqZ0NVKdw2kyyk6cv4TgHCYM5y/hOIcJw/lLOM5hwnD+Eo5zmDCcv4Q7GpZBGdPZpXQ1ovRyHPf8+fMUqknSIK5OXFwH4ofraMJxDhOG85dwnMOE4fwlHOcwYTh/Ccc5TBjOX8K9jnG1zSaw/fz8jOXMmTPHWDZTpkzG8tOnT60+xpo1azRt2rS4Vy4KY8aMSZT9wLYsSukKvAI4hwnD+Us4zmHCcP4SjnOYMJy/hOMcJgznL+FS0zm8efNmSlchURFXwxakpmuAreIcJgznL+E4hwnD+Us4zmHCcP4SjnOYMJy/hEtN5zCx4mqbHUI8KCjIWM6YMWOMZc3Xm28HAAAAAMDrirgaAAAAAJAa2WwCO23atMaynV3Mj8WbTCZjOU0am/1IAAAAAAAkG+JqAAAAAEBqZLNDiJsPX/bixQvZ29tHWzYw8P/HzI+p3MtatGihatWqxat+Dx480NGjR5U9e3Zlz55dBQsWlIODQ7z2hVfD+fPnLYa8GzlypIoXL56CNQLC0TZhq2ibsFW0Tdgq2mbiCwgI0I0bN4zXdevWTcHaJD7iarxKuAbC1tFGYcton7BltE/YMtpn7JIqrrbZBLb5/FwBAQHKli1btGXNJwTPnj271cfImzev8ubNG78KSmrcuHG8t8Wrr3jx4qpUqVJKVwOIhLYJW0XbhK2ibcJW0TYRG+JqvMq4BsLW0UZhy2ifsGW0T9gy2mfysdlxwfLly2cs3759O8ay5utz586dZHUCAAAAACC1IK4GAAAAAKRGNpvALlq0qLFs/uh5VG7evGksFylSJMnqBAAAAABAakFcDQAAAABIjWw2gV2+fHnZ2dlJkg4dOhRj2YMHD0qSXFxclD9//iSvGwAAAAAAto64GgAAAACQGtlsAtvFxUXly5eXJG3ZskX+/v5Rljt06JCuXr0qSWrUqFFyVQ8AAAAAAJtGXA0AAAAASI1sNoEtSR07dpQk+fr6atSoUQoLC7NY7+fnp1GjRkmS0qdPrw4dOiR7HQEAAAAAsFXE1QAAAACA1CZdSlcgJu+//77c3d3l4eGhDRs26M6dO/rss8+UO3dunT9/XrNmzZK3t7ckqW/fvipQoEAK1xgAAAAAANtBXA0AAAAASG1sOoEtSb///rt69OghLy8vHTp0KMp5uzp16qQvv/wyBWoHAAAAAIBtI64GAAAAAKQmNp/AzpIlixYtWqS1a9dq/fr1OnfunJ4+fao33nhDFSpUUPv27VW1atWUriYAAAAAADaJuBoAAAAAkJrYfAJbktKkSaPmzZurefPmKV0VAAAAAABSHeJqAAAAAEBqkSalKwAAAAAAAAAAAAAAgEQCGwAAAAAAAAAAAABgI0hgAwAAAAAAAAAAAABsAglsAAAAAAAAAAAAAIBNSJfSFQBeFXnz5lWfPn0sXgO2gLYJW0XbhK2ibcJW0TYBvM64BsLW0UZhy2ifsGW0T9gy2mfKsTOZTKaUrgQAAAAAAAAAAAAAAAwhDgAAAAAAAAAAAACwCSSwAQAAAAAAAAAAAAA2gQQ2AAAAAAAAAAAAAMAmkMAGAAAAAAAAAAAAANgEEtgAAAAAAAAAAAAAAJtAAhsAAAAAAAAAAAAAYBNIYAMAAAAAAAAAAAAAbAIJbAAAAAAAAAAAAACATUiX0hUAUrM9e/boyy+/tKqsm5ub5s2bl8Q1wutsxIgRWrlypXr06KGBAwfGWDYsLEx//fWX1q5dq/Pnz+v58+dydnZWxYoV1bZtW1WuXDmZao3XgbVtk2sqktqDBw+0bNkyeXh46OrVq3r+/LmyZMmiokWLql69emrdurUyZcoU7fZcO5FUEtI2uXYCgHTz5k39+eefOnDggG7evKkXL14oe/bsKlGihJo0aaKPP/5Y6dOnT+lqAoauXbvKw8NDP/74o1q1apXS1cErjBgGqU1c7m8CSS2h95GQMCSwgQQ4d+5cSlcBkCRt27ZNK1eutKrs06dP1atXLx08eNDifR8fH/n4+Gjjxo3q1KmThg4dmhRVxWsmLm2TayqS0vbt2zV06FA9ffrU4v3Hjx/r4MGDOnjwoBYtWqTp06erZMmSkbbn2omkktC2ybUTwOtu2bJlGjt2rIKCgizef/DggTw8POTh4aHFixdr+vTpyp8/fwrVEvh/CxculIeHR0pXA68BYhikNnG5hwQktYTG6kg4EthAApw5c0aSlDNnTs2dOzfGslmyZEmOKuE1tGfPHqt7JJpMJg0YMMAIXtzc3NSuXTvlzJlTZ8+e1Zw5c+Tt7a0FCxbIycnJ6ie6gKjEpW1KXFORdA4ePKgBAwYoODhY6dOnV+vWrVW7dm05Ojrq9u3b+uuvv7Rr1y55e3urS5cucnd3l4uLi7E9104klYS2TYlrJ4DX2/r16zV69GhJUqZMmdShQwe99957ypw5s65du6Zly5bpyJEjOnfunLp27ao1a9ZwLUSKWrVqlcaPH5/S1cBrgBgGqU1c7yEBSSkxYnUkHAlsIAHOnj0rSSpVqhS9bJAiFi5cqAkTJig4ONiq8n///bfR07t58+YaN26csa58+fJq0qSJ2rdvr0uXLmnatGn66KOPlCdPniSpO15tcW2bEtdUJA2TyaTvv//eCDrmzZsnV1dXY33ZsmXVqFEjTZ8+XVOmTNGjR480YcIETZw40SjDtRNJITHapsS1E8Dr69mzZ8a/ydmyZdOff/6pokWLGuvLli2rDz74QKNGjdLKlSt17do1zZ49W4MGDUqpKuM1FhISokmTJjGVB5INMQxSk/jcQwKSSmLF6ki4NCldASC18vf3140bNySF3zAEktO1a9fUo0cPjRs3TsHBwUqbNq1V2y1YsEBS+BNYQ4YMibTe0dFR33//vSQpMDBQixYtSrxK47UQ37bJNRVJ5dixY7p06ZIkqW3bthZBh7levXqpWLFikqStW7fq+fPnxjqunUgKidE2uXYCeJ3t2rVLjx49khR+rTRPXkdIkyaNvv32Wzk5OUmS1q5dm5xVBCRJp06dUocOHYzktbUxEpAQxDBIDeJ7DwlISokRqyNxkMAG4uncuXMymUySxNMuSFZLly7VBx98oF27dkmSihQpYgQdMbl586YxzGidOnXk6OgYZblKlSqpcOHCkqTNmzcnTqXxWohv25S4piLpeHl5Gcv16tWLtpydnZ2qV68uSQoKCtKVK1ckce1E0klo25S4dgJ4vVl7Hc2YMaMqVaokSbp7964eP36c5HUDIkycOFEtW7bU0aNHJUnvvvsuQ+QiyRHDIDVIyD0kICklRqyOxEECG4iniD8EJal06dIpWBO8bk6ePKng4GDZ29ure/fucnd3V8GCBWPd7vDhw8Zy1apVYyxbpUoVSZK3t7fxZBcQm/i2TYlrKpJO2bJl1aNHD33yySfGzZnoRCQCpfCnECSunUg6CW2bEtdOAK+3GjVq6IsvvrBq2Fvz62hQUFBSVw0wHDt2TCaTSZkzZ9awYcO0ZMkS5ciRI6WrhVccMQxSg4TcQwKSUmLE6kgczIENxFPEfINZs2ZVaGioxo0bJw8PD928eVPp0qXTm2++qXr16umzzz5TtmzZUri2eJVkyJBBrVq1Us+ePZUvXz6rt4sY+kSSChUqFGPZAgUKGMsXL17kD0hYJb5tU+KaiqRTtWrVWG/aRPD09DSWI9ow104klYS2TYlrJ4DXW/369VW/fv1YywUHB+vIkSOSwv9eJXmI5JQ1a1Z16dJF3bp1M4ayB5IaMQxSg4TcQwKSUmLE6kgcJLCBeIp44iU4OFgffPCBgoODjXWBgYE6c+aMzpw5oyVLlmjq1KmqXLlySlUVr5hRo0YpTZq4D6Bx584dYzlv3rwxlnVxcYlyOyAm8W2bEtdUpLw9e/YYycBixYoZT3Jx7URKi65tSlw7AcAaq1at0sOHDyVJ7733ntKl41YYks+0adPiHSMB8UUMg9QgIfeQAFsQU6yOxMFf7UA8BAUF6fLly5KkFy9eKGvWrOrUqZNcXV2VLVs2Xb16VWvWrNHBgwf1+PFjde3aVX/++afKlCmTwjXHqyC+f9z5+fkZy5kzZ46xbKZMmYzlp0+fxut4eP3Et21yTUVKe/TokUaNGmW87tq1q7HMtRMpKaa2ybUTAGJ35coVTZw40Xhtfh0FkgPJGaQEYhikBlwfkZrFFKsj8ZDABuLh4sWLxhMuhQoV0rx585Q/f35jfbly5dSsWTNNnDhRs2fPVmBgoL755htt2LCBf5yRYsznesuYMWOMZc3XM0cckhrXVKSkZ8+eqWfPnrp9+7ak8DngPvroI2M9106klNjaJtdOAKnZ9u3b1bt373htu2PHDovrXXTu3bunHj16yN/fX5LUrFkzRqKAVZKjfQJJiRgGAJJObLE6Eg8JbCAeSpQooW3btunWrVsqWLBgtMHJoEGD5OXlpaNHj+ry5cvavXu36tatm8y1BcKlTZvWWLazs4uxrMlkMpa5yY2kxjUVKeXp06f68ssvdezYMUlSnjx5NGnSJIvrHtdOpARr2ibXTgCI3p07d9S5c2ddv35dUvg1c/To0SlbKQBIJsQwAJA0rInVkXhIYAPxkDZtWhUsWFAFCxaMsZydnZ3atGmjo0ePSpL+++8/bhgixZgPC/XixQvZ29tHWzYwMNBYjqkckBi4piIl3Lt3T19++aUxX1HOnDk1f/58OTs7W5Tj2onkZm3b5NoJIDUrXLiwevToEa9ts2XLFuP6y5cvq1u3bvL29jaONXfuXDk4OMTreHj9JGX7BJIDMQwAJD5rY3UkHhLYQBIrWbKksRwRQAMpwXzeo4CAgBgD6+fPnxvL2bNnT9J6AXHBNRWJ4dy5c+revbvu3LkjKbzH7Pz58/X2229HKsu1E8kpLm0zLrh2ArA1b7/9tgYOHJjo+92/f7/69eunJ0+eSJKKFSvGjUXEWVK1TyC5EMMAQOJKqlgdMeO5diCJMZcMbEW+fPmM5Yg5OqJjvj537txJVicgrrimIqH27Nmjdu3aGUHHW2+9pT///DPaoINrJ5JLXNtmXHDtBPA6WLVqlbp162YkrytUqKAlS5aQvAbw2iGGAYDEk5SxOmJGAhuIhzNnzmjr1q1atmyZAgICYiz78OFDYzlnzpxJXTUgWkWLFjWWb9y4EWPZmzdvGstFihRJsjoBEtdUJJ+//vpLvXr1Mp4yqFixopYtW2Zxg+dlXDuRHOLTNrl2AsD/++OPP/Tdd98pODhYktSgQQMtXLiQpwkBvJaIYQAgccQnVkfiYQhxIB7mzJmjf/75R5JUqFAhVatWLdqyhw8fNpbLli2b5HUDolO+fHnZ2dnJZDLp0KFD+uijj6Ite/DgQUmSi4uL8ufPn1xVxGuKayqSg7u7u4YPHy6TySRJatKkiX755ZdY53nj2omkFt+2ybUTAMJNmzZNU6dONV5//vnnGjp0qNKk4ZkNAK8nYhgASLj4xupIPPw1D8RD1apVjeW1a9dGWy4gIEDLly+XJKVPn14NGzZM6qoB0XJxcVH58uUlSVu2bJG/v3+U5Q4dOqSrV69Kkho1apRc1cNrjGsqkpqXl5e+++47I+jo0KGDJk+ebFXQwbUTSSkhbZNrJwBIf//9t0XyevDgwRo+fDjJawCvNWIYAEiYhMTqSDz8RQ/EQ9OmTeXo6ChJWr9+vbZv3x6pTHBwsIYMGSJvb29J0qeffsrcW0hxHTt2lCT5+vpq1KhRCgsLs1jv5+enUaNGSQq/yd2hQ4dkryNeP1xTkZT8/f319ddfKzQ0VJLUokULjRgxQnZ2dlbvg2snkkJC2ybXTgCvOx8fH40ePdp43a9fP3Xr1i3lKgQANoQYBgDiJzHuIyFxMIQ4EA9Zs2bVqFGjNGjQIIWFhalfv35q1aqVGjZsqCxZsujChQtatGiRLly4ICl8qMaBAwemcK0B6f3335e7u7s8PDy0YcMG3blzR5999ply586t8+fPa9asWcZN7r59+6pAgQIpXGO8DrimIiktWbJEt2/fliQ5OzurdevWOnv2bKzbubi4GMlBrp1ICgltm1w7Abzu/vjjD+OpwmLFiqlOnTpWXUcLFiyozJkzJ3X1ACBFEcMAQPwkxn0kJA47U8Qz8ADibO3atRo9erQCAgKiLePm5qbJkycrW7ZsyVgzvG48PT312WefSZJ69OgR4w1qf39/9ejRQ15eXtGW6dSpk4YOHUrPMiRYXNom11Qkhdq1axuBR1yMGzdOzZs3N15z7URiS6y2ybUTwOsoICBAVapUUVBQUJy3XbRokVxdXZOgVoB13N3dNWzYMEnSjz/+qFatWqVwjfCqIoZBahOXe0hAUkmsWB0JxxPYQAI0a9ZMrq6uWrp0qTw8PHTjxg0FBQUpZ86cKlu2rD7++GPVq1cvpasJWMiSJYsWLVqktWvXav369Tp37pyePn2qN954QxUqVFD79u0t5tUEkgvXVCS2R48exSvoiArXTiSmxGybXDsBvI4uXboUr+Q1ALxOiGEAIG4SM1ZHwvEENgAAAAAAAAAAAADAJqRJ6QoAAAAAAAAAAAAAACCRwAYAAAAAAAAAAAAA2AgS2AAAAAAAAAAAAAAAm0ACGwAAAAAAAAAAAABgE0hgAwAAAAAAAAAAAABsAglsAAAAAAAAAAAAAIBNIIENAAAAAAAAAAAAALAJJLABAAAAAAAAAAAAADaBBDYAAAAAAAAAAAAAwCaQwAYAAAAAAAAAAAAA2AQS2AAAAAAAAAAAAAAAm0ACGwAAAAAAAAAAAABgE0hgAwAAAAAAAAAAAABsAglsAAAAAAAAAAAAAIBNIIENAAAAAAAAAAAAALAJJLABAAAAAAAAAAAAADaBBDYAAAAAAAAAAAAAwCaQwAYAAAAAAAAAAAAA2AQS2AAAAAAAAAAAAAAAm0ACGwAAAAAAAAAAAABgE0hgAwAAAAAAAAAAAABsAglsAAAAAAAAAAAAAIBNIIENAAAAAAAAAAAAALAJJLABAAAAAAAAAAAAADaBBDYAAAAAAAAAAAAAwCaQwAYAAAAAAAAAAAAA2AQS2AAAAAAAAAAAAAAAm0ACGwAAAAAAAAAAAABgE0hgAwAAAAAAAAAAAABsAglsAAAAAAAAAAAAAIBNIIENAAAAAAAAAAAAALAJJLABAAAAAAAAAAAAADaBBDYAAAAAAAAAAAAAwCaQwAYAAAAAAAAAAAAA2AQS2AAAAAAAAAAAAAAAm0ACGwAAAAAAAAAAAABgE0hgAwAAAAAAAAAAAABsAglsAAAAAAAAAAAAAIBNIIENAAAAAAAAAAAAALAJJLABAK+skJCQlK4CkKxo8wAAAAAkYgMAAJC6pUvpCgAAUoanp6c+++yzRNnXJ598ovHjxyfKvhKDn5+fJk6cqIoVK6pZs2aJss87d+5o69at+vfff3X9+nU9ePBAYWFhcnJyUq5cuVSlShXVqlVLlSpVSpTjIbInT57oo48+0p07d7RixQqVK1cupasUo44dO+rgwYOSpB07dih//vxJdqwXL17ojz/+kIODg3r06JHo+3/27JkaNWqkR48e6c8//1T58uUT/RgAAABAciEejhvi4ZSX2uJhJK2TJ0+qVatWyp07t9avX6/s2bOndJUAINHxBDYA4JVy4MABNWnSRCtWrFBYWFiC9/fixQtNnDhRDRo00E8//aS9e/fqxo0bev78uV68eCEfHx8dO3ZMs2fPVvv27dWhQwedOXMmET4JXvb999/r9u3b+uijjwjWzZw/f14ffPCBZs6cqeDg4CQ5RubMmfXVV18pNDRUX3/9tZ49e5YkxwEAAAAQf8TDry7iYZh755139Mknn+jOnTsaNWpUSlcHAJIET2ADwGuqYMGC+uabb6Jdf+rUKf3zzz+SpAIFCqhdu3bRli1atGii1y++vLy89PDhw0TZV3BwsPr27at///1XkmRnZ6dy5cqpTJkycnJyUrp06eTr66szZ87Iy8tLoaGh8vLy0qeffqq5c+fS+zwRbd++XRs2bFDGjBk1aNCglK6OTTl9+rRu3ryZ5Mf5+OOPtWjRIp05c0aTJ0/Wd999l+THBAAAAJIC8XDsiIdtB/EwojJgwABt2rRJmzZtUtOmTdWwYcOUrhIAJCoS2ADwmnJxcVHXrl2jXe/u7m4E7LGVfVX99ttvRrBepEgRTZo0ScWLF4+yrLe3t4YNGyZPT08FBASoR48e+ueff5QrV67krPIr6cWLFxo7dqwkqX379sqTJ08K18g6ixcvTukqJKo0adJo4MCB6tatm/7880+1aNFCJUuWTOlqAQAAAHFGPBw74mHbkFrjYSS93Llzq0OHDpozZ47Gjh0rNzc3ZcqUKaWrBQCJhiHEAQCIgr+/v5YuXSpJcnBw0Ny5c6MN1iUpX758mjNnjtH7/unTp5o/f36y1PVVt3DhQnl7eytjxoz64osvUro6r7WaNWuqbNmyCg0Ntal5/gAAAAAkHuJh20E8jJh06dJFDg4Oun37thYsWJDS1QGAREUCGwCAKBw7dkwBAQGSJFdXV7m4uMS6TYYMGdSrVy/j9a5du5Ksfq8Lf39/Iwhr3LixnJycUrhG+PTTTyWFz6938ODBFK4NAAAAgMRGPGwbiIcRGycnJzVp0kRSeGeHp0+fpnCNACDxMIQ4ACDRmEwmbdmyRZs2bdKJEyf08OFD2dvby8XFRdWqVVObNm309ttvx7qfvXv36u+//9bRo0d17949SeF/lJcsWVK1atVSs2bNlCFDBotthg4dqr/++svivWHDhmnYsGGSpHHjxql58+ZWfxZfX19jOSJwt8Z7772ntGnTKmvWrLK3t4+x7IsXL7R27Vpt27ZNZ8+elZ+fnxwcHFSoUCHVqFFDn376qZydnWPch7e3t1asWKH//vtPN27c0PPnz+Xo6KgiRYqoTp06atWqVbRDSN26dUv16tWTJH311Vfq2rWrZs2apRUrVsjX11d58uSRq6urBg8erGzZsllse/z4cbm7u8vT01P37t1TaGiocubMqXfffVcff/yxqlevbvU5i0lEXSSpVatW0ZaLeBrgk08+0fjx43X9+nXNmzdP+/bt071795QxY0YVK1ZMTZs2VatWrWL9bqTwmwVr1qzR7t27deHCBfn5+Slz5szKnz+/3Nzc1LZt2xhv5HTs2NFI8O7YsUP58+c31rm7uxttc8WKFSpfvry8vLy0cuVKHT58WA8ePJCDg4OKFCmixo0bq02bNpHqPHXqVE2bNs3ivWnTphnv9enTR3379rVYH5/f1ssaN26sn376SU+fPtXs2bNVpUqVGMsDAAAArwPiYeLhlIiHY3oyPiYvx6hxdeHCBa1evVqenp66efOmgoKC5OjoqEKFCum9995T69atlTNnzlj3c+bMGWM/t27dMs5l2bJl9cknn6hOnToxbh8aGqqtW7dq06ZNOnnypB4+fKh06dIpd+7cqly5spo3b67y5ctHu33Eb8fe3l4nT57UuXPn9PPPP+vo0aNycHBQ0aJF1aFDh0jzSwcEBGjVqlXauXOnLl26JF9fX2XJkkWFChVSrVq11K5dOzk6OsZY96CgIK1fv17bt2/XqVOn5OvrqwwZMihnzpyqWLGiGjZsGOvnl6SWLVvK3d1dT5480bJly/Tll1/Gug0ApAZ2JpPJlNKVAADYHvMEW5UqVWKdz9fb21v9+/fXyZMnoy2TNm1affHFFxo4cKDs7OwirQ8ICNDAgQNj7amdO3duzZgxQ2XKlDHeiypgNxfXgP3QoUNq3769JMne3l6rVq1SiRIlrNrWZDJF+fnM7d+/X0OHDtWdO3eiLZM1a1aNHz9e9evXj7QuNDRUM2bM0MyZMxUSEhLtPnLmzKlx48apZs2akda9HLDfu3cv0vecI0cO7d27V2nTppUkBQYGasSIEVq3bl2Mn69WrVqaMGFCpEA/Lkwmkxo1aqTr168rd+7cxvxrUTFPYDdu3FgDBw7U8+fPoyz71ltvae7cucqXL1+0+9u6datGjBhhcePmZfb29urbt2+0waG1Cezly5drw4YNWrJkSbTHKlSokBYuXGiRMI8qgW3OPIGdkN9WVIYMGaK1a9fKzs5O27ZtU4ECBWIsDwAAAKQmxMPEw1LqiIdTIoE9bdo0TZ8+XWFhYdGWcXBw0HfffaeWLVtGuf7FixcaM2aM1qxZE+OxateurUmTJilz5syR1l24cEGDBw/W+fPnY9zHBx98oB9++CHKzgzmCeyNGzeqRYsWevLkiUWZESNGqEOHDsbr//77T998843u378f7TGzZcumMWPGGE9Hv+zmzZv64osvdO3atRjrXrFiRc2YMUNvvPFGjOXq1KkjHx8f5c+fX9u2bVOaNAy8CyD14wlsAECC3bx5U+3atTP+eHd0dFTdunVVsGBBvXjxQidOnND+/fsVGhqqWbNm6f79+xo3blyk/fzwww9GsJ45c2bVqVNHhQsXlp2dnW7duqUtW7bo2bNnunv3rrp27aqtW7cqe/bskqSmTZuqaNGi2rdvn/bt22e8FxHUv/POO3H6TO+8846cnJz06NEjBQUFqWvXrurdu7c++ugjZcmSJcZtYwvW//vvP3355ZcKDg6WJGXPnl316tVTgQIF9PDhQ+3atUve3t56+vSp+vfvr/nz58vV1dViH6NGjdKqVauM10WLFpWbm5scHR3l7e2tnTt36sGDB3rw4IF69OihCRMmqGnTptHW6eDBg9q7d2+k9xs0aGAE60FBQercubMOHz4sSUqfPr1q1KihUqVKyc7OTpcvX9bu3bv1/Plz7dmzR+3bt9fy5cujDDStcfjwYV2/fl2SorzhEJVLly4ZyWsnJyc1atRIuXPn1pUrV7Rt2zYFBAToypUrateunVatWqXcuXNH2se6des0ZMgQRfTxc3Z2Vt26dZU3b175+vpq7969unTpkoKCgjRx4kTduXNHI0eOjNdnlKTJkyfL09NTdnZ2qlq1qipUqKA0adLoxIkT2rt3r0wmk65du6aBAwdq+fLlxnbVq1dXpkyZdOrUKf3zzz/GexG9/StUqGCUTchvKypubm5au3atTCaT1q1bpz59+sT78wMAAACpGfGwJeLh5I2Hv/nmm1j3ZTKZNGfOHKODdtWqVZUnT5541Wvt2rWaOnWqJClNmjRyc3NTqVKllClTJt29e1e7d++Wt7e3AgIC9N1336lAgQKRvr/Q0FD16tXLaKtSePxauXJl2dvb6+zZs9q5c6dMJpN2796tvn37at68eRZt68KFC2rfvr2RbHZwcFDt2rVVtGhRBQUF6ejRo/L09JQkbdiwQdevX9eSJUuUMWPGaD/bd999Fyl5nSZNGounr3fs2KH+/fsb7ffNN99UzZo15ezsLF9fX3l4eOjChQt68uSJBg4cqICAgEidR4KCgtSjRw8jee3i4qLatWvLxcVFz58/14ULF7R7926FhYXpyJEj6tevX6ydaNzc3LRy5UrdunVLhw4dYqQ0AK8GEwAAUVizZo2pWLFipmLFipk6dOgQbbmQkBBTixYtjLJfffWVyd/fP1K5Y8eOmdzc3Ixy7u7uFut9fHxMJUqUMBUrVsxUvXp1040bNyLt4+HDh6b333/f2Mcff/wRqcyUKVOM9WvWrInHJ/9/ixcvNvYV8V/p0qVNXbp0Mc2aNct0+PBhU2BgYJz26e/vb6pevbqxv549e5p8fX0tyrx48cL01VdfGWUaNmxoCg0NNdavWrXKWFeqVCnTsmXLTGFhYRb7ePbsmWno0KFGuXLlypmuXLliUebmzZuRPt+ECRNM9+7dM/n6+po2btxoOnXqlFF+7NixRrlmzZpF+R3duXPH9Omnnxrlhg4dGqfzY278+PHGfjZu3Bhj2Zc/R7du3Ux+fn4WZW7cuGFq0qSJUWbQoEGR9nPp0iVT6dKljTIjRowwPX/+3KJMWFiYadGiRaaSJUsa5datWxdpXx06dDDW37x502Kd+e8ros0fOXIk0j52795tcZzDhw9HKmO+rylTpkRan1i/LXMPHjywaAsAAADAq4R4mHg4NcXDsZkwYYKxr7p165oePXoU7301bNjQVKxYMVOJEiVMu3btirQ+KCjINHjwYON4nTt3jlRm7ty5xvry5cubduzYEanMkSNHTOXLl48y5g4KCjLVq1fPWNemTRvT7du3I+3D09PT5OrqapT79ttvI5UZMmSIRRto1KiR6cCBA6bnz5+bLl68aFqyZIlR1tvb21SpUiXj8y9YsMCibUZYtWqVcV/hnXfeMV26dMli/fr16y2uLy9evIi0j+PHj1t8/qjuBZjbuHGjUXbs2LExlgWA1IKxJAAACbJlyxZjmDQ3Nzf98ssvUfYwLleunKZMmWL0mJ02bZpCQ0ON9SdPnjSGn2rSpEmUQxI7OTnp22+/NV6fPn06UT/Lyzp06KAvvvjC4r3g4GB5eHho4sSJateunSpVqqSOHTtq+vTpOnv2bKz7XLt2rdEzv1SpUvr9998jPemaIUMGjR07VoUKFZIkXbt2zeg5HBwcrOnTpxtlhw4dqrZt20bq5Z4pUyaNGzfOmC8pICDAYruotGnTRl999ZWcnZ2VPXt2NW3aVKVLl5Yk3b17V0uXLpUUPgzb/Pnzo/yOcufOrZkzZypHjhzG543oNR5XEZ9ZituwaMWKFdO0adMiDddWoEABzZkzxxg2bMOGDbpw4YJFmenTpxs9qRs2bKgxY8bIwcHBooydnZ06duyowYMHG+/99ttvMQ5dF5tff/3V4onpCLVq1dJHH31kvN6/f3+c950Uv60cOXIY89FFzFcHAAAAvG6Ih4mHzdlCPPyyv//+W7Nnz5YUfl6mT58e63DU0fH19TWeGi5WrJhq164dqUz69On1/fffG086nz9/3iJWDgsL07x584zX48ePV926dSPtp0KFCvruu++M1ytWrDCW16xZo5s3b0qS8uXLp7lz50b5RHmVKlU0a9YspUuXztju6tWr0X6+9OnTa968eXJ1dZWDg4OKFCliDKUvSbNnzzae0O7Xr586deoU5VDdLVu2NKbzCgwMNM5/hOPHjxvLn3/+eaQ57SWpbNmy6tSpk6Tw6QdOnDgRbb0lqWTJksayedsBgNSMBDYAIEFWr15tLPfo0SPGeXYqVKigatWqSQqfb+rIkSPGuohhuaTw4D26ZGCVKlW0bt06HT161Bi2Kil9/fXXWrhwYbQBY2BgoA4ePKgpU6aoWbNm+uCDD7R58+Zo97d9+3ZjuWfPnkqfPn2U5ezt7dW+fXu98847+vDDD43zc/jwYfn4+EiS8ufPbxFMRWXYsGFGML958+Zo54WWpE8//TTadX/99ZeR2G3Xrl2MAW/WrFnVsWNHSeHB6d9//x1jHaMSFBRkJJft7e2NmxfWGDx4sOzt7aNcly9fPos5uLZt22Ysv3jxwnhtZ2cX61BsnTp1MubR9vb21oEDB6yuo7lChQoZv4uomA+39uDBgzjvP6l+WxG/CZPJFONcfwAAAMCriniYePhlKR0Pmztx4oTR6cHOzk7jxo2zei7zqEQkgqXwGDi6OaAzZcokd3d37d+/X/v27bPY7ujRo3r48KGk8CR4o0aNoj3eBx98oJIlS6pGjRoqW7as8f6GDRuM5T59+sQ4rH25cuWM4ePDwsJinCu+du3aRoz/sqCgIGPucwcHB3Xu3Dna/UhS586djc7zmzZtUlBQkLHO/Pd+9OjRaPfx+eefa8uWLTp+/LiRzI7Om2++aXQauHDhggICAmIsDwCpAQlsAEC8hYSEWPyxHdE7OSYVK1Y0liPmjpKk8uXLG8Hr0aNH1bZtW/3111+REnZp06ZViRIljEAgOVSrVk3r16+Xu7u7evbsqbJly1oEHOYuXryo/v37a9CgQRYBihQe8Hh5eUkK/xyxzev82WefafXq1ZowYYIxf5F5krRBgwYx3iCRwoOYUqVKSQrvrR5dcJQpUyYVK1Ys2v1E1FuSMY9aTMy/Z/MbM9a6efOmcYOgUKFC0Z7vl2XLlk01atSIsYx5724PDw9j+ejRo8Z3VqpUqSh71Jt7eS4s83MUF+XKlYtxvZOTk7EcGBgY5/0n1W/rrbfeMpYjeuEDAAAArwvi4ciIh8OlVDxs7u7du+rVq5cRQ/bo0UONGzeO837MZcmSxXjS9+nTp2rRooXmzZuny5cvRyr79ttvW8SyEcznvY54Qj46GTJk0Nq1azV37lwNGTJEUnjH82PHjkkKT8o3aNAg1no3adLEWD548GC05cqXLx/tutOnTxsdIN5+++0Y59KWwjseRLSVwMBAnTp1ylhXuXJlY3nu3LkaMGCAdu3aFamDhaOjowoVKhRtRw9zadKkMTo6hIaGGk+oA0Bqli72IgAARM3Hx8fiD+yohkCObfsIOXLkULdu3TRjxgxJ4b3Ohw4dKjs7O5UoUUJubm6qWbOmKlasaNF7NzmVLl1apUuX1oABA+Tv76/Dhw/Ly8tL+/fv1+nTp2UymYyyGzduVIYMGTRu3DjjvYcPHxpBaP78+WMNeKJy69YtY9nantMlSpQwhpeLLojJly9fjMH/pUuXjOXu3btbddwI3t7ecSovWbaNl4eUi0mJEiVivYlRtGjRKI8T33MbIb4BYs6cOWNcb95OzNuYtZLqt2X+vZifRwAAAOB1QDxMPGyN5IyHI7x48UI9e/Y0npCuU6eO+vfvH+f9ROXrr79Wt27dFBoaqrt37+qXX37RL7/8orx588rNzU01atRQ9erVoxxKX5Lu3LljLBcpUiTOx797965FO8qaNWus25gPr23ehl6WP3/+aNeZt4FTp07FeVh3Hx8fo2ND3bp1VaVKFSOZvmnTJm3atEnp06dXxYoVVaNGDdWqVSvGThVRMW8rt2/fjvP2AGBrSGADAOLN19c3Qdu/PG9uv3795ODgoOnTp+vFixeSwhN2Z8+e1dmzZzVnzhy98cYbatq0qbp16yYXF5cEHT8hsmTJolq1aqlWrVqSwod2XrZsmRYuXCh/f39J4cOMde7c2QgazHvPvzw/s7XMz7mjo6NV25iXi26u4tiCvoTMcRwxR1RcPH361FiOaTiwl0XMNRYT83MfMXSZJD1+/NhYtvYmgfnQcfE9Ry/PsR2T+CSwpaT5bZm3mYg2DwAAALwuiIeJh62RnPGwFN5mhg4daiTt3377bU2YMCHSPOER/v33X128eDHGfdasWdPoCF69enXNmDFDo0aNskhG+/j4aOXKlVq5cqUyZMig2rVrq0uXLpGeajaPweOTnDdvA9Zub94GYvrdxtQuE9IGXt4+TZo0mjFjhn788UetW7fOiPODg4Pl6ekpT09PTZgwQYUKFVKLFi3UsWNHq+4bmLdj8zYEAKkVCWwAQLyFhoYay7ly5Yp1Tp6Xvfnmmxav7ezs9OWXX6p169bavHmzduzYoYMHDxrBuxSeZFy6dKnc3d01derUWIeLTi45c+ZU37591ahRI3Xo0EF+fn4ymUxat26dvv76a0mW5yu+zBOY0QWgLwsLC4t1m9h68ZvPwda/f39lyJDBqmNLilPZCObDzUXXczsq1jyNYH4+ohuKy9pza/6dWrtNSkiK35b5sIUvDw8IAAAAvOqIh/8f8XD0kjMelqRp06Zp06ZNksITsjNmzIgxCf7PP//EOC+0FN5x23wks9q1a2vbtm3as2ePtm7dqr1791p0CA8MDNSWLVu0detW9enTR3369DHWRTe/u7Xi0wbM215MT9rHNFS7+T4qVapkMTWZNV5O5GfNmlU///yzevfurY0bN2rnzp06deqURXu9du2aJk6cqBUrVmjx4sXKmzdvjMcgRgfwqiGBDQCIN/PeqSaTSV27dk2U/To6Oqpt27Zq27atgoKCdPToUe3fv1+7d+/W2bNnJUkBAQEaNGiQdu3aFeceybG5fPmyvvvuOz18+FDZs2fXqlWrrN62WLFi6tSpk37//XdJlnMDJ0ZvWPOew+YBYkzMy8W3p3v27NmNHvNNmjRR4cKF47Ufa5kPJxeXwMuaJ4HNez47Ozsby+a9t5Pz3CanxPxtmX8v8bkpAwAAAKRmxMOREQ8njvjGw5s3b9b06dMlhSdqJ06caMyLnNjs7e3VoEEDNWjQQCaTSefPn9f+/fv177//6uDBgwoJCZHJZNLUqVPl6upqzPts/h3E5+n0lIrbzbfLkydPov3eCxYsqJ49e6pnz57y8/OTl5eX9u3bp507dxpPuN+6dUvDhg3T//73vxj3FTHfuaR4DdEPALYm5kkiAQCIQd68eY2eyvfv37cYPio6/v7+cQrA7O3t5erqqgEDBmjt2rVasmSJEaA/efJEu3btil/lY5A+fXodOXJE169f18mTJ+M8NJz5XEgRczNJlufr1q1bsZ6HO3fuaNCgQZo8ebK2b98uKTy4iXDu3Dmr6hNxk0OSChQoYNU2LzPf7sSJE7GWDwoKStCw0uY3YZ49e2b1dpcvX461zPnz541l889lfm7Ny8QkMc5tSknob8v8e0nsm2YAAACArSMejhrxcMrEw2fOnNHQoUONJ5QHDRqkmjVrxrrd+PHjdf78+Rj/a968eYz7iJirvXPnzlqwYIG2b99uMf/y+vXrjWXzc3nlypVY6zdv3jyNHj1a8+fP171795Q3b15jJDVvb2+rOkOYt5WY5rmOSVzbgBTeed78ierYZM+eXfXr19eoUaO0e/duDR8+3Fh34MAB3b17N8btnz9/bizH9cl9ALBFJLABAPHm4OCg0qVLG6///vvvWLf55ptvVLZsWdWsWVOrV6823p89e7bat2+vqlWr6siRI9FuX7lyZb3//vvG65dvEiTGMM4FChQwnsw1mUz6888/47T9jRs3jGXzYbYcHBxUokQJSeHDZu3fvz/G/Xh6emrjxo2aOXOmcWOiUqVKxvqtW7fGGgxdvXrVSMamTZtW5cqVi9NniWB+3A0bNsRa/s8//9S7774rV1dXjRw5Ms7Hy5cvn7FszY2gCDdu3NDVq1djLLNjxw5juV69esZyuXLljED4zJkzFt9jVMLCwowbKZJUsWJFq+uZmGJr84n123qZ+fr43gQAAAAAUivi4agRDyd/PHz//n317NlTAQEBkqQPPvhA3bp1i/NxY7Njxw517dpVderU0axZs6It5+Liou7duxuvzT+Dedy8d+/eWI+5YsUKLVu2TD///LPCwsKUIUMGlSlTRlJ4+9y6dWus+9i8eXOUx4+LChUqGB0wbty4EWsSOygoSE2aNFHZsmXVsGFDI4keGhqqIUOGqHnz5qpevXq0HTns7Oz0+eefWzxBH1sCmxgdwKuGBDYAIEGaNWtmLM+dOzfGP6iPHDminTt3ymQy6d69eypbtqyx7v79+zp06JAeP34ca+D/8OFDYzl37twW68znM4rvHFt2dnZq06aN8XrWrFny8vKyaltfX18tWrTIeP3BBx9YrP/www8t9ms+f9PLli1bZizXr19fkuTq6ioXFxdJ4b2Nly5dGmN9fvnlF2O5Vq1a8X5StlmzZsbNkH///Vd79uyJtqyfn5/mzp0rKfx8mPfAt1aBAgWMZLKPj0+cei3PmDEj2nXXr1/X2rVrJYU/WdCgQQNjXaZMmdSoUSNJ4YHwhAkTYjzOokWLdPv2bUmSk5OTqlWrZnUdE1NsbT6xflsvu3XrlrGc1EPoAQAAALaIeNgS8XDyx8NBQUHq06ePkbwsXbq0fvrppzgf0xomk0keHh7y8fHRxo0bY5zPOrp2+t577ylnzpySpJMnT2rfvn3R7sPDw0PXr1+XFP658uTJI0n65JNPjDLTp0+P8Wn3EydOWCSwX26T1sqcObPF/YNx48bF+BtbsGCBHj58qODgYD1//lxFihSRFN6R4ty5czp9+rQePHhg0cH+ZWFhYRYjIMQUo5tMJnl7e0sKn9PdfLQCAEitSGADABKkefPmxh/Gvr6+6tSpU5TDOJ88eVL9+/c3AtRGjRpZDCnVokULY3nZsmVavXp1lMHsli1btHPnTknhCccaNWpYrDcPSCP+eI+Prl27GvV78eKFunbtqsmTJ8c4R5OXl5c6dOggHx8fSVLLli1VsmRJizItW7Y0go7Dhw/r22+/1YsXLyzKhIaGauzYsTp69Kik8HnEatWqJSk8EOndu7dRdvz48Vq+fHmkcxUQEKDvvvvOOFcODg4aPHhwnM9DhCJFilj09B84cGCUgdb9+/fVu3dv3b9/X1L4MHEtW7aM8/HSpUtnPM0QEBAQ61PV5tavX6/ff/89UjB55coVdevWzTjfX375pcUc2JLUvXt32dvbSwpvayNHjjR6sUcwmUxatmyZxc2QIUOGGNslt9jafGL9tl525swZSeHfVUQPeAAAAOB1Qjz8/4iHUyYe/vbbb3Xs2DFJ4XMzz5w5M8nmP65Zs6YRQ58/f15jxoyJ9P1J4U++z5w503jdsGFDY9ne3l5ffPGF8fqrr77S4cOHI+3j/PnzGjp0qPHa/InyZs2aGb87b29vffHFF1E+qX7o0CH16NHDSLQ3b95cpUqVsvrzvqxnz55G3H/kyBH169dPfn5+kcqtXbtWU6dOtdgu4ultyfL3Pnr0aJ08eTLSPkwmk8aPH28ksMuVKxdjAvvatWvGEOKlS5c2OkAAQGqWLvYiAABEL2PGjPr999/VoUMHPXv2TFeuXNFHH32kmjVrqnTp0goKCtKZM2fk4eFhBJX58uXTqFGjLPZTokQJtWnTRitWrJDJZNK3336rxYsXq2LFisqTJ4+eP3+uo0ePytPT09imX79+euONNyz2Yz5M0vz58xUUFKSsWbOqcuXKFsN+xSZTpkyaP3++2rdvr+vXryswMFAzZ87UvHnz9O6776po0aLKkSOHgoODde/ePXl5eenatWvG9tWrV9fo0aMj7TdLliyaOHGiunTpoqCgIK1Zs0Z79+5VvXr15OLiosePH2vnzp1GL+NMmTJp/PjxFj3pW7VqJS8vL61bt04hISEaNWqUlixZoho1aih79uzy8fHRzp07jaA5TZo0GjVqlN5++22rP39Uvv/+e507d06XLl3Ss2fP1KtXL5UrV06urq7KkCGDrl69qu3btxsBbIYMGTRhwgRlyJAhXsdzdXU1AvETJ05YVf906dIpJCREM2bM0KZNm1S3bl1lzZpVFy5c0Pbt243hucqXL68ePXpE2r5YsWIaOXKkRowYIZPJpBUrVmjnzp2qW7eu8ubNKz8/P+3du1cXL140tmnRooXFkxfJzbzN//3338qaNaty586tokWLqm7duon22zJ3584do32VKVOGObABAADwWiIeJh5OyXh40aJFFvNLf/LJJ/rvv/8UEBCgwMDAGJ8QLlq0qFVzZJuzt7fXsGHDNGjQIEky4uWaNWsqb968kqQLFy5o9+7dCgwMlCTVqVMn0nE6deqkAwcOaPfu3Xr8+LHat2+v6tWrq1y5ckqXLp3Onj2rnTt3GonnDz74QE2aNDG2z5Ahg6ZMmaL27dvr2bNnOnr0qBo3bqw6deqoSJEiCgkJ0dGjR3XgwAHjd1e8eHGNGDEiTp/3ZcWLF7e4X7B9+3YdPHhQ9erV05tvvqnHjx/Ly8vL6Owd8fk//fRTi/20bdtWq1ev1vnz5+Xr66tWrVrpvffeU7FixeTk5KSHDx/Kw8NDly5dMs67eTI/KuZDmru6uibocwKArbAzxTRWCwDgteXu7q5hw4ZJkqpUqaLFixfHWP7ChQsaMGBAlL3NzVWoUEG//fabMfSTueDgYI0YMUJ//fVXjPuwt7dXnz59LOZUivDixQt9+OGHkeYv7tixo7777rsY9xuVp0+fatq0aVq6dKmCg4NjLe/g4KCePXuqS5cuMfZ4PXTokAYNGhTjEHO5c+fW5MmT9e6770ZaFxYWpt9//11z586NcdguZ2dn/frrr1EOb33r1i1jDmhrvmNJevLkib755htjDrLo5MmTR7/++quqVKkS6z6jc+LECbVq1UpSeMA6ceLEaMtGDMuWL18+de3aVWPHjo32vDRu3Fg///xzjL3SN23apNGjR1sM1/Wy9OnTa/DgwerUqVOU6zt27KiDBw9KCp8rzPxmkvnvq0+fPurbt2+0x/H09NRnn30mKfyGxPjx4y3Wm0wmtWvXznhCIULdunX1xx9/SEqc35a51atX69tvv5Ukff311xY96AEAAIDUjng4HPGwJVuLh4cOHRpre4lOVLGltZYsWaLx48fH2iaaNm2qcePGRRl7BwUFacyYMdGONhChVatWGjVqVJTtydrf3SeffKKRI0cqU6ZMkdaZn8NFixZZlfzdvHmzRo0aFeP9Aim8s/vo0aOjHK3t3r176tmzp06dOhXjPpydnfXTTz8ZoxBE55tvvtG6deskSatWrbKYogAAUiuewAYAJIpixYrp77//1qZNm7R161adOnVKDx8+VFhYmHLmzKl33nlHH3zwgerXr2/Re9pc+vTpNX78eLVs2VJr167V8ePH5e3trcDAQGXLlk158+ZVzZo11bx5cxUoUCDKfWTMmFFLlizRpEmTtG/fPvn6+srR0dGqYDsqWbNm1bBhw9SpUydt3rxZXl5eunz5su7fv68XL14oY8aMcnZ2VqFChVS3bl01aNBATk5Ose63UqVK2rp1q1atWqUdO3bo4sWL8vPzk4ODg4oUKaIGDRqodevW0T7ZmiZNGg0cOFAtWrTQihUrtH//fnl7e+vp06fKmjWrSpQoofr166t58+bKnDlzvD57VLJly6aZM2fq0KFDWr9+vby8vHTv3j3jOypevLjq1aunTz75JMHHLVu2rAoVKqRr167Jw8NDISEhFsNuRad9+/aqWLGi5s2bJ09PTz1+/FiOjo6qWLGiWrduLTc3t1j30aRJE7m5uWnlypXas2ePLl++LD8/P9nb26tQoUKqUaOG2rRpY/QyT0l2dnaaM2eOfvvtN+NJg6xZs1rcBEiM35a5iDnf0qRJYzGPHQAAAPA6Ih4mHraVeDg5dOjQQTVr1tSqVat08OBBXbt2Tf7+/nJwcFCuXLlUpUoVffjhh1F2Pohgb2+vH3/8UW3atDH2c/fuXYWEhMjZ2VmVK1dWmzZtVLFixWj3EfG727hxo7Zt26aTJ0/q0aNHMplMypcvn6pUqaIWLVqoXLlyifr5GzduLDc3N61atUr//vuvLl68KF9fX6VPn14uLi5699131apVqxiTyLly5dLKlSu1efNmbdmyRadPn9bDhw8VEhIiJycnvf3226pTp46aN28e64hnoaGh8vDwkCQVKlSI5DWAVwZPYAMAAJu1cOFCjRs3TpI0e/bsaHsdmz+BHTHPGZLG06dP9d577ykoKEj169fX9OnTU7pKAAAAAPDKsTYexuvt33//NeYIHz58uD7//PMUrhEAJI6ou/wBAADYgFatWilbtmySwofxQ8rbsGGDMZd4ly5dUrg2AAAAAPBqIh6GNSKGQM+ePbtatmyZwrUBgMRDAhsAANiszJkzG0nS7du36/bt2ylcIyxZskSSVL169RiHhAMAAAAAxB/xMGJz9+5dbd26VVJ4B/PEHDIfAFIaCWwAAGDTOnXqJGdnZ4WEhGjBggUpXZ3X2q5du3Tp0iXZ2dlp0KBBKV0dAAAAAHilEQ8jJgsXLjTmDWfocACvGhLYAADApjk4OGj48OGSpOXLl+vu3bspXKPXk8lk0tSpUyVJbdq0UZkyZVK4RgAAAADwaiMeRnTu37+vP//8U1L43NcODg4pXCMASFwksAEAgM1r2rSp6tatq8DAQP3+++8pXZ3X0oYNG3T69Gm5uLho8ODBKV0dAAAAAHgtEA8jKlOmTNGLFy9Up04dNW3aNKWrAwCJjgQ2AABIFcaOHas8efLI3d1dJ06cSOnqvFaeP3+uX3/9VWnTptWECROUNWvWlK4SAAAAALw2iIdh7vTp01q9erVy5cqlsWPHpnR1ACBJ2JlMJlNKVwIAAAAAAAAAAAAAAJ7ABgAAAAAAAAAAAADYBBLYAAAAAAAAAAAAAACbQAIbAAAAAAAAAAAAAGATSGADAAAAAAAAAAAAAGwCCWwAAPDaCgkJSekqAAAAAADwyiDOBgAkhnQpXQEAeJ1MnTpV06ZNs3jvp59+UsuWLeO0n+vXr6thw4YW7y1atEiurq4JruPr7urVq1q6dKkOHDggHx8fBQUFydHRUaVLl1aTJk30/vvvK3369LHuJzg4WBs2bNCmTZt05swZ+fr6KkOGDMqXL5+qVq2qdu3aqXDhwkn6WYKDg9WmTRudPn1a+fLl086dO63aLiAgQGvWrNG2bdt05coVPX78WJkzZ1aRIkVUv359tW7dWpkzZ07Sukfl0KFD2rlzpzw9PXXv3j09fvxYmTJl0htvvKHChQvLzc1N9erVk4uLi1X7W7t2rXbt2qXff/89QfVyd3fXsGHDJEl9+vRR3759E7S/+Fq+fLlGjRqlKlWqaPHixcm+fXS6du0qDw8Pq8vHdi17/PixVq1apZ07d+rGjRt68uSJsmbNqpIlS6pJkyb6+OOPZW9vnxhVBwAAQCpHDP5quXPnjhYvXqx///1Xt27dkslkUu7cueXq6qq2bduqVKlSiXq8kydPaunSpfLy8tK9e/fk4OAgFxcX1atXT23atFHu3Lmt2k9AQIBWrlypzZs369KlSwoICFCuXLlUsmRJNW/eXPXq1UvUelvr0aNH2r59u/bs2aNLly7p4cOHCgwMlJOTk3LkyKF3331XNWvWVPXq1ZUmTezPwd29e1c//fSTOnTooCpVqiSobnXr1pW3t7ck6fz58wnaV3wFBgaqadOmunXrVpL83vfv36/ly5fr2LFjevjwobJkyaICBQqoUaNGatWqlbJnz27Vfnx9fbV06VLt3LlT165dU3BwsHLlyqXy5curdevWCf4uACClkMAGgBS2efPmOAfPGzduTKLavN7mz5+viRMnRuotfP/+fe3evVu7d+/WwoULNWXKFBUsWDDa/dy6dUt9+vTR2bNnLd4PDg7W+fPndf78eS1dulT9+/fXl19+mSSfRQq/WXP69Ok4bePp6amhQ4fKx8fH4n1fX18dOnRIhw4d0uLFizVlyhSVKVMmMasbrYsXL+qHH36Qp6dnpHV+fn7y8/PTtWvXtGvXLo0fP14dO3ZU7969lSVLlij39+zZM/Xs2VOenp6vTCB3+fJl/fLLLym2fUzOnDmTaPvatGmTRo8eLV9fX4v3Hz16pH379mnfvn1atGiRZsyYoQIFCiTacQEAAPDqIAZPnbZu3aqhQ4fq2bNnFu9fu3ZN165d0+rVq9WjRw/169cvUY43efJkzZo1SyaTyXgvKChIfn5+OnfunJYsWaKxY8eqfv36Me7n8uXL6tmzp65fv27xvre3t7y9vbV9+3bVrVtXv/76a7QxbGILCwvT/Pnz9ccff8jf3z/S+jt37ujOnTs6ffq0Fi1apOLFi2v48OGqWrVqtPvcuHGjRowYoWfPnql9+/ZJWf1k8+OPP+rWrVuJvt/g4GCNHDlS7u7uFu8/fvxYjx8/1okTJ7R48WJNmjRJ7777boz7OnTokPr3768HDx5YvH/z5k3dvHlTf//9t1q3bq2RI0da9TAGANgSEtgAkMIOHDggX19fOTo6Wr3NP//8k3QVek0tXrxYP//8s/G6ePHiqlKlirJnz65Lly5px44dCg4O1tmzZ/X5559rzZo1cnJyirQfPz8/de7cWTdu3JAkZciQQfXr11fhwoXl6+ur/fv36/LlywoJCdHEiRMlKUmS2IcOHdKcOXPitM3+/fvVvXt3BQYGSpLy58+vOnXqKEeOHLp586a2bNkif39/eXt7q0uXLvrrr7+UL1++RK+7ufPnz6tjx47y8/OTJGXOnFnVqlXTW2+9paxZsyooKEh37tyRl5eX0dN4/vz5Onr0qObPn69MmTJF2ufjx4+jTIanVt7e3urWrVukGznJtX1M7t69q0ePHkmSSpQooY8++ijWbaLrHLJu3ToNHTpUYWFhkqRixYrpvffek6Ojoy5duqStW7cqKChIFy5c0Oeff67169cn2w0gAAAApB7E4KnPf//9pwEDBig0NFSSVKpUKdWsWVNp06bVoUOH5OnpqdDQUE2fPl329vbq0aNHgo43depUzZw5U5JkZ2enWrVq6Z133lFAQIB27typK1euyM/PTwMGDNC8efOifTL33r17+vzzz3X//n1JUp48edSgQQM5OTnp4sWL2r59u4KCgrRz504NGDBAs2bNUtq0aRNUd2uMHDlSq1atMl4XL15c5cuXV65cuWRvb68nT57o4sWL+u+//xQUFKTz58+rS5cumjRpkho3bhzlPvfu3ZskMWVKmTZtmlauXJkk+x4xYoT++usvSVL69OlVr149FS9eXL6+vtq6datu376tO3fuqHv37lq+fLmKFCkS5X4uXLigbt266fnz55KkQoUKqW7dusqcObNOnTqlf//9V6Ghocbn+OGHH5Lk8wBAUiGBDQApJEOGDAoMDFRwcLC2b99udQ/wixcv6uLFi0lcu9fLgwcPNGnSJEnhwel3332n9u3by87Ozihz5coV9e7dW1euXJGPj49+++03jRkzJtK+/vjjDyN5Xbp0aU2dOtUiyRsaGqrZs2frt99+kyRNmTJF77//fqImgv39/TVkyBAj0WftNt98842RvO7atasGDRqkdOn+/0+Fr776St27d9fJkyfl5+enn3/+WVOmTEm0er/sxYsX6tmzp5G8bteunb7++utohy/fsWOHhg0bJj8/Px09elTDhw83zvOr6tixY+rXr5/u3r2bItvHxnwEgLp166pr167x2o+3t7dGjx6tsLAw2dnZadiwYfrss88sfqM3btxQ165ddePGDXl7e2v69OkaMmRIgj8DAAAAXg3E4KlTQECAhg4daiSv+/fvr549e1rEAps3b9bgwYMVHBys33//XfXr14826Rebs2fPasaMGZLC28wff/yh6tWrG+sHDRqkCRMmaP78+QoODtawYcO0efPmKKcxGjNmjJG8rlu3riZOnGjRyfrixYvq1q2bbt++rb1792rVqlVq27ZtvOptrT///NNIXufKlUuTJ09WpUqVoiz76NEjjRkzRps2bVJoaKgGDx6sQoUKqUSJEklax5QUFBSkcePG6c8//0yS/e/YscNIXr/xxhuaP3++xdD3X331lYYPH64NGzbo6dOn+vbbb7VixYpI+zGZTBo6dKiRvG7Tpo1GjhxpcQ/n0KFD6tGjh54+faqVK1eqYcOGqlGjRpJ8LgBICrFPXgEASBLmfzRu2rTJ6u02bNggSbK3t1exYsUSvV6voy1bthh/9L///vvq0KGDRTAsSW+99ZbFEMsbN26MlCA2mUxav369pPBE+MSJEyMlptOmTauePXuqdu3aksKHjtqyZUuifp6IYa7iMjzU9OnTde/ePUlSp06d9M0331gEPpKUI0cOTZo0yegRvmPHjkhDOSemDRs2GHNe1alTR6NHj45x7u169epp+vTpxne3adMmnTt3Lsnql5LCwsK0cOFCdejQIV7J54Ruby3z4cNLly4d7/38/PPPxm90+PDh+vzzzyP9RgsWLKiffvrJeO3u7m4x3B8AAABeb8TgqdPKlSuNmKVOnTrq1atXpFigcePGGjx4sKTwWOflec/jYtq0aUasP2DAAIvktRQe0w8ZMkR169aVFN7ZdvXq1ZH2c+7cOW3btk2SlDNnzkjJa0kqWrSopk2bZnye6dOnR5rSLDGZTCaLkdpmzJgRbfJakpycnDRp0iTjHAQHB2v69OlJVr+Udv36dX366adJlryWZNE2v//++0jztmfIkEE///yzET8fO3ZMe/bsibSfHTt2GB3GixcvrtGjR0e6h1OpUiWNGzfOeJ2UDyAAQFIggQ0AKaRIkSIqWrSopP8fwswaEYF2rVq1GB43kVy4cMFYjmlO5HfeeccYZs7f31+PHz+2WP/w4UM9fPhQUniAWrhw4Wj35ebmZixHPLGdGLZs2WL05rV27q+QkBCtXbtWkuTi4qL+/ftHW7ZgwYJq3LixSpYsqcqVKxtJ76Swf/9+Y7lZs2ZWbVO5cmWLcxtVoJfa7d27Vx9//LHGjRun4OBgSeE3cpJr+7gwnwc+vnOmP3r0SDt37jT20aFDh2jLVqlSRZUqVVLp0qVVunRpY/hyAAAAgBg8dYqIb6WYp9/69NNPjWm+duzYEeXczrF5/Pixdu3aJUnKkiWLPv3002jL9u3b11iO6Mhuznx+444dO0Y5vZUUHuNExGP37t3TgQMH4lxva127dk0+Pj6SwpPn77zzTqzbpEmTxuIewd69e5M0yZ4S/Pz8NG7cOL3//vs6efKkpPB7OvGNYaNz7tw5o5N3oUKF1LBhwyjLpUuXTj179jReR9W+zH8X3bp1U5o0Uad5GjRoYDwxf+LECV29ejXe9QeA5MYQ4gCQgpo0aaKLFy8qJCTEqiHMTp48qevXr0sKf1J40aJFVh/r+PHjcnd3l6enp+7du6fQ0FDlzJlT7777rj7++ONIvYqjc+XKFa1fv15eXl66ceOG/Pz8ZGdnp2zZsqlo0aKqUaOGWrVqFW1g37FjRx08eFCFCxfW5s2bFRQUpFWrVmnTpk26cuWKnj59qhw5cujdd99Vq1atVLVq1WjrMnXqVKP3ar58+YwkV1yZzzEVU0I2MDDQeAo0bdq0ypo1q8V684DhyZMnCgwMVIYMGaLcl/nNkjfeeCM+1Y7k7t27GjlypCSpYsWK+uKLL4x5tmOyf/9+I9H36aefRhtYR4gYbj2pmZ+jFy9eWL1d9erV5enpKUdHRyNBK0menp767LPPLMoePHhQxYsXlxSe/Fy8eHGk/Z0/f15Lly7V/v37dfv2bWXOnFnFihVT69at9eGHH8Zan1u3bqlevXrG60WLFkU7R5o1vvjiC2M5c+bMGjJkiKpXr27caEnq7eMiIoGdI0cO5cmTJ1772Lp1q/E9du3aNdrAPMLSpUvjdRwAAAC8+ojBbSMGt9aDBw+MmCJ79uwqX758tGXt7e1VrVo1bdy4UUFBQfr333/VtGnTOB1v//79xlDlrq6uypgxY7RlS5UqJWdnZ92/f1/Hjh3T/fv35ezsbKz38PAwlmvVqhXjcWvVqmWcy23btll0yk5M5jF2QECA1duVK1dO2bJlkyQ5Ojrq6dOnxn2MiPZlzjzujir+DQoK0po1a/TPP//o3LlzevHihfLkyaNatWqpc+fOVk2xNnToUCOJG10sb61FixZp4cKFxuv33ntP48aN02+//aZTp07Fe78v27t3r7Fcs2bNSCMJmKtevbrSp0+v4OBg7dq1SyEhIcYT1iEhIUaH/zRp0sTaXmrWrGmMTrdt27YYO4IAgC0hgQ0AKahp06bGED6bNm2KNXj+559/JEmZMmVSnTp1rAqeAwMDNWLECK1bty7Sulu3bunWrVtat26datWqpQkTJhhBycuCg4P1ww8/aNWqVVHOrfzixQvdu3dP+/bt0+zZszVjxgxVqFAhxrrdvHlTvXr1sngCWpJu376tDRs2aMOGDWrbtq1Gjx4d4x/2CfX2228byytXrlT79u2NntvmFi5cqKCgIElS1apVI81x5eTkpDfeeEOPHz9WYGCgFixYoB49ekTaz6NHj4w5pyQlyhxEJpNJw4cPl6+vrzJlyqRffvkl1kRfhKNHjxrL1t5ESQ65c+c2lleuXKkPP/zQorNBdDp16qTOnTsnSh3mzZunCRMmWLR5X19fHTx4UAcPHtT69euT7OnlmNjZ2alp06b6+uuv5eLiolu3biXr9tbw9fU1hoCPGP7syZMnOnLkiLy9vZUuXTrly5dPlSpVivHGkHn7rFatWqLXEwAAAK8PYnDbiMGtFTFEshQ+IlpsMW65cuW0ceNGSeEdCOKawDY/XkzJcvPjbd++XSaTSSdOnDA6LgcEBOjKlSuSwoeEjm3OaPNjnThxIk51jgvzTsW3bt3S3r17rb4fcfDgwURpE7dv31a3bt0izSt/48YNLV68WO7u7powYUKCjxMfefLk0YABA/TJJ58kyf7j0r4yZcqkIkWK6OzZs3r27JkuXbpktKPr16/r2bNnkqQ333wz1ociypUrZywnZfsCgMRGAhsAUlDhwoVVokQJnTt3zhjCLGKI6peZTCZj6LJ69erFmPCJEBQUpM6dO+vw4cOSpPTp06tGjRoqVaqU7OzsdPnyZe3evVvPnz/Xnj171L59ey1fvjzKeYaHDBliBILp06eXm5ubihcvrsyZM+vJkyc6fvy4vLy8ZDKZ9OjRI/Xt21ebN2+Othf48+fP9cUXX+jatWvKli2b6tevr4IFC+rJkyfasWOH0ct9+fLlKlmypNq2bRvr542vDz/8UJMnT9bTp0917949tWjRQv3795erq6uyZ8+u69eva9GiRUbvXkdHRw0dOjTKfX366afGnFC//fabrl69qs8++0yFChWSv7+/PD099dtvvxlzeLVp00YVK1ZM8GdYtGiR0cN7+PDhKlCggNXbmt+8KFKkiCTpyJEjWr16tby8vHT37l1lypRJJUqU0IcffqhmzZpZlUhOqFq1amnNmjWSpMOHD6tLly7q2bOnXF1dYwyco1tXsGBBffPNN3ry5IlmzpwpSSpQoIDatWsnKXz4dHPTpk3T1KlTjddlypRR9erVZW9vr5MnT+rff//Vv//+m+wBYLNmzdS5c+dYb4Ik1fbWMh8+PEeOHBo2bJg2bNhgdAKJ4ODgoA4dOqhXr15RPv0f0T6dnZ2NwHzPnj1au3atjh8/rvv37ytbtmx655131Lx582iHYQMAAACIwW0jBrdWRJ0kKX/+/LGWz5s3r7F87dq1JD+eeQxpfrzr16/LZDJJCn9SPbbEb3T7SWwuLi4qVqyYEWP1799fPXr0UMuWLaPsxG8uus/Qrl071a5dW//884/xtHLbtm1VsGBBSTL+L4WPGtemTRvjfkjmzJnVqFEjFSxYUA8fPtT27dt1+/ZtDRgwwOoO+YmhQIECGjVqlFq0aBHtKHqJIT7tKyKuvnbtmhHDm7eR5PhdAEBKIYENACmsadOmOnfunEJCQrRt2za1atUqynJHjhzR7du3JYUPXWaNiRMnGoFzqVKlNGXKlEiJzbt372rQoEE6dOiQLly4oB9//FHjxo2zKHPgwAEjcM6ePbsWLVoUZfLL09NT3bt3V0BAgO7fv6+dO3fqo48+irJuEQFLvXr1NH78eIte51999ZW+/fZbY17mBQsWRBk89+3b12LeqfjKli2bpkyZol69eikgIEA+Pj4aMmRIlGWrV6+ub7/91uKpbXM9evTQ2bNntXPnTplMJq1du9b4HOYcHR3VrVs3de3aNcH1v3TpkjFUeJ06daJtQ9GJ6BmePXt22dnZaeTIkVqxYoVFmcDAQO3fv1/79+/X0qVL9ccff1g8IZ0UGjRooHfeeceYg+rAgQM6cOCAnJ2dVaNGDVWqVEmVKlXSm2++adX+XFxc1LVrV926dctIYEe897JLly7pjz/+kBQ+JNfIkSONRHeEo0ePqmfPnpHmQn9Z/vz5df78eavqaI2ff/45Rbe3VsTcXpLl/FwvCwgI0Jw5c+Th4aHZs2crV65cFusj2qezs7OePHmiYcOGafv27RZlHjx4oF27dmnXrl1yc3PT77//zvyEAAAAiBIxeMrH4Na6f/++sWzNlETmMeqDBw8SdDxr4t3ojhfXemfPnl0ZM2bUixcv9Pz5cz1//jzWqb3ia8CAAerdu7dMJpOePXumiRMn6rffflOFChVUtWpVVapUSeXLl5eDg4NV+4t4yv3ixYtGArtp06ZRTpv1yy+/GO2wdOnSmjlzpkX89/XXX2vMmDFavXp1rMcdP368xo8fb1UdY9OsWbNE2U9sEtKeHz58mCj7ic/vAgBSSvJ1ZQIARKlJkybG8ubNm6MtFzF0maOjo1XzId29e9eYCzZnzpyaP39+lE/l5s6dWzNnzlSOHDkkSWvXrrXoFSpZJp/69u0b7ZObrq6uFkMtxTZX0JtvvqnJkydHGjItXbp0GjlypBGwXbt2zbhxkFTee+89rV+/3uL7eFn27NlVrVq1GHu42tvba9q0aRo7dqxy5swZbbkyZcqoSpUqCR6CKygoSIMHD1ZgYKCcnJz0448/xnkfT548kRQ+tNnw4cON5HWVKlXUs2dP9e3bV/Xr1zfmWzp9+rTat28vPz+/BNU9NmnSpNGsWbNUrFgxi/fv378vd3d3DR8+XA0bNpSbm5sGDRqkNWvWGHN5J9SUKVMUEhIiKXze5ZeT15JUoUIFTZkyxSaG1rNF5glsKbw9zZo1S/v379eJEyf0999/68svvzR6uJ89e1a9e/e2eEI7ODjYmP88bdq06t27t7Zv3660adOqdu3a6tu3r3r37q3q1asb34OHh4e6dOkS6UlvAAAAQCIGt5UY3BpPnz41lq1JqJo/Pevv75/kxzN/Kt/8eOb7sebJ/ZfLmW+f2OrVq6dvv/3WiO8lKTQ0VIcOHdK0adPUqVMnVapUSa1bt9bkyZN15MgR42nyhLh48aI2bNggKfwhglmzZkXqvJwhQwb9+OOPr+zUUXFtF9G1ibjuJ6G/CwBIKSSwASCFFSxY0JgfNmIIs5eFhYVpy5YtksKfSk2fPn2s+/3rr78UHBwsKXxIp5jmxMmaNas6duxoHOvvv/+2WN+4cWMNHDhQLVu21IcffhjjcYsXL24sxxZ0xTQ8U+bMmVWmTBnjtXkP06Tg7++vlStX6sCBA5KkSpUqqUePHurfv78+/PBDZc6cWX5+fpowYYI+/vhj3bhxI9p9HThwQOvWrdODBw/0xhtvqGXLlho4cKC6du1qfNceHh5q3bq1Mdx4fP3222/GkFJjxoyJMWkenefPn0uS7t27p7///lvZs2fXggULtHjxYg0YMEB9+vTR9OnT5e7urnz58kkKnzvt+++/T1DdrZEjRw6tWbNGffv2VdasWaMsc//+fW3cuFHDhw9XjRo1NGDAgEg3gOIiKChIe/fulRQ+VN8XX3wRbdkqVarovffei/exXmXmCexOnTpp0aJFql27tpycnJQhQwYVK1ZMX331lRYuXGgE3SdOnNCSJUuM7SLm9ZKkkydP6uDBg8qbN69Wr16tWbNmqU+fPurXr5/mz5+v//3vf8bwj8ePH7cY/h0AAACIQAxuGzG4Ncw7pVoztLN5Mi8+HVoT63jmy9YmsM2Pl9SdcTt27KiVK1eqUqVKUa4PCQnR8ePHNXPmTLVr10716tXTihUropyL3Vo7duwwllu2bClnZ+coy9nZ2alfv37xPo4ti2u7iK5NxHU/5mWCg4MTpUMCACQHEtgAYAMihlyKGMLsZZ6enkbwaO3QZV5eXsayeRAaHfN5mI8cOWKxrk6dOurRo4d++umnaOcHk8ITobdu3TJeRzzBGp2yZcvGuN58DqakDODu3bun9u3ba86cOQoJCdGcOXO0dOlSDRw4UL169dKECRO0fft2o9f91atX9cUXXxiJX3NLlizRF198IU9PTzVq1Ejbt2/XTz/9pB49euibb76Ru7u7Jk2aJAcHB5lMJk2ZMiXScN3WOnjwoBYsWCBJat68uRo0aBCv/UQ84RphypQpUSZlixcvrj/++MO4efPPP//o8uXL8TpmXNjb26tPnz7at2+fpk6dqubNm1vM4WQuJCREmzZt0scff2z07o6rY8eOGd9t2bJlY2zzUngPdkS2bNkyrV69WtOnT9eQIUOifVK9YsWK6tOnj/F64cKFxvLLbTNjxoyaO3euSpUqFWk/rq6u+vXXX43XS5YsifJmJAAAAEAMHrXkisGtlTZtWmPZmpGvzBNz8RkpKyHHM5+zOa77iWlfSaV06dJaunSpNm3apEGDBqly5cqyt7ePsqy3t7dGjhypTp06GSO4xdW+ffuM5Zo1a8ZYtmLFirHOyZ0axaddREho+zLHKHIAUgvmwAYAG9CkSRMj8bJ58+ZIc3BFzH3l7Owc5TxCUbl06ZKx3L179zjVx9vbO8b1/v7+unbtmm7cuKGbN2/qypUrOn/+vC5evGgRMMfWqzO6HrcRzIfsSkhP39j0799f586dkxQ+Z1lUwZSTk5NmzJihtm3b6syZM7p+/boWLlyoXr16GWX27dunH374QVL48NKTJk2yGJYrwvvvvy87OzsNHDhQkjRhwgR98MEHypw5s9V1fvr0qYYMGaKwsDDly5dP3377bZw+s7kMGTIYCdsaNWqoatWq0ZYtXry4GjZsqI0bN8pkMmnnzp3Rzgee2DJkyKCGDRuqYcOGksKfAvfy8pKnp6f+++8/3bt3zygbEBCgb775Rjly5Ijz8GM+Pj7GsjWf7eUhzhHO0dFRjo6Oeuedd2It27ZtW02ePFmhoaG6e/euLl26pCJFikS6gdKsWbMYv5OaNWuqfPnyRieE//77z7g5CQAAAEQgBo9acsXg1jKfBzowMDDW8uZlokvGWns8axL45sczf0o/rvV++XjxqXt8vfXWW+revbu6d++uFy9e6NixY/Ly8tKBAwd07Ngxi/bl6empPn36aNGiRXE+jnmc/dZbb8VavmjRovL09IzzcWxZpkyZjKnYAgMDY/2eo2vPcW1f5h3Dk7NtAUBCkcAGABuQL18+lStXTsePH9eBAwf0+PFjY7ix4OBgo0d448aNre6Jm5D5iaPqURsWFqZ169bpzz//1KlTp6INZtOmTavQ0FCrjmPtUFpS7IF4fB06dMjo7V6lShXVqlUr2rIZMmTQgAED9OWXX0qS1q1bZ5HAnj17trE8cODAKJPXEZo2baoFCxboxIkTevLkiXbt2qUPPvjA6np///338vHxUZo0aTR+/HhlyZLF6m1fljlzZosEdmyqVatm3NB5eZ7j5FSgQAEVKFBAzZs3lxT+5PTs2bONoclCQ0M1YcIErVmzJk77ffDggbEc3bDl5mIaGhDWyZo1qwoVKmQ80X/z5k0VKVIkUru2tn0eO3ZMUnj7JIENAACAlxGDxy6pYvB58+bFWqZr166SLBN1L4/OFBXzZJ41sdzLzI8XEBAQa3nzOpkfL671jmlfySljxoyqWrWqqlatqr59++rJkydyd3fXnDlzjDjZ09NTu3fvVu3ateO074cPHxrLL8/BHpVXMc42T2AHBATE+j2btwnz2Di5fxcAkFJIYAOAjWjatKmOHz+ukJAQbd++3egBvm/fPmMY3LgkOM17yfbv39+q+ZsivFz22bNn6tOnj/777z+L9+3s7JQnTx4VKVJEZcqUUZUqVXTr1i2NGDHC6mOltP379xvL1sxlXK1aNaVPn17BwcG6du2anj17psyZMysoKEiHDx+WFN6jNbq5pMzVqFFDJ06ckCSdPn3a6u933759xhxphQsX1smTJ3Xy5MkYt/H397e4UdCmTRsjAHJ0dDSGx8uVK1esx8+TJ4+x/PjxY6vqnBzKly+vGTNmaNasWZo0aZIk6dSpU7p8+XKcnhKP63Ba1syHh9iZ38Tw9/eXFP5bypQpk9HBIjW3TwAAANgWYvCU8csvv8RaJiKBbf7EuPmIW9G5e/eusZwzZ8441y0hxzPf1jxusWY/fn5+RiIyS5YscepokJSyZcumTp06qXHjxmrfvr0xXP3atWvjnMAmzg5vI7dv35YU3i5ii2+ja1/J/bsAgJRCAhsAbETjxo01fvx4mUwmiyHM/vnnH0nhPcTLly9v9f6yZ89u9JBt0qSJChcuHO+6/fTTT0bgnCVLFn3++edyc3NT8eLFIw17vXTp0ngfJyWY/7FvTS9ge3t7ZcuWzeg97O/vr8yZM+vx48cKDg6WFH6OzOckio554BCRsLOGefBx+fJlq24A+Pn5WZRr1KiRkcB+++23dfHiRUnhQ5PHxrx3f1yGPY+LhQsXav369Xrw4IG6dOmiTp06Wb1tt27d5O7urmvXrkkKn7M8Lgls8+/FmqcorDlnr6uwsDAFBgZaDEUYnWfPnhnL5r/Ft99+2+igYSvtEwAAAKkfMbjtK1q0qLEc2zDrL5cpVKhQnI9XpEiROB3PfFhs8+O9+eabRsf3hOwnMfn6+qpPnz568OCBAgICtGvXLqtHF8iTJ4/69eunb775RpKMWDsucubMqRs3bkgKj7NjixHjco8ktShSpIjxEIO3t7fKlCkTY/no2kVcfxfJ0b4AIClY968UACDJ5cmTRxUqVJAkHThwQL6+vgoKCjKGQ37//ffjtL8CBQoYyxF/IMckKCgoygDh7t27Wrt2raTwHrPz589Xv379VLFixSiTQ+ZPPCbVkGOJybxnszU9V0NDQy2SaI6OjpIs5wqL+O5iE9GrXwq/2ZFSSpYsaSxfuHAh1vIRva4lycXFJUnq5Ovrq9OnT+vu3bs6ePBgnLZNkyaNRUAX0bHAWvny5TOWz58/H2v5iGGv8f/++ecfvffeeypTpozFMPvRCQoKsrgJYt7hwBbbJwAAAFI/YvCUcf78+Vj/i1CsWDHjyd3YRh2TpOPHjxvLpUuXjnPdSpQoYSxb8x2alzGPW9KlS2ckw589exZrzBgxBZIUv3pbI1OmTDpy5IiuXr2qO3fuWBXrmitevLixHNcYWyLOluLWvp49e6ZLly5JCv/uzBPPefPmNTp9X7lyJdZkf3K0LwBICiSwAcCGRMzVGhISop07d2rv3r3GH6JxDZ7Nh7DesGFDrOX//PNPvfvuu3J1ddXIkSON90+ePGk80ViyZEmVK1cuxv14enoay6kheDYPAvbs2RNr+UOHDhnJ6UKFChlDvWXLlk1OTk6Swp86/ffff2Pdl/nw5eaBTGyaN29uVdBvHhTmy5fP4v38+fMb6+rUqWMsb926NdZgdPfu3cayNUOlx8e7775rLO/Zs0c3b96M0/bXr183losVK2axLrahy8qXL290TDh9+rQxxFd0rPmuXzcuLi56+PChQkNDdfjw4VifnN62bZvxuypYsGC07TNi7vWYmP+Ok6p9AgAA4NVADG7bsmfProoVK0qSHjx4oFOnTkVbNjAw0Iix06RJo2rVqsX5eNWqVTM6uR84cCDGjumnTp0ypuIqVqyYcufObbHefIjt2O41mK+vXr16XKttFXt7e73zzjvG6yVLlsRp+4inpyXLJ4AjxBZnm5+PiDnmo3P16lWL470qzGPb2O4jeHh4GNMSuLq6RhpSPeJ8hoSEaN++fTHuKznaFwAkBRLYAGBDGjVqZAzhtHXrVm3ZskVS+NOIcUlwSlKzZs2MAOLff/+NMWDy8/PT3LlzJYU/+Wres9Y8YDN/YjgqO3bssHha1nwOMFtVt25dY7jvs2fPatOmTdGWDQ0N1e+//268bty4scX6+vXrG8vTpk2LMRG8d+9e41xlypRJNWrUiFf9E0Px4sVVqlQpSeG9/efMmRNtWS8vL3l4eEiSsmbNqrp16yZJnd577z3jCYaQkBB99dVXFkNMx2Tz5s3Gk7olS5aMNHy4+fDu5sNNR0iXLp0aNWokKbwzQsR82lG5cOGC8TvF/ytXrpzx9HNgYKBxfYmKv7+/xTlu3769xfoaNWooR44cksJv5q1bty7afa1bt87oqV+4cGGLGzQAAADAy4jBbZ95R4Jp06ZFW27JkiXG0+i1atUyYoi4yJw5s2rVqiUp/Mn2mJK85nX55JNPYqz3ggULon1K9sSJE0Yn8TfeeMMiyZnY2rRpYyy7u7sbw+XHJjAwULNmzTJeRzU3vPlw5GFhYZHWN2rUSOnShc9mum7dOuPp4qjE9D2nZgULFjSGDY/pXkJwcLBmzpxpvI6tfc2cOTPa+0/m90eKFSsW67DlAGBLSGADgA3JlSuX0Wv7v//+065duyTFvee3FD63jvl2AwcONIZCM3f//n317t3b6DmcN29etWzZ0lhvHrT7+Pjof//7X6R9hIWFadWqVRo0aJDF+wEBAXGud3JzcXEx5jqTpOHDh0eZxPb399fgwYN1+PBhSeFDh3fu3NmiTPfu3Y0nss+ePavevXtbDOcWwcPDw+Jcde3aNUWHEJekYcOGGTdbpk6dqkWLFkXqvX/8+HH169fPeL9Xr16yt7dPkvqkTZtWY8aMMXoZHz9+XM2bN9eOHTuiDIal8Bs9Cxcu1ODBgyWFJ6KHDh0aqVzE3N+SdOfOnSiT2L1791bWrFklSevXr9evv/4a6WbQpUuX1KNHj3gNn/aqS5MmjXr06GG8nj17tlasWBGp3J07d9SlSxdj2O+iRYvq008/tSiTPn16Y641SRoxYkSUN1p27dqlUaNGGa8HDhyY4M8BAACAVxsxuO1r0aKFMULTrl279PPPP0eK4TZv3qzJkydLCn8SuHfv3vE+Xu/evY1E66RJkyLdHwgLC9PPP/9stBVnZ2eLxHCEokWLGk/437t3T7169ZKfn59FmYsXL6pv375GjP3ll18mWYwthXeyiHgyPSwsTIMHD9bo0aONthiVc+fOqXPnzsbT79WqVbPovB/BPM42n9YpgouLiz777DNJ4bF7t27dIk0RFRoaqsmTJ1s1gkFq1b9/f2N5+PDh8vLyslgfGBiooUOH6syZM5LCrwcNGjSItJ9atWoZUyCcOXNGQ4cOVWBgoEWZQ4cO6dtvvzVe9+nTJ9E+BwAkh3QpXQEAgKUmTZro4MGDCgwMNP74jE/wLEnff/+9zp07p0uXLunZs2fq1auXypUrJ1dXV2XIkEFXr17V9u3b9eLFC0lShgwZNGHCBCMJK0lvvfWW3NzcjKdux44dq02bNqlChQrKkiWL7t69q3///dcYZjl9+vRGQi+23uIJNXXqVKNnbr58+bRz58547Wfo0KE6ffq0Tp48qefPn2vAgAGaOXOmqlWrJkdHR928eVM7duwwktHp06fX77//bgwzHSF//vwaP368Bg0aJJPJpD179qhOnTqqV6+eChcurODgYB06dEiHDh0ytnFzc1PPnj2jrJd5L/xx48apefPm8fp81qhSpYr69OmjqVOnKiwsTD/99JOWLVummjVrKlu2bDp9+rR2795t3CioUqWKOnXqFOW+OnbsaDwF8Mknn2j8+PHxqtN7772nX375RV999ZXCwsJ07do19erVS05OTnrvvfeUJ08eZcuWTU+ePNG1a9fk6elpMVT1Dz/8oKpVq0bab5YsWeTo6ChfX195e3urV69eevfdd+Xg4KCOHTtKknLnzq2RI0dqyJAhCgsL09y5c7V9+3bVrVtX2bJl0/nz57V9+3YFBwerUKFCFvM3v+zWrVuqV6+e8XrRokVydXWN1zmxFdZ8ptatW+u///7Tli1bFBYWppEjR2rFihVyc3NTxowZdfnyZe3YscO4yebs7KwpU6ZEecOmWbNm8vT0lLu7uwIDAzVw4EDNnz9frq6ucnBw0OHDh/Xff/8Z5T/++GPjKXoAAAAgJsTg1kusGDwuMmbMqDFjxujLL79USEiI5s+fr927d6tevXrKkCGDDh8+bDE9V/fu3aMdicma+hcvXlzdu3fX9OnTFRwcrAEDBmj58uWqVKmSMUd6xKhPadOm1bhx46Kcm1wK7yju5eWl+/fvy9PTU40aNVKTJk3k7Oysy5cva+vWrcYT91WqVNHnn38e5X48PT2N5K8U/uS9+bRL1kqTJo2mT5+uLl266NixYwoNDdWyZcu0YsUKlStXTqVKlVKOHDlkMpn04MEDHTlyRBcuXDAS7CVKlNDUqVOj3Ld5fSZMmCBvb2+lT59eDRs2NIYc79evnw4cOKAzZ87Ix8dHzZs3V926dVWiRAn5+/trx44dunbtmtKnT6/cuXNHmQiPMHToUP3111+Sws/d4sWL43w+Eps1dapZs6aaNWumtWvXyt/fX59//rlq1aqlMmXK6OnTp9qyZYt8fHwkSQ4ODvr5558tnm6PYGdnp++//15t27bV8+fPtWHDBh0+fFiNGjVStmzZdOrUKe3Zs8e4h/Phhx8SIwNIdUhgA4CNadSokX788Ufjj8zSpUtbzNMcF1myZNGyZcv0zTffGL2Djx8/ruPHj0cqmydPHv36668Wcw9H+OWXX9S5c2djTuWjR4/q6NGjkcoVK1ZM48ePV5s2bRQcHKyLFy8qKCgoSXsQJwYHBwctXLhQ3333ndG7+ty5czp37lyksnny5NGkSZOiPE9S+BxqmTJl0tChQ/X48WMFBARE2XvYzs5OrVq10ogRIyyGtE5Jffr0kaOjoyZOnKjnz5/rypUrunLlSqRy77//vsaOHRtlEJXYmjZtqoIFC+qnn37SkSNHJEmPHj2KsUd20aJFNWrUKFWuXDnaMm3atDGGQNu9e7d2796trFmzGglsSfroo4/k4OCgr7/+WgEBAbp27Zrmz59vsZ8yZcrom2++sbiZgHBp0qTRhAkT5OzsbAy9d/r0aZ0+fTpS2TJlyujXX3/VW2+9Fe3+xo4dq1y5cmnevHkKDg7WyZMndfLkyUjlOnXqpCFDhiTeBwEAAMArjRjc9lWvXl2TJk3SsGHD9OzZsyhjVTs7O3Xt2lUDBgxI8PH69eun4OBgzZ07V2FhYTpw4IAOHDhgUSZTpkwaN25cjNOB5cqVS//73//Uo0cP3bhxQ48fP9aff/4Z5eebMmVKstwbyJw5sxYtWqT58+dr9uzZev78ucLCwqJtY1L46GafffaZ+vTpE22yvnHjxpo6dar8/Pzk6+urP/74wzheRALbwcFBixcvVv/+/eXh4aHg4GBt2bLFYijt9OnT6/vvv9eOHTtiTGCnZj/99JMkae3atQoNDdXOnTsjdaZwcnLSlClTYpzKoHjx4pozZ4769++vBw8e6Pbt21q4cGGkch999JHGjh2bqJ8BAJIDCWwAsDE5cuSQq6ur8TRhfHt+R8iWLZtmzpypQ4cOaf369fLy8tK9e/cUGBiobNmyqXjx4qpXr54++eSTaAORHDlyaNWqVVqxYoU2b96sS5cuyd/fXxkzZpSzs7NKlCih+vXrq0mTJkqXLp2qVq2qvXv3KiAgQNu3bzeGzbJlWbJk0W+//abOnTtrzZo1OnTokO7cuaOgoCA5OjqqRIkSqlu3rlq0aGHROz4qtWvX1o4dO7R69Wrt2bNHFy5ckK+vrzJkyCAXFxdVqVJFrVu3jvOcasmhQ4cOql+/vlasWKE9e/bo1q1bevbsmZycnFShQgW1aNHCmBMsuZQpU0bLli2Tl5eXdu7cqZMnT+rGjRvy9fVVSEiIHB0d5ezsrHLlyqlBgwaqVq2aMeRbdAYMGCBHR0e5u7vr1q1bSps2rXLlyqVHjx7JycnJKNegQQNt3rxZixYt0p49e3Tz5k2lS5dOhQoV0ocffqj27dsbve8Rmb29vUaMGKFWrVpp+fLl8vLyko+Pj0JCQuTs7KxSpUqpSZMmatKkSawdIuzs7DRw4EB9/PHHWrVqlTw8POTj46PAwEBj6Me2bduqYsWKyfTpAAAA8CogBk8dGjVqpPLly2vJkiXavXu3vL29FRQUZMQC7du3V7ly5RLteF999ZUaNWqkZcuWydPTU/fu3VOaNGlUoEABubm5qWPHjsqbN2+s+3n77be1YcMGLV++XFu2bNHly5fl7++v7Nmzq0yZMmrWrJmaNGliTOmVHDJkyKCePXuqTZs22rx5sw4ePKiLFy/q7t27CggIkL29vXLmzKn8+fOrVq1aatSokVxcXGLcp7Ozs5YtW6bffvtNhw4d0tOnT+Xk5KTnz59blMuSJYvmzp2rLVu2yN3dXSdOnJC/v7+cnJxUuXJldenSRaVLl45y+P1XRbp06fTzzz+rWbNmWr16tQ4fPqwHDx4offr0Kly4sOrUqaP27dtb3JuITqVKlbRp0yYtWbJEO3bs0I0bNxQQEKA33nhDFSpUUOvWreXm5pYMnwoAEp+d6eUJLgEAABLoypUratKkidq0aaMxY8akdHUAAAAAAEjVBg0apI0bN8rDw0POzs4pXR0AAJJU0o/9CQAAXjs3btyQFD5kGgAAAAAASJjr168rXbp0ypEjR0pXBQCAJEcCGwAAJCqTyaTFixdLUrIPNw4AAAAAwKvm0KFDOnXqlNzc3GKdfgkAgFcB/9oBAIBENXjwYHl4eKh58+Z65513Uro6AAAAAACkWqdPn1a3bt2UJUsWDRw4MKWrAwBAsmAObAAAkKh27NihGzduqGPHjkqXLl1KVwcAAAAAgFQrJCREP/74ozp06KAiRYqkdHUAAEgWJLABAAAAAAAAAAAAADaBIcQBAAAAAAAAAAAAADaBBDYAAAAAAAAAAAAAwCaQwAYAAAAAAAAAAAAA2AQS2AAAAAAAAAAAAAAAm0ACGwAAAAAAAAAAAABgE0hgAwAAAAAAAAAAAABsAglsAAAAAAAAAAAAAIBNSJfSFUitbt++rZ07dxqvCxYsKAcHhxSsEQAAAAAgLgICAnTjxg3jdd26deXi4pKCNXq9EFcDAAAAQOqWVHE1Cex42rlzp8aMGZPS1QAAAAAAJKL27dundBVeG8TVAAAAAPDqSYy4miHEAQAAAAAAAAAAAAA2gQQ2AAAAAAAAAAAAAMAmMIR4PBUoUMDi9ciRI1W8ePEUqg0AAAAAIK7Onz9vMYT1y3EekhZxNQAAAACkbkkVV5PAjqdMmTJZvC5evLgqVaqUQrUBAAAAACTUy3EekhZxNQAAAAC8WhIrrmYIcQAAAAAAAAAAAACATSCBDQAAAAAAAAAAAACwCSSwAQAAAAAAAAAAAAA2gQQ2AAAAAAAAAAAAAMAmkMAGAAAAAAAAAAAAANiEdClx0CdPnuj999/XvXv39OGHH2rChAnRlg0LC9Nff/2ltWvX6vz583r+/LmcnZ1VsWJFtW3bVpUrV07GmgMAAAAAkPKIqwEAAAAAr6oUSWD/8MMPunfvXqzlnj59ql69eungwYMW7/v4+MjHx0cbN25Up06dNHTo0KSqKgAAAAAANoe4GgAAAADwqkr2BPb27du1fv36WMuZTCYNGDDACLLd3NzUrl075cyZU2fPntWcOXPk7e2tBQsWyMnJSV9++WVSVx0AAAAAgBRHXA0AAAAAeJUl6xzYjx490qhRo6wq+/fff8vDw0OS1Lx5c82bN0/169dX+fLl1a5dO7m7u6tIkSKSpGnTpunOnTtJVm8AAAAAAGwBcTUAAAAA4FWXrAns77//Xg8ePJCTk1OsZRcsWCBJypIli4YMGfJ/7d19nJZlnTf+z/AkwSgPgTgoLCZq271bgwmi2QNma2ZbBmq6orJaSBquWqntaqSZunePJm236xpGpZmB3D4kpKYWLzPE5C4T5pbChRjw4VZokAFGmd8f/LhiYhhgmGvmHOb9/uuYOY/jur7X+ToG5juf6zrP7Y73798/V199dZJk48aNmTlzZtsWCwAAAAWjrwYAAGBv124B9k9/+tPMnTs33bp1y5VXXtni3BUrVuTZZ59NkowbNy79+/dvdt6RRx6Zgw8+OEkyd+7cNq0XAAAAikRfDQAAQFfQLgH2yy+/nGuuuSZJMmnSpLzjHe9ocf5TTz1VGo8dO7bFuWPGjEmSrFy5MsuXL9/DSgEAAKB49NUAAAB0Fe0SYE+bNi2vvvpqDj744Fx88cU7nb906dLSeMSIES3OHTZsWGn83HPPtbZEAAAAKCx9NQAAAF1Fj3I/wZw5c/LQQw+lW7duuf7667PPPvvsdM3q1atL46FDh7Y4t6qqqtl1u6K2tja1tbW7tWarmpqaVq0DAACA3aGvBgAAoCspa4D9wgsv5Mtf/nKSLZc4GzVq1C6tW7t2bWnct2/fFuf26dOnNK6rq9ut+mbNmpXp06fv1hoAAABoL/pqAAAAupqyXkL8yiuvzJ///OeMGDEi//Iv/7LL6zZt2lQa9+7du8W52x7fdh0AAAB0dvpqAAAAupqyfQL7rrvuyi9+8YvSJc521jBvq3v37qVxRUVFi3MbGxtL427d2uWW3gAAQBezubEx9Q2NO5/Idt7UsyLddtLX0Tx9NQAAsLfQV7deV+yryxJg19bW5oYbbkiSnHPOOTniiCN2a/22ly/bsGFDevXqtcO5GzduLI1bmtecCRMm5Oijj96tNVvV1NTkmmuuadVaAACgc6lvaMysRfUdXUanNKH6Tenbq2s12m1BXw0AAOxN9NWt1xX76jYPsBsbG/Nv//ZvWbduXUaMGJGLL754tx9j2/tz1dfXZ7/99tvh3PXr15fG/fr1263nGTp0aIYOHbrb9QEAAEC56KsBAADoyto8wL7zzjvz+OOPJ0nOPvvsLFu2bLs5L774Ymn85z//OYsXL06SDBo0KIMHD86BBx5YOr5q1aoMGTJkh8+3atWq0rileQAAANAZ6KsBAADoyto8wF60aFFpvCuXAnvsscfy2GOPJUk+/elPZ+rUqTn00ENLx5cvX57q6uodrl+xYkVpPHLkyN0vGAAAAApEXw0AAEBX1q2jC2hOdXV1Kv7/m5EvXLiwxbkLFixIklRVVeWggw4qe20AAABQdPpqAAAAOqs2/wT2DTfckBtuuKHFOX/605/y/ve/P0nyj//4j/nqV7/a5HhVVVWqq6vz9NNPZ968ebnssstSWVm53eMsXLiwdCm1E044oY1eAQAAAHQcfTUAAABdWSE/gZ0kZ511VpJkzZo1mTZtWjZv3tzk+Nq1azNt2rQkSc+ePTNx4sR2rxEAAACKSl8NAABAZ9Tmn8BuKyeddFJmz56d+fPn57777svq1atz9tlnZ8iQIampqcnNN9+clStXJkmmTp2aYcOGdXDFAAAAUBz6agAAADqjwgbYSXLjjTdmypQpefLJJ7Nw4cJm79s1adKkTJ48uQOqAwAAgGLTVwMAANDZFDrArqyszMyZMzNnzpzcc889WbJkSerq6jJgwICMGjUqZ555ZsaOHdvRZQIAAEAh6asBAADobDokwD7ooINSU1OzS3O7deuW8ePHZ/z48WWuCgAAADoHfTUAAAB7q24dXQAAAAAAAAAAJAJsAAAAAAAAAApCgA0AAAAAAABAIQiwAQAAAAAAACgEATYAAAAAAAAAhSDABgAAAAAAAKAQBNgAAAAAAAAAFIIAGwAAAAAAAIBCEGADAAAAAAAAUAgCbAAAAAAAAAAKQYANAAAAAAAAQCEIsAEAAAAAAAAoBAE2AAAAAAAAAIUgwAYAAAAAAACgEATYAAAAAAAAABSCABsAAAAAAACAQhBgAwAAAAAAAFAIAmwAAAAAAAAACkGADQAAAAAAAEAhCLABAAAAAAAAKAQBNgAAAAAAAACFIMAGAAAAAAAAoBAE2AAAAAAAAAAUggAbAAAAAAAAgEIQYAMAAAAAAABQCAJsAAAAAAAAAApBgA0AAAAAAABAIQiwAQAAAAAAACgEATYAAAAAAAAAhSDABgAAAAAAAKAQBNgAAAAAAAAAFIIAGwAAAAAAAIBCEGADAAAAAAAAUAgCbAAAAAAAAAAKQYANAAAAAAAAQCEIsAEAAAAAAAAoBAE2AAAAAAAAAIUgwAYAAAAAAACgEATYAAAAAAAAABSCABsAAAAAAACAQhBgAwAAAAAAAFAIAmwAAAAAAAAACkGADQAAAAAAAEAhCLABAAAAAAAAKAQBNgAAAAAAAACFIMAGAAAAAAAAoBAE2AAAAAAAAAAUggAbAAAAAAAAgEIQYAMAAAAAAABQCAJsAAAAAAAAAApBgA0AAAAAAABAIQiwAQAAAAAAACgEATYAAAAAAAAAhSDABgAAAAAAAKAQBNgAAAAAAAAAFIIAGwAAAAAAAIBCJXC32gAAPWRJREFUEGADAAAAAAAAUAgCbAAAAAAAAAAKQYANAAAAAAAAQCEIsAEAAAAAAAAoBAE2AAAAAAAAAIUgwAYAAAAAAACgEATYAAAAAAAAABSCABsAAAAAAACAQhBgAwAAAAAAAFAIAmwAAAAAAAAACkGADQAAAAAAAEAhCLABAAAAAAAAKAQBNgAAAAAAAACFIMAGAAAAAAAAoBAE2AAAAAAAAAAUggAbAAAAAAAAgEIQYAMAAAAAAABQCAJsAAAAAAAAAApBgA0AAAAAAABAIQiwAQAAAAAAACiEHuV+ghdeeCHf//7389hjj+VPf/pTkmTIkCE59thjc+qpp+bwww9vcf3mzZtz9913Z86cOampqcn69eszePDgHHHEETn99NMzevTocr8EAAAA6DD6agAAALqSsgbYDz30UC6//PKsW7euyfeXLVuWZcuW5Y477siUKVMyderUZtfX1dXlggsuyIIFC5p8v7a2NrW1tbn//vszadKkXHHFFWV7DQAAANBR9NUAAAB0NWULsJ9++ulcfPHFaWhoSPfu3XPaaaflPe95TyorK/Pss8/mlltuycsvv5zp06enb9++Offcc5usb2xszMUXX1xqso899ticccYZGTRoUBYvXpxbbrklK1euzIwZMzJw4MBMnjy5XC8FAAAA2p2+GgAAgK6obAH2Nddck4aGhiTJt771rRx//PGlY2PGjMk//uM/5qMf/Wheeuml3HTTTZkwYUL69etXmnPvvfdm/vz5SZLx48fn+uuvLx2rrq7OiSeemDPPPDNLly7N9OnT85GPfCQHHHBAuV4OAAAAtCt9NQAAAF1Rt3I86DPPPJNnn302SXLCCSc0abK3evOb35zzzjsvSbJ+/fo8+uijTY7PmDEjSVJZWZnLL798u/X9+/fP1VdfnSTZuHFjZs6c2ZYvAQAAADqMvhoAAICuqiwB9qZNm3L88cdn+PDh+cAHPrDDeW95y1tK41WrVpXGK1asKDXq48aNS//+/Ztdf+SRR+bggw9OksydO7cNKgcAAICOp68GAACgqyrLJcSPOOKIHHHEETudt3LlytJ4//33L42feuqp0njs2LEtPsaYMWOybNmyrFy5MsuXL8/w4cNbUTEAAAAUh74aAACArqosn8DeFa+88kq++93vJkn69OmTcePGlY4tXbq0NB4xYkSLjzNs2LDS+LnnnmvbIgEAAKCg9NUAAADsjcryCewd2bhxY/70pz/l4YcfzsyZM/PSSy+loqIiV111VQYMGFCat3r16tJ46NChLT5mVVVVs+t2RW1tbWpra3drzVY1NTWtWgcAAACtpa8GAABgb9duAfbvfve7nHLKKU2+d8ABB+SLX/xik3eJJ8natWtL4759+7b4uH369CmN6+rqdqumWbNmZfr06bu1BgAAADqCvhoAAICuoN0uId7cO7Jfeuml3HnnnXnmmWeafH/Tpk2lce/evVt83G2Pb7sOAAAA9ib6agAAALqCdvsE9ogRI3LzzTdn4MCBefHFF3P//ffnpz/9aR555JE88cQTuemmm/Lud787SdK9e/fSuoqKihYft7GxsTTu1q3DbukNAAAAZaWvBgAAoCtotwD78MMPz+GHH176+vjjj8+xxx6bf/3Xf019fX0++9nP5uGHH05lZWWTy5dt2LAhvXr12uHjbty4sTRuaV5zJkyYkKOPPnq31mxVU1OTa665plVrAQAAYHfpqwEAAOgK2i3Abs6ECRPy2GOPZd68eVmzZk3mzZuXCRMmNLk/V319ffbbb78dPsb69etL4379+u3W8w8dOjRDhw7d/cIBAACgAPTVAAAA7G06/Npg//AP/1AaL168OEly4IEHlr63atWqFtdve3zIkCFtXB0AAAAUm74aAACAvUlZAuy6urr8/ve/z7x585rcS6s5/fv3L40bGhqSJIceemjpe8uXL29x/YoVK0rjkSNHtqJaAAAAKBZ9NQAAAF1VWQLsa665JuPHj89FF12UJUuWtDh320b6gAMOSJJUV1enoqIiSbJw4cIW1y9YsCBJUlVVlYMOOmhPygYAAIBC0FcDAADQVZUlwB49enRp/JOf/GSH8zZv3tzk+LHHHptkS9NcXV2dJJk3b17WrVvX7PqFCxdm2bJlSZITTjhhT8sGAACAQtBXAwAA0FWVJcD+0Ic+lAEDBiRJ7rzzzvzqV7/abk5jY2Ouu+66/P73v0+SvOtd78rf//3fl46fddZZSZI1a9Zk2rRp2bx5c5P1a9euzbRp05IkPXv2zMSJE8vxUgAAAKDd6asBAADoqnqU40ErKytz9dVX5+KLL05DQ0POPffcnHrqqXnve9+bQYMGZdmyZfnRj36Up59+OsmWS5xdd911TR7jpJNOyuzZszN//vzcd999Wb16dc4+++wMGTIkNTU1ufnmm7Ny5cokydSpUzNs2LByvBQAAABod/pqAAAAuqqyBNjJlkuPfeUrX8lVV12V9evX584778ydd9653by/+7u/y4033li6T9e2brzxxkyZMiVPPvlkFi5c2Ox9uyZNmpTJkyeX5TUAAABAR9FXAwAA0BWVLcBOkg9/+MMZPXp0fvjDH+YXv/hFli9fnk2bNmXAgAF5+9vfnpNOOikf/OAH061b81cyr6yszMyZMzNnzpzcc889WbJkSerq6jJgwICMGjUqZ555ZsaOHVvOlwAAAAAdRl8NAABAV1PWADtJhgwZkksvvTSXXnppq9Z369Yt48ePz/jx49u4MgAAACg+fTUAAABdSfNv0QYAAAAAAACAdibABgAAAAAAAKAQBNgAAAAAAAAAFIIAGwAAAAAAAIBCEGADAAAAAAAAUAgCbAAAAAAAAAAKQYANAAAAAAAAQCEIsAEAAAAAAAAoBAE2AAAAAAAAAIUgwAYAAAAAAACgEATYAAAAAAAAABSCABsAAAAAAACAQhBgAwAAAAAAAFAIAmwAAAAAAAAACkGADQAAAAAAAEAhCLABAAAAAAAAKAQBNgAAAAAAAACFIMAGAAAAAAAAoBAE2AAAAAAAAAAUggAbAAAAAAAAgEIQYAMAAAAAAABQCAJsAAAAAAAAAApBgA0AAAAAAABAIQiwAQAAAAAAACgEATYAAAAAAAAAhSDABgAAAAAAAKAQBNgAAAAAAAAAFIIAGwAAAAAAAIBCEGADAAAAAAAAUAgCbAAAAAAAAAAKQYANAAAAAAAAQCEIsAEAAAAAAAAoBAE2AAAAAAAAAIUgwAYAAAAAAACgEATYAAAAAAAAABSCABsAAAAAAACAQhBgAwAAAAAAAFAIAmwAAAAAAAAACkGADQAAAAAAAEAhCLABAAAAAAAAKAQBNgAAAAAAAACFIMAGAAAAAAAAoBAE2AAAAAAAAAAUggAbAAAAAAAAgEIQYAMAAAAAAABQCAJsAAAAAAAAAApBgA0AAAAAAABAIQiwAQAAAAAAACgEATYAAAAAAAAAhSDABgAAAAAAAKAQBNgAAAAAAAAAFIIAGwAAAAAAAIBCEGADAAAAAAAAUAgCbAAAAAAAAAAKQYANAAAAAAAAQCEIsAEAAAAAAAAoBAE2AAAAAAAAAIUgwAYAAAAAAACgEATYAAAAAAAAABSCABsAAAAAAACAQhBgAwAAAAAAAFAIAmwAAAAAAAAACkGADQAAAAAAAEAhCLABAAAAAAAAKAQBNgAAAAAAAACFIMAGAAAAAAAAoBAE2AAAAAAAAAAUggAbAAAAAAAAgEIQYAMAAAAAAABQCAJsAAAAAAAAAApBgA0AAAAAAABAIQiwAQAAAAAAACgEATYAAAAAAAAAhSDABgAAAAAAAKAQBNgAAAAAAAAAFIIAGwAAAAAAAIBCEGADAAAAAAAAUAg92uNJXn755dxxxx2ZP39+li1blvXr16eysjKHHnpo3v/+9+e0005Lnz59drh+8+bNufvuuzNnzpzU1NRk/fr1GTx4cI444oicfvrpGT16dHu8DAAAAOgQ+moAAAC6irIH2A899FCuuOKK1NXVNfn+q6++mgULFmTBggWZOXNmvv3tb+dv//Zvt1tfV1eXCy64IAsWLGjy/dra2tTW1ub+++/PpEmTcsUVV5T1dQAAAEBH0FcDAADQlZQ1wF6wYEEuvvjiNDQ0pGfPnjnttNPyvve9L/3798+qVaty991355FHHsnKlStz7rnnZvbs2amqqiqtb2xszMUXX1xqso899ticccYZGTRoUBYvXpxbbrklK1euzIwZMzJw4MBMnjy5nC8HAAAA2pW+GgAAgK6mbPfAbmxszNVXX11qsm+99dZ84QtfyHve8568/e1vzwknnJD/9b/+Vy666KIkySuvvJKvfvWrTR7j3nvvzfz585Mk48ePz6233prjjz8+1dXVOeOMMzJ79uyMHDkySTJ9+vSsXr26XC8HAAAA2pW+GgAAgK6obAH2okWLsnTp0iTJ6aefnqOOOqrZeRdccEEOO+ywJMnPfvazrF+/vnRsxowZSZLKyspcfvnl263t379/rr766iTJxo0bM3PmzDZ9DQAAANBR9NUAAAB0RWULsJ988snS+P3vf/8O51VUVORd73pXkmTTpk354x//mCRZsWJFnn322STJuHHj0r9//2bXH3nkkTn44IOTJHPnzm2L0gEAAKDD6asBAADoisoWYL/97W/PlClT8rGPfazUCO9IY2Njabxx48YkyVNPPVX63tixY1tcP2bMmCTJypUrs3z58taWDAAAAIWhrwYAAKAr6lGuBx47duxOG+Stfv3rX5fGBx54YJKULpOWJCNGjGhx/bBhw0rj5557LsOHD9+NSgEAAKB49NUAAAB0RWULsHfVY489lsWLFydJDjvssBxwwAFJktWrV5fmDB06tMXHqKqqKo23XbcztbW1qa2t3Z1yS2pqalq1DgAAANqSvhoAAIC9SYcG2K+88kqmTZtW+vq8884rjdeuXVsa9+3bt8XH6dOnT2lcV1e3y88/a9asTJ8+fZfnAwAAQJHoqwEAANjblO0e2Dvz2muv5VOf+lRWrVqVZMv9tj7ykY+Ujm/atKk07t27d4uPte3xbdcBAADA3kpfDQAAwN6oQwLsurq6fOITn8iiRYuSJAcccEC+/vWvp1u3v5TTvXv30riioqLFx2tsbCyNt30MAAAA2BvpqwEAANhbtfslxF988cVMnjy5dH+uQYMG5bvf/W4GDx7cZN62ly/bsGFDevXqtcPH3LhxY2nc0ry/NmHChBx99NG7PH9bNTU1ueaaa1q1FgAAAFpLXw0AAMDerF0D7CVLluT888/P6tWrk2x5h/h3v/vdHHLIIdvN3fb+XPX19dlvv/12+Ljr168vjfv167fL9QwdOjRDhw7d5fkAAADQkfTVAAAA7O3a7bpgjz32WM4444xSk/2Wt7wlt99+e7NNdpIceOCBpfHW+3ntyLbHhwwZ0gbVAgAAQLHoqwEAAOgK2iXAvvvuu3PBBReU3tF9xBFH5I477mjSTP+1Qw89tDRevnx5i4+/YsWK0njkyJF7WC0AAAAUi74aAACArqLsAfbs2bPz+c9/Pq+//nqS5MQTT8z3vve99O/fv8V11dXVqaioSJIsXLiwxbkLFixIklRVVeWggw7a86IBAACgIPTVAAAAdCVlDbCffPLJXHnllWlsbEySTJw4Md/4xjfSq1evna6tqqpKdXV1kmTevHlZt25ds/MWLlyYZcuWJUlOOOGEtikcAAAACkBfDQAAQFdTtgB73bp1+dznPpc33ngjSTJhwoRcddVVpXd/74qzzjorSbJmzZpMmzYtmzdvbnJ87dq1mTZtWpKkZ8+emThxYhtVDwAAAB1LXw0AAEBX1KNcD/yDH/wgq1atSpIMHjw4p512WhYvXrzTdVVVVaXLoJ100kmZPXt25s+fn/vuuy+rV6/O2WefnSFDhqSmpiY333xzVq5cmSSZOnVqhg0bVq6XAwAAAO1KXw0AAEBXVLYA+0c/+lFp/NJLL+XjH//4Lq27/vrrM378+NLXN954Y6ZMmZInn3wyCxcubPa+XZMmTcrkyZP3vGgAAAAoCH01AAAAXVFZAuxXXnml9C7xPVVZWZmZM2dmzpw5ueeee7JkyZLU1dVlwIABGTVqVM4888yMHTu2TZ4LAAAAikBfDQAAQFdVlgB74MCBqampabPH69atW8aPH9/kHeQAAACwt9JXAwAA0FV16+gCAAAAAAAAACARYAMAAAAAAABQEAJsAAAAAAAAAApBgA0AAAAAAABAIQiwAQAAAAAAACgEATYAAAAAAAAAhSDABgAAAAAAAKAQBNgAAAAAAAAAFIIAGwAAAAAAAIBCEGADAAAAAAAAUAgCbAAAAAAAAAAKQYANAAAAAAAAQCEIsAEAAAAAAAAoBAE2AAAAAAAAAIUgwAYAAAAAAACgEATYAAAAAAAAABSCABsAAAAAAACAQhBgAwAAAAAAAFAIAmwAAAAAAAAACkGADQAAAAAAAEAhCLABAAAAAAAAKAQBNgAAAAAAAACFIMAGAAAAAAAAoBAE2AAAAAAAAAAUggAbAAAAAAAAgEIQYAMAAAAAAABQCAJsAAAAAAAAAApBgA0AAAAAAABAIQiwAQAAAAAAACgEATYAAAAAAAAAhSDABgAAAAAAAKAQBNgAAAAAAAAAFIIAGwAAAAAAAIBCEGADAAAAAAAAUAgCbAAAAAAAAAAKQYANAAAAAAAAQCEIsAEAAAAAAAAoBAE2AAAAAAAAAIUgwAYAAAAAAACgEATYAAAAAAAAABSCABsAAAAAAACAQhBgAwAAAAAAAFAIAmwAAAAAAAAACkGADQAAAAAAAEAhCLABAAAAAAAAKAQBNgAAAAAAAACFIMAGAAAAAAAAoBAE2AAAAAAAAAAUggAbAAAAAAAAgEIQYAMAAAAAAABQCAJsAAAAAAAAAApBgA0AAAAAAABAIQiwAQAAAAAAACgEATYAAAAAAAAAhSDABgAAAAAAAKAQBNgAAAAAAAAAFIIAGwAAAAAAAIBCEGADAAAAAAAAUAgCbAAAAAAAAAAKQYANAAAAAAAAQCEIsAEAAAAAAAAoBAE2AAAAAAAAAIUgwAYAAAAAAACgEATYAAAAAAAAABSCABsAAAAAAACAQhBgAwAAAAAAAFAIAmwAAAAAAAAACqFHRxcAAACU3+bGxtQ3NHZ0GZ1On54Vqaio6OgyAAAA6GD66tbRV9MaAmwAAOgC6hsaM2tRfUeX0elMHN0n2mwAAAD01a2jr6Y1XEIcAAAAAAAAgEIQYAMAAAAAAABQCAJsAAAAAAAAAApBgA0AAAAAAABAIQiwAQAAAAAAACgEATYAAAAAAAAAhSDABgAAAAAAAKAQOiTAvuqqq3L44YfnG9/4xk7nbt68ObNmzcpZZ52VMWPG5O/+7u8ybty4fOYzn8mTTz7ZDtUCAABAseirAQAA2Fv1aO8nfPDBB/PjH/94l+bW1dXlggsuyIIFC5p8v7a2NrW1tbn//vszadKkXHHFFeUoFQCAgtjc2Jj6hsaOLqNT6tOzIhUVFR1dBtCG9NUAAOwufXXr6auh/bVrgP3YY4/lkksu2aW5jY2Nufjii0tN9rHHHpszzjgjgwYNyuLFi3PLLbdk5cqVmTFjRgYOHJjJkyeXs3QAADpQfUNjZi2q7+gyOqWJo/tEmw17D301AACtoa9uPX01tL92u4T4bbfdlgsvvDANDQ27NP/ee+/N/PnzkyTjx4/PrbfemuOPPz7V1dU544wzMnv27IwcOTJJMn369KxevbpstQMAAEBH01cDAADQFZQ9wH7++eczZcqUXH/99WloaEj37t13ad2MGTOSJJWVlbn88su3O96/f/9cffXVSZKNGzdm5syZbVc0AAAAFIS+GgAAgK6krAH2D3/4w3z4wx/OI488kiQZOXJkqTluyYoVK/Lss88mScaNG5f+/fs3O+/II4/MwQcfnCSZO3du2xQNAAAABaGvBgAAoKspa4D9u9/9Lg0NDenVq1fOP//8zJ49O8OHD9/puqeeeqo0Hjt2bItzx4wZkyRZuXJlli9fvmcFAwAAQIHoqwEAAOhqepTzwffZZ5+ceuqp+dSnPpUDDzxwl9ctXbq0NB4xYkSLc4cNG1YaP/fcc7vUyAMAAEBnoK8GAACgqylrgD1t2rR067b7H/JevXp1aTx06NAW51ZVVTW7blfU1tamtrZ294r7/9XU1LRqHQAAAOwqfTUAAABdTVkD7NY02Umydu3a0rhv374tzu3Tp09pXFdXt1vPM2vWrEyfPn33igMAAIB2oq8GAACgqynrPbBba9OmTaVx7969W5y77fFt1wEAAEBXpa8GAACgsyrrJ7Bbq3v37qVxRUVFi3MbGxtL49a+Mx2Avd/mxsbUNzTufCJNvKlnRbrt5P9iAKB49NUAtDV9devoqwFg9xUywN728mUbNmxIr169djh348aNpXFL85ozYcKEHH300btfYLbcq+uaa65p1VoA2l99Q2NmLarv6DI6nQnVb0rfXhptAOhs9NUAtDV9devoqwFg9xUywN72/lz19fXZb7/9djh3/fr1pXG/fv1263mGDh2aoUOH7n6BAAAAUGD6agAAADqrQl4b7MADDyyNV61a1eLcbY8PGTKkbDUBAABAZ6GvBgAAoLMqZIB96KGHlsbLly9vce6KFStK45EjR5atJgAAAOgs9NUAAAB0VoUMsKurq1NRseW+IAsXLmxx7oIFC5IkVVVVOeigg8peGwAAABSdvhoAAIDOqpABdlVVVaqrq5Mk8+bNy7p165qdt3DhwixbtixJcsIJJ7RXeQAAAFBo+moAAAA6q0IG2Ely1llnJUnWrFmTadOmZfPmzU2Or127NtOmTUuS9OzZMxMnTmz3GgFgb9e7R0VHlwAAtJK+GgA6nr4aAHZfj44uYEdOOumkzJ49O/Pnz899992X1atX5+yzz86QIUNSU1OTm2++OStXrkySTJ06NcOGDevgigFg71OhzwaATktfDQAdT18NALuvsAF2ktx4442ZMmVKnnzyySxcuLDZ+3ZNmjQpkydP7oDqAKDr2NzYmPqGxo4uo1Pq07MiFRUVzmErbT1/ALSOvhoAikFP2Hr66j2jrwY6o0IH2JWVlZk5c2bmzJmTe+65J0uWLEldXV0GDBiQUaNG5cwzz8zYsWM7ukwA2OvVNzRm1qL6ji6jU5o4uk8q4hy21tbzB0Dr6KsBoBj0hK2nr94z+mqgM2r3APuoo45KTU3NLs/v1q1bxo8fn/Hjx5exKgAAAOgc9NUAAADszbp1dAEAAAAAAAAAkAiwAQAAAAAAACgIATYAAAAAAAAAhSDABgAAAAAAAKAQBNgAAAAAAAAAFIIAGwAAAAAAAIBCEGADAAAAAAAAUAgCbAAAAAAAAAAKQYANAAAAAAAAQCEIsAEAAAAAAAAoBAE2AAAAAAAAAIUgwAYAAAAAAACgEATYAAAAAAAAABSCABsAAAAAAACAQhBgAwAAAAAAAFAIAmwAAAAAAAAACkGADQAAAAAAAEAhCLABAAAAAAAAKAQBNgAAAAAAAACFIMAGAAAAAAAAoBAE2AAAAAAAAAAUggAbAAAAAAAAgEIQYAMAAAAAAABQCAJsAAAAAAAAAApBgA0AAAAAAABAIQiwAQAAAAAAACgEATYAAAAAAAAAhSDABgAAAAAAAKAQBNgAAAAAAAAAFIIAGwAAAAAAAIBCEGADAAAAAAAAUAgCbAAAAAAAAAAKQYANAAAAAAAAQCEIsAEAAAAAAAAoBAE2AAAAAAAAAIUgwAYAAAAAAACgEATYAAAAAAAAABRCj44uAICd29zYmPqGxo4uo1Pq07MiFRUVHV0GAAAAHUhf3Xr6agCgvQmwATqB+obGzFpU39FldEoTR/eJNhsAAKBr01e3nr4aAGhvLiEOAAAAAAAAQCEIsAEAAAAAAAAoBAE2AAAAAAAAAIUgwAYAAAAAAACgEATYAAAAAAAAABSCABsAAAAAAACAQhBgAwAAAAAAAFAIAmwAAAAAAAAACkGADQAAAAAAAEAhCLABAAAAAAAAKAQBNgAAAAAAAACFIMAGAAAAAAAAoBAE2AAAAAAAAAAUggAbAAAAAAAAgEIQYAMAAAAAAABQCAJsAAAAAAAAAApBgA0AAAAAAABAIQiwAQAAAAAAACgEATYAAAAAAAAAhSDABgAAAAAAAKAQBNgAAAAAAAAAFIIAGwAAAAAAAIBCEGADAAAAAAAAUAgCbAAAAAAAAAAKQYANAAAAAAAAQCEIsAEAAAAAAAAoBAE2AAAAAAAAAIUgwAYAAAAAAACgEHp0dAFA17C5sTH1DY0dXUan06dnRSoqKjq6DAAAADqYvrp19NUAAJ2PABtoF/UNjZm1qL6jy+h0Jo7uE202AAAA+urW0VcDAHQ+LiEOAAAAAAAAQCEIsAEAAAAAAAAoBAE2AAAAAAAAAIUgwAYAAAAAAACgEATYAAAAAAAAABSCABsAAAAAAACAQhBgAwAAAAAAAFAIPTq6gF2xefPm3H333ZkzZ05qamqyfv36DB48OEcccUROP/30jB49uqNLBAAAgMLSVwMAANBZFD7ArqurywUXXJAFCxY0+X5tbW1qa2tz//33Z9KkSbniiis6qMLOYXNjY+obGju6jE6nT8+KVFRUOH97YOs5BAAAOoa+um3oC1tHX73n9NUAAHQ1hQ6wGxsbc/HFF5ea7GOPPTZnnHFGBg0alMWLF+eWW27JypUrM2PGjAwcODCTJ0/u4IqLq76hMbMW1Xd0GZ3OxNF9UhHnb09sPYcAAED701e3HX1h6+ir95y+GgCArqbQ98C+9957M3/+/CTJ+PHjc+utt+b4449PdXV1zjjjjMyePTsjR45MkkyfPj2rV6/uyHIBAACgUPTVAAAAdDaFDrBnzJiRJKmsrMzll1++3fH+/fvn6quvTpJs3LgxM2fObNf6AAAAoMj01QAAAHQ2hQ2wV6xYkWeffTZJMm7cuPTv37/ZeUceeWQOPvjgJMncuXPbqzwAAAAoNH01AAAAnVFhA+ynnnqqNB47dmyLc8eMGZMkWblyZZYvX17WugAAAKAz0FcDAADQGRU2wF66dGlpPGLEiBbnDhs2rDR+7rnnylUSAAAAdBr6agAAADqjHh1dwI6sXr26NB46dGiLc6uqqppdtzO1tbWpra3d/eKS/J//83+afF1TU9Oqx2kvG15vzIrnNnZ0GZ3OU916pyLO355wDveM87fnnMM94/ztOedwzzh/e8453DPO3557evM+6d2joqPLaNZf93Hr16/voErKQ1/dtvw70Dr+Hd1zzuGecf72nHO4Z5y/Pecc7hnnb885h3vG+dtzXbGvLmyAvXbt2tK4b9++Lc7t06dPaVxXV7fLzzFr1qxMnz5994trxjXXXNMmj0OxzOzoAvYCzuGecf72nHO4Z5y/Pecc7hnnb885h3vG+dtznekcrlixoqNLaFP6aoqgM/0bUFTO4Z5x/vacc7hnnL895xzuGedvzzmHe8b523Od6Ry2VV9d2EuIb9q0qTTu3bt3i3O3Pb7tOgAAAOiq9NUAAAB0RoUNsLt3714aV1S0/LH4xsbG0rhbt8K+JAAAAGg3+moAAAA6o8JeQnzby5dt2LAhvXr12uHcjRv/cs38lub9tQkTJuToo49uVX0vv/xynn766fTr1y/9+vXL8OHD86Y3valVjwXlUFNT0+QSfF/4whdy+OGHd2BF0JQ9StHZo3QG9ilFV/Q9Wl9fn+XLl5e+Pu644zqwmranry62ov98QHvy8wBb+FmAv/DzAFsU/WehXH11YQPsbe/PVV9fn/3222+Hc7e9IXi/fv12+TmGDh2aoUOHtq7AJB/84AdbvRba2+GHH54jjzyyo8uAHbJHKTp7lM7APqXo7NH2pa/uXPx8wF/4eYAt/CzAX/h5gC26ys9CYa8LduCBB5bGq1atanHutseHDBlStpoAAACgs9BXAwAA0BkVNsA+9NBDS+NtP3renBUrVpTGI0eOLFtNAAAA0FnoqwEAAOiMChtgV1dXp6KiIkmycOHCFucuWLAgSVJVVZWDDjqo7LUBAABA0emrAQAA6IwKG2BXVVWluro6STJv3rysW7eu2XkLFy7MsmXLkiQnnHBCe5UHAAAAhaavBgAAoDMqbICdJGeddVaSZM2aNZk2bVo2b97c5PjatWszbdq0JEnPnj0zceLEdq8RAAAAikpfDQAAQGfTo6MLaMlJJ52U2bNnZ/78+bnvvvuyevXqnH322RkyZEhqampy8803Z+XKlUmSqVOnZtiwYR1cMQAAABSHvhoAAIDOptABdpLceOONmTJlSp588sksXLiw2ft2TZo0KZMnT+6A6gAAAKDY9NUAAAB0JoUPsCsrKzNz5szMmTMn99xzT5YsWZK6uroMGDAgo0aNyplnnpmxY8d2dJkAAABQSPpqAAAAOpPCB9hJ0q1bt4wfPz7jx4/v6FIAAACg09FXAwAA0Fl06+gCAAAAAAAAACARYAMAAAAAAABQEAJsAAAAAAAAAApBgA0AAAAAAABAIfTo6AKA8hg6dGg+/elPN/kaisQepejsUToD+5Sis0dhx/x8wF/4eYAt/CzAX/h5gC266s9CRWNjY2NHFwEAAAAAAAAALiEOAAAAAAAAQCEIsAEAAAAAAAAoBAE2AAAAAAAAAIUgwAYAAAAAAACgEATYAAAAAAAAABSCABsAAAAAAACAQhBgAwAAAAAAAFAIAmwAAAAAAAAACqFHRxcA7J7nnnsuP/rRj/L4449n9erV2bx5cw488MC8+93vzqRJk1JVVbXDtZs3b87dd9+dOXPmpKamJuvXr8/gwYNzxBFH5PTTT8/o0aPb8ZWwN7npppsyffr03V73sY99LDfccEOT79mnlFt9fX3uvPPOPPjgg3nuueeyfv367Lfffnnb296Wj370o/nQhz6U7t2773C9PUq5vfrqq/n+97+fRx55JMuXL8+mTZsydOjQHHPMMZk4cWIOOeSQFtfbo5TDVVddlR//+MeZMmVKLrnkkhbntsUetI/pypYtW5bvf//7efzxx7Nq1ar06NEjQ4cOzfve976cdtppGTZsWEeXCO1mxYoVuf322/PEE09kxYoV2bBhQ/r165e3vvWtOfHEE/PRj340PXv27OgyoUOcd955mT9/fq699tqceuqpHV0OtAl9ALRsd3rzzq6isbGxsaOLAHbNf/zHf+Tb3/52Xn/99WaPV1ZW5utf/3re+973bnesrq4uF1xwQRYsWNDs2oqKikyaNClXXHFFm9ZM19DaAPu0007Ll770pdLX9inl9vzzz2fKlClZtmzZDueMGTMm06dPT79+/bY7Zo9SbvPnz8+ll16atWvXNnu8R48eueyyy3LOOec0e9wepRwefPDBfPrTn06SnTbJbbEH7WO6sh/96Ef58pe/nE2bNjV7/E1velM+//nP5+Mf/3g7Vwbt74477sh11123w5+HJHnrW9+ab3/72znooIPasTLoeLfddluuv/76JBFgs9fQB0DLdqc33xv4BDZ0EtOnT89NN92UJBkwYEDOPffcjBo1Kq+//nrmzp2bH//4x1m3bl0uuuiizJ49u8mnsxobG3PxxReX/vM/9thjc8YZZ2TQoEFZvHhxbrnllqxcuTIzZszIwIEDM3ny5A55jXRep59+eo4//vidzvvTn/6USy65JA0NDRk8eHAuvPDC0jH7lHJbv359PvGJT2TFihVJktGjR+f0009PVVVVnn/++Xz3u9/N0qVLs2DBgnz605/OzJkzU1FRUVpvj1JuTz31VKZMmZKGhoYkW/bYqaeemqqqqixfvjwzZ87Mb3/721x33XX585//nKlTpzZZb49SDo899tguN8VtsQftY7qyuXPnZtq0aUmSffbZJ+ecc07GjBmTHj165Omnn85//dd/5bXXXsu0adPSr1+/fPCDH+zgiqF87rnnnnzxi19MkvTp0ycTJ07MMccck759++b555/PHXfckd/85jdZsmRJzjvvvMyaNSuVlZUdWzS0k7vuumu7q9lBZ6cPgJbtTm++t/AJbOgEFi9enFNOOSWvv/56DjzwwHzve9/b7rJxd955Z77whS8kSU444YR861vfKh2755578rnPfS5JMn78+NI7NLdas2ZNzjzzzCxdujT77LNPfvazn+WAAw4o86uiq9m0aVM+/vGP59lnn023bt1y22235aijjiodt08pt//8z//M1772tSTJRz7ykfzP//k/mwTUmzZtyvnnn5/HH388SXLjjTc2+cOwPUo5vf766znxxBOzfPnyJMmFF16Yiy66aLs5n/nMZzJ37tx07949P/nJT/K2t72tdNwepa3ddttt+epXv1p6U0XS8ru822IP2sd0VZs2bcpxxx2Xl156KT179sztt9+et7/97U3m/OEPf8iECRNSX1+fqqqqPPTQQ+nRw+cS2Pu89tprOf744/PKK69kv/32y+23355DDz20yZzNmzdn2rRp+fGPf5wkOf/883PppZd2RLnQbl5//fV8/etfz6233trk+z6Bzd5AHwA7tru9+d6iW0cXAOzct771rbz++uupqKjIN7/5zWbvefbxj388hx12WJLk5z//eTZs2FA6NmPGjCRbLjF++eWXb7e2f//+ufrqq5MkGzduzMyZM8vxMujipk+fnmeffTZJcu655zYJrxP7lPJ77LHHSuMrrriiSXidJL169cpll11W+vrhhx9uctwepZweffTRUnh9zDHHbBdeJ1suH37dddelf//+eeONN/KVr3ylyXF7lLay9XYL119/fRoaGtK9e/ddWtcWe9A+pqt65JFH8tJLLyVJzjrrrO3C6yQ55JBDcsoppyRJVq1alUWLFrVnidBuHnnkkbzyyitJkgsuuGC78DpJunXrln/7t3/LwIEDkyRz5sxpzxKh3T3zzDOZOHFiKbze1d/PoLPQB8D2Wtub7y0E2FBwr776an75y18m2fLJ6ub+kLHVeeedl9NOOy3nnntu1q9fnyRZsWJFKTQcN25c+vfv3+zaI488MgcffHCSLZeug7a0ZMmSUpM1fPjw7S57a5/SHl5++eUkyX777Zc3v/nNzc7Zur+SlP6InNijlN+vfvWr0vjss8/e4by+ffuWrgzwxBNP5P/9v/+XxB6l7fzwhz/Mhz/84TzyyCNJkpEjR5b+UNSSttiD9jFdWc+ePfPe9743VVVVLd6a5y1veUtpvGrVqvYoDdrdk08+WRq///3v3+G83r1758gjj0ySvPDCC3n11VfLXht0hK997Ws55ZRT8vTTTydJ3vnOd+71n7qja9EHwPZa25vvTQTYUHCPP/546dIQH/7wh1uce/LJJ+dLX/pSLr300tK7kJ966qnS8bFjx7a4fsyYMUmSlStXlj4FBm3hS1/6Ul5//fUkyZVXXpnevXs3OW6f0h7233//JMmf//znJuH0tv74xz+WxtteisoepdxWrlxZGr/jHe9oce7WTyFt3ry59Ok7e5S28rvf/S4NDQ3p1atXzj///MyePTvDhw/f6bq22IP2MV3Zcccdl//8z//Mo48+mne+8507nLft/xdbf7eBvc273/3ufOITn8hHPvKRnV4edts7I27atKncpUGHWLRoURobG9O3b998/vOfzw9+8IMdvikbOiN9AGyvtb353kSADQW3ZMmS0njbT19v3rw5L7zwQv74xz/mtdde2+H6pUuXlsYjRoxo8bm2vTT5c88914pqYXsPPfRQFi5cmCR517velfe+973bzbFPaQ/bfnpj672wt/XGG2/kq1/9aunrD33oQ6WxPUq5bXsfoz59+rQ4d9v7nT7//PNJ7FHazj777JNTTz01c+fOzaWXXpp99tlnl9a1xR60j6Fl//3f/5277rorSVJVVZUjjjiigyuC8jj++OPzuc99Ll/5ylfSq1evHc5raGjIb37zmyRb/v8S6LG32nfffXPuuefmoYceyqRJk9Ktmz/ps3fRB8D2Wtub70167HwK0JG2/kfcs2fP7L///nn55Zdz00035YEHHsjatWuTbLnvzejRozN16tTS5bO2Wr16dWk8dOjQFp+rqqqq2XWwJ2666abSuLl7uib2Ke3jjDPOyMMPP5wFCxbk7rvvzqpVq3LaaaelqqoqK1asyPe+9738/ve/T5Kcfvrpec973lNaa49SbgMGDCiNV69e3WLTvu0lY7deTcAepa1MmzatVX8UbYs9aB9DU42Njamvr8/y5cvz05/+NLfffnvq6urSs2fPfPnLX07Pnj07ukToUHfddVfpdirHHHNMkzf5wd5k+vTpQmv2avoA2F5re/O9id/soODWrFmTJKmsrMyiRYsyZcqU0ve2euONN/LEE0/k17/+dS677LKce+65pWNbQ+5ky30zW7LtJ77q6ur2vHi6vMcff7x0FYExY8akurq62Xn2Ke1hn332yS233JJbb701M2bMyBNPPJEnnniiyZzBgwfnsssuy0c+8pEm37dHKbfq6urce++9SZKf/exnmTx58g7n/vznPy+N169fn8Qepe20tkFuiz1oH0NT8+bNy7/8y780+d7IkSNz7bXXZtSoUR1UFRTDH//4xyZXVTrvvPM6sBoor64eYLD30wfA9vzbL8CGwtt6efCNGzdmypQpWbt2bc4666ycfvrpGT58eF555ZU88MAD+da3vpX169fn3//933PAAQeULn277T2g/vq+w39t2+PuHUVbmDFjRmn8iU98Yofz7FPay9KlS7N48eJS6PfXXn755TzwwAP5H//jf+SQQw4pfd8epdw++MEP5itf+Uo2bNiQm2++Occdd1xGjhy53byZM2fm//7f/1v6+vXXX09ij9Lx2mIP2sd0Vg899FAuvPDCVq19+OGHc9BBBzV7rLa2drvvLV++PD/4wQ8ycODA/M3f/E2rnhPKqVw/D9t68cUXM2XKlKxbty5JcvLJJ2f06NGtek4ol/b4WYC9hT4AaI4IHwquvr4+yZZPWK1ZsyZf+tKXcuWVV2bkyJHp1atXDjjggPzzP/9zZsyYUbqE3A033JCNGzcm2XJ58a0qKipafK7GxsbS2Dt82FN/+MMf8stf/jJJcvjhhzd77+ut7FPaw6OPPpozzzwzDz74YPr165cvfvGL+eUvf5nf/e53mTdvXi688ML07NkzP//5z/NP//RPeeaZZ0pr7VHKbdCgQbnggguSJOvWrcs//dM/5fvf/35efPHFNDQ05I9//GOuvfbaXHfddRkyZEhp3db/++1ROlpb7EH7GJoaNWpUbr311tx11135xje+kWOPPTabNm3Kfffdl9NPP7106xPoSlavXp1zzjkn//3f/50keetb35ovfvGLHVsUAHtEHwA0xyewoeC2fVfZ0UcfnVNPPbXZedXV1TnllFNyxx135IUXXsjjjz+ecePGNbmsyoYNG9KrV68dPtfW0DtJi/NgV9x3332lXyrHjx/f4lz7lHJ78cUXc8kll2TDhg0ZMGBA7rzzzgwfPrx0fMSIEbnoooty1FFH5bzzzsuaNWsyderUzJ07N/vss489SruYPHlyVq9endtvvz1r167Ntddem2uvvbbJnIMOOig33HBDJk6cmOQv/37ao3S0ttiD9jGd1cEHH5wpU6a0au1+++23w2PbXib87W9/ez70oQ/lpptuyvTp0/PKK6/k0ksvzQMPPOCPtxRKuX4eki1vkv7kJz+ZlStXlp7rv/7rv/KmN72pVc8H5VTOnwXY2+gDgOYIsKHgKisrS+N/+Id/aHHucccdlzvuuCNJsmjRoowbN67JfUPq6+tb/CV420vq9uvXr7UlQ5LkwQcfTLLlnZMnnnhii3PtU8ptzpw5pb1z0UUXNQmvt3XUUUflzDPPzG233Zba2to8/PDD+dCHPmSP0i4qKioybdq0HHPMMbn55pvzzDPPlN4INHjw4Jx88smZMmVK6Y+2yZZPbif+HaXjtcUetI/prA455JBccskl7fJcU6dOzaOPPppnnnkmzz//fBYsWJCxY8e2y3PDrijXz8OvfvWrXHTRRfnzn/+cJDnssMPy3e9+N4MHD27z54K20J7/N0Bnpw8AmuNtulBw2zZjBxxwQItzhw4dWhq/+uqrSZIDDzyw9L1Vq1a1uH7b49tenhR21/PPP5/nnnsuSXLkkUfudD/Zp5Tbb3/729L4/e9/f4tzP/CBD5TGixYtSmKP0r4+8IEP5Cc/+UkWLFiQn/70p/nlL3+ZX/7yl/nsZz+bysrK/OEPfyjN3XpvPHuUjtYWe9A+hl2z7RublyxZ0oGVQPu466678slPfrIUXo8aNSo/+MEPhNcAewl9ANAcATYU3OGHH14ar127tsW5mzZtKo23vlPt0EMPLX1v+fLlLa5fsWJFaTxy5MjdqhO29fDDD5fGO/v0dWKfUn7bvkN33333bXHum9/85tK4rq4uiT1Kx9hvv/1yyCGHZP/9929yH7Cnn366NH7b296WxB6l47XFHrSP6cpeffXV/Pa3v82jjz6607n9+/cvjbftAWFv9J3vfCdXXnllGhoakmx5o99tt93mU3cAexF9ANAcATYUXHV1dWn81FNPtTh36ydek798Iqu6urr0R++FCxe2uH7BggVJkqqqqtJ6aI0nn3yyND7qqKN2Ot8+pdwGDBhQGu+sGXrhhRdK461htj1Kua1YsSLf/OY3c9VVV5U++d+cxsbG0puEhg8fnmHDhiWxR+l4bbEH7WO6sgsvvDCnnnpqPvWpT2XNmjUtzt32d5mdXaULOrPp06fnm9/8Zunrc845J9/61rfSu3fvjisKgDanDwCaI8CGgjv66KNLl8V64IEH8vLLL+9w7t13350k6d69e4477rgkW/4z3xqCz5s3L+vWrWt27cKFC7Ns2bIkyQknnNBW5dNFbQ1f9t133xxyyCE7nW+fUm5jxowpjf/3//7fLc699957S+PRo0cnsUcpv4aGhnznO9/Jj3/848yZM2eH837605+W7oF98sknl75vj9LR2mIP2sd0ZVt/59i8eXNmz569w3kbNmwo/a7SrVu3HHPMMe1SH7S3e++9NzfddFPp689+9rP513/913Tr5k+ZAHsbfQDQHL/1QcF179495513XpJk3bp1+exnP5vXXnttu3nf+9738qtf/SrJlktq7b///qVjZ511VpJkzZo1mTZtWjZv3txk7dq1azNt2rQkSc+ePTNx4sSyvBa6hhdeeKF0D/a///u/b3LZ25bYp5TTSSedlIEDBybZ8u/lI4880uy8e++9N7NmzUqSvOUtb8m73vWu0jF7lHJ6y1veksMOOyxJMnv27CZXVdmqpqYmV199dZItVwf46z1mj9LR2mIP2sd0Vaecckp69eqVJPmP//iP1NTUbDdn06ZNueyyy0pXiznllFMyaNCgdq0T2kNtbW2++MUvlr6+6KKL8slPfrLjCgKg7PQBwF/r0dEFADt3zjnn5NFHH80TTzyRX/3qV/nYxz6Wc845J3/7t3+burq63HPPPbnvvvuSJAMHDswXvvCFJutPOumkzJ49O/Pnz899992X1atX5+yzz86QIUNSU1OTm2++ufRprqlTp5YuRwqt8fzzz5fGw4cP3+V19inlVFlZmS9/+cu58MIL88Ybb+RTn/pUTjrppJx44onZf//98+KLL+aBBx7I/fffn8bGxvTu3Ts33HBDevT4y69K9ijl9pnPfCbnn39+Nm7cmIkTJ+aTn/xk3vGOd+T111/P/Pnz88Mf/jD19fXp3r17rr/++u3u/WiP0tHaYg/ax3RVw4YNy2c+85lcf/31qauryymnnJKzzjorRx11VPr165clS5bk+9//fpYuXZokOfzww3P55Zd3cNVQHt/5zndKn7477LDDMm7cuCxevHin64YPH56+ffuWuzwAykAfAPy1isbGxsaOLgLYuQ0bNuTyyy/P3LlzdzhnxIgR+fa3v52RI0dud2zdunWZMmVKk3sT/7VJkybliiuu2OVPzEJz5syZU/pj2iWXXJIpU6bs8lr7lHJ78MEHc8UVV+zwclRJMnjw4HzjG98oXcpzW/Yo5fa9730v//7v/5433nij2eP77rtvbrjhhhx//PHNHrdHKYdf//rXOfvss5MkU6ZMySWXXLLDuW2xB+1jurIZM2bka1/7WhoaGnY459hjj81Xv/rVDBgwoB0rg/ZRX1+fMWPGZNOmTbu9dubMmTnqqKPKUBUUz+zZs/P5z38+SXLttdfm1FNP7eCKYM/pA6Blu9Ob7w18Ahs6id69e+fGG2/M448/nlmzZuU3v/lNXn755ey77775m7/5m3z4wx/OySefvMN3G1dWVmbmzJmZM2dO7rnnnixZsiR1dXUZMGBARo0alTPPPDNjx45t51fF3mjbS9wfcMABu7XWPqXcPvCBD+Sd73xn7rjjjvziF7/IsmXL8tprr2XffffNoYcemuOOOy6nnXaaf0vpMOecc06OPPLIzJw5MwsWLMhLL72Unj17ZsSIEXnf+96XiRMn5s1vfvMO19ujdLS22IP2MV3ZP//zP+d973tffvjDH+bxxx9PbW1tNm/enEGDBqW6ujonn3xy3vOe93R0mVA2S5cubVV4DUDnpw8AtuUT2AAAAAAAAAAUQreOLgAAAAAAAAAAEgE2AAAAAAAAAAUhwAYAAAAAAACgEATYAAAAAAAAABSCABsAAAAAAACAQhBgAwAAAAAAAFAIAmwAAAAAAAAACkGADQAAAAAAAEAhCLABAAAAAAAAKAQBNgAAAAAAAACFIMAGAAAAAAAAoBAE2AAAAAAAAAAUggAbAAAAAAAAgEIQYAMAAAAAAABQCAJsAAAAAAAAAApBgA0AAAAAAABAIQiwAQAAAAAAACgEATYAAAAAAAAAhSDABgAAAAAAAKAQBNgAAAAAAAAAFIIAGwAAAAAAAIBCEGADAAAAAAAAUAgCbAAAAAAAAAAKQYANAAAAAAAAQCH8f6PGf8d4t2ZaAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 584, "width": 984 } }, "output_type": "display_data" } ], "source": [ "f, ax = plt.subplots(2, 2, figsize=(10,6));\n", "ax[0,0].hist(study_time);\n", "ax[0,0].set_title(f'Study Time (hours)\\nMean: {study_time.mean():.2f}, Std: {study_time.std():.2f}');\n", "ax[0,1].hist(study_time_z);\n", "ax[0,1].set_title(f'Study Time (z-scores)\\nMean: {study_time_z.mean():.2f}, Std: {study_time_z.std():.2f}');\n", "\n", "ax[1,0].hist(test_score);\n", "ax[1,0].set_title(f'Test Score (points)\\nMean: {test_score.mean():.2f}, Std: {test_score.std():.2f}');\n", "ax[1,1].hist(test_score_z);\n", "ax[1,1].set_title(f'Test Score (z-scores)\\nMean: {test_score_z.mean():.2f}, Std: {test_score_z.std():.2f}');\n", "plt.tight_layout();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice how we're not changing the *shape* of the data - just re-scaling it to a different range of standardized units:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Correlation: The Dot Product of Z-Scores\n", "\n", "And here's where everything comes together - what if we used a *summary statistic* that was simply the product of z-scores?\n", "\n", "This would combine the best properties of dot products - *higher* values means *more* similar - while accounting for different units of measurement - everything is in \"distance from mean\" units.\n", "\n", "In fact, this is **exactly** what Pearson correlation is: the **average dot product of z-scores**! \n", "\n", "$$ r_{x,y} = \\frac{1}{n-1} \\sum_{i=1}^n z_{x_i} z_{y_i} $$\n", "\n", "We can also see this through the lens of *co-variance*: \n", "\n", "If co-variance is equivalent to the *centered* average dot-product of two variables - correlation is just **normalizing covariance** using the product of both variables' standard deviations.\n", "\n", "$$ r_{x,y} = \\frac{\\text{cov}(x,y)}{\\sigma_x \\sigma_y} $$\n", "\n", "Or written out more completely:\n", "\n", "$$\n", "correlation(x,y) = \\frac{\\sum_{i=1}^n (a_i - \\bar{a})(b_i - \\bar{b})}{\\sqrt{\\sum_{i=1}^n (a_i - \\bar{a})^2} \\sqrt{\\sum_{i=1}^n (b_i - \\bar{b})^2}}\n", "$$\n", "\n" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e1854900982e4d1284df1f60cbda30e5", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(IntSlider(value=100, description='Sample size', max=500, min=50, step=10), FloatSlider(v…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from helpers import corr_widget\n", "\n", "corr_widget();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Wrapping Up" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Key Takeaways\n", "\n", "Building up this notion of a **summary statistic that captures similarity** by-hand should give you a bit more of an intuition for some key properties of correlation:\n", "\n", "1. *Centering* data makes our metric **more interpretable with respect to the central tendency** of each variable \n", "\n", "2. *Normalizing* data makes our metric **scale invariant** \n", "\n", "3. Using *z-scores* (standardized distance from the mean) as our normalization factor, **guarantees our metric is always between -1 and 1**\n", "\n", "4. Using a *dot-product* means we can only capture approximately **linear relationships**\n", "\n", "\n", "Now that you can see how measures like correlation *summarize relationships* between variables, it should be abundantly clear that **correlation measures association, not causation** - it's a mathematical *necessity* that follows from how correlation is constructed.\n", "\n", "Nothing we've calculated above takes into account which variable *caused* the other - correlation only sees patterns in standardized deviations; it has no way to know whether X causes Y, Y causes X, or if both are caused by some third variable Z. When we find a correlation of some value `r` **all we know** is that their z-scores tend to move together.\n", "\n", "To go into additional depth on your own here are some additional resources:\n", "\n", "- [Cheatsheet comparing these measures](https://eshinjolly.com/2018/04/12/similarity_metrics/)\n", "- [Chap 13 - Modeling continuous relationships](https://statsthinking21.github.io/statsthinking21-core-site/modeling-continuous-relationships.html#covariance-and-correlation)\n", "- [Nice visual animation of co-variance](https://www.youtube.com/watch?v=TPcAnExkWwQ)\n", "- [Longer walkthrough video of co-variance](https://www.youtube.com/watch?v=qtaqvPAeEJYf)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Other Measures of Association\n", "\n", "We've seen how correlation emerged from a simple idea (dot products) refined through centering and scaling. But correlation isn't always the best tool for the job. Here are some other measures you're likely to encounter, each capturing different aspects of relationships:\n", "\n", "**Spearman Correlation**\n", "Instead of using raw values, Spearman correlation works with *ranks*. It's calculated exactly like Pearson correlation, but after converting values to their rank order. This makes it:\n", "- More robust to outliers\n", "- Able to capture *monotonic* relationships (consistently increasing/decreasing, even if not linear)\n", "- Useful when you care about order but not magnitude\n", "\n", "**Euclidean Distance** The straight-line distance between points \n", "- Intuitive for spatial data\n", "- Sensitive to scale (like the raw dot product)\n", "- Used in many clustering algorithms\n", "\n", "**Manhattan Distance** Sum of absolute differences \n", "- More robust to outliers than Euclidean\n", "- Natural for grid-like spaces (like city blocks)\n", "- Often used in high-dimensional data\n", "\n", "\n", "Remember: There's no \"best\" measure of association. Each captures different aspects of relationships between variables and provides different approaches for *summarizing* them. Understanding what each measure preserves and discards helps you choose the right tool for your research questions.\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Looking Forward: Regression\n", "\n", "Next week we'll dive into *linear models* and regression, which builds naturally from correlation. \n", "\n", "The key connection we'll explore in more depth is:\n", "\n", "$$ β = r \\frac{σ_Y}{σ_X} $$\n", "\n", "which states that the *slope* of a \"line-of-best-fit\" is equivalent to correlation *scaled* by the ratio of standard deviations between variables. \n", "\n", "And critically, if we z-score our variables *first*, then correlation and simple regression are equivalent! β == r\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### For Next Time (also on course website)\n", "\n", "Please try to find some time to watch the following videos before next week. We won't cover them in depth but will build upon these ideas as we move forward\n", "\n", "- [The Essence of Linear Algebra](https://www.3blue1brown.com/topics/linear-algebra) by 3blue1brown. These are bite-sized videos to give you some *high level* intuitions about linear algebra basics, with particularly lovely visuals. If you never formally took any linear algebra (like Eshin), feel math-phobic, or simply need a refresher - this series offers a fresh and fun perspective on about the mathematics that underlies most of the modeling you're likely to do. You don't have watch the full series (unless you want to!), but please check out the following chapters: \n", " - [Chap 1: Vectors, what even ar they?](https://www.3blue1brown.com/lessons/vectors) *~10m*\n", " - [Chap 2: Linear combinations, span, and basis vectors](https://www.3blue1brown.com/lessons/span) *~10m*\n", " - [Chap 3: Linear transformations and matrices](https://www.3blue1brown.com/lessons/linear-transformations) ~*11m*\n", " - [Chap 4: Matrix multiplication as composition](https://www.3blue1brown.com/lessons/matrix-multiplication) ~*10m*\n", " - [Chap 5: Three-dimensional linear transformations](https://www.3blue1brown.com/lessons/3d-transformations) ~*5m*\n", " - [Chap 7: Inverse matrices, column space, and null space](https://www.3blue1brown.com/lessons/inverse-matrices) ~*12m*\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Challenge exercises - Your Turn\n", "\n", "Just as the some summary statistics of *central tendency* like the *mean* can hide important features of a distribution (like bimodality or skewness), correlation can hide important features of *relationships*.\n", "\n", "A correlation of 0 doesn't mean there's no relationship - it just means there's no detectable *linear* relationship: a perfect U-shaped relationship could have a correlation of zero!\n", "\n", "At the same time a correlation of 1/-1 doen't mean there's a perfectly linear relationshps: we need to *visualize* the underlying data.\n", "\n", "Here's a classic example we saw in a previous lab: Anscombe's quartet\n", "\n", "\"Figure\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the next cell we've loaded this dataset for you. Use it to create some figures and answer the following questions:" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "shape: (5, 3)
datasetxy
strf64f64
"I"10.08.04
"I"8.06.95
"I"13.07.58
"I"9.08.81
"I"11.08.33
" ], "text/plain": [ "shape: (5, 3)\n", "ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”¬ā”€ā”€ā”€ā”€ā”€ā”€ā”¬ā”€ā”€ā”€ā”€ā”€ā”€ā”\n", "│ dataset ┆ x ┆ y │\n", "│ --- ┆ --- ┆ --- │\n", "│ str ┆ f64 ┆ f64 │\n", "ā•žā•ā•ā•ā•ā•ā•ā•ā•ā•ā•Ŗā•ā•ā•ā•ā•ā•ā•Ŗā•ā•ā•ā•ā•ā•ā•”\n", "│ I ┆ 10.0 ┆ 8.04 │\n", "│ I ┆ 8.0 ┆ 6.95 │\n", "│ I ┆ 13.0 ┆ 7.58 │\n", "│ I ┆ 9.0 ┆ 8.81 │\n", "│ I ┆ 11.0 ┆ 8.33 │\n", "ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”“ā”€ā”€ā”€ā”€ā”€ā”€ā”“ā”€ā”€ā”€ā”€ā”€ā”€ā”˜" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "anscombe = pl.DataFrame(sns.load_dataset(\"anscombe\"))\n", "anscombe.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "1. Add 2 new columns that reflect: mean-centered and z-scored versions of x and y **separately** per dataset" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "2. Create 3 scatterplot grids using `sns.relplot` to visualize the relationship between x & y, their centered version, and their z-scored versions separately per dataset. Does anything change? Why or why not?" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "3. Create 2 new columns that reflect: ranked version of x and y **separately** per dataset\n", "\n", "*Hint: you can use `col('x').rank()` in [polars](https://docs.pola.rs/api/python/stable/reference/series/api/polars.Series.rank.html) to get the rank of a column*" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "4. Create two scatterplot grids this time using `sns.lmplot`. Have one plot the original (non-rank transformed) data with a line-of-best-fit and the other plot the rank-transformed data with a line-of-best fit. Do they look the same? Why or why not?" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "5. Inspecting the raw-data scatterplots for datasets 3 and 4 - there look like there might be one \"outlier\" in each dataset. Use `.filter` in Polars to remove each one and create 3 *new* scatterplots using `sns.relplot` visualizing the relationship between x & y, their centered versions, and their z-scored version. Did anything change? Why or why not?\n", "\n", "*Hint: Remember to re-calculate centered and z-scored versions of x and y after filtering!*\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "201b", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.10" } }, "nbformat": 4, "nbformat_minor": 2 }