{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Models V: Categorical Predictors (2-levels)\n",
"\n",
"So far we've been using `ols` to perform *univariate* and *multiple* regression with *continuous* predictor variables. But often you'll also be working with **categorical** predictor variables. In this notebook we'll discuss how to build models using:\n",
"- a categorical variable with 2 levels \n",
"- a categorical variable with 2 levels + a continuous variable\n",
"- a categorical variable with 2 levels, a continuous variable, and an interaction term\n",
"\n",
"## Slides for reference\n",
"\n",
"[Modeling Data V (slides)](https://stat-intuitions.com/lectures/wk5/1.html) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"\n",
"Let's return to the credit card dataset we used in Notebook `02_models`\n",
"\n",
"This is a *smaller* version of that dataset with observations from 76 different people with the following columns:\n",
"\n",
"| Variable | Description |\n",
"|------------|---------------------------------|\n",
"| Income | in thousand dollars |\n",
"| Limit | credit limit |\n",
"| Rating | credit rating |\n",
"| Cards | number of credit cards |\n",
"| Age | in years |\n",
"| Education | years of education |\n",
"| Gender | male or female |\n",
"| Student | student or not |\n",
"| Married | married or not |\n",
"| Ethnicity | African American, Asian, Caucasian |\n",
"| Balance | average credit card debt |\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"shape: (76, 11)
Income
Limit
Rating
Cards
Age
Education
Gender
Student
Married
Ethnicity
Balance
f64
i64
i64
i64
i64
i64
str
str
str
str
i64
20.918
1233
128
3
47
18
"Female"
"Yes"
"Yes"
"Asian"
16
10.842
4391
358
5
37
10
"Female"
"Yes"
"Yes"
"Caucasian"
1216
29.705
3351
262
5
71
14
"Female"
"No"
"Yes"
"Asian"
148
76.348
4697
344
4
60
18
"Male"
"No"
"No"
"Asian"
108
30.622
3293
251
1
68
16
"Male"
"Yes"
"No"
"Caucasian"
532
…
…
…
…
…
…
…
…
…
…
…
107.841
10384
728
3
87
7
"Male"
"No"
"No"
"African American"
1597
27.47
2820
219
1
32
11
"Female"
"No"
"Yes"
"Asian"
0
15.741
4788
360
1
39
14
"Male"
"No"
"Yes"
"Asian"
689
16.751
4706
353
6
48
14
"Male"
"Yes"
"No"
"Asian"
1255
14.084
855
120
5
46
17
"Female"
"No"
"Yes"
"African American"
0
"
],
"text/plain": [
"shape: (76, 11)\n",
"┌─────────┬───────┬────────┬───────┬───┬─────────┬─────────┬──────────────────┬─────────┐\n",
"│ Income ┆ Limit ┆ Rating ┆ Cards ┆ … ┆ Student ┆ Married ┆ Ethnicity ┆ Balance │\n",
"│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │\n",
"│ f64 ┆ i64 ┆ i64 ┆ i64 ┆ ┆ str ┆ str ┆ str ┆ i64 │\n",
"╞═════════╪═══════╪════════╪═══════╪═══╪═════════╪═════════╪══════════════════╪═════════╡\n",
"│ 20.918 ┆ 1233 ┆ 128 ┆ 3 ┆ … ┆ Yes ┆ Yes ┆ Asian ┆ 16 │\n",
"│ 10.842 ┆ 4391 ┆ 358 ┆ 5 ┆ … ┆ Yes ┆ Yes ┆ Caucasian ┆ 1216 │\n",
"│ 29.705 ┆ 3351 ┆ 262 ┆ 5 ┆ … ┆ No ┆ Yes ┆ Asian ┆ 148 │\n",
"│ 76.348 ┆ 4697 ┆ 344 ┆ 4 ┆ … ┆ No ┆ No ┆ Asian ┆ 108 │\n",
"│ 30.622 ┆ 3293 ┆ 251 ┆ 1 ┆ … ┆ Yes ┆ No ┆ Caucasian ┆ 532 │\n",
"│ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … │\n",
"│ 107.841 ┆ 10384 ┆ 728 ┆ 3 ┆ … ┆ No ┆ No ┆ African American ┆ 1597 │\n",
"│ 27.47 ┆ 2820 ┆ 219 ┆ 1 ┆ … ┆ No ┆ Yes ┆ Asian ┆ 0 │\n",
"│ 15.741 ┆ 4788 ┆ 360 ┆ 1 ┆ … ┆ No ┆ Yes ┆ Asian ┆ 689 │\n",
"│ 16.751 ┆ 4706 ┆ 353 ┆ 6 ┆ … ┆ Yes ┆ No ┆ Asian ┆ 1255 │\n",
"│ 14.084 ┆ 855 ┆ 120 ┆ 5 ┆ … ┆ No ┆ Yes ┆ African American ┆ 0 │\n",
"└─────────┴───────┴────────┴───────┴───┴─────────┴─────────┴──────────────────┴─────────┘"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"import polars as pl\n",
"from polars import col\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"from statsmodels.formula.api import ols\n",
"from statsmodels.stats.anova import anova_lm\n",
"\n",
"# Load data\n",
"df = pl.read_csv('./data/credit-mini.csv')\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Categorical Predictor w/ 2 levels\n",
"\n",
"Let's use `ols` to explore the example discussed in class in more detail: **do students have a different balance than non-students?** \n",
"\n",
"We'll fit 2 models:\n",
"- a *compact* model that only includes the intercept\n",
"- an *augmented* model that includes a **categorical predictor** for `Student` which has **2 levels** (`Yes` and `No`)\n",
"\n",
"We can tell `ols` to treat a variable as **categorical** by wrapping it in `C()`\n",
"\n",
"Then we'll test whether it's *worth it* to add `Student` as a predictor to the model by comparing them like we have before:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
],
"text/plain": [
"shape: (5, 2)\n",
"┌─────────┬─────────┐\n",
"│ Balance ┆ Student │\n",
"│ --- ┆ --- │\n",
"│ i64 ┆ str │\n",
"╞═════════╪═════════╡\n",
"│ 16 ┆ Yes │\n",
"│ 1216 ┆ Yes │\n",
"│ 148 ┆ No │\n",
"│ 108 ┆ No │\n",
"│ 532 ┆ Yes │\n",
"└─────────┴─────────┘"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.select('Balance', 'Student').head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Sometimes it's helpful to see the *entire* design matrix, especially as we move onto categorical variables with more than 2 levels in future notebooks. \n",
"\n",
"We've provided a helper function you can use that takes a model as input. You can see each observation plotted alongside how we've *encoded* `Student` in the design matrix (beige = 1; black = 0):"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABOQAAAOpCAYAAAC6oPggAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AAB/00lEQVR4nOzdd5SV1fk/7PvAAFIEQZqAEbCggCL2KGDDqDG2YIkVSzQx1lh/iQWMMZJoMIktGls02I099gp2Y0XQKFWKBRClM8M87x++zJfDDDAwZ/ZB5rrWmrV4nvPsve8pMDMfdsllWZYFAAAAAJBEvWIXAAAAAAB1iUAOAAAAABISyAEAAABAQgI5AAAAAEhIIAcAAAAACQnkAAAAACAhgRwAAAAAJCSQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABISCAHAAAAAAkJ5AAAAAAgIYEcAAAAACQkkAMAAACAhARyAAAAAJCQQA4AAAAAEhLIAQAAAEBCAjkAAGC1cc8990Qul4tcLhf169ePkSNHFrukOmX8+PEVH/9cLhedO3cudklQMKvr1/esWbOiXbt2FXWdc845xS6JBARyANWQZVnstttued/AO3XqFN98802N+i0rK4vevXvn9bvZZpvFggULClQ5AGu6+fPnx6abbpr3vaRXr15RWlq6yn0edNBBef21atUqpk6dWsCqqzZnzpw466yzKq6POeaY6Nmz53LbHHPMMXm1VvVWr169aNy4cbRs2TI22mij2GmnneLoo4+Oyy67LJ5//vmYO3dubb9r1EFLhz9Lvp155pk16vujjz5aZt+DBw8uzDtAMmuvvXZcdNFFFdd//etfY/To0UWsiBQEcgDVkMvl4qabboqmTZtW3Js8eXKNf5gaMmRIvPvuuxXX9erVi1tuuSUaNWpUo34BqDvWWmutuPnmm6Nevf/70f7999+PP/zhD6vU37333hv3339/3r0rr7wy1ltvvRrVWR2///3vY9KkSRER0ahRo/jd735XkH6zLIv58+fHzJkzY8yYMfHKK6/E7bffHr/97W9jt912i3XXXTd++tOfxiOPPBJZlhVkTFieYcOGRVlZ2Sq3/+c//1nAamrXrbfeGoMHD654Gz9+fLFLWi2deOKJseGGG0ZERGlpaZx22mlFrojaJpADqKYuXbrEkCFD8u7dfPPN8eSTT65Sf6NGjYpLLrkk796ZZ54ZO+ywwyrXCEDdtOOOO8Ypp5ySd+/SSy+NDz74YKX6mTZtWqV+9tprrxg4cGCNa1yRKVOmxF//+teK62OPPTY6duxY6+NGfDfL8IEHHoj99tsvevbsGU8//XSScam7vvzyy3jiiSdWqW15eXn861//KnBFtefWW2+Niy++uOJNIFe1Bg0axLnnnltx/cwzz8Szzz5bxIqobSXFLgDg++Tkk0+O++67L1588cWKeyeeeGKMHDky1l577Wr3s2jRojjuuONi4cKFFfc22WSTgs0EAKDuueyyy+LRRx+NsWPHRsR3MyyOO+64eO2116J+/frV6uPUU0+NL7/8suK6efPmccMNN9RKvUv73e9+F/PmzYuIiPr166/yHkobb7xxlTPYFyxYEF9//XXMnDkzJk6cGK+//npMmTKl0nOjRo2KH/3oR/GrX/0q/vKXv0SDBg1WqQ5Ykdtuuy1+8pOfrHS7Z555pmImKWuWgQMHxsUXX1zxb9P5558fu+++e5GrorYI5ABWwuKlq1tssUXFfjMTJ06Mc845J/7+979Xu58rr7wyXn/99YrrxUtVGzduXPCaAagbmjRpEv/4xz+if//+Fcsu33rrrbjiiivivPPOW2H7Bx98MO666668e3/6059i/fXXr5V6lzR58uS4+eabK67322+/6Nq16yr11aFDh/jlL39ZrWcnTpwY//rXv+Kaa66pFM5de+21MWnSpLjvvvvqVCjXuXNny3Zr0eabb14xc/Xhhx+OmTNnxjrrrLNSfSy5XDWXy0WPHj0cflJNq/vXd6NGjeKXv/xlxX5yr7/+ejz11FPxox/9qMiVURssWQVYSRtuuGGlfXluuOGGeO6556rV/tNPP83btDUi4vTTT48dd9yxYDUCUDfttttuccIJJ+TdGzx4cHz88cfLbff111/HSSedlHdv1113jRNPPLHgNVblqquuyjuEItW4P/jBD+K3v/1tjB8/PgYNGpS3D1/Ed4HJr3/96yS1UDcsufx7wYIFcffdd69U+2+//TYeeOCBiutddtklNthgg4LVR/Edf/zxebOahw4dWsRqqE0COYBVcOqpp0afPn0qrrMsi5///OcxZ86c5bbLsiyOP/74iiU5EREbbbRRXHrppbVWKwB1y+WXX543q23+/Plx3HHHRXl5+TLbnH766fH5559XXDdp0iRuvPHGyOVytVprRMS8efPi+uuvr7ju1KlT8tkgDRo0iMGDB8ejjz5a6WCla665xp5yFMyBBx6Yt83Jyh7OcM899+T9HJlif0fS6tChQ+y9994V108++aQTV9dQAjmAVVCvXr24+eab85aYjhs3Lv7f//t/y213zTXXxEsvvVRxncvlKvUDADXRvHnzvIArIuKVV16Jq666qsrnH3vssbj99tvz7l122WWrvGR0Zf373/+OmTNnVlwPGDCg0ky1VPbee+8qZ6OceeaZq/UyN74/mjRpEgcffHDF9auvvhqffPJJtdsvGeA1bdo0BgwYUND6WD0s+TUSEXHLLbcUqRJqkz3kAFbRxhtvHL///e/jrLPOqrh3zTXXxMEHHxz9+vWr9PyECRPiN7/5Td69U089Nfr27VvrtQJQt+y9995x9NFHx2233VZx7/zzz4999903L2j75ptv4he/+EVe25122qnSSau1ackaIyIOOuigZGNX5Ve/+lU88sgjeSdgjhw5Mp555pnYY489VqnP8ePHxzvvvBNffvllTJ8+PdZee+1o27ZtbLnlltGtW7ca1zx//vwYOXJkjBo1KmbMmBGzZ8+Ohg0bRrNmzaJjx47RpUuX2GyzzZLuhTdr1qx46aWXYtKkSTFt2rRo2rRpbLjhhrHjjjvGuuuuW+vjf/zxx/Hmm2/GlClTIsuyaN26dXTv3j222267ah9yUluOPvrovD0Tb7vttrjkkktW2G7MmDExYsSIiuuf/vSn0axZs4LUNGvWrBg1alR8/PHHMX369Jg7d26svfba0apVq+jWrVv07t07SkpW7/hgypQp8cYbb8T48eNj9uzZ0bhx49h2222r/Ll8dbf//vtHw4YNKw6AGzZsWFx22WVF/9qlwDIAVtmiRYuyH/7wh1lEVLxttNFG2Zw5cyo9u8cee+Q917Vr12z27NlFqBqAumDGjBlZ+/bt87737Lbbbll5eXnFM8cdd1ze62uttVb28ccfJ6vx66+/zurXr18xfvPmzbOysrKV6mPgwIF578POO+9c47qeeeaZvD4jIjvyyCNXqo9vvvkmGzx4cLbJJptU6mvJty5dumRDhgzJ5s6du9J1vv/++9kRRxyRNW3adLljRETWuHHjrF+/ftnQoUOzGTNmLLPPcePG5bXbYIMNVqqmMWPGZAcffHC21lprVVlH/fr1s/333z8bOXJkRZudd94575nnn39+uWMs7/l7770322KLLZb5cWjVqlV26aWXrtLHe2Ut/bGMiGzq1KlZeXl51qVLl7yP8ZJ/L5flwgsvzOvrmWeeybIsy/bZZ5+8+4MGDapWfa+//np2zjnnZFtttVVWr1695X79NG3aNDv88MOz999/v1p9L/05Wpm3W265pVJ/gwYNWub7+Nhjj2U77rhjlX3tv//+ef2szNf3WWedlfdso0aNsv/+97/Vev8X23///fP6aNu2bTZlypRqte3Xr19e2+HDh6/U2Kz+LFkFqIHFp6OutdZaFfc+/fTTOP/88/Oeu/HGG/P2n1l8WmvTpk2T1QpA3dKyZcu49tpr8+4999xzccMNN0RExFNPPZU3Syci4uKLL45NNtkkWY1PPfVULFq0qOK6b9++q8UMkN133z023XTTvHuPP/74cvfhW9Ltt98eXbt2jcGDB8f//ve/5T67eMuLbt26xX//+99q13jJJZdE7969Y9iwYSvcwzbiu736XnrppTjzzDPjxRdfrPY4K+Omm26Knj17xr333hvz58+v8plFixbFQw89FFtttVVBl+HNmzcvDjvssDj44IPj/fffX+ZzM2bMiPPPPz923nnnmD59esHGXxm5XC6OOuqoiusJEyas8HOSZVne0vL1118/dt1111Wu4Wc/+1lsv/32cfnll8fbb7+9wq/tOXPmxB133BG9evWKCy+8cLVYwl1aWho///nPY5999olXXnml4P0PGTIk79C1BQsWxMEHHxzffPNNtdoPHTo0HnrooYrrevXqxb/+9a9Yb731qtV+6c/vY489Vq12fH8I5ABqqFu3bvG73/0u797f/va3ih8MJk+eHGeffXbe67/61a9il112SVUiAHXUgQceWGkvonPPPTdGjRpV6TTWbbfdNm8bhhSeeuqpvOslD0wqtqW/T0+fPj0+/fTT5bbJsiwuuOCCOProo6sMe+rXrx+tWrWqdHBERMRnn30WO++8czz77LMrrO2yyy6Liy66KC/MXKykpCRatmwZLVu2TBpuXn/99XHCCSfkHTiwWP369aNly5Z5h4QsXLgwjj/++Lj33ntrPHZZWVn89Kc/jbvuuivvfqNGjWKdddapss2bb74ZAwYMKFqwdPTRR+ddr+hwhxdffDHGjx9fcX3UUUfVaK/FJfdtXFIul4vmzZsv8+sny7L4/e9/X2mpezGccMIJcdNNN+Xdq+prbVWVlJTE3XffnbfEeuzYsXHcccetsO1rr71WaW/p888/f6WWvS/97+GTTz5Z7bZ8PwjkAArgzDPPjO23377iury8PI477riYP39+/PKXv8z7n7TOnTvHkCFDilEmAHXQ1VdfHa1bt664/vbbb2O77baLiRMnVtxr2LBh3Hzzzclnp73++ut511tssUXS8Zdnhx12qHTvvffeW26bK664otLJ6V27do2hQ4fGqFGjorS0NKZPnx7z58+PcePGxdChQ6N9+/YVz86ZMycOPfTQmDRp0jLHmDBhQgwePDjv3kYbbRTXXnttfPrppzF//vyYMWNGzJgxI8rKymLSpEnxxBNPxHnnnRfdu3evxnu+8t566604+eST88KtBg0axK9//et49913Y+HChTFjxoxYuHBhjBgxIgYOHBi5XC6yLIsTTjgh74TfVTFo0KCKPf823XTTuPnmm2PKlCkxf/78+Prrr2PWrFlxzz33VJr9+eKLL8att95ao7FX1YYbbpgXuNx3330xd+7cZT6/dJ1LB3qrarPNNouzzz47HnnkkRg3blwsWrQovvnmm4rP1+jRo+Ovf/1rbLzxxnnt/vGPf8Qdd9yxzH7PPPPMuO666+K6666r1PbXv/51xWtVvf3whz9cYd333ntvRYjZokWL+N3vflfxd2zGjBmxYMGCeOONN2q8J2WnTp3i9ttvzwv4/v3vf8ff/va3ZbaZMWNGHHrooVFaWlpxb9ddd41Bgwat1Ni9evXKu37//feX+zXC91ARl8sCrFFGjRqVNWrUKG+vhx122CHvOpfLZc8++2yxSwWgjhk2bNhy92y6+OKLk9c0d+7cvP3jIiKbOHHiSvdTG3vIZVmWvf3225U+Tpdffvkyn3/11VezkpKSvOdPPvnkbP78+csd56uvvsp22mmnvHb77LPPMp8fMmRIpZ81VmZP2uHDh2ejRo1a5usru4dcWVlZ1rNnz7w2LVu2zN56663ltnv44Yezhg0bVvn1uLJ7yC1+O/HEE7PS0tJltvv666+zXr165bXp3bv3cseqiWXtIbfYP/7xj7zXbr/99ir7mT17dtasWbO8z/mSVmUPub/97W/ZK6+8Uu33Zf78+dkJJ5yQN86GG26YLVq0aIVtV3aPwKosvYfc4reePXtWe0+2LFv1PRJ/85vf5LVr2LBh9sYbb1R6rry8vNLno127dnmf95Wx9D6gI0aMWKV+WD2ZIQdQIJtttlml/7F+7bXX8q5/8YtfxG677ZawKgCIOPzww2O//far8rVevXpVOgU8hU8++SRvyWWDBg2iY8eOyetYlpYtW1a6t7yZXOecc06UlZVVXP/iF7+Iq6++usrlqUtq3bp1PPzww7HBBhtU3Hvsscfigw8+qPL5t99+O+968ODBK7UnbZ8+fWKzzTar9vMr8thjj8XIkSPz7t1///2x9dZbL7fdvvvuG9dcc03B6thvv/3i+uuvX+5JoOuss07ceOONeffeeeedGDNmTMHqWBmHHHJING7cuOJ6WctW77///pg9e3bF9cCBA2s89qmnnlqtmWiLNWrUKK6//vq8pdxjxozJO404tZYtW8ZTTz1V7T3ZauKSSy6JnXfeueJ64cKFccghh1Ra+vunP/0pb6+3evXqxbBhw/Jmwq6Mzp07512PHj16lfph9SSQAyigc845J7bddtsqX/vBD34Qf/rTnxJXBADfOemkk6q8f/PNN0eDBg0SVxN5+2FFRKy33no12hOr0Krae2xZhye8+uqrMWLEiIrrjh07xp///Odqj9WqVatK/6n3j3/8o8pnv/7667zrLl26VHuc2rD4kJDFDjnkkGofNnD88cfHNttsU+MaGjRoUO1wb5tttomtttoq795bb71V4xpWRfPmzeOAAw6ouH7uueeqXK68ZFDXqFGjOPTQQ1OUV0kul4tzzz03795zzz1XlFoiIi688MIkYVzEd3vT3XnnndG2bduKe+PHj49jjz224nrEiBFxwQUX5LW76KKLYvfdd1/lcTt16pR3vfS/m3y/rT7f8QDWAPXr149bbrklGjZsWOm1G2+8MdZee+0iVAVAXVdaWhrnnXdela8t70TK2jRlypS86yV/0V0dNGvWrNK9hQsXVvns0ntpHXfccSt9kvqAAQPyZnct69TNpYPCYoVJEd8dprB0IHPiiSdWu30ul1up55dln332qRRcLM9OO+2Ud/3RRx/VuIZVteRecOXl5fGvf/0r7/WJEyfG888/X3G97777Vjl7M5Wl91Zceh/IVBo0aFCQmYIrY7311othw4bl/cfBgw8+GFdeeWV89dVX8bOf/Sxvluxuu+0WF154YY3GXPrfxaX/3eT7bdnzeQFYJT169IgBAwbEnXfeWXHvhz/84UqdqgQAhfSHP/xhmcHbmWeeGXvvvXe0a9cuaU1LLsGLiLyle6uDWbNmVbq3rOWnS4dne+6550qPt/baa8fGG29csSRt5MiRMXv27ErB4HbbbZd3Mumvf/3r6NChQ1FOb3/vvffyTlVt3LjxStex995717iOJZcSVkfXrl3zrpd14mgKe+yxR6y33noxderUiPhuNtySp3PedttteYdl1GYINXfu3Pjwww9j6tSpMWvWrJgzZ06Ul5cvt82Sh8Ok1KtXr2jVqlXycfv37x8XXnhhXHzxxRX3zjvvvLjjjjti8uTJFffat28fd9xxR41n/TZp0iTveul/N/l+E8gB1IKlZ8hVNWMOAFIYOXJk/OEPf1jm619//XWcfPLJcd999yWsKvKCnIiItdZaK+n4K7LkCemLLf3LccR3y1iX3kPt5ZdfXuYecMuzYMGCij+Xl5fHF198USmQO+qoo2LQoEEVpy1++eWXseuuu8Z2220XBx98cOyxxx6x+eabJ1n+u/TMsp49e670Sb2dOnWK1q1bx7Rp01a5jqX32VqRpVcsfPvtt6s8dk3Vr18/jjzyyLj88ssj4ruP6ZtvvlmxBcptt91W8Wzbtm1jr732Kuj4kydPjltuuSXuueee+PDDD1cYwC2tWGHm5ptvXpRxI75bhjpixIh49tlnI+K7GchLzlStV69e3HHHHQX5T46l/6PCKatrFoEcAACsoRYtWhTHHnts3lLLjTfeOE488cQ455xzKu7df//98cADD8SBBx6YrLal961bcqnX6mDGjBmV7lW1X9WXX36ZN4MpIpa5PHhVathwww3z7rVr1y5uuOGGOProo/PCkzfeeCPeeOONiPhuWet2220X/fr1i1133TV22GGHWgnolt7PblX382rfvn2NArkWLVqs1PNLh4ZLHi5SDAMHDqwI5CK+myW37bbbxssvvxyffPJJxf0jjjhiuYdWrIwsy2LIkCHx+9//vkYhT1UzSVMoxuy4xRYf1NC7d++KmY1LGjx4cLX3UVyR0tLSvOti7PdJ7bGHHAAArKGuuOKKvJkbuVwubrrppjjrrLOiT58+ec+efPLJSWe7LD3bbOkZc8X23nvvVbq35Emoi1UV3BXKsoKSI444Iv7zn/9UCusWmzlzZjz11FNxwQUXxE477RTrr79+/L//9//iyy+/LGh9S88iXNW9cps3b16jOnK5XI3aF1uPHj3yTqW96667YuHChZVOXS3kctUTTjghfvvb39Z4xtXSYXQqVe3xmFK7du3i1FNPrXR/yy23jPPPP79g4yz9+VnZvSlZvQnkAABgDfTxxx9XOrnzV7/6VfTt2zdyuVzceOONeXuiTZ06Nc4666xk9a277rp511UtES2mqjar33LLLSvdW9ZBD4WwvLBjzz33jNGjR8c999wTBx54YJWnwi42ZcqU+OMf/xhdu3aNW2+9tWD1Lb2n3qp+LGrzY/h9sWTYNn369LjvvvvinnvuqbjXq1ev6NWrV0HGuu222+Kmm27Ku9esWbM47rjj4p///Ge88cYbMXny5Jg1a1aUlpZGlmV5b0SMGTMmhgwZUun+Bx98EC+//HLBxll6OXUxZwZSeAI5AABYw5SXl8fxxx8f8+fPr7i3wQYb5P0C2a1bt7jooovy2t18880V+yLVtqVnmy25IfrqYMmTLSO+27+rqhlpS/+C3LBhw1i0aFGlEGNV3lZ0QEKDBg3i4IMPjn//+98xffr0eOedd+Kqq66KQw89tMrlo3PmzIljjz02br755pX/gFRh6RBwVUPV1S2MLYbDDjssbzniaaedlvdxKdTsuCzLKp38udtuu8X48ePjpptuiqOPPjq23Xbb6NChQzRr1qzSElmHCny31+MhhxxS5d6DixYtisMOOyy++uqrgoy19L+LK7tfIqs3gRwAAKxh/va3v1WapXHDDTdUWuZ17rnnRu/evfPunXDCCUk2Dl/6pMtvv/22qJvrL+npp5+O//3vf3n3fvzjH1e5NLJNmzZ51wsXLoxJkybVan1VqVevXmy55ZZxyimnxF133RWTJ0+Ot956K0466aRK+079+te/LshS2/bt2+ddf/zxxyvdx4IFC2L8+PE1ruX7rnXr1vHjH/+44nr69OkVfy4pKYnDDz+8IOP897//zTsZdZ111on77ruv0ozVZanJXn9rijPPPDPefvvtiuumTZvmHeAwefLkOOqoowoym3Dpf0uW/neT7zeBHAAArEHGjh1baQ+jY489Nn70ox9VerakpCRuuummvFkw48aNiwsuuKDW6+zQoUO0bds2797o0aNrfdzquOKKKyrdO+aYY6p8tlWrVvGDH/wg795LL71UG2WtlFwuF1tvvXVce+218cILL+SFct9++2088sgjNR5j8Umgi02YMCE+//zzlerj7bffrrRxfV21rFlwe+65Z0FO7IyIeP/99/Ou99lnn2jZsmW127/55psFqeP76t57741rr7027961114bd955Z97BKU8++WSVS1pXxsKFC+PTTz/Nu7f0f6Dw/SaQAwCANUSWZfHzn/88b4bbeuutF0OHDl1mm969e8fZZ5+dd++vf/1rlXuoFdqSG9lHVA4LiuGaa66Jp556Ku/eVlttFTvvvPMy2/Tv3z/vesm9v1YHO+64Y/z0pz/Nu1eIj3W7du2iS5cueffuuuuulerjjjvuqHEda4qf/OQnVc5UK+RhDksf7LF0mLwiqxLkLr3stdin2q6qMWPGxM9//vO8e8cee2wcffTRseuuu1baAuDCCy+M4cOHr/J4o0ePzgur27RpU+XBMnx/CeQAAGANcf3111fa++y6665b7ob/ERGDBg2Kbt26VVwv3oOutjfbXzrkWvJE2GJ44oknKh1skcvllhtoRkQcdNBBedePPPLIajeTaOngbM6cOQXpd+mllEOHDq1235999llBD5n4vmvQoEFcfPHFceihh1a8HX744bHffvsVbIyGDRvmXa/MycqfffZZ3H333Ss95tKn764uS9NXxoIFC+Lggw/Oq71nz55x9dVXV1xfeOGFeeH84v3kVnWZ73//+9+86379+q1SP6y+BHIAALAG+Oyzz+Lcc8/Nu3fooYfG/vvvv8K2a621Vtx44415e6R9+OGH8Yc//KHgdS5p7733zrteOkxMpbS0NC6++OLYZ599YsGCBXmvnXXWWcudHRfx3fux9PLNww8/PG8fsJW1rP2nysrKVqm/jz76KO966f3fVtWJJ54Y9evXr7j+7LPP4uSTT17h/lnz58+PgQMHOiRgKSeffHLcddddFW/Dhg2rdJptTXTq1Cnv+sknn6zWjLVFixbF0UcfvUoh/dLLbVeXpekr44wzzoh33nmn4rpp06Zxzz33RJMmTSru1atXL/71r3/l/d2qyX5yS/97uOQeg6wZBHIAALAGOPHEE2PWrFkV161bt46rrrqq2u379OkTv/rVr/LuXXbZZfHhhx8WrMalbbHFFnlLsD755JP47LPPam28pX322Wdx2WWXRefOnWPw4MFRXl6e9/ohhxxS7X2grrjiiryleZ9++mn06dNnpZaGZlkWzz//fOy///7x4IMPVvnM5ptvHr///e8rLT1cnv/85z+Vlhruuuuu1W6/PD/4wQ8qLXn+5z//GYceeugyaxwzZkzstddeFYHDWmutVZBaWLGdd945L3gfO3ZspVNXlzZnzpwYMGBAvPDCC6s05tL7nt12220Fm6GZwj333BN///vf8+5dd911sdlmm1V6tl27dnHnnXfmhdRPPPFE/PGPf1zpcZcM5OrVqyeQWwOVrPgRAABgdXbrrbfGE088kXfvb3/7W6UTQFdkyJAh8cgjj1Scwrhw4cI4/vjj45VXXsnbsLyQDj/88Ljssssqrh966KE45ZRTVrm/KVOmVPrlOeK7JWczZ86MmTNnxmeffRavvfZaTJ48eZn9nH322TFkyJC8X6yXp1+/fjF06NA47bTTKu599NFHsdVWW8WBBx4Yhx9+eOy00055B1mUlpbG2LFj47333ouXXnopHnzwwYqajjrqqCrHmTp1alx44YUxePDg6NevX+y7776xzTbbxOabb563NHnOnDnx3//+N26//fa45ZZb8mZB9e7du6DL3y6++OJ4/PHH88LHe++9Nx599NHYa6+9Ysstt4yWLVvGtGnT4rXXXovnn3++Ym+svffeO+bOnRsvvvhiRduqTrOlMNq1axcHHHBAPPDAAxX3FgfvZ599duywww4VB4BMmDAhHnroofjTn/5U8XXZr1+/lT605Mc//nHUq1evIvD++OOPY9NNN439998/Ntxww2jcuHHe87vuumveEvpi+uSTTyrtG3f88ccv8+9nRMQuu+wSgwYNyttT7sILL4w+ffpEnz59qjXuG2+8kffvU//+/Qs2q5XVSAZAwQ0cODCLiIq3nXfeudglAbCGmjp1atayZcu87zv77rvvKvf3+OOP5/UVEdnQoUMLWHG+0aNH1+h75tLfc2v61qtXr+zFF19c5fdnyJAhWf369ZfZf4MGDbJ11103a9KkyXLruPfee6vsv0WLFsvtu3Xr1lnz5s2X+UzLli2zkSNHLrP+cePG5T2/wQYbVOv9/uKLL7IePXqs1Md68803z2bMmJH169cv7/5rr7223LF23nnnvOeff/75atW42C233JLXfuDAgSvVvrqW/lhGRDZ16tSCj7PPPvvkjTFo0KDlPv/JJ59k66yzTpWfk5KSkmzdddfNGjZsWOm1jh07Zp999lml+9VxzDHHVPvr4pZbbqnUftCgQSv1Pi7Lynx9z58/P9tyyy3znu/Zs2c2d+7cFY6zaNGibI899shr26lTp+yrr76qVp3nnHNOXtt//etf1X0X+R6xZBUAAL7HTjrppPj6668rrlu0aFHlDLHq2muvvSrN/rjgggti3Lhxq9zn8my66aaxyy67VFwPHz68YoZeKo0bN46DDjoo/vOf/8S7775bo9lj5513XjzxxBOVDlFYrLS0NKZPn553Eu7S2rRpEx07dqzyteXNHistLY1p06Ytc9P8nj17xssvvxw9evRYznuwatq2bRvDhw+P448/vloz3A455JAYPnx4tGzZslK9KzqEhJrZaKON4qGHHqryRNeysrKYPn16pb3iNt1003jhhRcq7UFXXVdffXW19rNcnZx++unx7rvvVlw3bdo07r333koz+qqyeD+59dZbr+LepEmT4uijj17hfnLl5eV5h2e0adMmBgwYsPLvAKs9gRwAAHxP3XXXXZX2Gvvzn/8cHTp0qFG/f/nLX/I2Yp87d26ccMIJNepzeZY82bS8vDxuuummgvafy+WiUaNG0aJFi+jatWvsuOOOcdRRR8Vll10Wzz//fMyYMSPuvffeSodMrKr+/fvH//73v/jnP/8Zffr0qVgCuDwbbLBBHHfccfHQQw/FlClT4oc//GGVz3300Udx0003xcEHH1ytz3Mul4uddtopbrzxxnj33Xer3PeqUFq2bBk33nhjvPfee/Gb3/wmtt5662jXrl2UlJRE8+bNY8stt4xTTz013nrrrbj77rujRYsWERGV9ppr2bJlrdXId/r16xfvvPNOHHPMMcv9+uzQoUNceuml8c4778RGG220yuM1bdo0HnzwwRg+fHiccsop8cMf/jDatm1brXCrGO6+++64/vrr8+79/e9/j0033bTafbRt2zbuuOOOvGXvjz/++Ar3k3v88cfz/lPiV7/6lX0W11C5bEXxLAAAQC3Ksix69uwZo0aNioiIjh07xrhx46oVZH0fzJ07N15//fWYNGlSTJ8+PWbPnh1NmzaNFi1aRJcuXWKzzTZb5f2hJk2aFP/73/9i3LhxMXPmzJg7d240btw4WrRoERtttFH06tUrWrVqVeD3qHCmTp2aFyyuu+66MW3atCJWVPfMmjUrXn755RgzZkzMnDkzGjRoEO3bt48tttgievXqZU+/xPbdd9949NFHIyKiSZMmMW7cuLy9J1lzONQBAAAoqlwuF7/73e/ioIMOioiIyZMnxx133BEDBw4scmWF0aRJk4Kdarq0Tp06rfIywtXB0jM8t9122+IUUoetvfbasddeexW7DCLiww8/jMcee6zi+rTTThPGrcEsWQUAAIpuwIABsc0221Rc//GPf1zhXkt8v82bNy+GDh2ad69///5FqgaKb8iQIRX/7rVo0SLOPffcIldEbRLIAQAAq4Ulw5nRo0fHXXfdVcRqWBlLHwKwIosWLYoTTjghPv3004p7a621VhxzzDEFrgy+Hz766KO48847K64HDRpkP8U1nEAOAABYLfTt2zfvhNfzzz9/pYMeiuM3v/lNDBgwIJ5++ukoLS1d7rP//e9/Y/fdd49hw4bl3f/lL39Z5cmfUBecd955sWjRooiI6NGjR5x66qlFrojaZg85AABgtXH55ZdH165dK67Hjx8fm2yySRErojoWLVoU//73v+Pf//53rLPOOrHDDjtEz549o23bttGkSZP49ttvY+LEifHyyy/HBx98UKl9jx494rLLLitC5VB8s2fPjq222ip69+4dEd8d7FBSIq5Z0zllFQAAgBo544wz4q9//esqtd1yyy3j4YcfjvXXX7/AVQGsvixZBQAAoEa6du0ajRo1Wqk2a6+9dpx33nkxYsQIYRxQ55ghBwAAQI19++238eSTT1YsSx0/fnxMmzYt5s6dGyUlJdGyZcto3bp1bL311rHzzjvH/vvvb9N6oM4SyAEAAABAQpasAgAAAEBCAjkAAAAASEggBwAAAAAJCeQAAAAAICGBHAAAAAAkJJADAAAAgIRKil1ASg0bdSp2CQAAtWrhgklFGbd02tiijAsAkEqD1l0L1pcZcgAAAACQkEAOAAAAABISyAEAAABAQgI5AAAAAEhIIAcAAAAACQnkAAAAACAhgRwAAAAAJCSQAwAAAICEBHIAAAAAkFBJsQtI6euzf1jsEgAAAACo48yQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABISCAHAAAAAAkJ5AAAAAAgIYEcAAAAACQkkAMAAACAhARyAAAAAJBQLsuyrNhFpNK1de9ilwAAUKvGTnunKOOWThtblHGBuqtxh77FLgGoY8oWTi5YX2bIAQAAAEBCAjkAAAAASEggBwAAAAAJCeQAAAAAICGBHAAAAAAkJJADAAAAgIQEcgAAAACQkEAOAAAAABISyAEAAABAQiXFLiCleWULil0CAAAAAHWcGXIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABISCAHAAAAAAkJ5AAAAAAgIYEcAAAAACQkkAMAAACAhARyAAAAAJCQQA4AAAAAEiopdgEpHb/OlsUuAQAAgAKYN2V4sUsAWGVmyAEAAABAQgI5AAAAAEhIIAcAAAAACQnkAAAAACAhgRwAAAAAJCSQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEIlxS4gpf1L5xW7BAAAAADqODPkAAAAACAhgRwAAAAAJCSQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABISCAHAAAAAAkJ5AAAAAAgIYEcAAAAACRUUuwCUtryvT8XuwQAAAAA6jgz5AAAAAAgIYEcAAAAACQkkAMAAACAhARyAAAAAJCQQA4AAAAAEhLIAQAAAEBCAjkAAAAASEggBwAAAAAJCeQAAAAAIKGSYheQUuMOfYtdAgBArSpbOLnYJQAk4fc7ILVC/pxlhhwAAAAAJCSQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABISCAHAAAAAAkJ5AAAAAAgIYEcAAAAACQkkAMAAACAhEqKXUBKs647rNglAAAAUADzpgwvdgkAq8wMOQAAAABISCAHAAAAAAkJ5AAAAAAgIYEcAAAAACQkkAMAAACAhARyAAAAAJCQQA4AAAAAEhLIAQAAAEBCAjkAAAAASCiXZVlW7CJS2f8HPyl2CQAAteqhiY8WZdzSaWOLMi5QdzXu0LfYJQB1TNnCyQXryww5AAAAAEhIIAcAAAAACQnkAAAAACAhgRwAAAAAJCSQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABISCAHAAAAAAmVFLuAlPYrX6fYJQAAAABQx5khBwAAAAAJCeQAAAAAICGBHAAAAAAkJJADAAAAgIQEcgAAAACQkEAOAAAAABISyAEAAABAQgI5AAAAAEhIIAcAAAAACZUUu4CUfvbLYlcAAABAIcybMrzYJQCsMjPkAAAAACAhgRwAAAAAJCSQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABISCAHAAAAAAkJ5AAAAAAgIYEcAAAAACRUUuwCUjr9xvnFLgEAoFbdeEGxKwAAYEXMkAMAAACAhARyAAAAAJCQQA4AAAAAEhLIAQAAAEBCAjkAAAAASEggBwAAAAAJCeQAAAAAICGBHAAAAAAkJJADAAAAgIRKil1ASvvOb1jsEgAAACiAxh36FrsEoI4pWzi5YH2ZIQcAAAAACQnkAAAAACAhgRwAAAAAJCSQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABISCAHAAAAAAkJ5AAAAAAgoZJiF5BSSZYVuwQAAAAA6jgz5AAAAAAgIYEcAAAAACQkkAMAAACAhARyAAAAAJCQQA4AAAAAEhLIAQAAAEBCAjkAAAAASEggBwAAAAAJCeQAAAAAICGBHAAAAAAkVFLsAlLq/9zPi10CAAAABTBvyvBilwCwysyQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABISCAHAAAAAAkJ5AAAAAAgIYEcAAAAACQkkAMAAACAhEqKXUBKj+9+U7FLAACoVQd8vnuxSwAAYAXMkAMAAACAhARyAAAAAJCQQA4AAAAAEhLIAQAAAEBCAjkAAAAASEggBwAAAAAJCeQAAAAAICGBHAAAAAAkJJADAAAAgIQEcgAAAACQUEmxC0jpf43kjwAAAGuCxh36FrsEoI4pWzi5YH1JqAAAAAAgIYEcAAAAACQkkAMAAACAhARyAAAAAJCQQA4AAAAAEhLIAQAAAEBCAjkAAAAASEggBwAAAAAJCeQAAAAAIKGSYheQ0nbzFxS7BAAAAApg3pThxS4BYJWZIQcAAAAACQnkAAAAACAhgRwAAAAAJCSQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABISCAHAAAAAAkJ5AAAAAAgoVyWZVmxi0ilpGHHYpcAAFCryhZOLsq4pdPGFmVcoO5q3KFvsUsA6phC/pxlhhwAAAAAJCSQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABISCAHAAAAAAkJ5AAAAAAgIYEcAAAAACRUUuwCUtqgebtilwAAAEABzJsyvNglAKwyM+QAAAAAICGBHAAAAAAkJJADAAAAgIQEcgAAAACQkEAOAAAAABISyAEAAABAQgI5AAAAAEhIIAcAAAAACQnkAAAAACAhgRwAAAAAJFRS7AJS6tOsS7FLAAAAoAAad+hb7BKAOqZs4eSC9WWGHAAAAAAkJJADAAAAgIQEcgAAAACQkEAOAAAAABISyAEAAABAQgI5AAAAAEhIIAcAAAAACQnkAAAAACAhgRwAAAAAJFRS7AJS6lfWuNglAAAAUADzpgwvdgkAq8wMOQAAAABISCAHAAAAAAkJ5AAAAAAgIYEcAAAAACQkkAMAAACAhARyAAAAAJCQQA4AAAAAEhLIAQAAAEBCAjkAAAAASEggBwAAAAAJ5bIsy4pdRColDTsWuwQAgFpVtnByUcYtnTa2KOMCdVfjDn2LXQJQxxTy5ywz5AAAAAAgIYEcAAAAACQkkAMAAACAhARyAAAAAJCQQA4AAAAAEhLIAQAAAEBCAjkAAAAASEggBwAAAAAJCeQAAAAAIKGSYheQ0jprNS12CQAAAADUcWbIAQAAAEBCAjkAAAAASEggBwAAAAAJCeQAAAAAICGBHAAAAAAkJJADAAAAgIQEcgAAAACQkEAOAAAAABISyAEAAABAQgI5AAAAAEiopNgFpPRMy02LXQIAAAAFMG/K8GKXALDKzJADAAAAgIQEcgAAAACQkEAOAAAAABISyAEAAABAQgI5AAAAAEhIIAcAAAAACQnkAAAAACAhgRwAAAAAJCSQAwAAAICESopdQErbTP1vsUsAAKhVZcUuACCRxh36FrsEoI4pWzi5YH2ZIQcAAAAACQnkAAAAACAhgRwAAAAAJCSQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABISCAHAAAAAAkJ5AAAAAAgoZJiF5DSIettV+wSAAAAAKjjzJADAAAAgIQEcgAAAACQkEAOAAAAABISyAEAAABAQgI5AAAAAEhIIAcAAAAACQnkAAAAACAhgRwAAAAAJCSQAwAAAICESopdQEpX9ZxR7BIAAAAogHlThhe7BIBVZoYcAAAAACQkkAMAAACAhARyAAAAAJCQQA4AAAAAEhLIAQAAAEBCAjkAAAAASEggBwAAAAAJCeQAAAAAICGBHAAAAAAkJJADAAAAgIRKil1ASl/+r2mxSwAAqFXrFrsAAABWyAw5AAAAAEhIIAcAAAAACQnkAAAAACAhgRwAAAAAJCSQAwAAAICEBHIAAAAAkFBJsQuoypgxY2LatGnRuXPnaNeuXbHLAQAAAICCSTpD7quvvoprr702rr322vjmm28qvf7pp5/G1ltvHZtssknsuOOO0bFjxzjooINi5syZKcsEAAAAgFqTNJC7//7745RTTomrrroqWrRokffaggULYu+994533303siyLLMuivLw8HnjggTjggANSlgkAAAAAtSbpktWnnnoqcrlcDBgwoNJrt956a4wZMyZyuVzst99+sfvuu8czzzwTjzzySAwfPjzuueeeOOSQQ2o0/pDSxjVqDwCwuvtnsQsAAGCFks6Q+/jjjyMiYrvttqv02p133hkREbvttls8+OCDceqpp8ZDDz0U/fv3jyzLKl4HAAAAgO+z5HvIRUR06NAh7/68efPi1VdfjVwuFyeeeGLea8cdd1xERLz99ttpigQAAACAWpQ0kFt8OEO9evnDvvbaa1FaWhq5XC769++f91qXLl0iIuLLL79MUiMAAAAA1KakgVyzZs0iIuLzzz/Pu//CCy9ERET37t2jZcuWea81aNAgIiJKSpJudwcAAAAAtSJpILfppptGRMQTTzyRd//++++PXC4XO++8c6U2i8O7du3a1X6BAAAAAFDLkk4722effeK1116LG264ITbbbLPo27dv3HrrrTFq1KjI5XLx05/+tFKbxXvHderUKWWpAAAAAFArkgZyp5xySlx77bUxderUOOWUU/Je++EPfxi77rprpTaPPPJI5HK56Nu3b6oyAQAAAKDWJF2y2qJFi3jmmWdiq622iizLKt769u0b99xzT6Xn33vvvXjzzTcjImKPPfZIWSoAAAAA1IrkJyVsttlm8dZbb8W4cePi888/j/XWWy86d+68zOdvueWWiIjYcccdE1UIAAAAALWnaEeXdunSJbp06bLcZ3r16hW9evVKVBEAAAAA1L6iBXLF8PdBGxa7BAAAAADquKR7yAEAAABAXVeUGXJlZWXx2GOPxfDhw2Ps2LExa9asWLRo0XLb5HK5ePbZZxNVCAAAAAC1I3kgN2LEiDjqqKNi4sSJFfeyLFvm87lcLrIsi1wul6I8AAAAAKhVSQO5jz76KPbaa6+YN29eZFkWDRs2jI033jhatWoV9epZPQsAAADAmi9pIPeHP/wh5s6dG/Xr14+LL744TjvttGjWrFnKEgAAAACgqJIGcs8991zkcrk4/fTT47e//W3KoQEAAABgtZB0nei0adMiIuLAAw9MOSwAAAAArDaSBnJt2rSJiIjGjRunHBYAAAAAVhtJA7k+ffpERMTIkSNTDgsAAAAAq41clmVZqsHefPPN2GmnnWLzzTeP119/PUpKkm5hFz3b7ZB0PACA1EZ+8VpRxi2dNrYo4wIApNKgddeC9ZV0hty2224bQ4cOjXfffTd++tOfVuwpBwAAAAB1RdIpar/73e8iImL77bePRx99NDbYYIPYY489YtNNN40mTZqssP1FF11U2yUCAAAAQK1KumS1Xr16kcvlKq6zLMu7XpFFixbVaHxLVgGANZ0lqwAAtaOQS1bTbuIW34Vwy7sGAAAAgDVZ0kCuvLw85XAAAAAAsNpJeqgDAAAAANR1AjkAAAAASEggBwAAAAAJJT/UYbEZM2bELbfcEs8880yMHDkyZsyYERERrVq1ip49e0b//v3j2GOPjVatWhWrRAAAAAAouFxWhGNOr7/++jj77LNj7ty5EVH5pNVcLhcREU2aNIk///nPceKJJxZk3J7tdihIPwAAq6uRX7xWlHFLp40tyrgAAKk0aN21YH0lnyE3ZMiQOP/88ytCuBYtWkTv3r2jffv2kWVZfPHFF/HOO+/EN998E3PmzImTTjopZs6cGeeee26Nx35hy0Y17gMAAAAAaiLpDLmRI0dG7969Y9GiRbHeeuvF5ZdfHgcffHA0aNAg77mysrK4995745xzzokpU6ZESUlJvPPOO9GjR48ajT9tz51r1B4AYHXX+skXizKuGXIAwJqukDPkkh7qcPXVV8eiRYuiTZs28eqrr8bhhx9eKYyLiCgpKYnDDjssXn311Wjbtm0sWrQorr766pSlAgAAAECtSBrIPffcc5HL5eI3v/lN/OAHP1jh8+uvv36cd955kWVZPPvsswkqBAAAAIDalTSQmzx5ckRE7LjjjtVus9NOO0VExJQpU2qlJgAAAABIKWkgV79+/Yj4bo+46lr8bL16SUsFAAAAgFqRNOVavEx1ZZafLn62OktcAQAAAGB1lzSQ22OPPSLLsrjiiivigw8+WOHz77//flx++eWRy+XiRz/6UYIKAQAAAKB2JQ3kzjjjjGjUqFHMnj07+vTpE5dffnlMmzat0nPTpk2LP/3pT9GvX7+YPXt2NGrUKM4444yUpQIAAABArchlWZalHPC2226LY4899v8KyOWic+fO0a5du8jlcvH555/H+PHjI8uyyLIscrlc3HrrrXHUUUfVeOxpe+5c4z4AAFZnrZ98sSjjlk4bW5RxAQBSadC6a8H6KilYT9V09NFHx7rrrhu//OUvY/LkyZFlWYwdOzbGjRsXERFL5oMdOnSIG264IX784x+nLhMAAAAAakXyQC4iYp999olx48bFAw88EM8880yMHDkyZsyYERERrVq1ip49e0b//v3jwAMPjJKSwpVYv3muYH0BAABQPI079C12CUAdU7ZwcsH6KkogFxFRUlISBx98cBx88MHFKgEAAAAAkkt6qAMAAAAA1HUCOQAAAABISCAHAAAAAAnVyh5y9evXj4iIXC4XZWVlle6viqX7AgAAAIDvo1oJ5LIsW6n7AAAAAFBX1EogN2jQoJW6DwAAAAB1RS6rQ9PWvj54l2KXAABQq1re+0JRxi2dNrYo4wJ1V+MOfYtdAlDHlC2cXLC+HOoAAAAAAAnVypLVZXnppZciImLbbbeNxo0bV6vN/Pnz44033oiIiH79+tVo/Hte7VSj9gAAq7tfFLsAAABWKGkgt8suu0S9evXi/fffj+7du1erzeTJkyvaOWUVAAAAgO+75EtWV3XLujq01R0AAAAAa7DVfg+58vLyiIioX79+kSsBAAAAgJpb7QO58ePHR0REixYtilsIAAAAABRAre4hN3HixCrvT506NZo1a7bctgsWLIgxY8bEhRdeGLlcLnr06FEbJQIAAABAUrUayHXp0qXSvSzL4kc/+tFK93X00UcXoiQAAAAAKKpaDeSWdRDDyhzQsNZaa8Vpp50Wxx13XKHKAgAAAICiqdVA7pZbbsm7PvbYYyOXy8Ull1wSHTt2XGa7XC4Xa621Vqy33nrRu3fvFS5vBQAAAIDvi1y2MtPVaqhevXqRy+Xigw8+iO7du6catsL1nY5MPiYAQEq/mPSvooxbOm1sUcYF6q7GHfoWuwSgjilbOLlgfdXqDLmlPf/88xFR9d5yAAAAAFAXJJ0hV2wlDZe9TBYAYE1QyP+5XRlmyAGpmSEHpFbIn7PqFawnAAAAAGCFki5ZXVKWZfHuu+/Ge++9F9OmTYt58+at8PTViy66KFF1AAAAAFA7irJk9Z///GdcfPHFMWHChJVqt2jRohqNa8kqALCms2QVqCssWQVS+94e6hARcf7558eQIUNWOBsuIiKXy1XrOQAAAAD4vki6h9zrr78el112WURE7LHHHvHuu+/G22+/HRHfhW+LFi2KadOmxRNPPBH7779/ZFkWffr0ialTp0Z5eXnKUgEAAACgViQN5K677rqIiNhggw3iscceiy222CIaNGhQ8Xoul4tWrVrFj370o3jggQfimmuuiREjRsRee+0VCxcuTFkqAAAAANSKpIHcK6+8ErlcLk477bQoKVnxatmTTjopBgwYEO+//35ce+21CSoEAAAAgNqVNJCbOnVqRET06NHj/wqo938llJaWVmpz1FFHRZZlcffdd9d+gQAAAABQy5IGcosDt7Zt21bca9asWcWfv/rqq0pt1l9//YiI+PTTT2u5OgAAAACofUkDuTZt2kRExLfffltxr127dlG/fv2IiBg9enSlNotn1c2aNStBhQAAAABQu5IGcouXqn700UcV9xo2bFhxv6plqcOGDYuIiA4dOiSoEAAAAABqV9JArm/fvpFlWTz//PN59w899NDIsixuvvnmuOiii+LDDz+MN998M0455ZS48847I5fLxd57752yVAAAAACoFbksy7JUg3344Yex+eabR7NmzWLSpEnRvHnziIiYO3du9OzZM8aPHx+5XC6vTZZl0apVq3j33XejU6dONRq/pGHHGrUHAFjdlS2cXJRxS6eNLcq4QN3VuEPfYpcA1DGF/Dkr+ZLV559/Ph544IEoKyuruN+kSZN4/vnnY6eddoosy/LeevbsGc8++2yNwzgAAAAAWB0knSFXHR9//HF8+OGHUVZWFhtvvHH07t27YH2bIQcArOnMkAPqCjPkgNQK+XNWScF6KpBu3bpFt27dil0GAAAAANSKpEtWy8vLUw4HAAAAAKudpIFcx44d49e//nW8+eabKYcFAAAAgNVG0j3k6tWrV3GK6oYbbhhHHnlkHHbYYbHxxhsnGd8ecgDAms4eckBdYQ85ILXv7Smre+21V9SvXz+yLItPP/00Lr744th0001j++23j6uuuiq++OKLlOUAAAAAQHLJT1mdPn163H333XHHHXfEK6+88l0R//+suXr16sXuu+8eRxxxRBx44IHRrFmzgo592QZHFrQ/AIDVzW8m/Kso45ohB6RmhhyQWiFnyCUP5JY0YcKEuOOOO2LYsGExatSo7wr6/8O5tdZaK/bbb7844ogjYq+99oqSkpofCCuQAwDWdAI5oK4QyAGprTGB3JLee++9uOOOO+LOO++MSZMmRcT/hXOtWrWKgw8+OK699toajSGQAwDWdAI5oK4QyAGprZGB3JJefPHFGDZsWNx///3x9ddfR8R34dyiRYtq1K9ADgBY0wnkgLpCIAekVshArubrQGvBzjvvHL17947evXvH+eefHzNnzix2SQAAAABQEKtVILdw4cJ49NFH44477oj//Oc/sWDBgmKXBAAAAAAFtVoEcs8991wMGzYs/v3vf8e3334bERGLV9JutNFGcfjhh8cRRxxRzBIBAAAAoCCKFsi9/fbbMWzYsLj77rtj6tSpEfF/IVybNm3i0EMPjSOOOCK23377YpUIAAAAAAWXNJAbM2ZM3HHHHTFs2LD45JNPIuL/QrimTZvG/vvvH0ceeWTsscceUb9+/ZSlAQAAAEASSQO5jTfeOHK5XEUIV1JSEnvssUccccQRccABB0STJk1SlgMAAAAAySVfspplWWy//fZxxBFHxKGHHhpt2rRJNvYZf+iSbCwAAABqz7wpw4tdAsAqSxrIDR48OI488sjo2rVrymEBAAAAYLVRL+VgnTt3jhEjRsTrr7+eclgAAAAAWG0kDeSOOeaYOPbYY2PChAkphwUAAACA1UbSQK5FixYR8d3hDgAAAABQFyUN5Lp0+e5Qha+//jrlsAAAAACw2kgayB144IGRZVk88sgjKYcFAAAAgNVG0kDu9NNPjw022CCuu+66eO6551IODQAAAACrhaSBXPPmzePpp5+OTTfdNPbcc8848cQT44UXXogZM2ZElmUpSwEAAACAoshlCZOw+vXrV/w5y7LI5XLVbpvL5aKsrKxG488bdmGN2gMArO4aH3FJUcYtnTa2KOMCAKTSoHXXgvVVUrCeqmHp7M+sOAAAAADqmqSB3KBBg1IOV8k31w8v6vgAALWt8RHFrgAAgBWpU4EcAAAAABRb0kMdAAAAAKCuE8gBAAAAQEJJl6wubezYsfHqq6/G559/HnPnzo2TTjopWrduXcySAAAAAKBWFSWQe+edd+KMM86IESNG5N0fMGBAXiB3zTXXxMUXXxwtWrSIUaNGRYMGDVKXCgAAAAAFlXzJ6mOPPRY77rhjjBgxIrIsq3irysCBA2PevHkxduzYePTRRxNXCgAAAACFlzSQ+/zzz+Owww6LBQsWRPfu3ePxxx+PWbNmLfP5Zs2axQEHHBAREY8//niiKgEAAACg9iQN5K688sqYPXt2bLDBBjF8+PDYc889o2nTpstts8suu0SWZfHf//43UZUAAAAAUHuSBnJPPvlk5HK5OOuss2KdddapVptu3bpFRMT48eNrrzAAAAAASCTpoQ7jxo2LiIjtttuu2m3WXnvtiIiYPXt2jcc/dUKLGvcBALA6u7fYBQAAsEJJZ8iVlpZGRKzUaakzZ86MiFjh0lYAAAAA+D5IGsi1b98+Iv5vplx1vPrqqxER0alTp1qpCQAAAABSShrI7bTTThER8cADD1Tr+blz58bf//73yOVy0a9fv9osDQAAAACSSBrIDRw4MLIsizvvvDOeeuqp5T47e/bsOOSQQ2LixIkREXH88cenKBEAAAAAalXSQK5///5xwAEHRHl5eey3335xzjnnxBtvvFHx+owZM+L111+PSy65JLp16xaPP/545HK5OProo6N3794pSwUAAACAWpHLsixLOeDcuXPjJz/5SbzwwguRy+WW+dzisnbfffd49NFHo1GjRjUe++AN9q9xHwAAq7N7JzxUlHFLp40tyrgAAKk0aN21YH0lnSEXEdGkSZN45pln4vLLL4/27dtHlmVVvrVq1Sr+8Ic/xJNPPlmQMA4AAAAAVgfJZ8gtqaysLN54441466234ssvv4xFixbFuuuuG717944+ffoUPIgzQw4AWNOZIQcAUDsKOUOupGA9rcrgJSWx4447xo477ljMMgAAAAAgmeRLVgEAAACgLivqDLmqfPHFF/Hoo4/GtGnTokuXLrHvvvtG48aNC9L37Q8cX5B+AAAAAGBVJQ3kRo8eHYMGDYpcLhfXX399rLPOOnmvP/zww3H44YfHvHnzKu6tv/768fDDD8cWW2yRslQAAAAAqBVJl6w++OCDcd9998UXX3xRKYz78ssv48gjj4y5c+fmnbY6ceLE2HfffWPOnDkpSwUAAACAWpE0kHv22Wcjl8vFT37yk0qvXXvttTF79uwoKSmJoUOHxnvvvRd/+tOfol69ejFp0qT4xz/+kbJUAAAAAKgVSQO5iRMnRkREr169Kr3273//O3K5XBx99NFxxhlnxOabbx5nn312HH/88ZFlWTz88MMpSwUAAACAWpE0kPvqq68iIqJNmzZ596dNmxYffvhhREQcfvjhea/tt99+EREVrwMAAADA91nSQG7u3LkRETF//vy8+yNGjIgsy6Jhw4ax00475b223nrrRUTEzJkzk9QIAAAAALUpaSDXqlWriPi/pauLPfvssxERsc0220SjRo3yXisrK4uIiGbNmiWoEAAAAABqV9JAbvHecXfccUfFvXnz5sW9994buVwudtttt0ptJkyYEBER7dq1S1MkAAAAANSipIHcz372s8iyLB555JH42c9+FldffXX86Ec/ii+//DJyuVwcdthhldq8/vrrERHRtWvXlKUCAAAAQK3IZVmWpRqsvLw8dtlllxgxYkTkcrmK+1mWxfHHHx//+Mc/KrXp2rVrTJgwIS6//PI488wzazR+346716g9AMDqbvjkZ4sybum0sUUZFwAglQatCzdZLOkMuXr16sXjjz8eZ555ZnTq1ClKSkpi/fXXjwsvvDCuu+66Ss8/8sgjMX78+IiI2GOPPVKWCgAAAAC1IukMuZX19ddfx7fffhsRERtssEGN+zNDDgBY05khBwBQOwo5Q66kYD3VgpYtW0bLli2LXQYAAAAAFEzSJasAAAAAUNcVbYZcWVlZPPTQQ/HMM8/EyJEjY8aMGRER0apVq+jZs2f0798/9t9//ygpWa0n8QEAAADASinKHnIPPvhgnHrqqTFlypSKe4vLWPL01fXWWy+uvvrqOOCAAwoyrj3kAIA1nT3kAABqx/f2lNWIiCuvvDIGDBgQU6ZMqQjhOnfuHDvssENsv/320blz54j4LqCbMmVKDBgwIP7yl7+kLhMAAAAAakXSQO61116Lc845J7Isi7XXXjv++Mc/xhdffBFjxoyJV155JV599dUYM2ZMfPHFF/HHP/4xWrRoEVmWxTnnnBOvv/56ylIBAAAAoFYkDeSGDh0a5eXl0aJFi3jllVfinHPOidatW1d6rnXr1nHOOefEK6+8Ei1atIjy8vIYOnRoylIBAAAAoFYkDeRGjBgRuVwuzjvvvOjevfsKn99ss83ivPPOiyzL4qWXXkpQIQAAAADUrqRHmH799dcREbHrrrtWu83iZ2fOnFnj8d/52mbDAAAAa4LGHfoWuwSgjilbOLlgfSWdIbfeeusVpS0AAAAArC6SBnL9+/ePiIgXX3yx2m1eeOGFiIjYbbfdaqMkAAAAAEgql2VZlmqwjz/+OLbeeuto2LBhvPbaa7HJJpss9/n//e9/scMOO0RpaWm89dZb0a1btxqN36xJlxq1BwBY3c2eO64o45ZOszUIkJYlq0Bq39slq926dYv77rsvIiJ22GGH+Mtf/hIzZsyo9NzXX38df/3rX2PHHXeMiIh77rmnxmEcAAAAAKwOamWG3IqWl06ePDk++eSTyOVykcvlokuXLtG2bdvI5XLxxRdfxLhx42JxWRtvvHF06NAhcrlcPPvsszWqyww5AGBNZ4YcUFeYIQekVsgZcrUSyNWrVy9yuVxU1XUul4uIqPK1qizuJ5fLxaJFi2pUl0AOAFjTCeSAukIgB6RWyECupGA9LaFfv34VwRsAAAAA8H9qJZBbfDIqAAAAAJAv6aEOAAAAAFDX1coMuer4/PPPY/r06fHtt99G8+bNY91114327dvX6phNGzSq1f4BAABIY96U4cUuAWCVJQ3kHnvssbjllltixIgR8dVXX1V6vU2bNtGnT5849thjY5999klZGgAAAAAkUSunrC7t/fffj6OOOipGjhwZEcs/YXXxYRA9evSI22+/PXr16lWwOtq12LRgfQEArI6++OajoozrlFUAYE3XoHXXgvVV64Hc/fffH0ceeWQsXLiwIohr0qRJ9OrVK9q1axdNmzaN2bNnxxdffBHvv/9+zJ07t6Jto0aN4vbbb4+DDjqoILUI5ACANZ1ADgCgdhQykKvVJasvv/xyHHnkkbFgwYKIiNhnn33itNNOi9133z3q1at8nkR5eXk8/fTTcdVVV8V//vOfWLBgQRx11FHRvn376NOnT22WCgAAAABJ1NoMufLy8thiiy1i1KhR0ahRo7j11lvj0EMPrXb7u+66K4455phYuHBhdO/ePd5///0qQ7yVYYYcALCmM0MOAKB2FHKGXM0SruW47777YtSoUZHL5eK2225bqTAuIuJnP/tZ3HbbbRERMXr06Ljvvvtqo0wAAAAASKrWArmHH344IiJ23333OPjgg1epj0MOOSR22223iIh46KGHClYbAAAAABRLrQVyb775ZuRyuTjssMNq1M8RRxwRWZbFm2++WaDKAAAAAKB4ai2Q++KLLyIiolu3bjXqZ9NNN83rDwAAAAC+z2otkCstLY2IiIYNG9aonwYNGkRERFlZWY1rAgAAAIBiK6mtjtu2bRsTJ06MCRMmxDbbbLPK/UyYMCEiItq0aVPjmsZdvHON+wAAAKD4GnfoW+wSgDqmbOHkgvVVazPkunfvHhERjzzySI36WXw4RI8ePWpcEwAAAAAUW60Fcvvss09kWRZ33nlnjBw5cpX6eP/99+POO++MXC4X++yzT4ErBAAAAID0ai2QO/LII2PdddeNsrKy2HfffWPcuHEr1X7s2LGx3377RVlZWbRq1SqOPPLIWqoUAAAAANKptUCuefPmcdlll0WWZTFx4sTYcsst48orr4xZs2Ytt92sWbNi6NCh0bt375g4cWLkcrm49NJLo3nz5rVVKgAAAAAkk8uyLKvNAc4555z485//HLlcLiIiGjduHP369Yutttoq2rdvH02bNo3Zs2fH559/Hu+880689NJLMW/evFhc1hlnnBFDhw4tSC1z//KLgvQDALC6anLG9UUZt3Ta2KKMC9RdDnUAUivkoQ61dsrqYpdffnl07tw5zjnnnJg/f37MnTs3nnzyyXjyySerfH5xENeoUaP405/+FKeeemptlwgAAAAAydTaktUlnXzyyfHRRx/F6aefHq1atYosy5b51qpVqzj99NNj9OjRwjgAAAAA1ji1vmS1Kh9++GG89957MW3atJg1a1asvfbase6660avXr2iZ8+etTauJasAwJrOklWgrrBkFUjte7VktSo9evSIHj16FGNoAAAAACiqogRyxXLbn+cUuwQAgFr1yzOKXQEAACuSZA85AAAAAOA7AjkAAAAASEggBwAAAAAJCeQAAAAAICGBHAAAAAAkJJADAAAAgIQEcgAAAACQkEAOAAAAABISyAEAAABAQgI5AAAAAEiopNgFpLRL4xnFLgEAAIACmDdleLFLAFhlZsgBAAAAQEICOQAAAABISCAHAAAAAAkJ5AAAAAAgIYEcAAAAACQkkAMAAACAhARyAAAAAJCQQA4AAAAAEhLIAQAAAEBCJcUuIKWe498rdgkAALWqrNgFACTSuEPfYpcA1DFlCycXrC8z5AAAAAAgIYEcAAAAACQkkAMAAACAhARyAAAAAJCQQA4AAAAAEhLIAQAAAEBCAjkAAAAASEggBwAAAAAJCeQAAAAAICGBHAAAAAAkVFLsAgAAAGBlzZsyvNglAKwyM+QAAAAAICGBHAAAAAAkJJADAAAAgIQEcgAAAACQkEAOAAAAABISyAEAAABAQgI5AAAAAEhIIAcAAAAACQnkAAAAACChkmIXAAAAACurcYe+xS4BqGPKFk4uWF9myAEAAABAQgI5AAAAAEhIIAcAAAAACQnkAAAAACAhgRwAAAAAJCSQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABIqKTYBaQ0666Ti10CAAAABTBvyvBilwCwysyQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABISCAHAAAAAAkJ5AAAAAAgIYEcAAAAACQkkAMAAACAhEqKXUBKc296stglAADUqsY//W2xSwAAYAXMkAMAAACAhARyAAAAAJCQQA4AAAAAEhLIAQAAAEBCAjkAAAAASEggBwAAAAAJCeQAAAAAICGBHAAAAAAkJJADAAAAgIQEcgAAAACQUEmxC0ip3dOfFrsEAIBaVVbsAgASadyhb7FLAOqYsoWTC9aXGXIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABISCAHAAAAAAkJ5AAAAAAgIYEcAAAAACQkkAMAAACAhARyAAAAAJCQQA4AAAAAEiopdgEpjem5WbFLAAAAAKCOM0MOAAAAABISyAEAAABAQgI5AAAAAEhIIAcAAAAACQnkAAAAACAhgRwAAAAAJCSQAwAAAICEBHIAAAAAkJBADgAAAAASKil2ASm12qFBsUsAAACgAOZNGV7sEgBWmRlyAAAAAJCQQA4AAAAAEhLIAQAAAEBCAjkAAAAASEggBwAAAAAJCeQAAAAAICGBHAAAAAAkJJADAAAAgIQEcgAAAACQkEAOAAAAABIqKXYBKZ32nybFLgEAoFbdUuwCAABYITPkAAAAACAhgRwAAAAAJCSQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABISCAHAAAAAAkJ5AAAAAAgoVyWZVmxi0ilpGHHYpcAAFCryhZOLsq4pdPGFmVcoO5q3KFvsUsA6phC/pxlhhwAAAAAJCSQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABISCAHAAAAAAkJ5AAAAAAgIYEcAAAAACQkkAMAAACAhEqKXUBKx3bYsdglAAAAAFDHmSEHAAAAAAkJ5AAAAAAgIYEcAAAAACQkkAMAAACAhARyAAAAAJCQQA4AAAAAEhLIAQAAAEBCAjkAAAAASEggBwAAAAAJlRS7gJR6ljcqdgkAAAAA1HFmyAEAAABAQgI5AAAAAEhIIAcAAAAACQnkAAAAACAhgRwAAAAAJCSQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABIqKTYBaT0QPnnxS4BAKBWnV7sAgAAWCEz5AAAAAAgIYEcAAAAACQkkAMAAACAhARyAAAAAJCQQA4AAAAAEhLIAQAAAEBCAjkAAAAASEggBwAAAAAJCeQAAAAAIKFclmVZsYtIpaRhx2KXAABQq8oWTi7KuKXTxhZlXACAVBq07lqwvsyQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABISCAHAAAAAAkJ5AAAAAAgIYEcAAAAACQkkAMAAACAhARyAAAAAJBQSbELSOmz7TYpdgkAAAAUQOMOfYtdAlDHlC2cXLC+zJADAAAAgIQEcgAAAACQkEAOAAAAABISyAEAAABAQgI5AAAAAEhIIAcAAAAACQnkAAAAACAhgRwAAAAAJCSQAwAAAICESopdQEr1GpQXuwQAAAAKYN6U4cUuAWCVmSEHAAAAAAkJ5AAAAAAgIYEcAAAAACQkkAMAAACAhARyAAAAAJCQQA4AAAAAEhLIAQAAAEBCAjkAAAAASEggBwAAAAAJCeQAAAAAIKGSYheQUrNdOxW7BAAAAADqODPkAAAAACAhgRwAAAAAJCSQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABISCAHAAAAAAkJ5AAAAAAgoZJiF5BSve6bFbsEAAAACqBxh77FLgGoY8oWTi5YX2bIAQAAAEBCAjkAAAAASEggBwAAAAAJCeQAAAAAICGBHAAAAAAkJJADAAAAgIQEcgAAAACQkEAOAAAAABISyAEAAABAQgI5AAAAAEiopNgFpJRNnVLsEgAAAACo48yQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABISCAHAAAAAAkJ5AAAAAAgIYEcAAAAACQkkAMAAACAhEqKXUBKufU6FLsEAAAACmDelOHFLgFglZkhBwAAAAAJCeQAAAAAICGBHAAAAAAkJJADAAAAgIQEcgAAAACQkEAOAAAAABISyAEAAABAQgI5AAAAAEhIIAcAAAAACQnkAAAAACChkmIXkFL5J58UuwQAAAAA6jgz5AAAAAAgIYEcAAAAACQkkAMAAACAhARyAAAAAJCQQA4AAAAAEhLIAQAAAEBCAjkAAAAASEggBwAAAAAJCeQAAAAAIKGSYheQ0uhrvil2CQAAtWqb3xS7AoA0GnfoW+wSgDqmbOHkgvVlhhwAAAAAJCSQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABISCAHAAAAAAkJ5AAAAAAgIYEcAAAAACQkkAMAAACAhEqKXUBKmz/z62KXAAAAAEAdZ4YcAAAAACQkkAMAAACAhARyAAAAAJCQQA4AAAAAEhLIAQAAAEBCAjkAAAAASEggBwAAAAAJCeQAAAAAICGBHAAAAAAkVFLsAlJqusXhxS4BAKBWlS2cXOwSAABYATPkAAAAACAhgRwAAAAAJCSQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEICOQAAAABISCAHAAAAAAkJ5AAAAAAgIYEcAAAAACRUUuwCUvpn612LXQIAAAAAdZwZcgAAAACQkEAOAAAAABISyAEAAABAQgI5AAAAAEhIIAcAAAAACQnkAAAAACAhgRwAAAAAJCSQAwAAAICEBHIAAAAAkJBADgAAAAASKil2ASkdcLL8EQAAYE0wb8rwYpcAsMokVAAAAACQkEAOAAAAABISyAEAAABAQgI5AAAAAEhIIAcAAAAACQnkAAAAACAhgRwAAAAAJCSQAwAAAICEBHIAAAAAkFAuy7Ks2EWkUtKwY7FLAACoVWULJxdl3NJpY4syLlB3Ne7Qt9glAHVMIX/OMkMOAAAAABISyAEAAABAQgI5AAAAAEhIIAcAAAAACQnkAAAAACAhgRwAAAAAJCSQAwAAAICEBHIAAAAAkJBADgAAAAASEsgBAAAAQEK5LMuyYhcBsKaZNGlSrL/++hER8dlnn0WnTp2KXBEArF58rwRS8+8OqxMz5AAAAAAgIYEcAAAAACQkkAMAAACAhARyAAAAAJCQQA4AAAAAEhLIAQAAAEBCAjkAAAAASEggBwAAAAAJCeQAAAAAIKFclmVZsYsAAAAAgLrCDDkAAAAASEggBwAAAAAJCeQAAAAAICGBHAAAAAAkJJADAAAAgIQEcgAAAACQkEAOAAAAABISyAEAAABAQgI5AAAAAEhIIAdQhRdeeCFyuVzkcrl44YUXil0OAABrmIsvvjhyuVzsvffexS6lKBb/rD148OBil1IQc+fOjbZt20Yul4vnn39+uc8u+bvGkm9ryseiNh1zzDFVfuzGjx9f7NJWmkAOWG0s6xvT4rdmzZrFJptsEgMHDhSSAbDGWvL7oV/OYPVTWload911VwwcODA222yzWHfddaNBgwbRunXr2HrrreOkk06KZ555JsrLy5fZx6RJk+KPf/xjREQMGjRomc9lWRaPPvpoHH744bHxxhtHs2bNYq211or1118/tt566zjssMPi73//e4wePbrg7ycrp0mTJnHmmWdGRMQZZ5yx3M9/dXTu3Hm5vxtV562q35m++eab6NixY+RyuWjfvn3MmDGjWvVceumlFf1eccUVNXrf+I5ADvjemDNnTnzyySdx2223xa677hrHH398LFq0qNhlAcD3zuDBgyt+saJ2LJ7F0blz52KXQgE99NBDsemmm8Zhhx0Wt912W3z00UcxY8aMKCsri+nTp8fbb78df//732OPPfaIzTbbLB577LEq+7nkkkti3rx5seeee8YOO+xQ5TNffvll7LrrrrHvvvvGnXfeGZ9++mnMmTMnFixYEJMmTYq333477rrrrjjppJOie/fu8dFHH1Xqw9/1mluZv8unnHJKtGrVKt5///24++67q9X/zTffHB988EF88MEH8atf/aqG1a5YixYt4rrrrouIiC+++CJ+/etfr7DNxx9/HJdccklERGy77bbValNbLr300oqP1+9///ui1VEIJcUuAKAqJ510Ut43pCzLYsaMGfHqq6/GlVdeGV9++WXcfPPN0alTp7j44ouLWCkAAHXBZZddFueff35kWRYREf3794/9998/unfvHuuss07MmDEjPv7443jkkUfi6aefjv/9739x/vnnxz777JPXz+TJk+OWW26JiIizzjqryrFKS0tjzz33jHfffTciInr37h3HHntsbLnllrH22mvHt99+G6NHj46XXnopHnvssfjmm29q7x2n2po1axYnnnhiDBkyJH7/+9/HYYcdtsI2Xbp0iZ49e1a6/9RTT8XChQurbHPBBRfEQw89FBERTz75ZHTo0GGZfVdlv/32i0MPPTTuvvvuuO222+Lwww+PPffcs8pnsyyLn//857FgwYJo0KBB3HTTTVG/fv0Vvl+1pWPHjtGxY8eIiHjrrbeKVkchCOSA1VLbtm2r/Ma08847x3777RfbbLNNzJs3L/7yl7/EBRdcEA0aNChClQAA1AW33357/Pa3v42IiDZt2sTdd98du+66a6Xn+vfvHyeffHJ88MEHccYZZ8T06dMrPXPttddGaWlprLfeerH77rtXOd6NN95YEcYde+yxceONN0a9evkL3Pr16xe/+MUvYsGCBXHnnXfGOuusU7N3koI44ogjYsiQITFq1Kh45plnon///qvUzyabbLLM15b8XG+yySarNBP3qquuimeffTamTZsWv/jFL2LkyJHRrFmzSs9de+21MWLEiIiI+O1vfxubb775So9F1SxZBb53unfvXvE/jYv/dxAAAGrDlClT4qSTToqI7/YJe+GFF6oM45a0+eabx9NPPx1nn3123v3y8vK49dZbIyLisMMOqxSyLfbggw9GRERJSUkMHTp0mc9FRDRq1CiOOeaYaN++fTXfI2pTz549K0Krm266qcjVLFubNm3iL3/5S0RETJgwIX7zm99Ueuazzz6ruN+jR4+KUJrCEMgB30tL/i/Q/PnzK70+duzY+POf/xz77rtvdO7cORo3bhyNGzeODTbYIA499NB44oknalzDa6+9FhdccEHssssu0b59+2jYsGE0b948unfvHieddFKMGjVque2X3o9i5syZcdFFF0WPHj2iadOmsc4660S/fv1i2LBh1apn1qxZ8ec//zl22223aN++fTRq1Cg6dOgQ22+/fZx33nnx9ttvL7NtlmVx3333xYABA2L99dePtdZaK1q2bBnbbbddXHLJJTFz5szqflgAqEVVnQJ+zz33xO677x5t2rSJxo0bR7du3eLcc8+tcqPuW2+9NXK5XN52D9U9ra4m3yuW/p43derUOO+886JHjx6x9tprV7n5eHl5edx5550xYMCA+MEPfhCNGzeOddddN3r16hXHHXdcPPHEE1FWVrbMMd9444044YQTYpNNNolmzZpF06ZNY9NNN42TTz45Pvnkk2W2W/wxWvxxWLBgQVxxxRWx1VZbRYsWLaJ58+ax/fbbxzXXXFPlXraL9+z65z//GRHf/aJb1ceY748rr7wy5syZExHfnYzavXv3arWrV69eHHnkkXn3RowYEVOmTImIiAEDBiyz7YQJEyIionXr1qs0821V/q4vPkTgmGOOWW7f1d1TbdiwYbHLLrtEy5Yto1mzZtGzZ88YNGjQSv9cWai/y+Xl5XHDDTfEjjvuGC1btoymTZvGFltsEZdeemnMnTu3Uvua/F1e/Ll9+OGHq/xdZXVxxBFHVEx0uOaaa+Lll1/Oe/2kk06KWbNmRb169eLmm2+Ohg0b5r2+qp+biO9+97n00kvjhz/8YbRs2TIaNGgQbdq0ie7du8eBBx4Y1113XXz55ZeFfYdXNxnAauL555/PIiKLiGzQoEHLffaggw6qeHbq1Kl5r40dO7biteW9HXnkkVlpaekKa3n++ecrvX7LLbessP/69etn11xzzTLfh4EDB2YRkW2wwQbZ6NGjs86dOy+zr5NPPnm5H4+nn346a9269QprqsqXX36Z7bTTTstt165du+y1115bbg0AFMbyvh8u+dozzzyTHX744cv8t3ujjTaq9D2yOt+/IiIbN25cXruafq9Y8nveq6++WuX3rCW/344bNy7bcsstV1hnVd+jS0tLs5NOOmm57Ro0aJDdcMMNVda65Mfo7bffzrbeeutl9tOnT5/s22+/zWs/aNCgan2M+X4oLy/P2rRpk0VE1rRp0+ybb76pUX+DBw+u+BqcN2/eMp/bfPPNs4jIcrlcNn369JUeZ1X+rm+wwQZZRGQDBw5cbt9L/n2uSmlpaTZgwIBljrnhhhvm/by+rJ/7C/l3eeTIkdluu+22zH622267bPbs2Xnta/J3+Yknnqh4/cUXX6z0+op+11iRxZ+Dqv69XlmfffZZ1rx58ywism7dumXz58/PsizLhg0bVjHGmWeemdempp+bUaNGZR06dFjhx/aqq65abu1Lfo5r+nEoBjPkgO+djz76qOLEqm233bbS9PxFixZFw/+vvTsPivI8/AD+XRFEwHBbETwweHFWPEq0CIkOiAZQOmqjKB4Bquikto02YDXRJo4aY9oY4oAXiiYajzJRipHlkNGKAl0DElEUq0gaAoQoEAXc9/cHv31nYQ9YWJaj38/Mzrzs+z7Hvi/PPu8+73OYmCA4OBh///vfkZ6ejoKCAqSnpyM+Ph5ubm4AgOTkZHG1IF01NzfD2toaEREROHToEHJyclBQUIDz589j27ZtsLOzw4sXL7Bu3TpkZGRojauhoQEhISGorq7G5s2bkZWVhby8PCQmJsLJyQlAyxOrixcvqg2fmZmJoKAgVFVVwcjICCtWrMC5c+eQn5+PK1euIDExEWFhYWrn2auvr4efnx+uXLkCExMTREdHIyUlBQUFBcjJycH7778PW1tbfP/99wgKChKf1hIRUc/bsmULTpw4gfnz5+Ps2bPIz89Hamqq2NuhtLRUZSW8+fPno7CwUBx+B0BcrU75pZgwG9BvXVFXV4ff/OY3ePbsGeLi4pCVlYXr16/j4MGDcHBwANCy6t+MGTPE+bNee+01JCUlITc3F9evX8fJkycRHR0NGxsbtWmsXr1aXEEwKCgIycnJuH79Om7cuIHExES4ubmhqakJUVFR+Oqrr7Se4+joaOTn52Px4sVITU1FXl4eTpw4galTpwJo6e20dOnSVmHWrl2LwsJChIaGAgCGDx+u9hxT31BcXIwffvgBAODr64uXXnqpS/Hl5OQAaBnSampqqvG4SZMmAQAEQUBkZCTq6up0SqczZV1fNmzYgDNnzgAAxo8fj4MHD+LGjRtIT09HdHQ0ysrKsHjx4nbj0WdZjoqKQlZWFiIiInDhwgXk5+fj3LlzeOWVVwC09PRqu2JnV8rytGnTxG3FNe+tnJycsGvXLgAtq6m+9957qKqqwltvvQUAePnll1V+M3X12ixbtgwVFRUwNjbG2rVr8dVXX+HGjRvIzc3FuXPn8M4772idQ6/f6OkWQSIiBeUnRWvWrBEKCwvF1zfffCNcvnxZ2LlzpzBs2DABgPDSSy8JV65cUYmnrq5OqKio0JiOXC4XVqxYIT7prK2t1ZoXdU+tysvLhfr6eo1p1NbWCp6enuLTc3WUn2xZWVkJRUVFKsfcvXtXMDU1FQAIISEhKvsbGhoEBwcHAYBgZmam9Qnbw4cPVd5bt26dAECwtLQUbty4oTbcgwcPxDTCw8M1xk9ERPrR0R5yAIS//vWvKuHlcrkQEBAgABAGDhwoVFZWqhyj3POjPfqoK5TrPAsLC0Emk2lMb/78+eKxO3fu1HhcXV2dUFNT0+q906dPi2ETExPVhvv555/FnjKjR49W6S3ftmfRBx98oBJHU1OTEBgYKB5z/vx5jZ9ZUy8i6huUewnFxsZ2KS65XC6Ym5sLAITVq1drPTY3N1cYMGCAmLalpaUQHh4ufPbZZ0JBQYHGUR5t6VLW9dFD7ubNm2K+vb29hadPn6ock5SU1KqMqesh1x1l+dixYypxPHv2THB3dxcACLa2tmrPa2fLsrOzswBAmDt3rsq+3tRDThBa/jf9/f3FesPPz08AWnpoZmRktDq2q9fm3r17HeoBJ5fLVb7j22IPOSKibvDZZ5/Bw8NDfHl6emLmzJnYtGkTKisrER0djdzcXEyfPl0lrLm5ufiUXR2JRII9e/bAyMgI9fX1SE9P1zl/jo6OMDMz07jf0tIS27ZtA9Dy9FzdClvKtm3bJvbcU+bi4oL58+cDUP907ejRo/juu+8AAO+//z78/f01pjFixIhWf1dVVeHAgQNi+lOmTFEbbtSoUfjLX/4CADh58qTaOTaIiMjwJk+erHaCbYlEgj/84Q8AWnp0/+tf/+p0Gt1RV2zcuBFeXl5q992+fRspKSkAgNDQUGzcuFFjPObm5rC2tm713o4dOwAACxYswJtvvqk2nKmpKfbt2wcAePDggcrcdco8PT2xadMmlfcHDhyIAwcOiL3P4+PjNcZBfVtVVZW4/Ytf/KJLcf3444/iXHRDhw7Veuy0adOwf/9+8X/sp59+QnJyMtasWQNvb29YWVkhICAAiYmJYpy9wf79+yGXywEACQkJalftXL58OYKCgrTGo++yHBYWpjKfH9CyIMa6desAANXV1e3OAa0LxTUuLy/XW5zdRSKRIDExEYMHD0ZzczOys7MBAJGRkSoLmHT12vz3v/8Vt2fOnKk1T22/4/sbNsgRUZ8jl8tx6tQpHDhwAI2Nje0e39TUhPLycnz77bcoKipCUVERKioqYGtrCwC4efNml/NUX1+PBw8e4NatW2IaykNEtaUhkUiwZMkSjfsnT54MoOUmru0kuIqhu2ZmZoiKitIpzxcvXhQnmV20aJHWYxWVZVNTE/Lz83VKh4iIuseSJUs0TiiuqDuAloWOOqs76oq2QzyVpaamQhAEAFAZbtuex48fi+m2l9eJEyfCzs4OALQ2WEZERGhc3dLJyQkBAQEAWhbbULfAA/V9T58+FbfNzc27FJdi6CuADjU0REZG4ubNm1i+fLlK2vX19bh06RKioqIwduxYvSxYpg+KB90eHh6tvofaWrVqlcZ93VGWtX3v6Ov7si3FsHrl696bubi4tBqa6ujoiN27d7c6Rh/XRrnjhGLF4f9VbJAjol5p69atEASh1auhoQHffPMN3n77bXFF0YCAAPz8888q4ZuamvDpp5/Cx8cHFhYWGDFiBFxdXVv1ulOs2qP85FMXVVVViI2Nxfjx4zFkyBA4OzuLy5x7eHiIc/i0l4adnZ3YOKiO8hw5yjeFAPDvf/8bADBlyhStPfbUycvLE7cdHBzUrhqleLm7u4vHKj/VIiKinjNhwgSN+7TVHbrQd11hYWGBMWPGaExPUa8ZGxvDx8en03l94403tOZVIpGIdbO2ek0xV5wminmiGhoa9PpDnnqPIUOGiNtd7YmmvPJxR3v+TJw4EUlJSaiursbly5exe/duLF26VJxnGGhZtfj111/v1KgPfXr27BlKS0sBdLzsqNMdZdkQ35dtKa5xeyNlehPllX9nz56tMmeiPq6Ns7MzfH19AbSsYOzm5oYtW7YgIyPjf24kDhvkiKjPGDx4MDw8PLBr1y5xaEh2drbYbVqhpqYGr7zyCtatW4fc3Nx2e9Gpa9BrT35+PiZMmIAdO3bgzp074tP8zqTRXkOa8pP5tk/fFZWctiG6mnR2GfH/tYqSiKi30lZ/aKs7dKHvusLKykprOEW9ZmNjg0GDBumUZnfUa+0NK1Qewqjc2EL9h6KHD9Cy4EhXKC/ioOv956BBg+Dr64s//elPSE5OxqNHjyCVSsUpT168eIGYmJh270m7U21trZi+LmWnre4oy4b4vmxLcY0HDx6stzh7mr6uzeeffy4uqFFcXIzt27dj1qxZsLKygp+fH/bv3y/2zu7PBvZ0BoiIOmP16tX485//jJqaGhw8eFCcrw0A3nrrLbEr9fz587Fq1Sp4enpi6NChMDU1FYf3jBw5Eo8ePdL5xqWxsRGLFi1CdXU1jI2NsX79eoSGhmLcuHGwtrYWf0Dcv38fL7/8MgB0+82RpiFL2ihuOExMTHQahqr8RJaIiPo3fdcVRkZGHQrflXoNAI4fPw5PT88OhdPWU6m9fPRk4wcZhvJ8hwUFBV2Ky97eXtzWRwPua6+9hkuXLsHd3R01NTW4c+cOZDKZuEKroSmXh86UYYXuKMs9QXGNla97X6eva+Po6IirV69CKpXi7NmzyM7ORnFxMZqamnD58mVcvnwZH374IVJTU/v1aqtskCOiPmnAgAEYO3YscnNzUVFRgZqaGtjY2ODJkyc4efIkgJa5dY4fP64xjh9//LFTaWdkZIjDUj799FNERkbqNX5d2NnZoby8HBUVFTqHVQyTbWxshK2tbad62RERUf9m6LpC0RupuroajY2NMDEx6XBY5ekf2g6h7azvv/9e649B5d4iysPeqP9wdXWFnZ0dqqqqkJOTgydPnqgM4+so5YYZfd0nOjg4YN68eTh27BgAoLS0tNMNcoqeYopFGTTRNHRXudGlvd6E2vZ3R1nuCYpr3J8a5PR9bWbNmoVZs2YBaPneT09PR0JCAjIyMnDv3j0sXrxYnMqgP+KQVSLqs5qbm8XtpqYmAMDdu3fF7d/+9rcaw5aUlKCurq5T6d66dUvc1paG8hwL3cXb21tMS9ehpMo3a19//bVe80VERL1bR3uvGLquUNRrTU1NOq8O2x15vXHjRof2m5mZqcyN15UeQtR7SCQSrFixAkBLQ5Ri1eHOGDRoEMaOHQsAuHPnjj6yBwAYPny4uN12ERJd/g8V8+W111hYUlKi9n1TU1Px83W07KjT2+5RO1OW5XK5+ADfw8ND31nqMd15bWxtbbF48WJIpVKEhIQAAGQyGe7evavXdHoTNsgRUZ/U0NAgLktuamoqPlFXbqTT1kC1f//+TqfdkTTkcjkSEhI6nUZHBQcHi/nQNb2goCBxJdi9e/e2+lxERNS/Kc9l9fz5c43HGbqumDdvnvjjd+/evTqFdXFxgaurKwDgiy++wMOHD7ucn2PHjmkclvr48WPxB6m/v7/KcFzFOdZ2fqlv+P3vfy/OQbZlyxbcvn27Q+HkcjmSk5NbvaeYzL69BitdhkMrPwR2dnZuta+jZV05bEFBgcb0i4qKUFhYqDGO2bNnAwAKCwu19mw6dOiQxn3dUZa7ojNlubi4WHz4r7jm/YGhro2i1xzQ+QX4+gI2yBFRn7R161ZxotTAwEDxJtjFxUW8kT969KjasOfPn8cnn3zS6bQVT/4AICkpSe0x77zzTpfnGemI8PBwODo6AgDi4uKQnZ2t8djy8vJWfzs6OmLlypUAgJs3byI6OlrrD63KysouPRUmIqLeQ3no6b179zQeZ+i6Yty4cViwYAEAICUlBbt379Z4bH19vUpPns2bNwNoWe0xLCwMP/zwg8bwz58/R3x8vNaJw2Uymdo8NDc3IzIyUlw4as2aNSrHKM5xZWWlXlduJMNzdHTEvn37ALT83/n5+Wm95wJaGmQCAwPx4Ycftnpf0ThTVVWFsrIyjeHDwsIQHx/f7squR44cgVQqBdAyP3Lb4aodLesA4OfnBwCoqKjA559/rrL/6dOnWLVqldY4oqOjxXvxqKgotfk/fvw4UlNTtcaj77LcFZ0py9evXxe3e6pB7sGDB+Jqp/7+/nqLt6vXRiaTQSaTaQwjCIK4YrBEIsHo0aP1ku/eiHPIEVGvVFlZiaKiolbvPXv2DHfv3sXRo0eRlpYGoOWJ1fbt28VjbG1tMXfuXFy4cAGpqamYM2cOoqOjMXLkSFRWVuLMmTM4cuQIxowZg9raWq0ViCaBgYEYOnQoKisrERcXh//85z8ICQmBnZ0dSktLkZiYCKlUihkzZuDKlStdOxHtMDU1xbFjxxAQEICGhgbMmjULy5Ytw4IFC+Dk5ITnz5+jpKQEqampSElJUXmyt2fPHly9ehVFRUU4dOgQrl27hqioKEyePBkWFhaora3FrVu3kJ6ejtTUVHh4eODNN9/s1s9ERETdb/r06eL2hg0bEBcXBwcHB/GH9OjRozFwYMtPBUPXFfHx8bh27RoqKiqwceNGpKWlYcWKFZgwYQIkEgkePHiArKwsfPHFFzh9+nSrH5pvvPEGLl68iKSkJOTn58PV1RXR0dHw8/ODvb096uvrce/ePeTk5ODs2bOoqanB8uXLNeZlypQp2LRpE2QyGZYvX46hQ4fi7t27+Oijj8Qf3MHBwXj99dc1nmO5XI7f/e53WL9+PWxtbcVz7OLi0ulzRIa3cuVKlJeXY8uWLaisrIS/vz8CAgIQGhqKiRMnwsrKSlxY4cKFC0hLS8OLFy9aLQoBAHPmzIGRkRFevHgBqVSqsaw8evQIMTEx2LRpE4KDgzFz5kyMHz8e1tbWePbsGW7fvo0vv/xSbNiSSCTYu3evyvBKXcp6eHg43n33XTx58gSrV69GaWkpAgMDIZFIkJeXh48++giPHz/GpEmTNPZ+8/LyQkxMDPbt24e8vDyxDHl4eOCnn37Cl19+iYSEBEyZMkXr9C76Lstd0ZmyrGgkdXV1xahRo7olXz2lq9dGJpNh5cqVmDp1KoKDg+Ht7Y1hw4ahqakJZWVlOHz4MC5dugQACA0N7d/zXAtERL1EZmamAKDDL3t7e+HixYsq8Tx8+FAYOXKkxnAjR44Ubt26JYwaNUoAIERERGjNS2Zmpsr+tLQ0wdTUVGMa/v7+QlFRkfj34cOHVeKIiIgQAAijRo3Sel4OHz4sxlNWVqb2mLS0NMHa2rrdc6ZOdXW1MGfOnA6d81dffVVrXomIqOuU66CtW7dq3KeuflKmKQ6FRYsWafy+b1vfdLWu6Gidp3Dv3j3B3d293bTUnYPm5mZh48aNgpGRUbvhzc3NhYaGhlbhlevdgoICYdKkSRrDz5gxQ3jy5Inaz/DixQvBx8dHpzqZer8zZ84Io0eP7lBZcHNzU3uvGhgY2O59VWhoaIfviS0tLYWjR49qjEuXsn7q1CmNZcfU1FQ4depUu+W5sbFRCAsL05ims7OzcP/+/Xa/o/RZljXdQwuCIJSVlWm9Z9e1LNfX1wvm5uYCAGHHjh1q09Tlu1wdxTXQ9tmUP5efn1+H4lUOo+43kkJXro3yddH2+vWvfy1UV1drzW9Hr3FvxSGrRNRnmJiYYNiwYZg1axb27NmDkpISBAQEqBw3YsQIFBQU4O2338a4ceMwaNAgWFpawsvLC1u3boVMJhPnPuiswMBA5OXlITw8HMOHD4exsTHs7e3h5+eHhIQESKVSmJubdykNXfNz//59fPDBB5g+fTpsbW1hbGwMR0dH/OpXv0JsbKzG+T5sbGzwz3/+E1KpFCtXrsTYsWNhYWGBgQMHwsbGBlOnTkVMTAxSU1PFp1VERNT3JScnY9euXZg2bRosLS1VJoNXZui6YsyYMZDJZDhy5AjmzZsHBwcHmJiYwM7ODl5eXoiMjER6ejpmzpypEtbIyAg7d+5EcXEx/vjHP2LSpEmwtraGkZERhgwZAjc3NyxduhRJSUn47rvvMHjwYI35sLa2xtWrV7Fjxw788pe/xJAhQ2BhYYGpU6fik08+QXZ2tjgRflsDBgzA119/jc2bN8PLywsWFhZc6KEfCAsLQ0lJCY4fP47w8HCx15qiLHh7e2Pt2rWQSqUoLCxUe68aExMDAMjOzsbjx4/VpvOPf/wDt2/fxt/+9jcsWrQIbm5usLS0hJGREczNzTFy5EjMnTsXH3/8MUpLS7Fs2TKNedalrC9cuBBXr17FggULYG9vDxMTE4wYMQIRERHIy8vDwoUL2z1HxsbGOHPmDI4dOwZfX19YWlrCzMwMEydORGxsLPLz81XmulNHn2W5K3QtyykpKaivr8egQYOwevXqbslTT+vKtVmyZAkyMzMRGxsLX19fODs7w8zMDCYmJnByckJISAhOnDiB7Ozsfr96tUQQdJgtkoiIiIiIqB87cuSIOG9eWVlZv56/iHqGXC6Hu7s7vv32W2zfvl2ck4v6h9mzZ0MqlSIyMlLjomtZWVl49dVXAQCZmZl6nePtf0lf/75mDzkiIiIiIiIiAxkwYADeffddAMDHH38srsZJfd+1a9cglUphYmKCuLi4DoUpKytDUVERioqKUFlZ2c057PseP34sni9NPUz7CjbIERERERERERnQwoUL4ePjg+rqanEFV+r73nvvPQDA+vXrO7yYw6pVq+Dh4QEPDw/Ex8d3Z/b6hbi4OPF89fXepVxllYiIiIiIiMiAJBIJEhMTcfr0aVhYWPR0dkgPGhoa4OPjAx8fH2zYsKGns0N9AOeQIyIiIiIi+n99fU4iIiLqGzhklYiIiIiIiIiIyIDYQ46IiIiIiIiIiMiA2EOOiIiIiIiIiIjIgNggR0REREREREREZEBskCMiIiIiIiIiIjIgNsgREREREREREREZEBvkiIiIiIiIiIiIDIgNckRERERERERERAbEBjkiIiIiIiIiIiIDYoMcERERERERERGRAbFBjoiIiIiIiIiIyIDYIEdERERERERERGRAbJAjIiIiIiIiIiIyIDbIERERERERERERGRAb5IiIiIiIiIiIiAyIDXJEREREREREREQGxAY5IiIiIiIiIiIiA2KDHBERERERERERkQGxQY6IiIiIiIiIiMiA2CBHRERERERERERkQP8H4Kd2QQTYyasAAAAASUVORK5CYII=",
"text/plain": [
"
"
]
},
"metadata": {
"image/png": {
"height": 468,
"width": 626
}
},
"output_type": "display_data"
}
],
"source": [
"from helpers import plot_design_matrix\n",
"\n",
"plot_design_matrix(a_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's inspect the `.summary()` to look at the *parameter estimates* for the model `Intercept` and `C(Student)[T.Yes]`\n",
"\n",
"What do the *intercept* $\\hat{\\beta}_0$ and *slope* $\\hat{\\beta}_1$ here represent? \n",
"\n",
"To answer this question we need to understand what it means to think about *levels* of a category in terms of the *slopes* of lines that we can estimate. And how the 0s and 1s in the design matrix relate to this..."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Balance R-squared: 0.151\n",
"Model: OLS Adj. R-squared: 0.140\n",
"No. Observations: 76 F-statistic: 13.16\n",
"Covariance Type: nonrobust Prob (F-statistic): 0.000523\n",
"=====================================================================================\n",
" coef std err t P>|t| [0.025 0.975]\n",
"-------------------------------------------------------------------------------------\n",
"Intercept 463.2368 78.252 5.920 0.000 307.317 619.156\n",
"C(Student)[T.Yes] 401.4474 110.664 3.628 0.001 180.944 621.951\n",
"=====================================================================================\n",
"\n",
"Notes:\n",
"[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n"
]
}
],
"source": [
"# slim=True just removes some extra information we don't currently need to save space\n",
"print(a_results.summary(slim=True)) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction to Categorical Coding Schemes\n",
"\n",
"Let's think about about what it means to calculate a *slope* between 2 levels of a categorical variable. \n",
"\n",
"We typically define the slope as the \"*change in y for 1-unit change in x*\" - this makes sense when both variables are continuous - e.g. how much a person's `Balance` (y) increases for every additional year they're alive `Age` (x).\n",
"\n",
"But what is a \"unit change in x\" if x is a **categorical variable** like `Student`? \n",
"\n",
"Its the *difference* between going from the mean of *first* level `No` to the mean of the *second* level `Yes`!\n",
"\n",
"**The mean difference *is* the regression slope $\\hat{\\beta_1}$**\n",
"\n",
"### Treatment (Dummy) Coding\n",
"\n",
"While there are actually many ways to *encode* a categorical variable as columns of our **design matrix**, this intuitive idea is the default in both Python and R and is called **treatment (dummy) coding**. \n",
"\n",
"It uses the intercept to estimate the *mean* of one of the levels of your categorical variable as a **reference** level, and encodes the other levels as *mean differences* from that reference level. \n",
"\n",
"In the case of a variable with just 2 levels - this is just the mean difference between both levels, i.e. between `Student=No` and `Student=Yes`"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Student: Yes = 864.684, No = 463.237\n",
"Mean Difference (Yes - No) = 401.44737\n"
]
}
],
"source": [
"# Get mean balance for each level separately\n",
"student_yes = df.filter(col('Student')=='Yes').select('Balance').mean()[0,0]\n",
"student_no = df.filter(col('Student')=='No').select('Balance').mean()[0,0]\n",
"\n",
"print(f'Student: Yes = {student_yes:.3f}, No = {student_no:.3f}')\n",
"print(f\"Mean Difference (Yes - No) = {student_yes - student_no:.5f}\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Intercept 463.236842\n",
"C(Student)[T.Yes] 401.447368\n",
"dtype: float64"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# beta 0 = mean of No\n",
"# beta 1 = mean difference\n",
"a_results.params"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To make this more concrete, let's add a new column to our DataFrame called `Student_Dummy` that represents `Student` just like our **design matrix** does:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Challenge\n",
"Use `when` and `lit` that we've imported for you below to create a new column in `df` called `Student_Dummy` that encodes `Yes = 1` and `No = 0` for the `Student` variable.\n",
"\n",
"*Hint: You can use `.alias()` at the end of your `when` statement to give your new column a name.*"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"shape: (5, 12)
Income
Limit
Rating
Cards
Age
Education
Gender
Student
Married
Ethnicity
Balance
Student_Dummy
f64
i64
i64
i64
i64
i64
str
str
str
str
i64
i32
20.918
1233
128
3
47
18
"Female"
"Yes"
"Yes"
"Asian"
16
1
10.842
4391
358
5
37
10
"Female"
"Yes"
"Yes"
"Caucasian"
1216
1
29.705
3351
262
5
71
14
"Female"
"No"
"Yes"
"Asian"
148
0
76.348
4697
344
4
60
18
"Male"
"No"
"No"
"Asian"
108
0
30.622
3293
251
1
68
16
"Male"
"Yes"
"No"
"Caucasian"
532
1
"
],
"text/plain": [
"shape: (5, 12)\n",
"┌────────┬───────┬────────┬───────┬───┬─────────┬───────────┬─────────┬───────────────┐\n",
"│ Income ┆ Limit ┆ Rating ┆ Cards ┆ … ┆ Married ┆ Ethnicity ┆ Balance ┆ Student_Dummy │\n",
"│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │\n",
"│ f64 ┆ i64 ┆ i64 ┆ i64 ┆ ┆ str ┆ str ┆ i64 ┆ i32 │\n",
"╞════════╪═══════╪════════╪═══════╪═══╪═════════╪═══════════╪═════════╪═══════════════╡\n",
"│ 20.918 ┆ 1233 ┆ 128 ┆ 3 ┆ … ┆ Yes ┆ Asian ┆ 16 ┆ 1 │\n",
"│ 10.842 ┆ 4391 ┆ 358 ┆ 5 ┆ … ┆ Yes ┆ Caucasian ┆ 1216 ┆ 1 │\n",
"│ 29.705 ┆ 3351 ┆ 262 ┆ 5 ┆ … ┆ Yes ┆ Asian ┆ 148 ┆ 0 │\n",
"│ 76.348 ┆ 4697 ┆ 344 ┆ 4 ┆ … ┆ No ┆ Asian ┆ 108 ┆ 0 │\n",
"│ 30.622 ┆ 3293 ┆ 251 ┆ 1 ┆ … ┆ No ┆ Caucasian ┆ 532 ┆ 1 │\n",
"└────────┴───────┴────────┴───────┴───┴─────────┴───────────┴─────────┴───────────────┘"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from polars import when, lit\n",
"\n",
"# Solution\n",
"df = df.with_columns(\n",
" when(col('Student') == 'Yes')\n",
" .then(lit(1))\n",
" .otherwise(lit(0))\n",
" .alias('Student_Dummy')\n",
")\n",
"\n",
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's use the new column you made to create a figure and build our intuitions visually. \n",
"First, we'll use `sns.barplot` to show the mean `Balance` of each level of `Student` \n",
"Then, we'll ask `sns.regplot` to estimate and plot a regression line between our `Student_Dummy` and `Balance` variables; seaborn uses `ols` behind-the-scenes to do this!\n",
"\n",
"You'll see below that the **slope** of `sns.regplot` going from `0` to `1` **is the same as the difference between bars**"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA9MAAARWCAYAAAA41+GgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeXwU9f0/8Nfsmd3cBAgQwk04BAEFBFEuOZRDBItVWwW0Ct+ftfWiVq1CtVJtq6D2sCoFtBVvRQUF5ZBDQFDKIUcMV0hICLk2u9l75vP7I2a6m2SvZJPN8Xo+HjyYzXzms+/dbGbnPZ9LEkIIEBEREREREVHYNLEOgIiIiIiIiKilYTJNREREREREFCEm00REREREREQRYjJNREREREREFCEm00REREREREQRYjJNREREREREFCEm00REREREREQRYjJNREREREREFCEm00REREREREQRYjJNREREREREFCEm00REREREREQRYjJNREREREREFCEm00REREREREQRYjJNREREREREFCEm00REREREREQRYjJNREREREREFCEm00REREREREQRYjJNREREREREFCEm00REREREREQRYjJNRERERKr58+dDkiRIkoTVq1fHOhwiomaLyTQRhXTmzBn1wipa/3iBRk3phRdeUD977733nvrzbdu2BfyMajQaJCcno1u3bhg8eDBuvPFGLFu2DF988QW8Xm8MXw01V9999x2WLVuGSZMmoW/fvkhJSYHBYECHDh0wePBgzJs3D6+++irKyspiHSoREUUBk2kiogZiK07jidZ7+8knnwAADAYDpk6dGtYxQghUVFTg3LlzOHLkCD744AM89thjmDJlCrp164bf/e53KCkpqXdM1Hrs3bsXkyZNwuWXX47HHnsMmzdvRk5ODiwWCzweD4qLi3HkyBG8/vrruPvuu9G5c2fccccdyMvLi3XoRETUALpYB0BEzV9SUhLuueeeoGW++eYb7Nu3DwDQpUsXzJ49O2j5AQMGRC0+omAsFgu2b98OABg3bhwSExMDlq35OXc6nSgrK0NBQQH++9//wuFwAAAKCgrw9NNPY+XKlVi5ciWmTZvWeC+AmrXnn38eixcvhqIo6s8MBgNGjhyJjIwMJCcno7i4GOfOncN3330HWZbhcrmwatUqvPXWW7Db7TGMnoiIGoLJNBGF1K5dO/z1r38NWmbp0qVqMt23b9+Q5Ymayueffw6PxwMAuP7664OWDfa59Xg82LVrF1544QWsW7cOQggUFhZi+vTpWLt2LW6++eaoxk3N329/+1s8++yz6uPMzEz8/ve/x0033YT4+Pha5UtKSvDhhx9i2bJlOH36tHpzhoiIWiZ28yYiolbt448/VrdnzpxZ73r0ej3Gjx+PDz/8EOvXr0e7du3UfQsWLMD+/fsbFCe1LB988IFfIj1p0iQcPXoUCxYsqDORBoC0tDT84he/wIkTJ/DUU09Bo+FlGBFRS8azOBERtVqyLOOzzz4DAFx66aXo3r17VOq97rrr8Mknn0Cnq+rg5XQ68dBDD0Wlbmr+rFYrfvGLX6iPhw4divXr1yMhISGs4/V6PX73u9+pn00iImqZmEwTUZOpazKp8vJyvPDCCxg7diwyMjKg0+kgSRLKy8trHS+EwIcffoh58+YhKysLycnJiIuLQ2ZmJm644QasWbMm7FmWjx07huXLl2POnDno168fEhMTodfr0aFDBwwfPhz3338/jh49GrSOHj16QJIkrFmzRv3ZggUL6pwZeunSpX7Hjh8/Xt23bds2AEB+fj4ef/xxDBkyBKmpqYiLi8OgQYPw5JNPorKyss7X8H//93+45JJLkJCQgNTUVIwdOxarV6+GECKs96Havn37cP/992Po0KHo0KEDDAYDOnXqhHHjxuHZZ58Na/bh6vdDkiScOXMGAJCXl6e+ppSUFMTHx6N///649957cfbs2ZB11ee99bVjxw419oa0StflyiuvxG9+8xv18VdffYVdu3bVWbau9yaYcCZeq6tMaWkp/vSnP2HEiBFo3749jEYjsrKy8OCDD6K4uLhWHbm5uXj44YcxZMgQJCcnIykpCSNGjMCKFSvUrvGB+M6EPn78ePXnH330EWbNmoXu3bvDaDSiQ4cOuOGGG7Bz585adbhcLqxZswYTJkxARkYG4uLi0KNHDyxcuDDo5+P6669Xn/uZZ54JGqevRx99VD3uZz/7WdjH1fTPf/5T/VxVv/8GgyHieqZMmRJ0vxAC7777Lm655Rb07t0bCQkJSEhIQO/evXHrrbfivffei/hv/YsvvsBNN92EzMxMxMXFISMjA9dccw1Wr14d8nceLM5onZuJiFoUQUQUBUuWLBEABAAxbty4OsvMmzdPLbNq1Sqxc+dOkZmZqf7M919ZWZnfsQcPHhRDhw6ts6zvv379+onvv/8+aKxz584NWQ8AIUmSuO+++4TX662znu7du4dVDwCxZMkSv2PHjRun7tu6davYsGGDSE1NDXj8kCFDRGlpqXr80qVLhUajCVj+xhtvDBi3r9LSUnHjjTeGjD8lJUW8++67QevyfT9Onz4tPvzwQ5GcnBywTpPJJD799NOov7e+HnjgAbXc3r17a+3funWrX12RKigoEAaDQT3+V7/6VVjvTSg1/1bCKbNv376Af08ARGZmpt9zv/LKK8JoNAYsP2bMGGGz2QLG6PvejRs3TthstqCfJUmSxKuvvqoen52dLfr16xewfEJCgtixY0edz/3JJ5+o5fr27Rvy/RRCCK/XKzIyMtTjNm/eHNZxdenVq5daz6RJk+pdTzDZ2dli2LBhIT//l19+ucjJyQlZn9vtFrfddlvQukaNGiXy8/PD+vxVi+a5mYiopeEEZEQUEzk5ObjvvvtgsViQmJiIsWPHokuXLigrK1NnXq62fft2zJw5ExUVFQAAnU6H4cOHo1+/ftDr9Thz5gx27twJp9OJEydO4Morr8Tu3bsDzhiem5ur1jNw4EB1PVitVouioiLs27cP+fn5EEJgxYoVcLlc+Pvf/16rnnnz5qGkpASbN2/G8ePHAQDXXHMN+vfvX6vsyJEjA74XBw4cwKOPPgqn04kePXpg9OjRMJvN+P7777Fnzx4AwMGDB/HTn/4UmzZtwtNPP622xl522WUYPHgwJEnCzp07kZOTAwB4//338cwzz+Cxxx4L+LyFhYWYOHEijh07pv5swIABGDp0KBITE1FUVISdO3eiuLgY5eXluOmmm/DGG2+E1aK3efNmLFy4ELIso1u3bhg9ejSSkpJw+vRpbNu2DV6vFw6HAzfddBOOHDmCnj17Nsp7W70kVnp6OkaMGBEy7kh16tQJV111FbZs2QIAtT67TeXcuXNYvHgxiouLkZ6ejrFjxyIlJQU//PADtm/fDkVRcO7cOVx33XU4cuQI1q5di7vvvhsA0L9/fwwfPhwGgwH79+/HoUOHAAC7du3Cfffdh1dffTWsGO688068//77MBgMuPrqq9GzZ09YLBZs3rwZpaWlEEJg4cKF6NevH7KysjBhwgTk5+cjJSUF48aNQ8eOHZGfn4/NmzfD5XLBZrNhzpw5OHHiBFJTU/2e67rrrkNmZibOnTunvsaxY8cGje/zzz9Hfn4+AKBXr16YMGFCpG8zAODs2bM4deqU+vjWW2+tVz3BHDt2DOPGjcPFixfVnw0ePBhDhw6FJEk4cOAADh8+DAD49ttvMWbMGGzfvh1ZWVkB6/zZz36Gd999V32clpaGCRMmICUlBadOncL27duxZ88ezJ49G3369Akrzmifm4mIWpxYZ/NE1DpE2jKt0+kEAHHPPfcIq9XqV87tdgtZloUQVS1/6enp6nG33HKLyMvLq1V3YWGhmD17tlpu8ODBAVtmf/vb34p33nlHWCyWOvcriiI+/vhj0aFDB7W+QC1kNV9XqFacar4t0waDQRgMBvHqq68KRVH8yr3//vvqewVAPP/880Kj0YjMzEyxa9cuv7KyLIvFixf7tewFalmUZVlMmDBBLXvZZZeJffv21SrncDjE0qVLhSRJAoCIj48Xp06dqrNO39ZXo9Eo4uPjxRtvvFHrNR05csSvhXDBggUB36f6vLfVjh07ph5755131lmmoS3TQgjxyCOPqMdrNBpht9trlWnslmmDwSAkSRJ/+MMfhMfj8Su3c+dOkZiYqJZ9+umnRUJCgkhOThYff/xxrXpffPFFv9bkQL9v3/euunV+7Nix4uzZs37lysvL/T5rEyZMELNmzRIAxL333lvrM3rs2DHRpUsXtfzSpUvrfH7fc87tt98e6K1UzZkzRy3/hz/8IWT5QN544w2/z0y0W1tdLpcYMmSIWn+HDh3Exo0ba5XbuHGjaN++vd/fsNvtrrPOVatW+cX8wAMPCKfT6VcmJydHXH755X6/z2Cfv8Y4N0finnvuieq/J554osExEVHbw2SaiKIi0mQagPjFL34Rst477rgj7PJer9fvov2tt96qz0tR7dmzR63rpptuCliuock0ALF69eqAZRcuXOhX1mw2i+PHj9dZVpZlMWDAgJDvweuvv66WGTp0aK0bGjU98cQTavlFixbVWcY3YZQkSXz22WcB6/v000/9kv6aCWC1hiTTf/rTn9Rj161bV2eZaCTTq1ev9qsjNze3VpnGTqaDJZ1CCPHHP/7Rr6xGoxHbtm0LWH7KlClq2WeeeabOMjXfuwEDBtR5I0EIIXJzc/1uCgW7wSGEEG+++aZarn///gHrrB7qYDabA94cE0KIoqIiodfrBQCh1WrrTPrC9dRTT/m9j9U3/qLlX//6l1q/Xq8X+/fvD1j2m2++8Xtf16xZU6uM1+sVXbt2Des8Wlxc7HejK9jnL5bnZiGEX4zR+Ne9e/cGx0REbQ8nICOimIiLi8Of/vSnoGUuXryI//znPwCA5ORkLF++PGh5rVaLZcuWqY+rj62vK664Qu2OuHnz5gbVFcywYcMwb968gPt/+tOf+j1etGgR+vXrV2dZjUaDuXPnqo+r1/6u6fnnn1e3X3rppZCzED/yyCNISUkBAKxduxaKogQtP2PGDFx77bUB90+bNg2dOnUCANhsNrUrdzRVL4llMpkwadKkqNdfLTk52e9xOJO1RVt6ejoeeeSRgPtrfoZuuOEGjBs3LmB53zWzA32GanrmmWdgMpnq3JeZmYkrr7xSfWw0GvHHP/4xYF2zZ8+G0WgEAJw4cQJWq7XOOqs/Y3a7HWvXrg1Y3+uvv65OrnXttdciIyMj9AsKoLS0VN1OSkqK+vJW//znP9XtRYsW4fLLLw9YdsSIEbjrrrvUx//4xz9qldm4cSPy8vIAAGazOeh5Ny0tDU8++WTIGGN9biYiai6YTBNRTEyZMqXWOMiavvzyS7hcLgBVyVk4y85cccUVMJvNAFDn7ME1ZWdn480338RTTz2Fhx56CPfeey9++ctfqv8sFgsAoKSkBOfOnQtZX33ceOONQfcPGjSo3uVPnz5da39BQQH++9//AgAyMjJw1VVXhYwxLi4Oo0ePBgBYLBYcOXIkaHnfhL4ukiRhyJAh6uNwZriORElJCXbv3g2gaqx19WeiMdT8XNaV+DW2mTNnBp1NumfPnn5rHzf0M1STyWTCddddF3adY8eORYcOHQKWjYuLQ+/evQEAQoiAn4/qcd8AsHLlyoD1rVq1St2+8847g8YZiu/vN9ylsMJls9n81iu/4447Qh7ju0TXvn37as38v3XrVnV7+vTpIc+7N910k3ojI5CmODeHIqp6V0btX7TPQUTUNnACMiKKiWCtLdWqkyGgKun95S9/GVbdkiQBqGohrKys9Esiqq1fvx6PP/44Dhw4EGbEQHFxMTIzM8MuH65LLrkk6P6aF78DBw4Mu3z1xEC+fN9XIUTY7+vJkyfV7XPnzuHSSy8NWHbw4MEh60tLS1O3q29aRMv69eshyzKA6C+JVVPN5DkpKalRn68uoT5DAJCSkqImWg39DNWUlZUFvV4fdp2hnj/cGKZPn44uXbrg/Pnz2LdvHw4fPlzrs7dnzx58//33AICOHTtixowZIZ87mMTERHXbZrM1qK6aDh48qH5uExISgv6NVRs6dCji4+NRWVkJWZZx8OBBv14A1TfOgKqENpSEhAQMGjQI3377bcAyjXluJiJqSZhME1FMBGuVqnb+/Hl1e9++fWF3N/VVVlZW64Jt6dKl+P3vfx9xXY3V4lizm3BNOp3/qTqS8nWtG+v7vp4/fx5/+9vfwgnTT6iuzKFiBOCXfNV3fdtAqmfxliSpwclTKDVvBLRr165Rn68u4bzfvp+Lhn6GGvv5w41Bp9NhwYIFePrppwFUtU6vWLHCr8y//vUvdXvevHkhk/5QfH+/FRUVUBQlal29fWfvzszMDKtejUaDzMxMdahEzfXEfevs1q1bWHFkZmYGTaYb69xMRNTSsJs3EcVEoLGVvqLRWun1ev0ef/HFF36J9FVXXYVXX30VBw4cQHFxMZxOp1/XP99xpaHGCddXdWtNY5WvqTHe15oaGmNDuN1ubNy4EUBVD4guXbo06vP5jvfWarVo3759oz5fXZr6M9Scnv8Xv/iFmnT++9//htvtVvfZ7Xa89dZb6uOGdvEGgB49eqjbiqLgxIkTDa6zmm9LdySJpm/Zmjf9fOsMd7hDqOduinMIEVFLwJZpImq2fC/oVqxYgV//+tcNrvPPf/6zun333Xf7TfZTl1iMf21svu/rDTfcgA8//DCG0UTftm3b1N9bY3fxBoC9e/eq28OGDQs53jQcjXXjpjXq0aMHJk+ejI0bN6KkpATr1q1Tx+y/88476mfhqquuCjhxXyRqzjGwd+/eqK2b7Dv2uObY52B8y/p2Q69Zp91uj7i+ujTGuTlS4XYtD1daWlq9eiwRUdvGZJqImq309HR1+4cffmhwfbIs46uvvgJQ1TXyD3/4Q8hjcnNzG/y8zU2039fmprqLNwBcf/31jfpc58+fx65du9THV199dZ3lfLsWh9MiF+0x5K3dXXfdpfZGWLlypZpM+3bxjkarNFCVvPfs2VOdmO3NN9/E/Pnzo1K37/CXc+fOQQgRshVfURS/yRFr9ozwrTPc81moyRabwzmkPsNTgunevTuTaSKKGLt5E1Gz5TtZTvWFckMUFxerXUA7duwYctz20aNHa40/rEssuzTXx6hRo9Tt77//Xl02pzmqz3tbnUxnZmZi6NChUY7I30svveQ3ntd3SSlfvq2FJSUlIes9fPhww4NrQ66//np1qbUvvvgCubm5+OGHH7Bjxw4AVe//TTfdFLXn+7//+z91+8svv4za72vIkCHQarUAqrpnh1PvwYMH1ZZkrVbrN0s+AL+/gT179oSsz2azhZytP9rnZiKilorJNBE1W1OnTlUnIcrJycGnn37aoPp8J/NxOBwQQgQtX9earXWJi4tTt6M9kVZj6Nmzp1+31JoTNjUnkb63hw4dwtmzZwE0fhfvr7/+Gn/5y1/Ux5MmTcLIkSPrLNuzZ09123d25brs378/rOWo6H/0er3aOqwoClavXu3XKn3LLbdEdXm0hQsXquuuCyEwf/78ev3tb9q0ye9xQkIChg8frj5evXp1yDp8l/0aOXJkrfHOEyZMULc3bNjgt052Xd5++2112atAon1urg8ujUVEzQGTaSJqtjIyMvDzn/9cfbxo0SLk5+eHdayiKH6z2AJVY+Kqly2yWCxql++67Nq1K+xk2neJp3Dji7WHH35Y3X7hhRfw5Zdfhn1sYWFhY4RUp0jf248//ljdbsxk+vPPP8fMmTPVLttms9kvsa7JN8les2ZNwHJerzcm409bg1/84hdqT4ZVq1b5vc++azFHQ1JSEl555RX18XfffYeZM2eGPc7Z7XbjqaeeqnNt7oULF6rbf/vb33Do0KGA9Rw4cAAvv/yy+njRokW1ykydOhUZGRkAqsZM+/7t11RSUoIlS5aEjD/a52YiopaKyTQRNWvLli1D586dAVQlUyNGjMB7770XcIKm/Px8vPDCC+jfvz/efvttv30ajQbTpk1THy9YsADffPNNrTreeecdTJs2DbIshzWjru+6th999JHfbMLN1c9//nNMnDgRQFUCN336dDz77LMBkwGbzYa1a9di4sSJuPfee5sszkjf2+ou3gkJCX4tctHg9Xrx1Vdf4cYbb8T06dPVFj5JkvDGG2/U6l7r6+abb1Z7RuzevRu//e1v1fWEq+Xl5WHGjBn4+uuvozKJWVvTu3dv9TN95swZFBQUAKj6DI0YMSLqzzd37lw8+OCD6uONGzfikksuwZo1awJO9FVaWorXXnsN/fr1wxNPPFHneexnP/uZ+llyu92YOnUqtm7dWqvc5s2bce2116ot4pdddhluueWWWuW0Wi2efPJJ9fFrr72GxYsX1/pbOnXqFKZOnYr8/HwYDIaQrz+a52YiopaKE5ARUbPWuXNnrFu3DtOmTUNxcTEKCgowd+5cdOzYEVdccQXS09OhKApKSkpw5MgRnDp1Kmj37ccffxzr1q2Dw+HAmTNnMGrUKIwePRpZWVlwu93YvXu32sX2rrvuQnZ2dtAWbAC47rrrYDabYbfbcfDgQQwYMADjx49HSkqK2lI2ZcoUTJkyJXpvTANptVq88847mDx5Mg4cOAC3243f/va3ePLJJzFq1Ch069YNBoMBZWVlyM7OxtGjR9WL9htvvLHJ4ozkvb1w4YK63u2UKVPqlZDWnCHY6XSivLwchYWF+O677+BwOPz2Z2RkYNWqVZg8eXLQert3745Fixbh73//OwDg2Wefxdq1azF27FjExcXh5MmT2LVrF9xuN6655hp07twZ//73vyOOv627++67sXnzZr+fRbtV2tdf/vIXdOzYEY888ggURcHZs2cxf/58LFy4ECNHjkRGRgaSkpJQUlKC3NxcfPfdd343UXxn2q5mMBiwdu1ajBs3DhcvXkRhYSEmTpyIIUOGqOOf//vf/+LgwYPqMR07dsTatWsDrqF9xx13YP369fjggw/UuFevXo0JEyYgOTkZp0+fxldffQWv14sRI0agb9++ePPNN4O+9mifm4mIWiIm00TU7I0YMQL79+/HnXfeqV4oFxUV+c3aXFN6ejr69u1b6+cDBw7E2rVrceutt8Jut0MIga+//hpff/21X7m7774bL774IqZOnRoyvqSkJKxYsQKLFi2Coig4deoUTp065VcmISGhWSXTQFUX6l27duGBBx7Aa6+9Bq/XC7vdji1btgQ8xmQy4fLLL2+yGCN5bz/55BP1Yr2+XbzDnSE4IyMDd9xxB+6//36kpqaGdcxzzz2HM2fOYMOGDQCqZlaumTDPmDEDb7zxBu67776I4qYqN9xwAzp06KB2IzYajX7dkRvDb37zG1x99dV47LHH1BZkl8ulTn5WF7PZjPnz5+OJJ56oc/+AAQOwc+dO3HzzzThw4ACAqonGfBPoapdddhneeecd9O7dO2ica9euxYIFC9Qkubi4GO+++65fmZEjR+KDDz7AY489FrSuatE8NxMRtURMpomoRejevTu+/PJL7N69G++++y62b9+Oc+fOoaysDDqdDmlpaejbty+GDx+OKVOmYPz48eoEOTXNmjULR44cwfPPP49NmzYhNzcXOp0OXbp0wZgxYzB//nyMHTs2ovjuuusuDBo0CC+//DL27NmD/Px8NVlvzkwmE/7xj3/g4Ycfxr///W9s2bIF2dnZKCkpgaIoSE5ORq9evTBkyBBcc801uPbaa9Vx500l3Pe2+gJeo9Fg+vTpDX5eSZKQkJCApKQkpKSkICsrC8OHD8cVV1yB8ePHq7MuhysuLg6ffvop1q5dizVr1uC7776DxWJBx44dMWTIEMyfPx8/+clPWtzs8M2JwWDAzJkz1cnHZs+ejXbt2jX6844ePRpbtmzBt99+i88++wxbtmzB2bNnUVxcDIfDgeTkZHTp0gWXX345xo8fjzlz5tTZKu0rKysL+/fvx3vvvYf3338f33zzDYqKigBAbf39yU9+ghtvvDGsz4zBYMB//vMf3H777Xj11Vexe/duFBcXIy0tDf369cOtt96KefPmhdXF21c0z81ERC2NJJr7lR4REVEIDocD7du3h91ux5VXXum39jO1HUII9OrVS52Z+YsvvsCkSZNiGxQREbVanICMiIhavM2bN6uTPl1//fUxjoZiZfPmzWoi3aNHD1xzzTWxDYiIiFo1JtNERNTi+Y7RbOz1pan5evHFF9XthQsXsss8ERE1KnbzJiIiohbv448/xqxZswBUTUp35swZv3XKiYiIoo0zQBAREVGLc/LkSfzjH/+ALMvIzs7GZ599pu5bvHgxE2kiImp0bJkmIiKiFmfbtm2YMGFCrZ+PGTMGW7ZsiXhWaiIiokhxzDQRERG1aAaDAf369cMTTzyBL774gok0ERE1CbZMExEREREREUWILdNEREREREREEWIyTURERERERBQhJtNEREREREREEWIyTURERERERBQhJtNERPVw5swZSJIESZLQo0ePkOVLS0vx5JNP4oorrkBqaiq0Wq16/OrVq2uVP3HiBO655x5ccsklSExMVMtKkoQzZ85E/fUQUfh69OjBv0dqUr7fAU1l9erV6nPOnz+/yZ6XqCXRxToAopbszJkz6Nmzp9/POnbsiPz8fOh04f15ybKMrl27orCw0O/np0+fDitJo9rGjx+Pr776qs59RqMRycnJSEpKQnp6OoYNG4bLLrsMEydORPfu3RslnjNnzmDs2LE4d+5cWOU//fRTzJ07F06ns1HiIWqLaq5LzcVMWiZ+7xJRc8JkmijKioqK8Nlnn2HmzJlhld+4cWOtL3RqPC6XC0VFRSgqKkJOTg527doFANBoNJgyZQp+9atf4brrrovqcy5cuFBNpE0mEyZNmoSMjAxotVoAwIABA9SylZWVmDdvnppId+7cGVdddRU6dOigtkgkJSVFNT4iopaM37tEFCtMpokaweuvvx72l/rrr7/eyNG0bSNGjMDIkSPVx4qiwGKxoLy8HN9//z3Onj2r/vzzzz/H559/jttuuw0vvfQSkpOTG/z8hYWF2LRpE4CqVvGDBw+ib9++Act/8sknKC0tBQBccskl2LdvH0wmU4PjICJqzfi9S0SxwGSaKIoGDhyIo0eP4pNPPkF5eTlSUlKClrdYLFi3bp3fsRRd06ZNw9KlSwPuLywsxBtvvIEXX3wReXl5AIA33ngD33//PXbs2AGz2VzncT169Airm+h3332nbl999dVBE+ma5W+55RYm0kTNEMdJNx/83iWiWOIEZERRdNtttwGo6kr89ttvhyz/zjvvqN15b7/99kaNjerWqVMnLF68GMeOHcPcuXPVn3/33XdR+Z2UlZWp2507d456eSKitozfu0QUS0ymiaLo1ltvVSdACacbWXUZnU6HW2+9tVFjo+ASEhLw9ttvY8aMGerP3n//fWzbtq1B9Xo8HnVbowl9yo20PBFRW8bvXSKKJV6pEUVRx44dce211wIAvv76a5w8eTJg2dOnT6uTX1133XXo0KFDxM8nhMCHH36IefPmISsrC8nJyYiLi0NmZiZuuOEGrFmzBl6vN6y6jh07huXLl2POnDno168fEhMTodfr0aFDBwwfPhz3339/2N3hxo8fry6nUZ2MlpaW4tlnn8WIESPQvn17mEwm9OrVC3feeSeOHDkS8WtvDJIkYc2aNUhMTFR/9vTTT9dZNtjSWNu2bVP3LViwQP35mjVr/JY3kSQJS5cuxdKlS9XHa9asUcsvWLCgVvlgyf3mzZuxaNEiXHLJJWjXrh2MRiO6dOmCqVOn4q9//SscDkdY70HN5VcOHjyIX//61xg0aBDatWsHSZJwww031Hl8SUkJnnvuOUyePBmZmZmIi4tDSkoKBg4ciHvuuQf79+8PGYPv+1HdRd/r9eL1119XJ28zGo3o3LkzbrjhBnz66ach66zp0KFD+O1vf4srrrgCnTp1gsFgQEJCAvr164ef/vSnWLlyJSwWS8h6ovF6I1VUVIRVq1Zh3rx5GDZsGNq1awe9Xo+UlBT0798fCxYswMaNG8OuTwiBjz76CLfeeiv69euHpKQkGAwGpKen45JLLsHkyZPxhz/8Afv27YOiKA2O3+PxYOPGjfjNb36DCRMmoEuXLoiLi4PJZELXrl0xbdo0vPDCC7DZbA1+rsYSztJYjX0ebEnn/4KCAixbtgwjR45Ep06doNVqQ3bHDldTf+8WFxfjmWeewbhx49C5c2cYjUa0b98ew4YNw+LFiyPuNu5wOPD8889j9OjRSEtLQ3x8PLKysnDHHXfgm2++iTi+arE4NxG1SYKI6u306dMCgPrP4XCId955R338xBNPBDx26dKlarl3331XOBwOv7pOnz4d9LkPHjwohg4d6ndMXf/69esnvv/++6B1zZ07N2Q9AIQkSeK+++4TXq83aH3jxo1Tj9m6davYuXOnyMjICFivVqsVr7zyStA6I+H7/EuWLIn4+HvvvdfvNZeUlNQq4/u77969u9++rVu3hvV+Vse3ZMmSsMtv3bq1Viy5ubli/PjxIY/t0qWL2L59e9DX7lteCCGWLFkitFptrbpmzZpV69i//vWvIjk5OeRn6I477hAulytgDL7vx5IlS0ReXp648sorg9a7YMECIcty0NcmhBBlZWXipz/9qZAkKeT7lZ6eHrSuaL3eSLzwwgt1/j7q+jdx4kRRXFwctL7CwkIxevTosD9/X3zxRYPiz83NFWlpaWE9V/v27cWmTZsa9Hy+av5dNkT37t3VegKdqxvzPNiSzv8fffSRSE1NrVVfcnJyWK+1plh+765cuTLk37xWqw3rfRJCiMOHD4s+ffoEfc8ff/xxIUTtc3Mw0To3rVq1Si0/b968kM9L1BZxAjKiKLv++uuRkpKC8vJy/Pvf/1Zb2Wp64403AACpqamYOXNmRGuebt++HTNnzkRFRQWAqu5qw4cPR79+/aDX63HmzBns3LkTTqcTJ06cwJVXXondu3f7LcHkKzc3V61n4MCB6Nu3L1JSUqDValFUVIR9+/YhPz8fQgisWLECLpcLf//738OK9ciRI3jkkUdgs9nQsWNHXH311UhLS0N+fj62bNkCh8MBWZaxaNEiDBo0CKNHjw77fWgsc+fOxUsvvQQAEEJgx44dmDVrVtjHZ2Rk4J577gEAHD9+HJs3bwYA9O/fH9dcc41f2eqZxqvLb968GcePHwcAXHPNNejfv3+tun0dO3YM11xzDQoKCgBUtSwPHToUl1xyCcxmM/Lz87F9+3ZYrVacP38ekydPxmeffea33m4gf/7zn/H73/8eANC7d2+MHDkSZrMZZ86cgV6v9yt7//33Y8WKFerjtLQ0jBo1Cl26dIHT6cSBAwdw5MgRCCHwr3/9C+fPn8f69etDdmW32Wy49tprceTIEZjNZlx99dXIzMyE1WrF1q1bUVRUBABYtWoV+vXrh4cffjhgXefPn8fEiRNx4sQJ9WcpKSkYM2YMOnfuDI/Hg7Nnz+Lbb7+F1WoNus53Y73eUM6fPw9ZlgEAvXr1woABA9ChQwfExcWhvLwchw8fxvfffw8A2LJlCyZNmoQ9e/bAaDTWqkuWZUyfPh3ffvut+rNBgwZh0KBBSElJgdPpRGFhIQ4ePKh+vhqqsrISJSUlAKrOfZdccgm6d++OhIQEuN1unD59Gnv27IHT6URxcTGmTZuGr776CldeeWVUnj9WonkebEnn/6+//hpLly6Fx+NBWloaxo4di/bt26OoqAgHDhyI8F0MrCm+d//yl79g8eLF6mOj0Yhx48ahW7duKCsrw9atW1FaWgpZlrFixQqcPXsW77//fp1xAMCpU6cwadIkXLhwQf3ZpZdeimHDhkGWZXzzzTfIzs7GU089hbS0tLDjjNW5iajNil0eT9Ty1XWHXAgh7r77bvVndbUE7tixQ92/cOFCIYQI+w55QUGBSE9PV8vdcsstIi8vr1a5wsJCMXv2bLXc4MGDA94p/+1vfyveeecdYbFY6tyvKIr4+OOPRYcOHdT6duzYEfB98W2ZMBqNQqvViueee054PB6/crm5uWLQoEFq2QkTJgSsMxINbZmurKwUOp1OreORRx6pVSZYy7SvSO/sz5s3Ty2/atWqkHEOGDBALT9p0iRx4sSJWuUsFotYtGiRWq5z586ivLy8zjp9P4M6nU4kJyeLDz/8sFY5p9Opbq9cuVI9JiEhQfzjH/+os7Vjy5Ytfi1zzz77bJ0x+LZMG41G9b2r2UOgsrJS3HLLLX7PbbPZ6qzT4/GIMWPGqGVNJpP461//Ktxud62yLpdLfPzxx+KGG26os65ov95IrFy5Urz00kt1/s1XO3jwoBg+fLj6vE899VSd5T788EO/z8SePXsC1nnkyBHx8MMPi7179zYo/jNnzoh7771X7N27N2BPAovFIh566CE1tr59+4bV6yCUWLZMR+s82NLO/zqdTkiSJJ566qlaf2u+55BIxOJ79+uvv/brEXLttdeKgoKCWq9n8eLFfvU999xzAV/HhAkT1HLt2rUTGzdurFVm7dq1wmQyCYPBENZnN9rnJrZME4XGZJqoAQJ9qe/atUv92S9+8Ytax911113q/q+//loIEf6X+h133BG0bl9er9fvC/utt95q0Ovds2ePWtdNN90UsJzvxRQA8c9//jNg2cOHD6tdbiVJEufPn29QjDWfvz7JtBBC9OjRQ63jjjvuqLW/OSTTTz75pN/FXc2L9Jpuv/12tfwzzzxTZxnf35skSeKrr74KWmdFRYVISUkRQFX3xlDljx49KuLi4gQAkZaWJiorK2uVqdnt/ZZbbglYn8PhEJmZmSE/46+++qrfBX6o7u6BNMbrbQzl5eWiU6dOaqJcVyL14IMPqu/Jq6++2iRxRcL3BtCGDRsaXF8sk+lonQdb4vn/D3/4Q4Oet6ZYfO+OHTtWLTNq1KigXaN/9atfqWWTkpJERUVFrTIbN270O88GOx+99dZbfjEG+uw2xrmJyTRRaEymiRog0Je6EEIdB5WcnOz3c4fDoX7h9e3b1+/nob7Ui4qK1Ja65ORkYbVaQ8a4e/dutc6ZM2c27AULobaEpqWlBSzjezE1ePDgkHWOHDlSLf/JJ580OMZoJNNDhgxR65g9e3at/bFOpt1ut+jYsaMAIDQajThz5kzIuvPz89UL9kC/F9/PYLAL5morVqxQy995550hywshxMKFC9Vj3n///Vr7fZNpg8FQqwWopt/85jdq+QcffLDOMv3791fLPPzww2HFWZfGeL2N5f/+7//U5z106FCt/b7JxUcffdRkcYVr7969anwPPPBAg+uLZTIdjfNgSzz/Z2RkhLzJF6mm/t49evSoX5lvv/02aHw2m020b99eLf/yyy/XKuM7Tv3mm28O+ZqvvvrqkJ/dxjg3MZkmCo1jpokayW233YYlS5bAYrFg3bp1+OlPfwoAWLduHcrLy9Uykfjyyy/hcrkAADNmzEBCQkLIY6644gqYzWbY7Xbs3LkzZPns7Gzs378fJ0+ehMVigcvl8htXVj3DcUlJCc6dO4fMzMyg9fmu3RzIsGHD1FlLA82M29R831ur1RrDSOq2f/9+dbzw6NGj0b1795DHdOnSBf3798exY8dw5MgRlJeXB51R9+abbw5Z54YNGyIqDwATJ07EP//5TwDAzp07MWfOnIBlr7rqKnTq1ClofcOGDVO36/r8nD17Vh2HDgC//OUvw4qzLo39eiNRVFSEPXv24NixYygrK0NlZaXf36rvbL3//e9/MXjwYL/ju3Xrpm7/85//xPTp09UlhpqCx+PB3r17cfDgQRQWFsJqtfrNPu37d/ff//63yeJqDNE4D7bE8/+NN97YpJ+pxvje3bp1q7o9ZMgQXHbZZUHLx8fH45ZbblHn3di6dSsWLlzoV8Z3VYZw4rn99tuxY8eOoGWa07mJqC1hMk3USG677TYsXboUQgi8/vrr6pd69RqXkiRF/KW+e/dudTs7OzvspKB6ApTqC+74+PhaZdavX4/HH388oklhiouLQ15M1byAr4vv5CrhLEfUFHwv5JOSkmIYSd18PwvFxcVhfxaqLyiFEMjPzw+aTF9++eURxfH666/jo48+CnlMXl6eun3u3LmgZaPx+dmzZ4+63bdvX3Tt2jVknYE09usNx9GjR/Hwww/js88+UycjC6W4uLjWz37yk59gyZIlUBQFn332GQYOHIgFCxbguuuuw6WXXtpoExI5HA4sW7YML7/8cp1x1SXccs1VND7HLfH8H845JJoa43vX9z0ZM2ZMWMeMGTNGTaa/++47v335+fm4ePGi+viKK64IWd+oUaNClmkO5yaitojJNFEj6dmzJ6666irs2LEDmzZtUmfs3LRpEwDg6quvrrU+cSjnz59Xt/ft24d9+/ZFHFdZWVmti6mlS5eqszZHIpwW2+Tk5JBlfGeG9ng8EcfRGHwvZtu1axfDSOrm+1k4ceKE3wzV4SorKwu6P9QarDabze8zUD1TbjRjiMbnx3e23F69ekUQnb+meL2hbNy4EbNmzVJbKMNV199q//798dxzz+GBBx6AEAI//PADHn30UTz66KNISkrC6NGjMX78eMyePRv9+vVrUNzVysrKMHHixIhbmptj75BIRONz3BLP//VZx7khGuN71zfxDacHEAC/56h5I8i3PrPZHNZM3aFuWjSHcxNRW8V58Ika0bx58wAAXq8Xb775Jt588021G2P1vkhEo9XWtxslAHzxxRd+F1JXXXUVXn31VRw4cADFxcVwOp0QVfMrQAiBcePGqWUVRQn5fIGWBWnOKisr/e7Yh+pmHAuN8VmoyWQyxTyGaHx+fC8yw+kaG0hTvN5gLl68iJ/+9KdqIt2zZ088++yz2LVrF86fPw+73Q5FUdS/1SVLlqjHBvpbve+++7B9+3ZMnTrVryW6oqICGzduxCOPPKIu6Xb48OF6x17tnnvuURNpo9GIhQsX4uOPP8YPP/ygdvOujv/06dMh428povE5bonn/1DnkMYQ7e9dm82mbtfVql8X33I1bzr41mc2myOury6xPjcRtWVsmSZqRHPnzsW9994Lh8OB119/XR17ZjKZ8JOf/CTi+ny/UFesWIFf//rXDY7xz3/+s7p99913q+OnAmnpLUTh2L9/v1/32XC62DU138/Cfffdh+XLl8c0BqCqC3k4LXBNLTExUd32vZCNVKxf76uvvqpeNA8bNgzbt28PenMg3L/Vq666Cp9//jmKi4vx1VdfYceOHdixYwf++9//qgnTli1bcMUVV+CLL74Iu6trTfn5+XjrrbcAAFqtFps2bcLYsWMbHH9bwfN/eKL9vev7N1ZZWRnWMb7lfM8/Neuz2+0R11eXWJ+biNoytkwTNaKkpCTMmjULQNUEOgcPHgQA3HDDDfUah5uenq5u//DDDw2OT5ZlfPXVVwAAjUaDP/zhDyGPyc3NbfDzNnfvvPOOuq3RaOqdPDSmaH8W6iMlJQVGozHmcYTi+175tnZGKtavd/Pmzer27373u5Ct7GfPno2o/vbt2+PGG2/EihUr8O233+LChQt48cUX0b59ewBVY51rTqQUiS1btqiJzbRp04Im0kDk8bd2PP+HJ9rfu75d1cN9/b6f3eq/n7rqs9vtKCkpCVlfqPHMsT43EbVlTKaJGtntt98e1s/C4TtRycaNG+sdU7Xi4mK43W4AQMeOHUOObzt69GiLnwgolOLiYnWyGgCYOnVq0Em6YsX3s/DVV19FPIY2WkaOHKluR+Mz2Rh8exZkZ2f7deGPVCxfr++Y2UsuuSRoWVmWsWvXrgY9X/v27XHvvffi448/Vn/2/fff49SpU/WqL5L4AWD79u31ep7Wiuf/8EXze9d3tYCvv/46rGN8//Zqzv6dkZHh9177TpAYSDhlWsK5mKg1YjJN1MimTJniN+a2c+fOmDx5cr3qmjp1qrrMSE5ODj799NMGxeY7RtLhcPgtgVKXf/zjHw16vuZOCIF58+b5dQV+7LHHYhhRYGPGjFGTfJvNhldffTUmccyYMUPdfvnll+F0OmMSRzDdu3fHgAED1Md/+9vf6l1XLF+v799rqO6hH330EQoLC6PyvKNHj/abhM93QrdIRBK/3W73u6lFPP9HIprfuxMnTlS3Dxw4oLZ0B+JwONThDDWPrzZ+/Hh1+9///nfIGNasWROyTEs4FxO1RkymiRqZVqvFjh071NlXt2/fDq1WW6+6MjIy8POf/1x9vGjRIuTn54d1rKIofrOIAlVLsVR3e7NYLGqXv7rs2rWrRV1MRcpms+Hmm2/2W6vzZz/7WbPs4g1UTd503333qY8fffTRiCaIqm9CVNPChQvVpD4vLw//7//9v5AX5dWKi4vDXtqpoR544AF1+7nnngu5ZmsgsXy9vjORr1u3LmC5ixcv4v777w8rnnCUlZX53WCq7wzNvvGvX78+6IRHDz74YNQ+o60Fz//hi+b3bv/+/f2GJNx7771BV514/PHHUVRUBKCqy/mtt95aq8ydd96pbr/99ttBz0dvv/12WGuEt5RzMVFrw2SaqAn06dMHw4cPx/Dhw9GnT58G1bVs2TJ07twZQNWEPiNGjMB7770XcGbV/Px8vPDCC+jfvz/efvttv30ajQbTpk1THy9YsADffPNNrTreeecdTJs2DbIshz2baUtRWFiIv/zlLxg4cKDfWOkrrrgCr732WgwjC+3BBx9Uu8tarVZ1Jt7qrps1lZSU4LXXXsPll1/uN/FQQyQnJ/tNfrZq1SrMnDkTx48fr7O8EAK7d+/GL3/5S3Tv3h0OhyMqcYQyf/58XHnllQCqlh269tpr8fe//73Oi2K3241PPvkEs2fPrrUvlq/Xt+XpmWeeqbNF67vvvsO4ceNw7ty5kH+rN910E6ZPn45333034ARHubm5uPnmm9XPVN++fet9Dps4caI6e/HJkycxf/58dd3zahUVFbj77rvx8ssvt7pzTTTw/B++aH7vPvPMM2oyvmPHDtx4441qwlzN7Xbjsccew3PPPaf+bMmSJXXObTBlyhR1ZnQhBG644QZ1+S5fb731FhYsWACDwRAyxpZyLiZqbTibN1EL07lzZ6xbtw7Tpk1DcXExCgoKMHfuXHTs2BFXXHEF0tPToSgKSkpKcOTIEZw6dSro3enHH38c69atg8PhwJkzZzBq1CiMHj0aWVlZcLvd2L17tzpp01133YXs7OygLRjNzYYNG/xa4BRFQUVFBcrLy3H06NE6J6S644478MILLyAuLq4pQ41YQkICPv74Y0yaNAmnT59WE5HFixdj9OjRyMjIgCRJKC0txbFjx3DixAn1onvChAlRi2P+/Pk4deoUnnrqKQBVrY4bNmzAoEGDMGjQICQlJaGyshL5+fk4cOBArQSqKeh0Orz99tuYOHEifvjhB9jtdtxzzz147LHHcNVVV6Fz587weDw4e/Ysvv32W1RUVAScDTdWr3f+/Pl4/vnnkZ2dDZfLhdtuuw3Lli3DkCFDEBcXhyNHjmD//v0AgCFDhmDq1Kn405/+FLA+RVGwYcMGbNiwAXq9HoMGDUJWVhaSk5NhtVpx9uxZ7NmzR/3MaLVavPjii/WOPzU1FQ899BCefPJJAMB//vMffPbZZ7jiiiuQkZGBgoICbNu2DZWVldBqtfj73/9er6WMwjV06NCwy3bp0sWv10qs8PwfG6NHj8YzzzyDxYsXAwA++eQTdOvWDRMmTEBmZibKysqwbds2v++a2bNnB+whIkkSVq5cidGjR+PixYsoLS3F1KlTMXToUAwdOhSyLOObb77BiRMnAFTN3u7bEymQlnAuJmp1BBHV2+nTpwUA9Z/D4ah3XQ6Hw6+u06dPBy1/5swZcc011/gdE+xfenq6+Pzzz+us66OPPhJmszno8XfffbdwOp1i3Lhx6s+2bt1aZ33hlPG1ZMkStfySJUtClg/F9/nD/afRaMS0adPEpk2bwnoO39999+7dA5ZbtWqVWm7evHkh6503b55aftWqVWHFUlJSIubOnSskSQrrtaakpIjVq1fXWZdvuUi9/fbbokuXLmG/5yNHjhROp7NWPZF+HrZu3aqWHzduXNCyJSUlYvbs2WHFl5GR0SSvNxInTpwQvXr1Cvo8Y8aMEXl5eSHfxxkzZoQde8eOHcVHH33UoNiFEMLr9Yrbb7895Ofzww8/DPtvLFy+n5NI/9V8/u7du6v7Ap2rG/M82JrO/5GK5ffua6+9JpKSkoK+V1qtVvz6178WXq835PMfPHgw6N+zJEni0UcfFUJEdm6O1rkp0u8voraILdNELVT37t3x5ZdfYvfu3Xj33Xexfft2nDt3DmVlZdDpdEhLS0Pfvn0xfPhwTJkyBePHj1cnr6lp1qxZOHLkCJ5//nls2rQJubm50Ol06NKlC8aMGYP58+eHXMampTAYDEhKSkJycjLS09MxbNgwDB8+HNdccw0yMzNjHV69tGvXDu+88w6OHDmCtWvXYtu2bTh9+jRKSkqg0WiQkpKCPn364LLLLsOkSZMwefLkRml1v+mmmzBr1iy89dZb2LhxI/bt24eLFy/CZrMhPj4eGRkZGDBgAK6++mpMmzYNWVlZUY8hlHbt2uGDDz7Avn378Oabb2Lbtm3Iy8tDWVkZTCYTunbtiqFDh+Laa68NuSZtLF5vVlYWDhw4gL/97W/44IMPcOLECbjdbnTq1AmDBw/Grbfeirlz5wb8W/f18ccf48CBA9i8eTP27t2LY8eOIS8vD5WVlTAajejQoQMuvfRSTJs2Dbfeemu9lhWqSavVYs2aNZg7dy5eeeUV7N27F2VlZUhNTUW3bt0wa9Ys3HHHHejSpQvOnDnT4OdrrXj+j40777wTs2bNwquvvorPPvsM2dnZKC0tRWJiIjIzMzFp0iTccccdGDhwYFj1XXrppTh8+DD+8Y9/4J133lF7nVS/9wsXLlSHp0SiJZyLiVoLSYgwZycgIiIiIiIiIgCcgIyIiIiIiIgoYkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCLEZJqIiIiIiIgoQkymiYiIiIiIiCKki3UA1Hp4vV4UFhYCADp16gSdjh8vIiIiIiJqndgyTVFTWFiIzMxMZGZmqkk1ERERERFRa8SmQyIiIiKiFuBQXjke+/AI8svskAXQNTUOLo9AucONSpcMIQQkSVLLJxh1SDbpYdRLyCtzQitJyEg1YdnswRjcNTmGr4SodWAyTURERETUAqw/XAC3V4HDoyA9yQiNpIHJAJgMJshK1c91GgkaSYJOW/V/tVSzHhcqXHB7Faw/XMBkmigK2M2biIiIiKiZs7u92HOyBBaHB1qNhATj/9rEhBCQFUCvlRCn18Kg0/gl0kBVK7VWI8Hi8GD3yWLY3d6mfglErQ6TaSIiIiKiZq7Y6oYiAJdXhtmg9evO7VUEhBBBj5ckCWaDFi6vDEUAJTZ3Y4dM1OoxmSYiIiIiauacXhkAoAj4tTrLioCiBE+kq2kkCdVFHR456jEStTUcM01ERERE1MzF6bQAAI0EKD+2QitCwOP1Ao6KqkISoGj/11YmmZIgabTqY0UIaH7Mw036//2ciOqHyTQRERERUTPXPtEAjQQYdVrYXF4oigKvAsBRAWXri2o5p88xcZPvgxSfCqBqXLXdLSPBqINGIyEtwdC0L4CoFWI3byIiIiKiZs5s0GFU7zQkm/SQFQGL0xNynLQvm8sLWRFINukxulcazAa2qRE1FJNpIiIiIqIWYPrgzjDoNDDqJJTbvVAQXjKtCIEyuwemH2f6nj64cyNHStQ2MJkmIiIiImoBBmckIyPFhGSTAV5FQYnNHTKhVoTAhQonPLKCtAQDuqWZMSgjqYkiJmrdmEwTEREREbUAigBuvaIbkkw6dEgwwuGRUWRxBiyfX+7A2ZJK2N0yOifHIcWsx/2TsvyW1SKi+mMyTURERETUAhRZneiaasLCcb0Rp9dAAwkuWQlYvtLlhcOjQCNJMBm0eHTaAPTpmNCEERO1bm02mS4qKsKnn36KJ554Atdddx3at28PSZIgSRLmz58fcX2ff/455syZg65du8JoNKJr166YM2cOPv/887DrsNvt+POf/4yRI0eiXbt2SEhIwIABA/DQQw8hNzc37Hq+//57LFq0CH369IHJZEKHDh0wduxY/POf/4TX6434tRERERFRbJXb3XC4G7A2dPhzlRFRmCQRyTSArUiw7i3z5s3D6tWrw6pHCIFFixbhlVdeCVjm7rvvxssvvxz0OU+ePInp06fjxIkTde5PTk7Gm2++iWnTpgWNZ+XKlbjnnnvgcrnq3D9q1Ch8+umnSEtLC1pPfeTl5SEzMxMAcO7cOXTt2jXqz0FERETU1jg9MgosTgghkFtqx3ObTqDc7kGR1QmDy4qO39V9HVoyYiG8xmTIioIuKSa0izfgj3MuZes0UZS02ZZpX5mZmZgyZUq9jv3d736nJtLDhg3D2rVr8c0332Dt2rUYNmwYAOCVV17B448/HrAOm82GGTNmqIn0XXfdhc2bN+Prr7/G008/jYSEBFgsFsydOxeHDh0KWM/GjRtx9913w+VyIT09HS+++CL27t2Lzz77DHPmzAEA7NmzB3PmzIGiBO4SRESNw+72IrfEjuwLVuSW2GF3s6cIEREFpygCF60uCCEghMCqXWdQ4fDios0Fs0GHjsnGgMdmpJjQPc2MeKMOBRYnyu0eLP8yO6IltYgosDbbMr1kyRKMGDECI0aMQHp6Os6cOYOePXsCCL9lOicnBwMGDIDX68Xw4cOxfft2mEwmdb/dbse4ceOwf/9+6HQ6HD9+HL17965Vz9KlS/H73/8eAPCnP/0Jixcv9tu/e/dujB07Fl6vFxMmTMCWLVtq1eH1ejFgwADk5OQgKSkJ3333Xa3nuueee/D3v/8dALBmzRrcfvvtIV9jJNgyTVSbEAKH8y1Yf6gAe06VQPE542okYFTvNEwf3BmDM5I5IQwREdVSVOGEzVV18/VEoRXLv8jGhQonZAF0SjZCslugbH2xzmPjJt8HTXwqFCGQV+aAVpKQkWrCstmDMbhrclO+DKJWqc22TP/+97/HjBkzkJ6eXu86li9fro5Bfumll/wSaQAwm8146aWXAFQluytWrKhVh8fjwQsvvAAAGDBgAB588MFaZUaPHo0777wTALB161Z8++23tcp8+OGHyMnJAQA88sgjdSbtf/7zn5GamqpuE1Hjyimy4ZdvHsBjHx7BthMXcaHChbwyO3JL7cgrs+NChQvbjl/EYx8ewS/fPICcIlusQyYiomakwulRE2kA2JZdBI8s4PQqSDbpoEF4N2E1koRUsx4Ojwy3V8H6wwWNFTJRm9Jmk+mGEkJg3bp1AID+/ftj1KhRdZYbNWoU+vXrBwD46KOPanWr2bZtG8rLywFUtYhrNHX/SnwnRfvggw9q7f/oo4/qLOvLbDbjpptuAgAcOXIEP/zwQ53liKjhDuSW4ZEPDiH7ghX5PybQNpcXeq0GJr0Weq0GNpcXuaV25JdVdf1+5INDOJBbFuvQiYioGXB5ZZTY3Opjp0fGwdxyWJ0eaCUJZoM2ovoSjDpoNRIsDg92nyzmUCOiKGAyXU+nT59Gfn4+AGDcuHFBy1bvz8vLw5kzZ/z27dixo1a5ugwfPhzx8fEAgJ07d9baX11Pv3790KlTp5CxBKqHiBoup8iGZRuOobTSjfxyB2QBpCcZ0SPNjPSkOHRINCI9Ke7Hx0bIomot0NJKN5ZtOMYWaiKiNk5RBIoqXH6NMGWVHigCcMsK4gwaSGG2SleTfkzAXV4ZioBfok5E9aOLdQAt1bFjx9Tt/v37By3ru//YsWPq2OxI6tHpdOjduzcOHTrkdwxQNYFZXl5evWKJRPVzBFJQwC5DREIILP8iG+V2DwosTpgNWqQnxUFTx3hoSZKQGKdHvFGHCxVOFFic0EgSln+Zjb/eMoxjqImI2qiLNhc8NdaPdslVy2IpAmF3765JI0nq3B0OTwOW2SIiAEym6+3cuXPqdqiJtqon5ap5nO/j+Ph4pKSkhKzn0KFDuHjxIlwuF4zGqtkb8/Ly1DuXDYklFN9jiahuh/MtyC21o8Tmgl6rCZhI+9JIEtKT4pBX5kCJzY3cEjuO5FdwchgiojbIYveg0lW7C7ZRW9WtWyMBSj0XjVaEgObHrySTPrJu4kRUG7t515PValW3ExKCr9VX3T0bqGpFrqueUHUEqydasRBRw60/XAC3V4HDoyDVrA+ZSFfj5DBEROT0yCi11939OjVeD40EGLQaON0KRIQJtRACdrcMo04LjUZCWoIhGiETtWlsma4np9OpbhsMwU9G1S3IAOBwOOqsJ1QdweqJViyhhGrJLigowMiRIyOqk6g1sbu92HOyBBaHB1qNhARjZKfYBKMOxRq33+QwZgNP00REbYFXVmqNk/YVp9diSLcUfHOqDFaXF3a3jPgIviNsLi9kRSDZpMfoXmn8fiGKAv4V1VNcXJy67XYHn8DB5XKp2zWXz6quJ1QdweqJViyhcN1oouCKrW4oomoGVrNBG/GY57omhzG342maiKi1UxSBwgonvIoStNz4rI44cLYccToNLA4vTAZtWKOnFSFQZvfApNfCoNNg+uDO0QmcqI1jN+96SkxMVLdDdZeurKxUt2t2w66uJ5wu14HqiVYsRNQwTq/P5DD1nDyMk8MQEbUtQghcsDrh9gZPpAEgKz0BnVNMSDEb4FUUlNjcIcdPK0LgQoUTHllBWoIB3dLMGJSRFK3wido0JtP15NtKG2qWa9/u0TUn8aqup7KyUl1vOlQ9HTp08OuuHa1YiKhh4nQ+k8ME6KYXCieHISJqW4ptbjjc4d08lSQJC8b0QJJJhw4JRjg8Mi5aA/dKrHR5kVfmgN0to3NyHFLMetw/KYurRRBFCZPpeho4cKC6ffz48aBlffcPGDCgXvV4vV6cPHmyzjoSEhLUxLghsRBRw7RPNEAjAUadFna3HHDcWyCcHIaIqG0pt7thdXoiOqZbOzMWjuuNFLMe6Ylx0AZJjIttbmglCRkpJrSLN+DRaQPQpyN7JhJFC5PpeurZsye6dOkCAPjqq6+Clt2+fTsAICMjAz169PDbd9VVV6nbwerZv3+/2kV7zJgxtfZX13PixAkUFhYGrMf3Oeqqh4jqz2zQYVTvNCSb9JAVAVsdS5sEw8lhiIjaDpvLi9LK0HPm1GVg5yQ8OKUferSPR/sgN167pJiQkWpCVqdE/HHOpRjWLbW+4RJRHZhM15MkSZg1axaAqtbePXv21Fluz549amvwrFmzanWrGT9+PJKTq9aSXbNmTcCWrNWrV6vbs2fPrrX/hhtuqLOsL7vdjnfeeQdAVYt4VlZWneWIqP6mD+4Mg04Dk16DMrsn7O7enByGiKjtcHpkXLS6QhcMols7M56YMQC/uKpXwDKje6dh2ezB+Ostw9giTdQImEw3wH333Qedrqrl6N5776211JTD4cC9994LANDpdLjvvvtq1WEwGPCrX/0KAHDs2DH85S9/qVVm9+7dWLlyJQBg3LhxGDFiRK0ys2fPRu/evQEAf/zjH9Uu4b4WL16MsrIydZuIom9wRjK6tTMjLcEIj6zgQoUzZELNyWGIiNqO6u+GSIcC1UWSJPTsYA64///G98bgrskcI03USNpsH8KdO3ciJydHfVxcXKxu5+Tk1GrdnT9/fq06srKy8NBDD+GZZ57B/v37MWbMGDz88MPo3bs3Tp48iWeffRYHDhwAUJW89u3bt85YFi9ejLfffhvZ2dn4zW9+g5ycHNx8880wmUzYunUrli1bBq/XC5PJhBUrVtRZh16vx4svvoiZM2eioqICY8aMwe9+9zuMHDkSZWVlePXVV/H+++8DqOoSftttt0XwbhFRuCRJwv2Ts/DIB4egCIECixN5ZQ6kmvVIMOr8LmiEqOoKXmb3wCMrnByGiKiVUxSBQosTstLwRJqIYk8S0bgt1gLNnz8fa9asCbt8oLdJURTcdddd+Ne//hXw2DvvvBOvvPIKNJrAHQFycnIwbdo0/PDDD3XuT0pKwn/+8x/MmDEjaJyvvvoqfvnLXwZcb3rkyJFYv3492rdvH7Se+sjLy1MnQjt37hzXpaY27UBuGZZtOIZyuwclNjccHhlaTdU60lXLX1VNNiYrAia9FmkJBqSY9Xh02gCOaSMiaoWEqFpLOtyZu8NVXHQBj/zq7jr3/ec//0GnTp2i+nxE9D/s5t1AGo0GK1euxPr16zFr1ix06dIFBoMBXbp0waxZs7Bhwwa89tprQRNpAOjTpw8OHDiAZ599FsOHD0dKSgrMZjP69euH+++/H4cOHQqZSAPAXXfdhW+//RZ33XUXevXqhbi4OKSlpeGqq67CP/7xD+zatatREmki8jesWyr+OOdSZKUnIiPVhG7tzEgw6uCRFTg8MjyyggSjDt3amTk5DBFRG3DR5op6Ik1EsdVmW6Yp+tgyTVSbEAJH8ivw6eHz2HOyBL49+zQaCaN7pWH64M4YlJHErt1ERK1Uud1d75m7Q2HLNFHstNkx00RETUGSJAzumozBXZNhd3vVLt/VXbu5/BURUevWkCWwiKh541UcEVETMRt0MLfjaZeIqK2IxhJYRNR8ccw0EREREVGURXMJLCJqnphMExERERFFkcwlsIjaBCbTRERERERRIoTAhQonPLIS61CIqJExmSYiIiIiipKLNhecHi6BRdQWMJkmIiIiIoqCsko3bE5vrMMgoibCZJqIiIiIqIGsTg/K7FwCi6gtYTJNRERERNQAlS4vl8AiaoOYTBMRERER1ZPTI6OIiTRRm8RkmoiIiIioHlxeGYUWriVN1FYxmSYiIiIiipBHVnDB4oLCRJqozdLFOgAiIiIiopbE7VVQaHHCq3AtaaK2jMk0EVETsbu9KLa64fTKiNNp0T7RALOBp2EiopbE6ZFxocIJWWGLNFFbx6s4IqJGJITA4XwL1h8qwJ5TJfC99tJIwKjeaZg+uDMGZyRDkqTYBUpERCE5PVVjpNm1m4gAJtNERI0mp8iG5V9kI7fUDrdXgcXhgcsrQxFVibRRp8W24xfxdU4JurUz4/7JWejTMSHWYRMRUR3sbi8uVLg42RgRqZhMExE1ggO5ZVi24RjK7R6U2FxweBRoNRLMBi00kgRFCNhcXlgcHpj0Gjg9Mh754BAenTYAw7qlxjp8IiLy4fLKKGIiTUQ1cDZvIqIoyymyYdmGYyitdCO/3AFZAOlJRvRIMyM9KQ4dEo1IT4r78bERsgDyyx0orXRj2YZjyCmyxfolEBHRj7yctZuIAmAyTUQURUIILP8iG+V2DwosTpgNWnRNNSExTl9rTLQkSUiM06NrqglmgxYFFifK7R4s/zKbrR9ERM2AEAIXrC7O2k1EdWIyTUQURYfzLcgttaPE5oJeq0F6Uhw0ISYW00gS0pPioNdqUGJzI7fEjiP5FU0UMRERBVJkdcHlkWMdBhE1U0ymiYiiaP3hAri9ChweBalmfchEuppGkpBq1sPhkeH2Klh/uKCRIyUiomBKbC5UuryxDoOImjEm00REUWJ3e7HnZAksDg+0GgkJxsjmeEww6qDVSLA4PNh9shh2Ny/iiIhiweLwwOLwxDoMImrmmEwTEUVJsdUNRVTN+mo2aCNeN1qSqmb7rl4+q8TmbqRIiYgoELvbixKbK9ZhEFELwGSaiChKnN6qcXVV60hHlkhXq1o2q2rbwXF6RERNqnoJLCKicDCZJiKKkjidFgCgkVDvJVQUIaD5MQ836bXRCo2IiELgElhEFCkm00REUdI+0QCNBBh1WtjdcsTLWwkhYHfLMOq00GgkpCUYGilSIiLyJSsChRVOLoFFRBFhMk1EFCVmgw6jeqch2aSHrAjYIpwF1ubyQlYEkk16jO6VBrMhsgnMiIgockIIXKhwwu1lIk1EkWEyTUQURdMHd4ZBp4FJr0GZ3RN2d0FFCJTZPTDptTDoNJg+uHMjR0pERFWJtAtOzlFBRPXAZJqIKIoGZySjWzsz0hKM8MgKLlQ4QybUyo+tIh5ZQVqCAd3SzBiUkdREERMRtV0XbS4uQ0hE9cZkmogoiiRJwv2Ts5Bi1qNzchzsbhl5ZQ5YnZ5aY6iFELA6Pcgrc8DultE5OQ4pZj3un5QV8bJaREQUmRKbCzYnE2kiqj8OyCMiirI+HRPw6LQBWLbhGDSShBKbGxcqXCjWuGE2aH9c/qpqsjFZETDpteiYYkKKWY9Hpw1An44JsX4JREStWrndDYvDE+swiKiFYzJNRNQIhnVLxR/nXIrlX2QjV2+H26vA4vDA5ZV/XIcaSDDqkGzSw6DToFuaGfdPymIiTUTUyCqcHpRWumMdBhG1AkymiYgaSZ+OCfjrrcNwJL8Cnx4+jz0nS6D49PTWaCSM7pWG6YM7Y1BGErt2ExE1skqXF8VWV6zDIKJWgsk0EVEjkiQJg7smY3DXZNjdXpTY3HB4ZJj0WqQlGLj8FRFRE3F6ZBQxkSaiKOJVHBFREzEbdDC342mXiKipubwyCi3OWhNBEhE1BGfzJiIiIqJWyyMruGBxhVymkIgoUkymiYiIiKhV8soKCi1OeBUl1qEQUSvEZJqIiIiIWh1FESiscMIjM5EmosbBZJqIiIiIWhUhqhJpt5eJNBE1HibTRERERNSqFFldcHrkWIdBRK0ck2kiIiIiajWKbS5UuryxDoOI2gAm00RERETUKpTb3ahweGIdBhG1EUymiYiIiKjFszo9KK10xzoMImpDmEwTERERUYvmcMsotjGRJqKmxWSaiIiIiFosj6ygyOqEECLWoRBRG8NkmoiIiIhaJEURuFDhhKwwkSaipsdkmoiIiIhapIs2F9eSJqKYYTJNRERERC1OaaWbS2ARUUwxmSYiIiKiFsXm8qLczgnHiCi2mEwTERERUYvh9Mi4aHXFOgwiIibTRERERNQyeGUFRRUuztxNRM0Ck2kiIiIiavaEELhgdcGrcMIxImoemEwTERERUbN30eqCyyPHOgwiIhWTaSIiIiJq1srtbtg4czcRNTNMpomIiIio2apwelBayZm7iaj5YTJNRERERM1SpcuLYs7cTUTNFJNpIiIiImp2HG4ZRUykiagZYzJNRERERM2KyyvjQoWTS2ARUbPGZJqIiIiImg23V0GhxQmFiTQRNXNMpomIiIioWfDKCi5UOCErTKTDIYTAqYuVAff/fVsODuWVs4WfqJHoYh0AEREREZGsCBRYnPDISqxDaRFyS+34167TOJObD32AMhsOFeDrfC+yOiXigcn90KdjQpPGSNTaMZkmIiIiophSFIHCCibS4TpaUIEXvsxGfpkT3konMgOUszg8KCuxo7DChdxSO56aNQjDuqU2aaxErRm7eRMRERFRzAghcMHqhMsjxzqUFiG31I7nv8jG2RI77B4ZwXrEC1TdqKh0e5FzwYZHPzyMnCJbk8VK1NoxmSYiIiKimCmyuuBwM5EOhxACf92ag7wyO9xyVRYtBSmv12ggARACcHkVnC6uxFOfHuUYaqIoYTJNRERERDFx0epCpcsb6zBajBMXrDheYIXHW5UMawDotIHTaa1GgkGvgVaqaqV2exX891w5DudbmiZgolaOyTQRERERNbkSmwtWpyfWYbQoHx7Ih8srQ6CqRVqnkyAFbZsGJEjQ6zTQAFAE4PTIWPP12aYIl6jVYzJNRERERE2q3O6GxcFEOhJOj4z9Z8ug/DhIWishZCJdTYIEraaqrKwIbP/hIuxu9gggaigm00RERETUZCqcHpRWumMdRotTYHHA7pLx41BpaIJ0766L9sfyshCwOb3IK7NHO0SiNofJNBERERE1iUqXF8VWV6zDaJGKrf+7ASEh/Fbp/x0jQSOhavA0gEILfw9EDcVkmoiIiIgancMto4iJdFTUdy5u30m8Rb1rIaJqTKaJiIiIqFE5PTIuVDi5JFMDtE8w+j2O9L1Uy//YoN05yRSNsIjaNCbTRERERNRo3F4FFyqcUJhIN0jnlDiYDVpUD5WO9P2URVVbtFaSkBCnQ9d2TKaJGorJNBERERE1Cq9clUjLChPphorTazG8Ryo06qzc4bdOCyHU34FWI2Fs3w4wG3SNFitRW8FkmoiIiIiiTlEECiuc8MhKrENpNWYPy4BRp4UGVeOmvYoImVALIeBRFCiiqlU6Tq/FvNHdmyReotaOyTQRERERRZUQAhesTri9TKSjqV96IgZ0SoROV9U6rYiqhDoQWRFwywpkpWqotF4nYWhmCgZ3TW6iiIlaNybTRERERBRVF60uONxyrMNodSRJwj0T+6BrqhmGHwdPB2uX9ioKhAAkCTDqNOjZPh6PzxgISYpsWS0iqhuTaSIiIiKKmmKbCzaXN9ZhtFrd2pnxwOQsdE8zw6zXQhMiL9ZoJMQbdOjTMQHLZg9Gn44JTRMoURvAmQeIiIiIKCpKK92ocHhiHUarN7BzEh6bPhD/2nkaZ845ApZLNumRkhaPrE4JeGByPybSRFHGZJqIiIiIGqys0o1yuzvWYbQZ3dqZsWTmQOw/asYrO+ouM/3SLvjJVYMwKCOJXbuJGgGTaSIiIiJqEIvdgzIm0k1OkiT07GAOuP//xvdGp06cbIyosXDMNBERERHVm8XhQUmlK9ZhEBE1OSbTRERERFQvVqcHJTYm0kTUNjGZJiIiIqKIVbq8KLaxazcRtV1MpomIiIgoIg63jCKrC0IEW+WYiKh1YzJNRERERGFzemRcqHAykSaiNo/JNBERERGFxe1VcKHCCYWJNBERk2kiIiIiCs0rKyi0OCErTKSJiAAm00REREQUgqwIFFic8CpKrEMhImo2mEwTERERUUCKIlBY4YRHZiLd3AghcOpiZcD9f9+Wg0N55RzfTtRIdLEOgIiIiIiaJyEELlidcHnkWIdCNeSW2rFq1xmcP18QsMyek6U4cPEIurUz4/7JWejTMaEJIyRq/dgyTURERES1CCFQZHXB4WYi3dwcLajAc5tO4ExxJYptroDlzpc7kF9mR/YFKx754BAO5JY1YZRErR+TaSIiIiKq5aLNhUqXN9ZhUA25pXb886uTKLd7cMHqhBykB3f7BANkAeSXO1Ba6cayDceQU2RrumCJWjkm00RERETk56LVBZuTiXRzI4TAql1nUOHw4qLNBZNeiw6JhoDl4406dE01wWzQosDiRLndg+VfZnMMNVGUMJkmIiIiIlWJzQWr0xPrMKgO2RdsKCh3oNzuhk6jQVqCARpIQY/RSBLSk+Kg12pQYnMjt8SOI/kVTRQxUevGZJqIiIiIAFS1SFscTKSbq23ZRfDIAk6vgmSTLmQiXU0jSUg16+HwyHB7Faw/HHjSMiIKH5NpIiIiojZOCIELFU62SDdjTo+Mg7nlsDo90EoSzAZtrTJenQkV7QfVeXyCUQetRoLF4cHuk8Wwu9mNn6ihuDQWERERURtWvY60k8tfNWtllR4oAnDLCuIMGkg1WqVdpg4o7DsLXmMSJMWDxNITfvulHxNwl1eGIoASmxvmdkwFiBqCf0FEREREbZSiCJy3OOD2KrEOhUJwyVU3OxSBWt27balZKOo5FUKrBwBc7DEFBmcZ4mrUoZEkKD/OPebgzROiBmMyTURERNQGCSFwwepkIt1CGLVV3bo1EqCgKiMWQqDYpUFZnxl+ZYVWj4K+sxCvAL5zfStCQPNjHm7S1+4mTkSR4ZhpIiIiojbootUFh5utky1FarweGgkwaDVwuhV4FQXnLU6Ueeq+nJcNiThXKUER/0u87W4ZRp0WGo2EtITAS2oRUXjYMk1ERETUAO9tOhTrECJW6ZZhZ4t0i5OkEShWFLg8Ms6U2NUu24F4ZIFSix1ajQSnV4HLoyBBJ6GdJGPDtqNNEzS1aT+ZcmmsQ2hUbJkmIiIiakMcHoWJdAvVPy0OXqFABkIm0gklx9FB64RWI0EIgUqPAoNWgk4DDOlobpJ4iVo7JtNEREREbYTLq8DGiadaJCEE8q1ulDtD3AgRAu3ydqDjqQ3QSFXHWVwKZAEkGDRIM+mQkahvmqCJWjl28yYiIiJqAzyyQAXHSLdIXkVg0+kKHL7oCFpOkl1IP/kZ4i2nAAAuWYHNKUMWQLJRC7NOg6k9kyFJUtB6iCg8TKaJiIiIWjmvImBxMZFuiWxuGR9ml+O8zRO0nM5Zjs4/fASDs1T9mdWtQGuWkGTUwKzTYEafFHSMZ6s0UbQwmSYiaiJ2txfFVjecXhlxOi3aJxpgNvA0TESNSxFVibRAiEG21OwU2Dz4ILsMNnfwrt0my1mkn1wPrez0+3mqUQdtnBZpJh2m9kxmIk0UZbyKIyJqREIIHM63YP2hAuw5VeI3YYxGAkb1TsP0wZ0xOIPd7ogo+hQhUO6U1eWRqOU4WuzAZyct8Ib41WUlAt59H0Cq42ZJn1QjLu/ZDhmJen7HEDUCJtNERI0kp8iG5V9kI7fUDrdXgcXhgcsrQxFVibRRp8W24xfxdU4JurUz4/7JWejTMSHWYRNRKyGEgNUtQ2Yi3aIoQmB7rg17CyqDltNKwJSeSegd58RnAXodTOiRhKQkridN1FiYTBMRNYIDuWVYtuEYyu0elNhccHgUaDUSzAYtNJIERQjYXF5YHB6Y9Bo4PTIe+eAQHp02AMO6pcY6fCJqBaxuBW6ZiXRL4vIq+DjHglPlrqDl4vUazM5KQUaiAZUVzqBliajxMJkmIoqynCIblm04htJKNwosTui1GqQnGZFg1Pl1sxM/JtRldg/yyx1QhMCyDcfwxzmXsoWaiBqk0i3DJXMt6Zak1OHF+yfKUOoMPlFcp3gdZmelIsmobaLIiCgQrjNNRBRFQggs/yIb5XYPCixOmA1adE01ITGu9ng1SZKQGKdH11QTzAYtCixOlNs9WP5lNgS7ZRJRPTm8CuxeJtItyalyF14/UhIykR7YPg63XpLGRJqomWAyTUQURYfzLcgttaPE5vqxRToOmhCTvmgkCelJcdBrNSixuZFbYseR/IomipiIWhOXV4GNa0m3GEII7D1fifeOl8EVpEu+BGB8t0TM6J0Mvca/h1NRpTfgcVvOVOBchZs3aIkaCbt5ExFF0frDBXB7FTg8CtKTjCET6WoaSUKqWY8LFS64vQrWHy7A4K7JjRwtEbUmTq8CKxPpFsOjCGw8ZcH3xcHHPBu1Eq7vm4JeKUa/n5fYvdiRZ4Wl3Ir4AMeeLHPhjLsU7Uw6XMulsYiiji3TRERRYnd7sedkCSwOD7QaCQnGyO5XJhh10GokWBwe7D5ZDLs7cGsDEZEvJtIti9UtY+33pSET6XZxWtw2KK1WIp1vdePzUxYUO7xBeyKUubwoc8q4UOnBu8dLcdYSfGIzIooMk2kioigptrqhCMDllWE2aCNe01OSqmb7rl4+q8TmbqRIiag1cXiYSLck561uvH64BAWVnqDleqUYcPugNKSZ/G/Mlti92HbWikqvggpX8DXEEw0aKEKgzCnD5lHwaU45ikI8LxGFj8k0EVGUOL1VF7NV60hHlkhXq1o2q2rb4eHFMREF5/AosPFc0WIcuejAm0dLYfMEnyDuis7xuLFfKow6/0t1IQR25FnhkKvGxus1EhKDTEZm1GrQLk4Lg0aCxSXD7lWw8bSFY6iJooRjpomIoiROV3VBo5EQtKUgGEUIVM8tY9JztlYiCszpZSLdUihCYOtZK/YX2oOW00nAtb2TcUl7U537Cyu9KHfJsHsUaCQgwaCB5Ax+81aSJCQbNSh1yrC5FZRovMi3etA1yVDv10NEVZhMExFFSftEAzQSYNRpYXN5IYSIqKu3EAJ2t4wEow4ajYS0BF7oEFHdOEa65XB6Faz7oRxnLMGH7iToNZjTLxWdEwJPEna8xAlZATyyQKJBE/Z3jCRJiNdrYHEp8CrAwSI7k2miKGA3byKiKDEbdBjVOw3JJj1kRcDmimwCMZvLC1kRSDbpMbpXGswG3u8kotpcMhPplqLY4cXrR0pCJtJdEvSYNzgtaCLtlhXkVrjh9CqQJECvjWw4kVErQSNVrUOeU+aCS+Za5EQNxWSaiCiKpg/uDINOA5NegzK7J+zu3ooQKLN7YNJrYdBpMH1w50aOlIhaIo9cNekUNX85ZU68caQEZc7gv69BHUy4ZWA7JBiCD+2p9AgICHiFgEEr1WuSS4NWgkepqsfmZjJN1FBs9iAiiqLBGcno1s4Mp0dGfrkDFyqcSE+KCzohmSIELlQ44ZEVdEwxoVuaGYMykpowaiJqCVxMpFsEIQT2nq/EV+dsQctJACZ0T8TwTuawEmOvLH6sH6jnHJfQAPD+eI/XI3MSMqKGYss0EVEUSZKE+ydnIcWsR+fkONjdMvLKHLA6PbVmTxVCwOr0IK/MAbtbRufkOKSY9bh/UlbELQ5E1Lo5vEykWwKPLPBJjiVkIh2nlXDTgFSM6Bwf9vle92O3bkkC6psGK/hfIh5pN3Eiqo0t00REUdanYwIenTYAyzYcg0aSUGJz40KFC8UaN8wG7Y/LX1VNNiYrAia9Fh1TTEgx6/HotAHo0zEh1i+BiJqRSk/V7M3UvFW4ZHyQXYYLlcHny0gzaXFjv1SkxkV2GR6vlyBBgk6S4JKVek1y6ZYF4nRVE5clGNimRtRQTKaJiBrBsG6p+OOcS7H8i2zk6u1wexVYHB64vPKP61ADCUYdkk16GHQadEsz4/5JWUykiciP1S3D6WUi3dzlWd34MLs85E2PPqlGzOidXGv96HAYtBp0SzLgVLkLTq8Cjyxg0IWfTLtkAUUAJp0GfVKMMGqZTBM1FJNpIqJG0qdjAv566zAcya/Ap4fPY8/JEig+ffM0Ggmje6Vh+uDOGJSRxK7dRKQSQsDqVjjjcgtwsMiOTacr/M7vdRndJR5XZyY06FzfPy0OZytc0Gsl2L0K9FoJ4dQmhEClR4FBK0GnAYZ0NNc7BiL6HybTRESNSJIkDO6ajMFdk2F3e1Fic8PhkWHSa5GWYODyV0RUixACFW4FbibSzZqsCGw5a8V3F+xBy+k0wLReyRjQ3tTg5+wUr0OKUQuvIlDhkmFzK0gMMYJaCAGLS4EsgCSjBmkmHTISAy/BRUTh41UcEVETMRt0MLfjaZeIAlNEVZLkCdXMSTHl8Cj46Idy5FYEXz860aDBnH6p6BQfneRVkiRc3TURn5+yQDEANrcMq0tGoAFCLlmBzSlDFkCyUQuzToOpPZPZE4ooSnhVR0RERNQMMJFuGS7aPXj/RDksIWZX75qoxw19UxAfYv3oSKWZdRjfPRHbzlqhkQCXO3BibHUr0JolJBk1MOs0mNEnBR2jlNgTEZNpIiIiophjIt0yZJc68WmOJeTvaUhHEyb3SIJW0zgtwBmJBlzbKxk78qywuAIn66lGHbRxWqSZdJjaM5mJNFGUMZkmIiIiiiEm0s2fEAJf51diZ17w9aMlAJN6JGJYurnRu1KnmXWY1TcFZws92L+37jJ9Uo24vGc7ZCTq2bWbqBEwmSYiIiKKESbSzZ9bVrD+pAXZpa6g5Uw6CTf0TUG3ZGMTRVY1hrpDfODL+Qk9kpCUZGiyeIjaGibTRERERDHARLr5szi9eD+7HBft3qDlOph1mJOVgpQ4XloTtSX8iyciIiJqYoKJdLOXa3Hhox/K4fAG/x1lpRoxvU8yDFpNE0VGRM0Fk2kiIiKiJmZ1K0ykm7EDhXZ8ebYCoX5FY7omYExGPMcjE7VRTKaJiIiImpDNLcMlK7EOg+ogKwJfnqnAf4scQcvpNRKm905Gv7S4JoqMiJojJtNERERETcTukeHwMpFujio9Mj7KLkee1RO0XLJRizlZXK+ZiJhMExERETUJh1dBpYeJdHN0odKDD06UocId/PfTLcmAWX1TYNZzfDQRMZkmIiIianQurwKbW451GFSH4yVOrD9ZjlAdBi5LN2Ni90RoNRwfTURVmEwTERERNSKPrKCCiXSzI4TAjjwbdudXBi2nkYDJPZIwNN3cRJERUUvBZJqIiIiokXgVAYuLiXRz45IVrM+x4IcyV9ByZp0GN2SlIDPJ0ESREVFLwmSaiIiIqBHIPybSXACreSlzevHBiXIUO7xBy6WbdZjTLxVJRm0TRUZELQ2TaSIiIqIoU0RVIq0IptLNyRmLC+uyy+GUg/9e+qfFYVqvZOi1HB9NRIExmSYiIiKKIiEEKlwyZCbSzYYQAt8W2rHlrDVkT4GxmQkY1SUeksREmoiCYzJNREREFEVWtwKPwkS6ufAqAptOV+DwRUfQcgaNhJl9k9EnNa6JIiOilo6L5EWJ2+3GypUrce2116Jz584wGo1ISEhAv379cMcdd2DPnj1h1fP5559jzpw56Nq1K4xGI7p27Yo5c+bg888/DzsWu92OP//5zxg5ciTatWuHhIQEDBgwAA899BByc3Pr+xKJiIgoBJtbhkvmWtLNhc0tY+3R0pCJdIpRi58PasdEmogiIgnBPkgNde7cOUyfPh2HDx8OWu7+++/Hc889V2e3ISEEFi1ahFdeeSXg8XfffTdefvnloN2OTp48ienTp+PEiRN17k9OTsabb76JadOmBY21PvLy8pCZmQmg6j3p2rVr1J+DiIiouXlv0yEAQKVHht3DRLq5KLB58EF2GWzu4L+T7kkGzMpKgUnXMtuYKitK8dmaZ+rc97NFjyMpuV0TR0T0Pz+ZcmmsQ2hULfOs0Yx4vV6/RPrSSy/F6tWrsXv3bmzatAlPPPEE4uPjAQDLly/HX/7ylzrr+d3vfqcm0sOGDcPatWvxzTffYO3atRg2bBgA4JVXXsHjjz8eMBabzYYZM2aoifRdd92FzZs34+uvv8bTTz+NhIQEWCwWzJ07F4cOHYrae0BERNSWVU82xkS6+Tha7MCb35eETKSHdzLjpgGpLTaRJqLYYst0A73//vv4yU9+AgAYPXo0duzYAa3WfwmFb7/9FqNHj4bH40FqaiqKioqg0/1vuHpOTg4GDBgAr9eL4cOHY/v27TCZTOp+u92OcePGYf/+/dDpdDh+/Dh69+5dK5alS5fi97//PQDgT3/6ExYvXuy3f/fu3Rg7diy8Xi8mTJiALVu2RO19ANgyTUREbY/LK2P1+oOctbuZUITA9lwb9hZUBi2nlYApPZNwaUdzE0XWOIQQOFN4Ed++V3djTedrf43Le3ZB10Q9J1SjmGDLNAW1a9cudfuRRx6plUgDwOWXX44ZM2YAAMrKynD8+HG//cuXL4fXW7XW4UsvveSXSAOA2WzGSy+9BKCqJXzFihW1nsPj8eCFF14AAAwYMAAPPvhgrTKjR4/GnXfeCQDYunUrvv3223BfJhEREdVgdXpwvtzJRLqZcHkVvH+iPGQiHa/X4JaB7Vp8Il1i92LdD+XYfs4asMzJMhfeP1GKN74vQVGlpwmjI2obmEw3kNvtVrd79eoVsJxvS7LL5VK3hRBYt24dAKB///4YNWpUncePGjUK/fr1AwB89NFHqNmhYNu2bSgvLwcAzJs3DxpN3b/a+fPnq9sffPBBwHiJiIiobkIIXLS6cNHqqvV9TLFR6vDi9SMlOFXuClquU7wO8wanISPR0ESRNY58qxufn7Kg2OGFzS0HLFfm8qLMKeNCpQfvHi/FWUvw94eIIsNkuoGysrLU7VOnTgUsd/LkSQCAJEno27ev+vPTp08jPz8fADBu3Ligz1W9Py8vD2fOnPHbt2PHjlrl6jJ8+HB1DPfOnTuDPh8RERH588gK8ssdsDrZytdcnCp34fUjJSh1Bk4qAWBg+zjcekkaEg21exG2JCV2L7adtaLSq6DCJQftGZFo0EARAmVOGTaPgk9zytlCTRRFTKYb6JZbbkFSUhIA4Nlnn4Us1z6RHzhwAOvXrwcA3HzzzWp5ADh27Ji63b9//6DP5bvf97hI6tHpdGorec06iIiIKDC724v8MgfcXk401hwIIfDN+Uq8d7wMLjl4D4Hx3RIxo3cy9JqWPW5YCIEdeVY4ZAU2twy9RkKiMfDNAaNWg3ZxWhg0UtUkeV4FG09b2KOCKEp0oYtQMB06dMDq1avxs5/9DLt27cKIESNw3333ISsrCzabDbt27cJzzz0Ht9uNoUOH4vnnn/c7/ty5c+p2qAm7qif3qnmc7+P4+HikpKSErOfQoUO4ePEiXC4XjEZjOC8VeXl5QfcXFBSEVQ8REVFLU+H0oNjKLrLNhVcR+PyUBd8XO4OWM2olzOyTgt6p4V3rNHeFlV6U/zhzvEYCEgwaSM7gNwgkSUKyUYNSpwybW0GJxot8qwddk1p2V3ei5oDJdBTMnj0b+/fvx/PPP49//etfmDdvnt/+9PR0/P73v8fdd9+tdrGuZrX+b9KIhISEoM/je6zNZquznlB11FVPuMm0bzJPRETUVljsHpRUMpFuLqxuGR+eKEdBiO7K7eK0mNMvFWmm1nO5e7zECVkBPLJAokET9gzdkiQhXq+BxaXAqwAHi+xMpomigN28o8Dj8eDNN9/EJ598Ume3mQsXLmDt2rXYtm1brX1O5//uqBoMwU9qvkmvw+Gos55QdYSqh4iIiP6ntNLNRLoZOW914/XDJSET6Z7JBtw2KK1VJdJuWUFuhRtOrwJJAvTayLqsG7USNBLg8CrIKXPBJXO4AlFDtZ4zTIxUVlZi2rRp2L59O7RaLX7zm99gwYIF6NWrF5xOJ/bu3Ysnn3wSO3fuxMyZM7F8+XL8+te/Vo+Pi4tTt31nBq+L7yzgNZfPqq4nVB2h6gmmZtfymgoKCjBy5Miw6yMiImrOim0uVDg4WVNzcfiiAxtPWRBieDRGdo7HuG4J0LSydZUrPQICAl4hYNBKEa8bLUkSDFoJHqWqHptbgdHEdjWihmAy3UBLlizB9u3bAQArV6706+JtMBgwefJkTJgwAVOmTMHWrVvxwAMPYMKECbj00qoFzBMTE9XyNbtu11RZ+b91E2t2566uJ1QdoeoJJtSYbiIiotaihIl0s6EIgW25VuwrsActp5WA63ol45IO4TcUtCTeH+8iCAHU9z6BBoD3x5sRnlB3JYgoJN6OagAhBFatWgWgaomsmmOlq+l0Ojz11FMAAEVR1GMA/wQ11ARfvi3DNccvV9dTWVmprjcdqp4OHTqEPV6aiIiorSirdMPCRLpZcHoVvHu8LGQinaDX4GeXpLXaRBoAdD9265YkoL5psIL/JeKRdhMnotqYTDfAhQsXUFpaCgAYNmxY0LKXX365un38+HF1e+DAgXX+vC6++wcMGOC3L9x6vF6vuuZ1zTqIiIjaOovdgzJ76CFT1PiKHV68fqQEZyzBfx9dEvSYNzgNnRP0TRRZbMTrJUiQoJMkuGUR8fJWQgi4ZQG9pqqLeIKBaQBRQ/GvqAF0uv/1kvd6vUHLejz/u8Pte1zPnj3RpUsXAMBXX30VtI7q7uQZGRno0aOH376rrrpK3Q5Wz/79+9Vu3mPGjAn6fERERG1JhZOzdjcXOWVOvHGkBGVOOWi5QR1MuGVgOyQYAq+13FoYtBp0SzIgTqeBEJF303bJAooATDoN+qQYYdQyDSBqKP4VNUC7du2QlJQEANi9e3fQhNo3we3Zs6e6LUkSZs2aBaCqRXnPnj11Hr9nzx61xXnWrFm1Jp0YP348kpOTAQBr1qwJeLdy9erV6vbs2bMDxktERNSWWOxcR7o5EEJgd74N758ohztIsigBmNg9EdN6JUGnaTvdlfunxUGrqeqibfcqYbdOCyFQ6VFg0ErQaYAhHc2NHClR28BkugE0Gg2mT58OADh//jyefvrpOsuVlZXh4YcfVh/PmDHDb/99992ntlbfe++9tZarcjgcuPfeewFUtWrfd999tZ7DYDDgV7/6FQDg2LFj+Mtf/lKrzO7du7Fy5UoAwLhx4zBixIhwXiYREVGrVmJzsUW6GfDIAp/kWLD9XPDJVOO0Eub2T8WIzvERz2jd0nWK1yHFqIVZr4EiAJtbgQgxgloIAYtLgSyABIMGaSYdMhJbd5d4oqbCZLqBnnjiCZjNVXf3li5diuuvvx7vv/8+Dhw4gN27d2P58uUYOnQojh49CgC45pprMGXKFL86srKy8NBDDwGo6oY9ZswYvP3229i/fz/efvttjBkzBvv37wcALF68GH379q0zlsWLFyMrKwsA8Jvf/AYLFy7E1q1bsWfPHvzxj3/ElClT4PV6YTKZsGLFisZ4O4iIiFoMIQSKKpycbKwZqHDJ+M/REhwrcQYtl2bS4vbBaeiZ0jYnUJUkCVd3TYRJq0GCQQuPImB1Be4K75IVlDpluBWBZKMWZp0GU3smt7mbEESNRRKRzl5AtXz55Ze45ZZbUFxcHLTcxIkT8d577yE1NbXWPkVRcNddd+Ff//pXwOPvvPNOvPLKK9BoAt8DycnJwbRp0/DDDz/UuT8pKQn/+c9/arWOR0NeXp46y/i5c+e4lBYRETVbiiJwweqEwx18TG44Nu46EYWI2q48qxsfZpfD7lGCluuTasSM3skw6tgWlG91Y9tZKxyyApe1DOkHXqu73NBfQGtOQYJBA7NOgxl9UtA9uW3eiKDY+MmUS2MdQqPiOtNRMGnSJBw/fhwrV67EZ599hu+//x7l5eXQ6XTo1KkTRowYgVtvvRXXX399wDuBGo0GK1euxI033ohXXnkF+/btQ3FxMdq3b48RI0Zg4cKFuO6660LG0qdPHxw4cAB/+9vf8O677yInJwdutxuZmZmYNm0afv3rX6N79+7RfguIiIhaDLdXwYUKJzxy8OSNGt/BIjs2na6AEqJpZ3SXeFydmcAW1R9lJBpwba9k7MizwuIKPPlaqlEHbZwWaSYdpvZMRsd4du8miia2TFPUsGWaiIiau0qXFxetLihRvPxhy3TkFCGw5awV3xYGXz9apwGm9UrGgPatd/3ohhBC4GzhRex/r/ZcOQDQ5dpf4/KeXZCRqOeNCIoJtkwTERERtQJllW6uId0MODwK1v1QjrMVwX8XiQYN5vRLRSe2pgYkSRI6xAe+nJ/QIwlJSYYmjIiobWEyTURERK3eRasLVicnGou1i3YP3j9RDkuQSbMAICNRj9l9UxDfBtaPJqKWi8k0ERERtWpMpJuH7FInPs2xwBNigPSlHU2Y0iMJ2ja0fjQRtUxMpomIiKjVKrI6YXN6Yx1GmyaEwNf5ldiZF3z9aAnApB6JGJZu5vheImoRmEwTERFRq8REOvbcsoL1Jy3ILnUFLWfSSZjVl8s2EVHLwmSaiIiIWhUhBC5aXbC5mEjHksXpxfvZ5bhoD/576GDWYU5WClLieFlKRC0Lz1pERETUagghcKHCBbubiXQs5Va48VF2GRze4OOjs1KNmN4nGQatpokiIyKKHibTRERE1CooikBhhRNOT/CZoqlxHSi048uzFQgxzxjGdE3AmIx4jo8mohaLyTQRERG1eLIiUGBxwO1VYh1KmyUrAl+eqcB/ixxBy+k1Eqb3Tka/tLgmioyIqHEwmSYiIqIWzSMrKLQ44ZGZSMdKpUfGuuxynLMGX4Is2ajFnKwUdIzXN1FkRESNh8k0ERERtVhOj4wLFU7IofoUU6O5UOnBByfKUOEOfjOjW5IBs/qmwKzn+Ggiah2YTBMREVGLZHd7caHCBSGYSMfK8RInNpy0wBPiZsZl6WZM7J4IrYbjo4mo9WAyTURERC2KEAIVDi9KKoOvXUyNRwiBHXk27M6vDFpOIwGTeyRhaLq5iSIjImo6TKaJiIioRZAVgQqHBxVOD7t1x5BLVrA+x4IfyoLfzDDrNLghKwWZSYYmioyIqGkxmSYiIqJmTVEESu1uWJ1edumOsTKnFx+cKEexI/g63h3NOtzYLxVJRm0TRUZE1PSYTBMREVGz5fLKKKpwcabuZuCMxYV12eVwysFvaPRvF4freifBoOVEY0TUujGZJiIiombJ6vSg2OZma3SMCSHwbaEdW85aEeo3cXVmAkZ3iYckcaIxImr9mEwTERFRs3PR6oLVGXzNYmp8XkVg0+kKHL7oCFrOoJEws28y+qTGNVFkRESxx2SaiIiImpVyu5uJdDNgc8v4KLsc+bbgv4sUoxZz+qWgg1nfRJERETUPTKaJiIio2XB6ZJRWumMdRptXYPPgw+wyWN3Bx6p3TzZgVt8UmHQcH01EbQ+TaSIiImoWZEWgqIJrR8fa0WIHPjtpgTfEAOnLO5kxsXsiNBwfTURtFJNpIiIiahaKrE54Fc7aHSuKENh+zoa95yuDltNKwJSeSbi0o7mJIiMiap6YTBMREVHMldvdcLjlWIfRZrm8Cj7OseBUefCeAfF6DWZnpSAj0dBEkRERNV9MpomImojd7UWx1Q2nV0acTov2iQaYDTwNE5VVulFm5zjpWCl1ePH+iTKUOoPfzOgUr8PsrFQkGbVNFBkRUfPGqzgiokYkhMDhfAvWHyrAnlMlUHzGIGokYFTvNEwf3BmDM5K5Liu1OV5ZwUWbiy3SMXSq3IWPfyiHSw4+QHpgWhyu7Z0MvYbnKSKiakymiYgaSU6RDcu/yEZuqR1urwKLwwOXV4YiqhJpo06Lbccv4uucEnRrZ8b9k7PQp2NCrMMmahJ2txcXrS7ISohZrqhRCCGwr9CObWetCPUbGN8tESM7m3nDj4ioBibTRESN4EBuGZZtOIZyuwclNhccHgVajQSzQQuNJEERAjaXFxaHBya9Bk6PjEc+OIRHpw3AsG6psQ6fqNEIIVBm96Cc3bpjxqsIbDxlwZFiZ9ByBq2E6/ukoHeqsYkiIyJqWZhMExFFWU6RDcs2HENppRsFFif0Wg3Sk4xIMOr8WnbEjwl1md2D/HIHFCGwbMMx/HHOpWyhplbJKyu4YHXB5WG37lixumV8eKIcBZWeoOXaxWkxp18q0ky8VCQiCkQT6wCIiFoTIQSWf5GNcrsHBRYnzAYtuqaakBinr9VFUpIkJMbp0TXVBLNBiwKLE+V2D5Z/mQ0h2PWVWpdKlxf55Q4m0jF03urG64dLQibSPZMNuG1QGhNpIqIQmEwTEUXR4XwLckvtKLG5fmyRjoMmxDhDjSQhPSkOeq0GJTY3ckvsOJJf0UQREzW+0ko3LlQ4OT46ho5cdODNo6WweYKv4z2yczx+0j8VcTpeIhIRhcIzJRFRFK0/XAC3V4HDoyDVrA+ZSFfTSBJSzXo4PDLcXgXrDxc0cqREjU8IgaIKJ8dHx5AiBLacrcD6kxYEm7BbKwEzeidjQvfEsM9bRERtHfvvEBFFid3txZ6TJbA4PNBqJCQYIzvFJhh1KNa4YXF4sPtkMexuL9ehphZLVgQuVDjhZLfumHF6Faz7oRxnLMFvZiToNZjdLwVdEgxNFBkRUevAqzQioigptrqhCMDllWE2aCNeRkaSqmb7rl4+q8TmhrkdT9PU8nhkBYUWJzxy8C7F1HiKHV58cKIMZc7gNzO6JOgxOysFCQZtE0VGRNR68CqNiChKnN6qi9aqdaTr102yatmsqm0HW/SohRFCwOLwoMzu4SR6MXSyzImPcyxwB+vXDWBQ+zhM7ZUMnYbduomI6oPJNBFRlMTpqlp2NFLVOMWaFCHglQUUIaCRJOi0Uq2ku2pf1bZJz5YiajkcbhnFNhdbo2NICIG95yvx1Tlb0HISgAndEzG8kzniHjRERPQ/TKaJiKKkfaIBGgkw6rSwubwQQkCSqpKMcocHla7aLc3xRi1STHqYDFoIAdjdMhKMOmg0EtI4fpFaAEURKLa5YHN5Yx1Km+aRBT47ZcGxEmfQcnFaCdf3TUHPFGMTRUZE1HoxmSYiihKzQYdRvdOw7fjFH7u6umFzVc3OrQgBWREQACAASFWtQ1anQKVLhkGnQYJRC1kRSDbpMbpXGicfo2bP7VVwoYJjo2OtwiXjg+wyXKgMfkMjzaTFjf1SkRrHcwsRUTTwbEpEFEXTB3fG1zkl0GklFFa4oJUAWVR135bw41jqH3tVKkJAlqu6fMuKApvLi3iDFgadBtMHd47p6yAKpdLlxUWrq84hDdR08qxufJhdDnuI9aP7pBoxo3cyjFw/mogoaphMExFF0eCMZKTGG/BDkRWKIiAD0ADQazXQaAAJ/xufKCCgKIBXVuBGVY7tlhW0izdgUEZSjF4BUWhllW6Uce3omDtYZMem0xXqpIWBjO4Sj6szEzg+uhUSQqAoSI+ELWcqcHnPBHRN1PP3T9QImEwTEUWZVPPCtvr6RfhsVz+u3s/GPWohSivdKGciHVOKENhy1opvC+1By+k0wLReyRjQ3tREkVFTKrF7sSPPCku5FfEBypwsc+GMuxTtTDpc2zMZHeP1TRojUWvHvj5ERFF0ON+CUrsbBo0EjUaCUaeBJEnwKArcsgKPzz+3rMCjKJCkqnIajQSDRoPSSjeO5FfE+qUQ1VLGRDrmHB4F7xwrC5lIJxo0+NklaUykW6l8qxufn7Kg2OGFzR14GcUylxdlThkXKj1493gpzlpcTRglUevHZJqIKIrWHy6A26vAowDpSUbE6bUwaDUwaDXQSBIEACGqGqI1kqTui9NrkZ5khEcRcHsVrD9cEOuXQuSHXbtj76Ldg9ePlOBsRfDfQ0aiHvMGpaETWyFbpRK7F9vOWlHpVVDhkoPOW5Bo0EARAmVOGTaPgk9zylFU6WnCaIlaN3bzJiKKErvbiz0nS2BxeKDVSGhnNqCdGXB6FJQ73HUujZVg1CHZpEecvureZoXDC4vDg90ni2F3ezmjNzUL5XYm0rGWXerE+hwL3CEGSA/paMLkHknQajg+tjUSQmBHnhUOWYHNLUOvkZBo1AYsb9RqYIjTwuJSYHHJ0EjAxtMW/PySNI6hJooCXqUREUVJsdUNRQAurwyzQateqJgMWpgMJiiKgFcRUETVDN66H7uC+zIbtHB5ZSgCKLG5YW7H0zTFFsdIx5YQAl/nV2Jnni1oOQnApB6JGJZuZpLUihVWelHukmH3KNBIQIJBA8kZ/PctSRKSjRqUOmXY3ApKNF7kWz3ommRooqiJWi9epRERRYnTW9XyrIgfl8CqoWpMdPCLHo0kqTPzOjyBx8ERNYVimwsVDnYJjRW3rGD9SQuyS4OPczXpJMzqm4LuycYmioxi5XiJE7Ly/9m78/i66jr/46/vOXfPcrO06RZKS0tpKYhFRBAERAUplSrKb9xxRkGdEZRRdEZBQRRHcQZHcBlG0VFxGR32HQVEhIosUloaSktLaWmbNnty93O+vz9OGlra3DTNzb1Z3s/HA5vmfu/pJ6a9Oe/7XT6Q9yw1EWe/3zgxxlAVdujK+hT84CR4hWmRkVOYFhEpkVgoWGrnGA64924wax18HA8PvnRPZLS19mTozQzeckdGV1emwP+t7WRHqvj3YEo8xLsPq6Muplu6iS7n+WzqzpEp+BgDYXd4KxCirsExkC74rOvIkvV8oq6OTxIZCb3yioiUyJSaCI6BaMilN1vAWjus5ZbWWlI5j+poCMcxNFZr1kDKz/ctO3qz9GUVpCtlU3eOm9d2kC4Uf1Pu0PooZ85PKhBNEn15i8VSsJaIa4a9nN8YQ8Q15P3gOr05n2hcf3dERkL/gkRESiQRCXHcvEaS8TCeb+kdZhjpzRbwfEsyHub4Qxp1+JiUXSbvsaUzrSBdQU9tT/GbNe1DBukTZlXxrgV1CtKTSMEL/k5YG+yRPxBO//MhWCouIiOjV2ARkRI688gZREIO8bBDRyq/38u9fWvpSOWJh10iIYczj5wxypWK7KkzlWNrV4a851e6lEnJ8y33vNDFvRu6KXZgd9gxvPPQOk48qEYHjU0yof5l3cYE7RUPhN//fBj+MnER2ZumPURESujIWUlmNyQGZvi2d2eYVhvb54Fku/jWsr07CDFNdXFmNyY4YlZtGauWyazg+bT2ZMnowLuKSeV9bl7bwUs9xQ97S0Zdzl5QR5P6R09KVWGDwRAyhqznH9BWopxniYWCg8uqI5pTExkp/SsSESkhYwwXvW0BdYkwM5IxUjmPzR1pejJ57Ktmqa219GTybO5Ik8p5zEjGqEuEueitCzTjJGXRly2wpTOtIF1BrX15/ueZnUMG6dm1ET58RKOC9CQWcR1m10aIhRysHf4y7axn8S3EQw7z66LaIiBSApqZFhEpsflN1Xxx6SKuvHMNjjG09ebY3p1lp5MjEXH7218Fh415viUedmmqi1OXCPPFpYuY31Rd6S9BJjhrLW19ObW9qrCWtgx3ru8iX2xdN7BkWoK3HFyDO0RrPZn4FjbGeLE7S9g1pAo+Ydfs1/5pay19eZ+Iawg5cFRTYtRrFZkMFKZFREbBktn1fOPs13D1fWvZFE6RK/h0pfNkC15/H2qojoZIxsNEQg6zGxNc9NYFCtIy6nIFn9aeDLmC9kZXirWWhzf38siWvqLjHANvm1PLa6cp+EhgelWIuqhLwbd0Zz16cz41Q+ygttbSlfXxLNRGHRrjIWbVaIWDSCkoTIuIjJL5TdVc+/4lrNrSze3PvMyK9W17HCzkOIbjD2nkzCNncMSsWi3tllHXmy2wsyd7wH3QZeSyns8d67p4viNbdFwi5PDOBXUcVKsWefIKYwxvaq7h7he68CPQm/PoyXoM9jZs1vPpzXh4Nthznwg5nD43qZ83IiWiMC0iMoqMMRzZnOTI5iSpXIG23hzpvEc87NJYHVH7KykLay3tfTm6tKy7ojozBf7vuU52pou3HmtKhDj7sHqSUbdMlcl40pgIccrBNTz4Yg+OgWxu8GDck/NxE4baqEMi5LBsvg6wEykl3cWJiJRJIhIi0aCXXSkvndY9NrzYleXm5zvJDNE/emFDjDPm1RLR4VBSxKyaCG8/JMmfNvfQlR38TZf6aAg35tIYD3H63KSCtEiJ6a5ORERkAsrkPbrTefpy3l4nyUv5WGt5cnuKP2zsGbI38EkHVXPczCotwZX90pgIsfzQOl7clufxv+x7zPz6KK+b28CsmrD+XomMAoVpERGRCcJaS0+2QHc6rwPGxoCCb7lvQzcrd6SLjos4hmXzkxzaECtTZTJRGGOYWjX47fyb59RSq333IqNGYVpERGSc2xWiu1J58p5C9FjQl/O4aW0nW3qL71Ovi7qcfVgdUxNafisHJl6d5Ixz/wUAA9THX/m7VF2TrFBVIpODwrSIiMg41pst0NGXU4geQ7b15rlxbQc9ueLfk4OTEZYfWkc8pP3RcuAcx6WqtgGAeMihOqKD60TKRWFaRERkHPJ9y86+LL2Z4idDS3k9uzPNXeu7GOKcMV43PcGpB9fgaB+rlEA85BAPObiO/j6JlJPCtIiIyDiTyXvs6MlqNnoM8a3lTy/1suLlvqLjXAOnza3lNU2JMlUmE1ksFLS8UogWqQyFaRERkXHCWkt3ukB7KqcTuseQbMHntnVdrO/MFh1XFXZ414I6ZtXoQCgZGccYaiKOWqiJVJjCtIiIyDiQznns7NVs9FjzUnuKn61qoz1TvI/39KoQ71pQT21U+1llZGIhh6qwoy0CImOAwrSIiMgYliv4tPflSOW0N3qs+evGdq64fQ292eJB+vDGGG+flySspbgyAo4x1EYcwpqNFhkzFKZFRETGoILn05nO05MpaEn3GGOt5XdPbOa/HnoBf4hvzSmzqzl2RhVGs4gyAvH+2Wj9PRIZWxSmRURExhDft3Sm83Sl8wrRY1Cu4PMf963l3me3Fx0XcQ1nza9jXn20TJXJROT2743WbLTI2KQwLSIiMgZYa+nqD9HeUNOdUhE7e7N8+ZbVtGzrKTquPuby7sPqaYzrNksOXCLkkNBstMiYpld5ERGRCrLW0pMt0NmXp+DrcLGxas3Wbr58y2ra+nJFx81NRjjr0DpiIc0kyoEJOYaaiEtIe+xFxjyFaRERkQpRv+jx4d7V2/j3+9aS94qvGDh2RoKTZ9folGU5YFVhl0RYb8SIjBcK0yIiZZLKFdjZkyNT8IiFXKbUREhE9DI8WXWl8uoXPcZ5vuW6h17gt09sLjrONfD2Q5IcMTVepspkogn3z0a7mo0WGVd0FyciMoqstTyzpYs7Vm5lxQtte5z86xg4bl4jZx45gyNnJbUvbpLwfcvO3iy9WbW6Gst6Mnm+dsca/rqxo+i4xuoIS+dUM7M6UqbKZCIxBLPRcc1Gi4xLCtMiIqNkXWsvV9+3lk3tKXIFn650nmzBw7dBkI6GXB5s2cEj69qY3ZDgorctYH5TdaXLllGULXi0dmtZ91i3qS3FJbesYnNHuui4RTNquPysxTzx9MbyFCYTSsR1qA47mo0WGccUpkVERsFTmzq48s41dKbytPVmSed9XMeQiLg4xuBbS2+2QFc6TzzskMl7/OuNK/ni0kUsmV1f6fKlxHIFn85UTrPR48CKF9r4+h1r6Mt5RcedvngaF711AREdNCbD5BhDdcQhqnZXIuOewrSISImta+3lyjvX0N6XY2tXhrDrMK02SnU0tMdSbtsfqDtSebZ0pvGt5co71/CNs1+jGeoJIu/5dKRy9GYUosc6ay2/euwlfvzwBortYncMfOLkebz76FnamiHDlgg7JEJqdyUyUShMi4iUkLWWq+9bS2cqz9auDImIy7Ta2D5P9zXGUBMLUxUNsb07w9auDI4xXP37tVz7viW62RrHPN/SmcrRnSnogLFxIJP3+Pa9a7m/pbXouJpYiEvPXMQxcxrKVJlMFFrSLTIxKUyLiJTQM1u62NSeoq032z8jve8gvTvHGKbVxtjckaatN8emthSrtnRzZHOyTFVLqVhr6U4X6Ezn8HyF6PGgtTvDl29dzdrtvUXHHdyQ4GvvPIJZ9TqxW/aflnSLTGwK0yIiJXTHM1vJFXzSeZ9ptdH97jfrGEN9Isz27iy5gs8dz2xVmB5nerMFOvpyOlxsHFm1pYuv3LqajlS+6LjjD2nki0sXUhXVbZPsPy3pFpn49FNBRKREUrkCK9a30ZXO4zqG6mHeeFdHQ+x0cnSl8zy6fiepXEF9qMeBTN6jrS9HNl/8wCoZW+58Zivf+f3zFIZYQfCBN8zm70+Ys99vjIlEXEN1WD2jRSYD3aWJiJTIzp4cvg3aHyUi7rBnI4wJTvve1T6rrTdHokEv02NVOufRlc6TyulwsfHE8y3ff3A9Nz21pei4aMjh86cfxpsXNpWpMhnvtKRbZPLRXZqISIlkCsHMZNBH+sBmJIK2WcHHac10jjkFz6c3W6AnU9By7nGoK53nituf5clNnUXHNdVE+eryxSyYVlOewmTcqwo7xLWkW2TSUZgWESmRWMgFgtY5/gGe4Oxby66VgfGwW6rSpAS60nna+3I6nXuc2rCzj0tuXsXWrkzRcUfMrOWysxbTUBUpU2UynumUbpHJTWFaRKREptREcAxEQy692aAl0nBmKay1pHIe1dEQjmNorNbN/Fjg+5YdvVn6slrOPV79ed1OrryzZcjVHmceOYML3zKfsJbpyhAiriERcvR3RWSSU5gWESmRRCTEcfMaebBlB13pPL3ZAjWx8H4/vzdbwPMtyXiY4w9p1OFjY0Am77GjJ6sl3eOUtZZfrNjETx7ZWHScY+BTb57P8tfO1DJdKSrqOiTCDiHNRIsICtMiIiV15pEzeGRdG/GwQ0cqT1U0tF/7p31r6UjliYddIiGHM4+cUYZqZTCeb+lM5ejOFLSse5xK5z2+eXcLD63dWXRcbSzEV95xOEtm15epMhmPYqGgzZWWc4vI7hSmRURK6MhZSWY3JMjkPbZ0ptnenWFabaxooPatZXt3hrzn01QXZ3ZjgiNm1ZaxatnFWktXOk9nKn/A+96l8rZ1Z7j05lWs39FXdNwhU6q44p2LmZGMl6kyGW80Ey0ixWijh4hICRljuOhtC6hLhJmRjJHKeWzuSNOTye81w2mtpSeTZ3NHmlTOY0YyRl0izEVvXaClpmW2K0S/1J6mvS+nID2OPb25k0/+4skhg/SJ86dwzfuWKEjLPkVdh/pYiNqoqyAtIoPSzLSISInNb6rmi0sXceWda3CMoa03x/buLDudHImI29/+KjhszPMt8bBLU12cukSYLy5dxPym6kp/CZOG71u6M3m60nk8XwF6vLv16Ze55v51Q34vP3zcwXz4jQcfcAs7mbi0nFtEhkNhWkRkFCyZXc83zn4NV9+3lk3hFLmCT1c6T7bg9fehhupoiGQ8TCTkMLsxwUVvXaAgXUZdqTwdKc1CTwR5z+faB9Zx29Nbi46LhRz+5YyFnLRgapkqk7HOYIi4hrBriLpGb7CIyLAoTIuIjJL5TdVc+/4lrNrSze3PvMyK9W3sPmHmOIbjD2nkzCNncMSsWi3tLhPPt+zoyZLKqdXVRNCZynHZbc+ycnNX0XHTaqN8bfkRzNMbVgKEHUNV2CXs6nVXRA6cwrSIyCgyxnBkc5Ijm5OkcgXaenOk8x7xsEtjdUTtr8osnQtaXRV8tbqaCNa39nLJLavY3p0tOu6o5iRfecfh1CXUu32yc4yhKuwQC+nYIBEZOd3FiYiUSSISItGgl91K6ejL0ZHKVboMKZE/rt3BN+9qIVMo/sbIWUfN5FNvnkfIVXia7GIhh6qwo6XcIlIyuqsTEZEJb0dPlp5MvtJlSAn41vI/j2zk5ys2FR3nOoYLT53PO46aWabKZKwKOYZqLekWkVGgMC0iIhOWtZbWnix9We2PnghSuQLfuKuFP69rKzouGQ9z2VmHc1RzXXkKkzHJAFVhl3hYqxJEZHQoTIuIyITk+Zbt3Rkyea/SpUgJvNyZ5pKbV7GxLVV03LypVVzxziOYXhsrU2UyFkXdYEm3WlyJyGhSmBYRkQknW/Bo7c6S93TQ2ETw5KYOvnrbs3Rniq8wOHnBVD7/9sOIh90yVSZjjZZ0i0g5KUyLiMiE0pXO096Xw6p/9LhnreWmp17m+w+u26Ot3L78wwlz+MAbZqvF3CSlU7pFpBIUpkVEZELwfMvOXu2PnihyBZ/v/uF57ly1rei4eNjli0sXcsL8KWWqTMaKsGOIuA4R1xDScm4RqQCFaRERGdestfRkC3T25dU/eoJo78vxlVtXs/rl7qLjZtbFuGL5EcydUlWmyqSSDAyE54hr1OJKRCpOYVpERMat3myBjr6c9kZPIGu393DpzavZ0ZstOu51s+u4dNnh1MbDZapMKsXtX8IdcY2W8ReR9Xx6cz55zxJ2DdURh6j6q4uMKoVpEZEySeUK7OzJkSl4xEIuU2oiJCJ6GT4QuYLPjt4sWZ3UPaHc39LKt+55jlyh+JsjZx89i0+ePE8nNU9wBkNVxCGufdCDstayuSfP060p1ndksbxyuIDBMK8+ylFNCZprwnojQmQU6C5ORGQUWWt5ZksXd6zcyooX2vY4RMkxcNy8Rs48cgZHzkrqRmc/dWfytPXqgLGJxPMt1/95A7967KWi48Ku4TNvXcAZR0wvU2VSKYmQQzzsaCl3Ea19ee7e0EV7ukDBh3TBJ+9brAVjgj3lLW0Z1nVkaIiHePvcJE1VWskhUkoK0yIio2Rday9X37eWTe0pcgWfrnSebMHDt0GQjoZcHmzZwSPr2pjdkOCity1gflN1pcses/z+A8Z6dcDYhNKbLXDlnWtY8UJ70XH1iTBfXb6YxTOTZapMKiEWckiE1B96KC92Zbl9XSepQrC0O+dZHEP/XnLwgUzBJ5X3ibiGvG/5bUs7y+bXcXAyWunyRSYMhWkRkVHw1KYOrrxzDZ2pPG29WdJ5H9cxJCIujjH41tKbLdCVzhMPO2TyHv9640q+uHQRS2bXV7r8MSeT99jRo77RE83mjhSX3LyaTe2pouMWTKvmiuVHMLVGIWCiiroOibCjU7n3Q2tfntvXddKb9+nKergGklGH6Kv2lFtryXqWvrxPR8bDj8Lt6zo5Z2GDZqhFSkRhWkSkxNa19nLlnWto78uxtStD2HWYVhulOhra60anN1ugI5VnS2ca31quvHMN3zj7NZqh7uf7lra+HD2ZfKVLkRL768Z2rrh9zZArDU5d2MTFpy0gGnbLVJmUU9gxVIVdwq5C9P6w1nL3hi5ShSBIRxxDMursc5uQMYZYyBB1DV3ZYLxj4J4NXXxwcaO2FomUgE50EBEpIWstV9+3ls5Unq1dGRIRl+b6ODWxvQ9/McZQEwvTXB8nEXHZ2pWhM5Xn6t+v1X5goC9bYHNHWkF6grHW8tvHX+Jfb3ymaJA2wPlvmsuXli5UkJ6AXGOojbjUxUIK0sOwuSdPe7pAb84fmJEeKhQbEwRu10BvzqctXWBLj15XRUpBM9MiIiX0zJYuNrWnaOvN9s9Ix4Y8QMcxhmm1MTZ3pGnrzbGpLcWqLd0c2Tw594bmCj7tfTlSOe2NnmhyBZ//uG8t9z67vei4qojLl85cxHGHNJapMikXQ9DmKhZSm6sD8XRrioIPOc/uV5DexfS3F+vK+hT84DrNtZFRrlZk4lOYFhEpoTue2Uqu4JPO+0yrje73SbSOMdQnwmzvzpIr+NzxzNZJF6Z939KRytGdKWhmfgLa2Zvly7espmVbT9FxzfVxvrb8CGY3JspUmZSLTugemazns74jS7rgB4dYDnNGP9p/OFm64LOuI0vW89WHWmSEFKZFREoklSuwYn0bXek8rmOojg7vJbY6GmKnk6MrnefR9TtJ5QqTpg91KldgR08Wz1eInojWbO3my7espq0vV3TcsXPqueTMw6mOTY6/95OFTugujd6cj8WS9y0Rd/gz+8aYgZO9LZbenE80rjAtMhL6aSUiUiI7e3L4FrIFj0TE3etGx/ctBd/iW4tjDCHH4Ox2c2lMcNr3rvZZbb05Eg0T/2W6Kx2ceC4T072rt/Hv960l7xV/o+T/HdPMeW86RIFrAom4weFiOqG7NHb9G7L97RUPhAMU7J7XE5EDN/Hv0kREyiRT8AD6+0gHdzrWWtJ5j650nr6st9dzqqIuyXiYeDgI30HbrOCxdH7v8RNNW2+WrrQOwpmIPN9y3UMv8NsnNhcdF3YNnz3tME47fFqZKpPR5hpDdcQhoiXEJbXroDbT30f6QPj9z9/9eiJy4BSmRURKJBYKThx2DPjWksl7tPYEe6B9a/F8iwWwgAlOK+7JWPqyHpGQQ1NNtH/WOrhefAKfYGytpbUnS98QbZFkfOrJ5PnaHWv468aOouMaqyN89azFLJpRW6bKZDS5/YdcRUMK0aOhOuJgMIQdQ6bgY60d1lJvay05zxILBQeXVUf0fRIZKYVpEZESmVITCQ6FCbl0pfP0Zgt4uy3tZveleRY8C17/km/fWrZ0prEWkvEwjmNorJ6YJ632Zgt09OXIewc6tyJj2aa2FJfcsorNHemi4xbNqOHysxYzpTpapspktIQcQyKkED3aoq7DvPooLW0ZUnmfrGeJhfY/TGc9i28hHnKYXxfV4WMiJaAwLSJSIolIiOPmNXLPqm209ng4xuD5FkOwrM6y99I8A1jfkvMtrhOE6lg4yvGHNE64w8cyeY/2vhyZSbB8fbJa8UIbX79jDX254t/j0xdP46K3LiCi8DWuxUIOMdfRcuEyOqopwbqODBHX0Jf3ie7nQWTWWvryPhHXEHKC64jIyE2sOzURkQpbesR0fv3YSxig0B+kdy3tHljivbvdfl/wLa4xdKTyLD1iepkqHn3WWtr6cnRrb/SEZa3l1399iR/9acNef8V35xj4+MnzeM/Rs9RjeJwyQCLsEAupxVUlNNeEaYiHyPuWjoxHV9Yfst+0tZaurI9noTbq0BgPMasmXMaqRSYuhWkRkVGw6xCxoc5KffXj/q7+yhPkHjVX8GntyZAraEn3RJXJe3z73rXc39JadFx1NMSlyxbx+jkNZapMSi0WcqhSn+iKMsbw9rlJftvSjh+FrqxHe8YL9qq/apbaWkvWC2akPQvJqEsi5HD63KTezBIpEYVpEZESunPVNqqi7qAnVO9+/2L3kbQtUB11ufOZbbymuW5UaiyXnkyett7cK28QyISzoyfLpbesYu323qLjDm5IcMU7F9Ncr6Wl45FaXI0tTVVhls2v4/Z1nTgm6D/dlfVxTPC9cgi2FOX690hHXENtNOj1vWx+HU1VmpUWKRWFaRGREknlCjy6biftvblXlne/ylC50hD0l35k3Q5Sufnjct903vPpSOXozeik7ols1ZYuvnLrajpSxZfvH3dIA19auoiq6Pj7uzzZxUIO8ZCjED0GHZyMcs7CBu7e0EXYKVDwIV3wyfuWgg3euH3l+weN8RCnz00qSIuUmH6yiYiUyM6eHH05j7xvwYADwV7p/mS9rxxt+v/H9LfLskDet6RyPm29ORIN4+dluuD5dKSCU8ytZqMntLue2cp3/vA8ea/49/n9xx7E358wF1dhbNwwGBJhoz3R40BTVZgPLW5kS0+ev7WmWN+Rxe72k8YYw/y6KEc1JZhVE9bSbpFRMH7u0kRExrhMwaMrncdai7UQdh1cJ9g/7fkWbx8B0zUG1zE4Bjwfcp6PxdKVzpMeJ6dee76lI5WjJ6MQPdF5vuX7D67npqe2FB0XDTlcfPphnLqwqUyVSSloT/T4Y4yhuTZCc22ErOfTm/PJe5awG/SRVvsrkdGlMC0iUiLWh76sR/8kc39P6SAoO64hhN1jmbcxwSzQLo555fTv3mxh6NPLKsz3g9Dflc5rX/Qk0JXO89Xbn+WpTZ1Fx02tjnLFOxezYFpNeQqTEQs7huqI9kSPd1HXIRpXeBYpJ4VpEZFSMa8ESgt7nchtMBSd8Olf5j0wxIzNgGqtpTtToDOVw/PHZo1SWht29nHJzavY2pUpOu6ImbVcdtZiGqoiZapMRqoq7JAIu5UuQ0RkXFKYFhEpEWMMVVGXbCGYnfZ9GM4KO7+/e5QhaCM0Fvtj9WTydKby5D21upos/rxuJ1fe2TLktoOlR07n0285lLCWlY4LBqiJuloGLCIyAgrTIiIlEgu51MXDdKTyGGvxfIvj7LmUezCWYLwhCOXJeJj4GJotSuUKtPfl1C96ErHW8ou/bOInf95YdJxj4FNvns/y187UAUfjhGsMtVEt6xYRGSmFaRGREplSEyERDRF2DFlr8a2l4EHILR6oLZaCF4zHBPsXq6IujdWVWyprrSWd9+jLeqRzHgVfIXoySec9vnX3c/xx7Y6i42pjIb78jsM5enZ9mSqTkdIhYyIipaMwLSJSIolIiOPnNdKdzrOpPYXrGDxryReC5d6vnqW2WHw/OCHZYgn1j59RF+P4eVMq0mM6V/DpSufpyxZ0qNgkta07w6U3r2L9jr6i4+ZOqeKK5YuZWRcvU2UyEhHXUBXWbLSISCkpTIuIlNCZR87gkXVtVEVDpHJef0CGvO9jfPaYDfJt0BHUMYaQCcZVR0NUR8OceeSMstadyXsDIVomr6c3d3L5rc/Smc4XHXfi/Cn86xkLiUfGzlYE2TfXBC2SItobLSJScgrTIiIldOSsJLMbEmTyHi91pPAthA1YTP8MNANHdjv9PaYN4ANhB6bVxpjdmOCIWbVlqbcvW6AznSc7Tnpay+i57emX+e7964Y8of3Dxx/Mh48/WMuEx4GqsEs8ZLSXXURklChMi4iUkDGGi962gH+9cSW+jbO1K4Njgl7TuYK/x02ttZZoyMXr3189IxmjLhHmorcuGNWb312trbrTOpVboOD5XPvAem59+uWi42Ihh385YyEnLZhapsrkQEVcQ3XYxdWSbhGRUaUwLSJSYvObqvni0kVceecaHGNo682Rznu4riEWemVZbKbgkfN84uHgsLG6RJgvLl3E/KbqktZjrSVb8EnnPDIFj0zex2o/tACdqRyX3fYsKzd3FR03vTbGFe9czLyppf27KaVlgOqISyykJd0iIuWgMC0iMgqWzK7nG2e/hqvvW8umcGrgYK9swcO3QTuhmmiYZDxMJOQwuzHBRW9dUNIgnc559GTzpLKeDhOTvaxv7eWSW1axvTtbdNxRzUkue8dikolwmSqTAxF2DDURzUaLiJSTwrSIyCiZ31TNte9fwqot3dz+zMusWN/G7ttRHcdw/CGNnHnkDI6YVVuSpd25gk9PJk9fVu2sZHAPrd3Bv93VQmaIvuFnHTWTT715HiEdXjWmVYVdEmF9j0REyk1hWkRkFBljOLI5yZHNSVK5wsCS711Lu0vR/spaS2+2QE+mQEYHiUkRvrX8zyMb+fmKTUXHuY7h02+Zz7LXzCxTZXIgYiGHRMjRbLSISIUoTIuIlEkiEiLRULqX3YLn050p0JPJD3kCs0gqV+Abd7Xw53VtRcfVxcNcdtbhvKa5rjyFybAYIB5yiClEi4hUnMK0iMg4k8l7dKfz9KontOynlzvTXHLzKja2pYqOmze1iiveeQTTa2Nlqkz2164QHQ87aksmIjJGKEyLiJRJKldgZ0+OTMEjFnKZUjO8Zd7pnEdHKqel3DIsT23q4PLbnqU7U/zNl5MXTOXzbz+MeNgtOk7KLx5ySChEi4iMOQrTIiKjyFrLM1u6uGPlVla88KoDyAwcNy84gOzIWclBDyBTiJYDYa3lpqde5vsPrmOoXQD/cMIcPvCG2aPa31yGx2CIh4yWc4uIjGEK0yIio2Rda2/QGqt9362xoiGXB1t28Mi6NmY3JLjobXu2xlKIlgOVK/h89w/Pc+eqbUXHxcMuX1y6kBPmTylTZTIUx5j+PdFGM9EiImOcwrSIyCh4alMHV965hs5UnrbeLOm8j+sYEhEXxxj8/hO4u9J54mGHTN7jX29cyReXLmLh9FqFaDlg7X05vnLrala/3F103IxkjK+98wjmTqkqU2UylET/cm6tEBARGR8UpkVESmxday9X3rmG9r4cW7syhF2HabVRqqOhPW6Sd7W06kjl2dyRouDF+Mqtq/nnty1gdkOigl+BjFdrt/dw6c2r2dGbLTru6Nl1fHnZ4dTGw2WqTIpxjKEm4hBRP28RkXFFr9oiIiVkreXq+9bSmcqztStDIuLSXB+nJhbea7bJGEN1NMT02iixsMvW7gxdqTw/eWQj1qrVlQzPH9a0cuGv/zZkkD776Fl8892vUZAeIyKuQ33MVZAWERmHNDMtIlJCz2zpYlN7irbebP+MdGyvfY/WWnwLnm8HQnNjdYRtXdkghHekeX57HwumV+/rjxDZg+dbrv/zBn712EtFx4Vdw2feuoAzjphepsqkGANUR1xiIYVoEZHxSmFaRKSE7nhmK7mCTzrvM602uleQ9nxLwffhVRPPDoZkPMTO3hx5z/Lg2laFaRlSb7bAlXeuYcUL7UXH1SfCfHX5YhbPTJapMikm7BhqIq5O6RYRGecUpkVESiSVK7BifRtd6TyuEyzhBrC+h00Hh0FZa7Hebkk6VotxgpmpRMTFNYaeTJ6/beogk/eIqeevDGJzR4pLbl7NpvZU0XELplVzxfIjmFoTLVNlUkx12CUe1my0iMhEoDAtIlIiO3ty+BayBY9ExB3YI23T3WTu+84+n+O8+UJI1AFBX9lYxCHn+fgWOlJ5ZiQVpmVvf93YzhW3r6E3Wyg67i0Lm/jcaQuI6k2ZinONoTbqEtJstIjIhKG3Rkto586dfOtb3+KEE05g+vTpRKNRZs6cyRve8AYuvvhiHn300SGvcffdd3P22WfT3NxMNBqlubmZs88+m7vvvnu/60ilUlx11VUce+yxNDQ0UF1dzaJFi/jc5z7Hpk2bRvIlikgRmULQyiroI31gN8wOBr9/4jpbUGss2ZO1lt8+/hL/euMzRYO0AT524ly+uHShgvQYEA8Fh4wpSIuITCyamS6R3/72t3zyk5+kra1tj89v3bqVrVu38thjj/H8889z88037/P51lo+8YlPcN111+3x+S1btnDTTTdx0003cf755/PDH/6waP/J9evXc+aZZ/Lcc8/t8fmWlhZaWlr40Y9+xC9/+UuWLl16YF+oiAwqFgpCi2PAP8DTuH0su+63oyGFIHlFruDzH/et5d5ntxcdVxVx+dKZizjukMYyVSaDMRhqo2p5JSIyUSlMl8DPfvYz/v7v/x7f92lqauKTn/wkJ554Ig0NDWzbto3169dz2223EQ4P3obkkksuGQjSS5Ys4fOf/zzz5s1j/fr1fOtb3+Kpp57iuuuuY+rUqXzta1/b5zV6e3tZtmzZQJA+77zzeO9730s8HueBBx7gG9/4Bl1dXZxzzjk8+uijvOY1ryn9/xkik9iUmgiOCUJwb7aAtbbom1+vZrFkcj6JiIvjGOoTal0kgZ29Wb5y62rWbO0pOq65Ps7Xlh/B7Eb1Ka801xiSUR0yJiIykRmrZqYjsmbNGpYsWUI2m+VNb3oTt912G8nkvk9LzeVyRCKRvT6/bt06Fi1aRKFQ4JhjjuGhhx4iHo8PPJ5KpTj55JN5/PHHCYVCtLS0MG/evL2uc9lll3H55ZcD8K1vfYuLL754j8cfffRRTjrpJAqFAm9+85u5//77R/Kl72Xz5s0cdNBBALz00ks0NzeX9Poi48E37lrDgy072NSeYlptlJpYGL+vo+ieadO/Z7ovV2Bnb46ZyThvOKSB8086pHyFy5i1Zms3X751NW29uaLjXj+nnkvOXERNTG/ClNs9f95zNVjYCfZHH+h2DxGRieI9p03syTutOxqhCy64gGw2y5QpU7jxxhsHDdLAPoM0wNVXX02hEOx9u+aaa/YI0gCJRIJrrrkGgEKhwHe+8529rpHP5/nP//xPABYtWsRnP/vZvcYcf/zxfPSjHwXggQce4Iknnhj6CxSRYTnzyBlEQg7xsENHKr/fy719LF3pArGQS9g1nLKgaZQrlfHg3me385nf/G3IIP3/jmnmyncdqSA9BkRdh6SCtIjIpKAwPQItLS384Q9/AOBTn/oUU6ZMGfY1rLXccsstACxcuJDjjjtun+OOO+44DjvsMABuvvlmXr2g4MEHH6SzsxOAc889F8fZ97f2Ix/5yMDHN95447DrFZHijpyVZHZDgsbqKHnPZ3t3Bv/VTaVfxcfS1puj4PvUJcLMqI9z6LSqMlUsY5HnW374x/X8210t5L3B//6EXcO/nLGQT5w8T8uJKyziGqojLrVRd1jbO0REZPxSmB6B3/72twMfn3POOQMfd3R08Pzzz+91GNm+bNiwgS1btgBw8sknFx276/HNmzezcePGPR7705/+tNe4fTnmmGOoqgpu0h9++OEh6xOR4THGcNHbFgShOBkjlfPY1pUddHw6X2BbV5Z03mNqdZTaeIi/f+Mc3YxPYr2ZAl+66Rn+9/HNRcc1VkX4zt+9ltMOn1amyuTVEpEQ02pjNMZDJKMh4iHdVomITCZ61R+BFStWAJBMJlm0aBE33HADRx11FA0NDSxYsIApU6ZwyCGHcPnll9Pb27vPa6xZs2bg44ULFxb983Z/fPfnDec6oVBoYL/1q68xlM2bNxf9b+vWrcO6nshENb+pmi8uXURDVYRZdXHcIrm4vS+PawzTamLUJcJ8/OR5zG7Q4VGT1aa2FP/4yyd5bGNH0XELp9fwgw8ezaIZtWWqTF6tJhZmejJGVTSkJd0iIpOUTvMegWeffRaAOXPmcMEFF/C9731vrzEbNmzgsssu43e/+x333HMPM2fO3OPxl156aeDjoQ7s2nW416uft/vvq6qqqKurG/I6K1euZMeOHWSzWaLRaNHx+/rzRaS4JbPr+cbZr+Hq+9ayMddNZpBx02pihGuizKiP8/dvnKMgPYmteKGNr9+xhr5c8f7ipx0+jX9+2wIimgWtmNp4mCnV+/ezU0REJi79JB6B9vZ2INg7/b3vfY+6ujp++MMf0traSiaT4a9//StnnHEGAKtWreKcc87B9/09rtHT80qbk+rq6qJ/3q7l2cBeM927rjPUNYa6joiUzvymaq59/xIuPn3w1SKvnV3HP7/tML585iIF6UnKWsuvHtvEl25aVTRIOwY+eco8vvD2wxSkKyipIC0iIv00Mz0CfX19AGSzWVzX5a677trjALFjjjmG22+/nWXLlnHXXXfxyCOPcOONN/Ke97xnYEwm88p81WCnfe+y+wxyOp3e47Fd1xnqGkNdp5hXz4a/2tatWzn22GP3+3oik4ExhoUzagZ9/H3HHsSUpqHfBJOJKZv3+Pa9a/lDS2vRcdXREJcuW8Tr5zSUqTLZl7pEhIaqoX/OiojI5KAwPQKxWGwgUJ9zzjn7PInbcRyuuuoq7rrrLgB+9atf7RGmY7HYwMe5XPHWJ9nsK4cYvbp91q7rDHWNoa5TjPpGi4iUzo6eLJfesoq124uvEDq4IcEV71xMc71WLlRSfSJCvYK0iIjsRuvERqCm5pXZpl3Lufdl8eLFzJo1C4C//vWvg15jqCXXu4I77L2ce9d19mfZdrHriIjI6Fv9chef+MUTQwbp4w5p4Nr3L1GQrrCGKgVpERHZm8L0COx+INf+Hh7W2rrnUr7dn7d5c/E2KLsvs371YWC7rtPX1zfQb3qo60ydOnW/Dx8TEZHSuOuZrfzz/z5NRypfdNz7jz2IK5YfQVVUi8gqqbEqSl1CQVpERPamMD0CixcvHvjY84qfvrrr8VBoz5uiww8/fODjlpaWotfY/fFFixYd0HUKhQLr16/f5zVERGT0eL7l2vvXcdW9a8l7dtBx0ZDDJWcu4mNvOgTXUculSmqsjpJMhCtdhoiIjFEK0yNw0kknDXy8K6AO5oUXXgAYWO69y9y5cwfaZf3xj38seo2HHnpo4Bpz5szZ47ETTzxx4ONi13n88ccHlnmfcMIJRf88EREpja50ni/830pufGpL0XFTq6P853tfy6kLm8pUmQxmSk2UZFxBWkREBqcwPQJnnXUW4XDwg/bGG28cdNwf//hH2traAHjTm960x2PGGJYvXw4EM8orVqzY5zVWrFgxMOO8fPlyjNlztuKUU04hmUwC8D//8z9Yu+9Zj5/+9KcDH7/rXe8atGYRKQ1rLS1buwd9/JePbeK5bT2D/puV8W/Dzj7+8YYneXJTZ9FxR8ys5QcfPJoF0wY//V3KY2pNlNqYgrSIiBSnMD0CjY2NfOxjHwPgvvvu49e//vVeY3p6evjMZz4z8PuPf/zje435zGc+M7D8+4ILLtirXVU6neaCCy4AgmXiu19vl0gkwoUXXgjAmjVr+Pa3v73XmEcffZQf//jHAJx88sm8/vWv34+vUkQO1LrWXj71y6e46p7nBh3z9KYurr5vLV+9fQ2b2lNlrE7K4c/rdvKpXz7F1q5M0XFLj5jOt885Sm2XKswYQ1NtjBoFaRER2Q8K0yN0+eWXM3v2bAA+9KEPccEFF/DAAw/wxBNP8NOf/pRjjz2Wv/3tbwB88pOf3GeAXbBgAZ/73OeAYBn2CSecwG9+8xsef/xxfvOb33DCCSfw+OOPA3DxxRdz6KGH7rOWiy++mAULFgDw+c9/no9//OM88MADrFixgm984xucdtppFAoF4vE43/nOd0r8/4SI7O6pTR38640rWbu9h+3dgwep7T0Ztndn2Lizj3+/9zmeLTKLLeOHtZafr3iRS29ZTTo/+JkajoELTp3PZ09bQCSkH8mVZIxhak2Uah34JiIi+8lYrS0csTVr1nDWWWexbt26Qcf8wz/8Az/84Q8HloW/mu/7nHfeeVx//fWDXuOjH/0o1113HY4z+A3XunXrWLp0Kc8///w+H6+treWGG25g2bJlg17jQG3evHnglPGXXnpJfall0lrX2su/3riS9r4cW7syRPM9NDz2w32OzZ74j3RSTcH3mVodpS4R5rOnHcbsBrVCGq/SeY9v3f0cf1y7o+i42liIL7/jcI6eXV+mymQwxhiaaqIHfHL67+5dWeKKREQmhvec9ppKlzCq9DZ4CSxatIi//e1vXHXVVbzhDW+goaGBSCRCc3Mzf/d3f8f999/Pj3/840GDNIDjOPz4xz/mjjvuYPny5cycOZNIJMLMmTNZvnw5d955Jz/60Y+KBmmA+fPn89RTT/HNb36TY445hrq6OhKJBIcddhgXXXQRK1euHJUgLSIBay1X37eWzlSerV0ZEhGX6cnBW9DFwyGmJ6PEwy47erN0pwv85JGN2kM9Tm3rznDhr54aMkjPaUzw/Q8crSA9BhhjmFZ74EFaREQmL81MS8loZloEVm7u5Es3rWJLRwrPQnN9HFKdZO77zj7HO2++EJOow8eyrSuL239j/89vO4wF06vLW7yMyNObO7ns1mfpShfvH33C/Eb+9YyFJCIKb5W2K0iP9HuhmWkRkX2b6DPT+kkuIlJCdzyzlVzBJ533mVYbxTEGfz+e52BIxkPs7M2R9ywPrm1VmB5Hbnv6Zb57/zo8v/j70x8+7mA+/MaDcYz6R1eaMYbptTHiEbfSpYiIyDilMC0iUiKpXIEV69voSudxHTPsg4wSERfXGHoyef62qYNM3iMW1o3+WJb3fK59YB23Pb216LhYyOELZyzk5AVTy1SZFOM6hmm1Mf37EhGREVGYFhEpkZ09OXwL2YJHIuJijMFaS6bIac7tqRyJsEcs7GAwxCIOOc/Ht9CRyjMjqZv9saozleOy255l5eauouOm1Ua5YvkRzG/SSoOxIOw6TE/GCLs6NkZEREZGYVpEpEQyhSA0+xYcY8jkPVp7sni9WaYN8py+bIHenixh16GxKoKDwe8/yiJbGDyES2Wtb+3lkltWsb07W3TcUc1JvvKOw6lLqH/0WBALu0yrjeE6WmYvIiIjpzAtIlIisVAwi+yYIAh3d+aDPbT+4LumC77F93x8a9nekyHiOuy6z4+GNCs9Fv1x7Q6+eVcLmULx3fBnHTWTT715HiHNgI4JyXiYhqoIRvvVRUSkRBSmRURKZEpNBMeAawztqRwh16Hg+YSLnEkVcgw5CwUvGNSTL1AXD+M4hvrE4O30pPx8a/nZIy/ysxUvFh3nOoYLTp3PWUfNLFNlUkw07DKlOqI3p0REpOQUpkVESiQRCfGGQxr41V9ewlrIF3xcxxAqsqTUMYaQa/B8S74/UOcKPkc1J3U40hiSyhX4t7ue4+F1O4uOS8bDXHbW4RzVXFeewmRQjjHUV0VIxvWmlIiIjA6FaRGREjpsWg2F3dojuQ5DLis1xuA4Fq9/i3TBWg6ZqsOqxoqXO9NcestqNuzsKzpu3tQqrlh+BNOTsTJVJoMJuw7TamNEQlpiLyIio0dhWkSkhNZu791jJtrzIUTx3sMWu8e26pBj2LCzFwY9tkzK5clNHXz1tmfpzhSKjjtpwRS+8PaFxLWaoOKqoyGmVEdxdMiYiIiMMoVpEZESSeUKrHihjWjYoS8XhOKCbwf2Q++Lby2FgsUCYQcKPkRCDn/b1Kk+0xVkreXmv73M9x5Yh1/8vRD+/oQ5fPANs3WwVYUZY2hIREjqrAERESmTiofpTCbDE088wbZt20ilUixfvpza2tpKlyUiMmy7+kx7viUZD5Mt+BhjoUjGKvjB4yHH4DqGeMTB8636TFdQ3vP57h/WccczW4uOi4ddvrh0ISfMn1KmymQwkZDDlOqo3nwSEZGyqliYfumll7jkkkv4zW9+Qz6fH/j8M888w+GHHz7w+x//+Mf813/9F8lkknvvvVfv/IvImLV7n+l42GVqTZTt3Vm87OD7NkOOwboOYddhSnWE3kxhoOWS+kyXX3tfjstuXc2ql7uLjpuRjPG1dx7B3ClVZapM9sWY4NT7ZDys+wMRESm7ioTpxx57jKVLl9LR0YG1r6yf29cPwrPOOot/+qd/Ip/Pc++993L66aeXs1QRkf22e59p31qiIZfZDXFSTnrQ51RFQ1TVxIiFDWDwseozXSFrt/dw6c2r2dGbLTpuyew6vrzscJ0SXWHRsMvU6qgOGRMRkYop+0+grq4uli9fTnt7O9OnT+f73/8+zzzzzKDjp06dyhlnnAHAHXfcUa4yRUSGbVef6WjIJZXz+t8sNMTCg7/UNiQi/Y8bLJZMzifiOuozXWb3t7Ty6V//bcggffaSWXzr3a9RkK6waNhlhk7rFhGRCiv7zPQ111zD9u3bmTJlCo8++iizZ88e8jlve9vbuOWWW3jsscfKUKGIyIFJREIcN6+RB1t20JXO05stUBPb/9CVynl41lITC/Pag+q0/7MMfGu5/uEN/PKxl4qOCzmGi956KGccOaNMlclgwq7D9NqYTusWEZGKK3uYvu222zDG8M///M/7FaQBFi9eDMD69etHszQRkRE788gZPLKujXjYoSOVpyq6fy+zPpaudIFYyCXsGk5Z0DTKlUpftsDX71zDihfai46rT4S5/KzFHDErWabKZDCuY5hWG8NVkBYRkTGg7GH6+eefB+Ckk07a7+fU1dUB0N1d/EAYEZFKO3JWktkNCTJ5jy2dabZ3Z5gaKt5bycfS1puj4Ps01sSYUR/n0Gk62Go0be5IcenNq3mxPVV03IJp1Xz1rMU01cbKVJkMxpggSGtpt4iIjBVl/4mUTgcH8VRV7f+NYm9vLwCxmG5mRGRsM8Zw0dsWUJcIMyMZI5Xz2NY1+D7cdL7Atq4s6bzH1OootfEQf//GOTqZeBQ9vrGdf7zhqSGD9FsWNvGff/daBekxwDGGphq1vhIRkbGl7GF66tSpQNAaa3898cQTAMyYob1qIjL2zW+q5otLF9FQFWFWXRy3SC5u78vjGsO0mhh1iTAfP3kesxsS5St2ErHW8tsnNvMvNz5Db7Yw6DgDnP+muXxx6UKiCm8VFwk5zKyL7/eWCRERkXIpe5g+9thjAbjrrrv2a7zneVx33XUYYzjxxBNHszQRkZJZMrueb5z9GhZMq2FakZnNaTUxptVGmTO1is+edhiHz6gtY5WTR67g8617nuMHD67HL7Lqviri8vV3HcF7j52t1QFjQG08zKy6uJZ2i4jImFT2n07ve9/7sNZy/fXX89RTTxUd6/s+n/jEJ3j22WcB+OAHP1iOEkVESmJ+UzXXvn8JF5++cNAxr51dxz+/7TC+fOYizUiPkrbeLBf979+4Z/X2ouOa6+N87/1Hc9whjWWqTAZjjKGpNsaU6qje1BARkTGr7GH63e9+N2984xvJZrO85S1v4Xvf+x6tra0Djxtj2L59Oz//+c855phjuP766zHG8Pa3v51TTjml3OWKiIyIMYaFM2oGffx9xx7EgunVCgyjZM3Wbj5xw5Os2dpTdNzr59TzvfcvYXaj3tCoNMcYptfGqNaybhERGeMq8pPq5ptv5qSTTqKlpYULL7yQCy+8cOBG8uijjyaXyw2MtdZy5JFHcsMNN1SiVBERGafufXY7/37vc+S94qepn/O6Zs4/6RC1WxoDdrW+0kFjIiIyHlRkE9KUKVN4/PHH+ad/+iei0SjW2oH/stnswMehUIjzzz+fRx55ZKA9loiISDGeb/nhH9fzb3e1FA3SYdfwL28/jE+eMk9BegxwHcP0pIK0iIiMHxVbQ5VIJLjmmmu47LLLuOeee3j88cdpbW3F8zwaGxtZsmQJZ5xxBjNnzqxUiSIiMs70ZPJ8/Y41PLaxo+i4xqoIX12+mEU68G1MCDkO05PqIS0iIuNLxTckNTY28v73v5/3v//9lS5FRETGsU1tKS65ZRWbO9JFxy2cXsNXly9mSnW0TJVJMWE3CNJhV0FaRETGl4qHaRERkZFa8UIbX79jDX05r+i40w6fxj+/bYFmQMeIsOswIxkjpCAtIiLjkMK0iIiMW9Zafv3Xl/jRnzZQ7Jgxx8DHT57He46epZPTx4ho2GV6bUz71UVEZNwq+1vBTz31FK7rEo/H2bJly5Djt2zZQiwWIxQKDfSbFhERyeY9rryzhf8eIkhXR0N84+wjOed1zQrSY0Qs7DJDQVpERMa5sofp3/zmN1hrWbZsGbNmzRpy/KxZszjrrLPwfZ9f//rXZahQRETGuh09WT79m7/xh5bWouNmNyT4/geW8Po5DWWqTIaSiISYkYzhKEiLiMg4V/Yw/eCDD2KM4Ywzztjv55x55pkA/P73vx+tskREZJxYtaWLT/ziCdZu7y067rhDGrj2/Utork+UqTIZSlU0xLTaqFYIiIjIhFD2PdMvvfQSAIcffvh+P+ewww4DYPPmzaNSk4iIjA93PbOVq3//PAW/2MJueN+xB/EPJ8zVMuIxpDoWoqkmVukyRERESqbsYbqtrQ2AWGz/f6BGo0H7ktbW4sv5RERkYvJ8yw8eXM+NTxU/ayMScrj4tMN4y6KmMlUm+6MmFmZqjVqRiYjIxFL2Zd719fUAbNq0ab+fs2tGura2dlRqEhGRsasrnecL/7dyyCA9tTrKd9/7WgXpMaY2riAtIiITU9nD9K7l3bfeeut+P+emm24CXlnuLSIik8OGnX384w1P8uSmzqLjFs+s5QcfPJoF02rKU5jsl2Q8zJRqBWmRcsh6Pm3pAtt687SlC2Q9v9IliUx4ZV/mvXTpUh544AF+9rOfce655/KmN72p6PiHHnqIn//85xhjWLZsWZmqFBGRSvvzup1ceWcL6bxXdNzSI6Zz4VsOJRIq+/vDUkRdIkJDVaTSZYhMaNZaNvfkebo1xfqOLHa3RoEGw7z6KEc1JWiuCevgP5FRUPY7j49//ONMmTIFz/NYunQp11xzDZlMZq9xmUyG7373u5x55pl4nkd9fT2f/OQny12uiIiUmbWWn694kUtvWV00SDsGPvXm+Xz2tAUK0mOMgrTI6Gvty/Pz1W3833PttLRl6M55tGc82tLBr905j5a2DP/3XDs/X91Ga1++0iWLTDhln5murq7ml7/8JUuXLiWVSvGZz3yGL37xixxzzDHMmDEDYwwvv/wyjz/+OKlUCmst4XCYX/3qV9ozLSIywaXzHt+6+zn+uHZH0XG1sRBfXnY4Rx9cX6bKZH8pSIuMvhe7sty+rpNUwac355PzLI6BiGtwDPhApuCTyvtEXEPet/y2pZ1l8+s4OKmtFyKlUvYwDfDWt76Ve+65hw9+8INs3bqVvr4+HnrooT3GWBssU5k1axY///nPOeWUUypQqYiIlMu27gyX3ryK9Tv6io6b05jga+88gpl18TJVJvtLQVpk9LX25bl9XSe9eZ+urIdrIBl1iLpmj6Xc1lqynqUv79OR8fCjcPu6Ts5Z2EBTVbiCX4HIxFGRMA3w5je/mfXr1/Ozn/2MO+64g6eeeoqdO3cCMGXKFI4++mje8Y538MEPfnCgNZaIiExMKzd3ctmtz9KZLr4M8YT5jfzrGQtJRCr240sGoSAtMvqstdy9oYtUIQjSEceQjDr73A9tjCEWMkRdQ1c2GO8YuGdDFx9c3Kg91CIlUNG7kVgsxvnnn8/5559fyTJERKSCbnv6Zb57/zo83xYd9+HjDubDbzwYRzeAY46CtEh5bO7J054u0JvzB2akhwrFxgSBuz3j0ZvzaXMKbOnJ01yrf7MiI6W39kVEpCIKns+1D6zn1qdfLjouFnL4whkLOXnB1DJVJsOhIC1SPk+3pij4kPPsfgXpXYwxVIUdurI+BT+4jsK0yMgpTIuISNl1pnJcftuzPL25q+i4abVRvrb8COY1VZepMhmOZDysIC1SJlnPZ31HlnTBxzEQdYe3SifafzhZuuCzriNL1vOJuuqEIDISYyJMd3d309PTg+cV7yUKMHv27DJUJCIio2V9ay+X3LKK7d3ZouOOak7ylXccTl1CYW0sSsbDNFbrTBORcunN+Vgsed8SedVhY/vDGDNwsrfF0pvzicYVpkVGomJh+r777uP73/8+f/rTn+jo6Niv5xhjKBQKo1yZiIiMlofW7uDf7mohU/CLjjvrqJl86s3zCGnWZExSkBYpv7wXnCthLTgHeHSEAxTsntcTkQNXkTB94YUX8r3vfQ94pQWWiIhMXL61/OyRF/nZiheLjnMdwwWnzueso2aWqTIZLgVpkcoI9y/rNv19pA+E3//83a8nIgeu7GH6l7/8Jddeey0QnOb9zne+k9e97nU0NDTgOJqBEBGZaFK5Av9213M8vG5n0XHJeJjLzjqco5rrylOYDJsOGxOpnOqIg8EQdgyZgo+1dlhLva215DxLLBQcXFYd0X23yEiVPUz/13/9FwAHHXQQ999/P/PmzSt3CSIiUiYvd6a59JbVbNjZV3TcvKlVXPHOI5heGytTZTJcCtIilRV1HebVR2lpy5DK+2Q9Syy0/2E661l8C/GQw/y6qA4fEymBsofplStXYozhK1/5ioK0iMgE9uSmDr5627N0Z4qfdXHygql8/u2HEQ+7ZapMhktBWmRsOKopwbqODBHX0Jf3ie7nQWTWWvryPhHXEHKC64jIyJU9TOfzeQCWLFlS7j9aRETKwFrLzX97me89sA5/iGMx/v6Nc/jgcbOHfSqtlI+CtMjY0VwTpiEeIu9bOjIeXVl/yH7T1lq6sj6ehdqoQ2M8xKyacBmrFpm4yr6+Y86cOQD09vaW+48WEZFRlvd8/v2+tVxzf/EgHQ+7XLF8MR86/mAF6TFMQVpkbDHG8Pa5SRIhh2TUJedb2jPewB7q3VlryRR82jMeOd+SjLokQg6nz03qdVekRMoeps8++2wA/vCHP5T7jxYRkVHU3pfjs//7NHc+s63ouBnJGNe+fwknzJ9SpsrkQChIi4xNTVVhls2vozrsUB9zcYyhK+uzM+3RlfXoyQa/Br/3cYyhPuZSHXZYNr+OpirNSouUStnD9Gc/+1lmz57Nd77zHVpaWsr9x4uIyChYu72HT/7iSVa93F103JLZdXz/A0czd0pVmSqTA1GvIC0yph2cjHLOwgamVYWpj7k0xkPEQg6ehZwPnoVYKFjSXR9zmV4V5pyFDRycVFs7kVIq+57pZDLJ3XffzVlnncUJJ5zAFVdcwfve9z7q6+vLXYqIiJTAAy2tfOue58gWinc+PXvJLD55yjxcR8sLxyrXMUypjlIVLfvtgYgMU1NVmA8tbmRLT56/taZY35HF8spSb2MM8+uiHNWUYFZNWEu7RUZB2X9aHnLIIQCkUik6Ojq44IILuPDCC5kyZQqJRPGTBY0xrF+/vhxliojIEHxr+cmfN3LDXzYVHRdyDBe99VDOOHJGmSqTA1EdDdFYHdWbHSLjiDGG5toIzbURsp5Pb84n71nCbtBHWu2vREZX2cP0xo0b9/i9tRZrLa2trUM+V++oiYiMDX3ZAl+/cw0rXmgvOq4+EebysxZzxKxkmSqT4XKMYUpNlGrNRouMa1HXIRpXeBYpp7L/5Dz33HPL/UeKiEgJbe5IcenNq3mxPVV03KFN1VyxfDFNtbEyVSbDFXIcpiWjREPq8S0iIjJcZQ/TP/nJT8r9R4qISIn8dWM7V9y+ht5soei4Uxc28bnTFhALK6SNVZGQw/TaGCEtAxURETkgWtMlIiJDstbyuye38F9/XF+0f7QBPvamubz39Qdpa84YloiEaKqJ4mh/tIiIyAFTmBYRkaJyBZ+rf7+We1ZvLzquKuLypTMXcdwhjWWqTA5EMh6msVrtcUREREZKYVpERAbV1pvly7euZs3WnqLjmuvjfG35EcxuLN6VQSpHB42JiIiUVsV/onZ0dPD000+zc+dO0uk01hZZPwh8+MMfLlNlIiKTW8u2bi69ZTVtvbmi414/p55LzlxETSxcpspkuMKuQ1OtDhoTEREppYqF6QcffJCvfOUrPPzww/v9HGOMwrSISBnc9+x2vn3vc+S94m9wnvO6Zs4/6RD1Jh7DtD9aRERkdFQkTP/gBz/gggsuGOgxLSIiY4PnW/77Ty/wv49vLjou7Bo++7YFnLZ4epkqkwNRHQ0xtSaqw+BERERGQdn7YaxZs4YLL7wQay1HHnkkN998M3fccQcQzDyvX7+exx9/nB/+8IccffTRAJx44omsXr2aF154odzliohMGr2ZAl+66Zkhg3RjVYTv/N1rFaTHuNp4mKbamIK0iIjIKCn7zPQ111yD53lMnTqVP/3pT9TU1LB69eqBx+fOncvcuXM5+uijOe+88/iXf/kXrrrqKi644AJ+//vfl7tcEZFJYVN7iktuXsXmjnTRcQun1/DV5YuZotOgx7T6RIT6qkilyxAREZnQyj4z/cc//hFjDBdeeCE1NTVFxxpj+OY3v8mpp57KAw88wPXXX1+mKkVEJo8VL7TxTzc8OWSQPu3waXzn716rID2Gmf4TuxWkRURERl/Zw/TmzcHywV1LuIE9lqDl8/m9nnP++edjreUXv/jF6BcoIjJJWGv59WOb+NJNq+jLeYOOcwx88uRD+MLbDyMSKvuPDdlPkZDDrLo4tTpVXUREpCzKvsw7k8kAMHPmzIHPVVVVDXzc0dFBU1PTHs+ZP38+AM8++2wZKhQRmfiyeY9/v28tv1/TWnRcdTTEpcsW8fo5DWWqTA5EMh6moSqi/dEiIiJlVPYphoaG4Iasr69v4HNTp04duAFYu3btXs/ZuXMnAJ2dnaNfoIjIBLejJ8tnfvP0kEF6dkOC739giYL0GOYYw/RkjMZqndgtIiJSbmUP0wsXLgTg+eefH/hcIpHg0EMPBeDWW2/d6zm7Pjd16tQyVCgiMnGt2tLFJ37xBM9t7yk67rhDGrj2/Utork+UqTIZLtcJgnQiUpEulyIiIpNe2cP0iSeeiLWWhx56aI/Pn3322Vhr+e53v8v1119PX18fO3bs4Nvf/jbXXXcdxhhOPfXUcpcrIjJh3LVqG5/97dN0pPY+m2J37z/2IK5YfgTVUYW0sSrkOMxIxomF3UqXIiIiMmmVPUwvW7YMgFtuuWVg/zTAZz/7WRoaGsjn85x33nnU1tYyffp0vvCFL1AoFIjFYvzLv/xLucsVERn3PN9y7QPruOqe58h7dtBxkZDDl5Yu4mNvOgTX0ZLhsSrsOsysi+kwOBERkQor+7TDG97wBn7yk59QKBTo6OhgxowZADQ2NnLPPffw//7f/2PDhg17PKepqYmf/exnLFq0qNzlioiMa93pPFfc/ixPbOosOm5qdZQr3rmYBdOKtyyUygqCdFxvdoiIiIwBFVnDd+655+7z86973etoaWnh/vvvZ/Xq1RQKBQ499FBOP/10Egnt2xMRGY4NO/u49JZVvNyZKTpu8cxaLj9rMQ3qTTymhRyH6cmYgrSIiMgYMeY2xIXDYU4//XROP/30SpciIjJu/XndTq68s4V0fvD+0QBLj5jOhW85VEuGxzjHGKYlo4RdfZ9ERETGijEXpkVE5MBZa7nhL5u4/s8bi45zDPzjKfN515KZaqk0xhljmFYbIxrSYWMiIiJjicK0iMgEkc57fOvu5/jj2h1Fx9XGQnx52eEcfXB9mSqTkZhaEyUeUZAWEREZa0YtTL+69VWpnHTSSaNyXRGR8Wxbd4Yv37yadTt6i46b05jga+88gpl18TJVJiPRWB1VizIREZExatR+Qp9yyiklXzpojKFQKJT0miIi493KzZ1cduuzdKaL948+YX4j/3rGQhIRhbPxoC4RIRkPV7oMERERGcSo3lFZO3g/UxERGbnbV77Mf/5hHZ5f/PX2w8cdzIffeDCO9kePC9WxkE5XFxERGeNGLUw/8MADo3VpEZFJr+D5fO+B9dzy9MtFx8VCDl84YyEnL5hapspkpBKREFOro5UuQ0RERIYwamH65JNPHq1Li4hMap2pHJff9ixPb+4qOm5abZSvLT+CeU3VZapMRioadmmqieqEdRERkXFAG+dERMaR9Tt6ueTmVWzvzhYdd1Rzkq+843DqEloqPF6EXYfptTEcR0FaRERkPFCYFhEZJx56fgf/dlcLmbxfdNxZR83kU2+eR8h1ylSZjFTIcZiRjOEqSIuIiIwbCtMiImOcby0/e+RFfrbixaLjXMdwwanzOeuomWWqTErBdQzTkzG9+SEiIjLOVDRM9/T08Pvf/56nn36anTt3kk6ni54Abozhxz/+cRkrFBGprHTO4xt3tfDwup1FxyXjYS57x+EcdVBdeQqTknBMEKQjIQVpERGR8aYiYdr3fa644gr+/d//nb6+vv16jrVWYVpEJpWXO9NcestqNuws/jo5b2oVVyw/gunJWJkqk1IIuw7TahWkRURExquKhOmPfOQj3HDDDVhrcV2XxsZGWltbMcbQ3NxMR0cHvb29QDAbPWXKFBKJRCVKFRGpiKc2dXD5bc/SnSkUHXfSgil84e0LiYfdMlUmpRANu0yv1R5pERGR8azsb4ffc889/OIXvwCCUN3a2srvf//7gcdffPFFuru7aWlp4dOf/jSO41BfX89dd93Fhg0byl2uiEhZWWu56aktXPy7lUMG6b9/4xy+suxwBelxpjoaYqYOGxMRERn3yh6mf/KTnwCwePFirr/+eurr6/fZT3PBggVcffXV3HTTTaxfv56lS5fS1VW8p6qIyHiW93z+/b61XHP/OvzBj48gHnb56lmL+dDxB6sf8ThTGw/TVBvT901ERGQCKHuYXrFiBcYY/umf/mm/xi9btoxzzz2XF198ke9+97ujXJ2ISGW09+X47P8+zZ3PbCs6bkYyxrXvX8KJh04pU2VSKtWxEFOqo5UuQ0REREqk7GG6tbUVCGaed3HdV5YoZrPZvZ7znve8J1j6eNNNo1+giEiZrd3ewz/e8CSrXu4uOm7J7Dq+/4GjmTulqkyVSakkIiGmKkiLiIhMKBVrjdXQ0DDwcU1NzcDHra2tHHTQQXuMbWpqAmDjxo1lqU1EpFz+vKGbH65YS7bgFx33ztfO5B9PmadexONQLOwyrTaqpd0iIiITTNnvyqZNmwZAe3v7Hp+LRCIArFy5cq/nbNq0CYBMJlOGCkVERp8F2madwH8+/HLRIB1yDJ87bQEXvuVQBelxaNep3QrSIiIiE0/Z78yOPPJIAJ599tmBz4VCIZYsWQK8ckDZ7v7rv/4LgIMPPrgMFYqIjC7fibDt0OV0znxD0XH1iTD/8f+OYumRM8pUmZRSLOwyozaGo1O7RUREJqSyh+lTTjkFa+0e7bAAPvjBDw7si/7whz/MHXfcwW9/+1ve8Y53cM8992CMYfny5eUuV0SkpHLROjYf/j5SdfOKjju0qZoffOBojpiVLFNlUkpV0RAzkgrSIiIiE5mx1hZpwFJ6GzZsYN68eUSjUTZu3Diw7LtQKHDcccfx5JNP7rUczlrLwQcfzJNPPkl9fX05y5Vh2Lx588B+95deeonm5uYKVyQyNmzbto0PfOADpGoPZvu8M/FDsaLjT13YxOdOW0BM/aPHpepYiKaa4t9jmVh+d+/eW9RERATec9prKl3CqCr7zPTcuXN54YUXWLVqFbW1tQOfD4VC3HfffXzgAx8gFAphrWVXzj/zzDP505/+pCAtIuOStZbOaUezdcG7igZpA5z3prl8aelCBelxKhkPK0iLiIhMEhU5zXvOnDn7/Hx9fT0///nP+f73v8/zzz9PoVBg/vz5e5z8LSIynmTyHlfc+yJts08pOq4q4vKlMxdx3CGN5SlMSq42HqZR7a9EREQmjYq1xiqmpqaGo48+utJliIiM2NW/X8uda9qKjmmuj3PF8sUc3Kj+0eNVdSzEFAVpERGRSWVMhunOzk7y+TxTpkxROxEpiZcfvqXSJcgk9e4Y3B43bEnve9n24TU5/vnwAvGNK2jdWN7apDQSIYjF4OVKF3IAZp6ogz1FREQOVNn2THuex6pVq3j88cdpbW3d6/FsNstll13GQQcdRGNjI9OnT6e6upp3v/vdrF69ulxlioiUVHUYvrSoB6eQ2eux5LbH+cd5vVSHK1CYlEQ8BI2akBYREZmURj1MW2u5/PLLmTJlCkcddRRveMMbmDFjBscffzx/+ctfAMjn85xxxhlcccUVvPzyywOHj6XTaW6++WaOPfZY/vCHP4x2qSIio2JW3Gfa+jvB+gAYv0DTC3cx5aWHcLX4ZtxKhGBKFLSASkREZHIa9WXe5513Hj/5yU8A2L0L11/+8hfOOOMMVqxYwX//93/z4IMPAtDQ0MChhx5KoVDg2WefJZ1Ok06n+cAHPsBzzz1HMqmeqyIy/iS6N9K4+U90Tnsd09fdSqxvW6VLkhGoCkGjDu0WERGZ1EZ1ZvqPf/wj119/PQCxWIz3vOc9fO5zn+M973kP8Xicrq4uvvOd73D99dcTDoe57rrr2LFjB48++ih//etf2blzJ5/97GcB2LFjBz/96U9Hs1wRkVGV3PYEB636mYL0OFcdVpAWERGRUZ6Z3jUj3dTUxP3338+iRYsGHmtpaeHUU0/lv//7v/F9n4svvpiPfexjezw/Ho9z1VVXsWrVKu655x7uuOMOPv3pT49mySIio8YArrf33mkZP6rD0KA90iIiIsIoz0w/+uijGGO46KKL9gjSAAsXLuSiiy7C8zwAPvShDw16nXPPPRdAB5GJiEhFGKA+qiAtIiIirxjVmemXXw4ahRx//PH7fHz3z8+fP3/Q6xx66KEAtLe3l7A6ERGRobkGpsQguu/uZiIiIjJJjWqY7uvrwxhDQ0PDPh+vq6sb+DgaHfzt/lgs2JyWy+VKWp+IiEgxETc4sTtUtkaSIiIiMl6M+mneAGaQviGDfV5ERKTSEv09pPWjSkRERPalLGFaRERkPNFBYyIiIjIUhWkREZHdJCPBfyIiIiLFlCVMf//736epqWmvz7e2tg58/NWvfnXQ5+8+TkREZLQ0RINZaREREZGhlCVM/+AHPxj0sV37pi+//PJylCIiIrIXAzTEoErrtURERGQ/jfr5pNbakvwnIjIeWQvrugd//OYXDet7gnFSGYag9ZWCtIiIiAzHqN46PPDAA6N5eRGRMW1jL/zoOYctbYO/b7m60/D8cy5Nccs5c31mJcpYoOAYmKoe0iIiInIARjVMn3zyyaN5eRGRMWt1B1y7xqU7B50ZaBhkXFsWXBdyvuG/n3P5wDyPQ2vLWuqk5fYH6YiCtIiIiByAUV/mLSIy2WzsDYJ0Rxa2pYsv4a4LB4/vyEBXDm5Y77IlVb5aJ6uwA9PiCtIiMnFkPZ+2dIFtvXna0gWynl/pkkQmPO0QExEpIWuDpd3duSAgx91gP643yPi4C7EotOWgPRvMlv5ug8OFh/v0n88oJRZxgxlpV///isg4Z61lc0+ep1tTrO/IYnnl3VuDYV59lKOaEjTXhAcO/RWR0lGYFhEpoZYueDllaM8Fs59TY0Cm+HOMgcYItGahMw+RtGFDLxxSU5aSJ5W4C42xYK+0iMh41tqX5+4NXbSnCxR8SBd88r7F2uDnStgxtLRlWNeRoSEe4u1zkzRVqfefSClpmbeISAndv9Uh50PWg2SY/Z5dNgZqQpDzIGdhRatenkutKhSsElCQFpHx7sWuLL9taWd7X56OjEdbukCm4OMaiDjByptMIVj23ZHx2N6X57ct7bzYla106SITiu7WRERKJF2AJ3caevJBYEsMc+1P3A2e15eHVR2GzGBrw2XYasLBjLRWOYrIeNfal+f2dZ305n06Mh6+tSSjDlPiLsmoS000+DX4vYNvLR0Zj968z+3rOmnty1f6SxCZMBSmRURKpD0LlmB2Oe4OP7gZAzEH8v1nxnTrfqck6iJQH610FSIiI2et5e4NXaQKPl1Zj4hjaIi5xELOXnuijTHEQg4NMZeIY+jKeqQKPvds6MIWOxlTRPabwrSISIlk+0Owz4EvJTaGgeNjspqZHhEDNEahNlLpSkRESmNzT572dIHeXLCkOxndO0S/mjGGZNTBNdCbC5Z+b+nRu7UipaAwLSJSItH+V1QH8A/wTX9rgxAIEFXbpgNmCPZH66wdEZlInm5NUfAh51mqwkMH6V2MMVSFHXKepeAH1xGRkVOYFhEpkYZoEOIiLqS94v2l98VayPjBKeDGQK2C4AExBPuj4+pXISITSNbzWd+RJV3wcQxEh9nfL+oaHBOc+r2uI6s+1CIloDAtIlIi8RAcPcVSEw5mplOF4T0/7QXPqwrD4jpLTDPTB6QhNvzD30RExrrenI/FkvctEdcMu2+0MYaIa4L2WVh6cwrTIiOlMC0iUkKnzvCJOMES7a78/s9O+xZ6CsGsdsTAcU26yTkQjdGgBZaIyEST94IfKNbu+wbet5aCb8l7wa/+Pn4AObzyc2nX9UTkwOmWQ0SkhBYmYWbCkvUM29LQmoGpQ9yvWAvtOSj4MDUG0+KWudXlqXciaYhqj7SITFzh/mXdxgQHXUJwunfet6Tyluw+wnE0ZEiEDGEnmMn2eaXTRHiYy8RFZG+amRYRKSFj4GOH+dRGgmCc8YJAPZi0B63Z4OTuhihUh+E9c331Qx6mXf/fiYhMVNURB0MQjHOeJef5tGc8OjI+Gc/Htxavf3bas8HMdKbg05EJxuU8n5xnB4J1dUQxQGSk9K9IRKTE5lTDpxZ51Edherx4v+nOfPD41BgkI/CBeR6zEuWrdSJQkBaRySDqOsyrjxIPORR8S3vGI98fnD0/2C5kbX+LRRv83vPB65+9bs94FHxLPOQwvy5K1FUMEBkp/SsSERkFi+vhC6/xmFtjaYoNPq4xCk1ROKjKct5hHofWlq/GiaBeQVpEJpGjmhJYa7H0B2X/lT3QuxZ57+v3A2MJloYf1aR3bUVKQXumRURGyZxquOJon79s8vnen/c95og6y0lzPeZWF5/Blr3VR6FGQVpEJpFZ1SEynsXwyr7p3b161/Srf+8AGc8ys1oRQKQUNDMtIjKKjIF5RWablx9sOaRGQXo4DDAlpiAtIpPPlt4CsZDBP8CDuK2FWMjwcu8wezeKyD4pTIuIyLjhGGiKq4+0iExOT7em8EbQOXHX8vCnW1Mlq0lkMlOYFhEZRdbCuu7BH7/5RcP6nv3vRz2ZhRyYFg96eIuITDZZz2d9R4bO7MhmlbuyBdZ1ZMiOJJWLCKA90yIio2ZjL/zoOYctbYO/b7m60/D8cy5Nccs5c32d5D2IsBPMSKstqohMVr05n6xng1O7Cba8hJzg410neb+aMcGKHgMU+g8g8yxkPUtvzica17yayEjoX5CIyChY3QHfXOmyoccU7TPdlg36TG/uM/z3cy7PF5nFnqwUpEVEIO9ZUgV/IDQHr4kGg8E1hpBjcB2D64Dr9P/eBI+DGXgNtRbSBZ+8pyVRIiOlMC0iUmIbe+HaNS4dWdiWLr6Euy4cPL4jA105uGG9yxZtZRugIC0iErBYsoVXfqDs6+DKIDYH8Xmvx3b7ZKZgsXud9S0iw6UwLSJSQtYGS7u7c0FAjrsU7TMdd4M+01EX2rPQm4ffbXC0h5ogSE+NKUiLiOzLcH9O6OeKSOkpTIuIlFBLF7ycMrTnXgmDQ7W9MgYaI8Het848bE8bNvSWp96xatf/dyH9lBIRAYIZ52jolR8ow83Gu4+PhQabvxaR4dBtiohICd2/1SHnQ9aDZHj/+0cbAzUhyHmQs7CidfK+PO9a2q0gLSLyirBrSIQMpv9AseDQsf2L1NYGB5cZgp838ZBDWMt+REZMtyoiIiWSLsCTOw09+eD01OH2Qo67wfP68rCqw5DxRqfOsUx7pEVE9q064hBxHNzd3qXdn0C9K0jv4hpDxDVURxQDREZK/4pGyec//3mMMQP/Pfjgg0M+5+677+bss8+mubmZaDRKc3MzZ599Nnffffd+/7mpVIqrrrqKY489loaGBqqrq1m0aBGf+9zn2LRp0wi+IhEZSns2WEaX84JgvL+z0rsYAzEH8v2tP7vzJS9xTIu4QR9pBWkRkb1FXYf5DTGSURcI3nzd1erKt3avUB2EaIvX30rL6X9tTUZdDq2PEXUVA0RGSn2mR8HTTz/N1Vdfvd/jrbV84hOf4Lrrrtvj81u2bOGmm27ipptu4vzzz+eHP/whpsjd+fr16znzzDN57rnn9vh8S0sLLS0t/OhHP+KXv/wlS5cuHd4XJCL7Jdsfgn1euWkZLmNeOSQmO4lmpqNusEf6QP9/ExGZDI5qSrCuI0PUNeQ8i+sEs9O7Zp6N7V/LbV/ZI72r17TvQ9Q1xEKGo5oSlfoSRCYUvSVVYr7vc95551EoFGhqatqv51xyySUDQXrJkiX86le/4rHHHuNXv/oVS5YsAeC6667j0ksvHfQavb29LFu2bCBIn3feefzhD3/gkUce4etf/zrV1dV0dXVxzjnnsHLlyhF+lSKyL9H+V1QH9lhSNxy77oMgCJiTQTwUnHiuIC0iUlxzTZiGeIhkzMV1ABus5nGd/tfQXW/I9gdo1+lf7WODj5Mxl8Z4iFk14cp+ISIThMJ0iX33u9/lr3/9KwsXLuSjH/3okOPXrVvHt771LQCOOeYY/vznP/Pe976X17/+9bz3ve/l4Ycf5phjjgHgm9/8JuvXr9/ndb797W/T0tICwLe+9S2uu+46Tj31VI4//ni++MUvcu+99xIKhUilUnzmM58pzRcrIntoiAZBOOJC2juwtiUZP9g3bAzUToJ7narQ/p14LiIiYIzh7XOTJEIOdbHQwKxz2DFBeDaGkGNwjdnj88ZAXSxEIuRw+txk0ZWOIrL/FKZL6KWXXhqYPf7BD35AJBIZ8jlXX301hUIBgGuuuYZ4PL7H44lEgmuuuQaAQqHAd77znb2ukc/n+c///E8AFi1axGc/+9m9xhx//PED4f6BBx7giSee2P8vTET2SzwER0+x1ISDmelUYXjPT3vB86rCsLjOEpvgM9M1YWgs0oNbRET21lQVZtn8OqrDDg3xECHHoeC/8mZu1Al+NUDBh5ATjKsOOyybX0dT1SR4p1akTBSmS+gf//Ef6e3t5dxzz+WUU04Zcry1lltuuQWAhQsXctxxx+1z3HHHHcdhhx0GwM0337zXARMPPvggnZ2dAJx77rk4zr6/rR/5yEcGPr7xxhuHrE9Ehu/UGT4RJ1ii3ZXf/9lp30JPIbgBihg4rskf3UIrrDYC9dFKVyEiMj4dnIxyzsIGplWFqe9fuh0Pu1gMHgaLIR4OPl8fc5leFeachQ0cnNQLr0gp6QCyEvnf//1fbr/9dhoaGrjqqqv26zkbNmxgy5YtAJx88slFx5588sk899xzbN68mY0bNzJ37tyBx/70pz/tMW4wxxxzDFVVVfT19fHwww/vV40iMjwLkzAzYcl6hm1paM3A1CECtbXQngtmEKbGYFrcMre6PPVWQnUY6oZeuCMiIkU0VYX50OJGtvTk+VtrivUdWSyv/MAxxjC/LspRTQlm1YS1tFtkFChMl0BnZyef/vSngWBf89SpU/freWvWrBn4eOHChUXH7v74mjVr9gjT+3udUCjEvHnzWLly5R7PEZHSMQY+dpjPN1e6eBZ2ZKA1B42DjE970J0NgnRDNAia75nrT9g9xPFQ8HWKiMjIGWNoro3QXBsh6/n05nzyniXc30da7a9ERpfCdAl8/vOfZ9u2bbzxjW/cr0PHdnnppZcGPm5ubi469qCDDtrn83b/fVVVFXV1dUNeZ+XKlezYsYNsNks0uv93tZs3by76+NatW/f7WiIT2Zxq+NQij2vXuDgE/acH05YF14UpUaiJwAfmecyaoB1LYv1fp4iIlF7UdYjGFZ5FyklheoQefvhhfvSjHxEKhYbsA/1qPT09Ax9XVxdf01lVVTXwcW9v7z6vM9Q19nWd4YTp3QO9iBS3uB4+OM/jqmeCGerBGAOeDWaoPzDb49Da8tVYTmEHpujUbhEREZlA9PbVCORyOc4//3ystVx00UUceeSRw3p+JpMZ+Hiok793D73pdHqf19mf08OLXUdESmd1B/xivUtVqL/H5yCshZCBRAhu3eTyfHf5aiwXxwR7wdVHWkRERCYSzUyPwJVXXsmaNWuYPXs2X/nKV4b9/FjslZ4wuVyu6Nhs9pV1oq9un7XrOkNdY6jrDOXVy8tfbevWrRx77LHDuqbIRLSxF65d49KRDfZMR4uEyMYodJtgnGfhhvUu5x02sZZ6N0YhpLduRUREZIJRmD5ALS0tfOMb3wCC/tC7L5/eXzU1NQMfv3rp9qv19fUNfPzq5dy7rjPUNYa6zlCG2tctIsFM84+ec+jOBQE57gbLm71BxsddiEWhLRfsrXYN/G6Dw4WHT4xDyJKR4NAxERERkYlGtzgH6OqrryaXy3HIIYeQSqX49a9/vdeYVatWDXx8//33s23bNgDe8Y53UFVVtUc4Hepwr91nhV+9d7m5uZm//OUv9PX10dnZWfQQsl3XmTp16rD2S4vI/mnpgpdThvZcsE94agzIFH+OMdAYgdYsdOYhkjZs6IVDaoo/b6yLu0GYFhEREZmIFKYP0K7l0i+88ALve9/7hhx/xRVXDHy8YcMGqqqqOPzwwwc+19LSUvT5uz++aNGiPR47/PDD+b//+7+Bcccdd9w+r1EoFFi/fv0+ryEipXH/VoecD1kPpkaDoDxEm2kgGFcTCvpN5yysaHU4pMYf9XpHS8iBhtjQ40RERETGK+1iq6C5c+cyc+ZMAP74xz8WHfvQQw8BMGvWLObMmbPHYyeeeOLAx8Wu8/jjjw8s8z7hhBMOpGQRKSJdgCd3GnrywWFbiWG+XRl3g+f15WFVhyEz2NrwMW7XgWPFDl4TERERGe8Upg/QT3/6U6y1Rf/b/VCyBx54YODzu8KwMYbly5cDwYzyihUr9vlnrVixYmBmevny5Xu13zrllFNIJpMA/M///A/W7nse7Kc//enAx+9617sO6OsWkcG1Z4NZ6JwXBOPh7nk2BmIO5PsnpLvzJS9x1O0K0mH9dBEREZEJTrc7FfaZz3yGUCiYvrrgggv2aleVTqe54IILAAiFQnzmM5/Z6xqRSIQLL7wQgDVr1vDtb397rzGPPvooP/7xjwE4+eSTef3rX1/KL0NEgGx/CPY58DZQuy8Lz46zmWlDEKSjbqUrERERERl9CtMVtmDBAj73uc8BwTLsE044gd/85jc8/vjj/OY3v+GEE07g8ccfB+Diiy/m0EMP3ed1Lr74YhYsWADA5z//eT7+8Y/zwAMPsGLFCr7xjW9w2mmnUSgUiMfjfOc73ynL1yYy2UT7X1EdwN+fjdL7YG0QSmF8hVJDcGr5eKpZREREZCR0ANkY8PWvf53W1lauv/56nnrqKd773vfuNeajH/0oX/va1wa9Rk1NDXfccQdLly7l+eef57rrruO6667bY0xtbS033HADr33ta0v9JYgI0BANQmXEhb5CfzAexgy1tZDxX1kiXhsetVJLriGmFlgiIiIyuWhmegxwHIcf//jH3HHHHSxfvpyZM2cSiUSYOXMmy5cv58477+RHP/oRjlP82zV//nyeeuopvvnNb3LMMcdQV1dHIpHgsMMO46KLLmLlypUsW7asTF+VyOQTD8HRUyw14WBmOlUY3vPTXvC8qjAsrrPExsksb2MUqhSkRUQqKuv5tKULbOvN05YukPXGb0cIkfHC2MFOqxIZps2bNw/0wH7ppZf26KNdaS8/fEulS5BJYk0nXPWMy9Z0MNM8Iw5kuij8+fp9jrfH/QPEk/gWdmSDGemmKHzsMG9c9JluiEL1OJpBlz3NPHF5pUuYEH5378pKlyCTlLWWzT15nm5Nsb4ji92tGaPBMK8+ylFNCZprwnsdYCtSDu857TWVLmFUaS5BRKSEFiZhZsKS9Qzb0tCagalDvGVpbdBfuuAHB3hNi1vmVpen3pGoV5AWEamY1r48d2/ooj1doOBDuuCT9+3AFqOwY2hpy7CuI0NDPMTb5yZpqtKLtkgpaZm3iEgJGQMfO8ynNhIE44wXBOrBpD1ozQYnd++a5X3PXH/YbbXKrS4CNbonExGpiBe7svy2pZ3tfXk6Mh5t6QKZgo9rIOKAayBTCJZ9d2Q8tvfl+W1LOy92ZStdusiEojAtIlJic6rhU4s86qMwPV78ELLOfPD41BgkI/CBeR6zEuWr9UDURaA2UukqREQmp9a+PLev66Q379OR8fCtJRl1mBJ3SUZdaqLBr8HvHXxr6ch49OZ9bl/XSWtfvtJfgsiEoTAtIjIKFtfDF17jMbfG0hQbfFxjNNgjfVCV5bzDPA6tLV+NByKpIC0iUjHWWu7e0EWq4NOV9Yg4hoaYSyzk7LUn2hhDLOTQEHOJOIaurEeq4HPPhi50ZJJIaWjPtIjIKJlTDVcc7fOXTT7f+/O+xxxRZzlprsfc6uG10aqE2kgQpkVEpDI29+RpTxfozQVLupPRvUP0qxljSEYd2jMevTmfNqfAlp48zXpnVGTENDMtIjKKjIF5RWablx9sOaRm7AfpmnCwvFtERCrn6dYUBR9ynqUqPHSQ3sUYQ1XYIedZCn5wHREZOYVpEREpqiYcnNwtIiKVk/V81ndkSRd8HANRd3jvwkZdg2OCU7/XdWTVh1qkBBSmRURkUNUK0iIiY0JvzsdiyfuWiGuG3TfaGEPENUH7LCy9OYVpkZFSmBYRkX2qDgftukREpPLyXnBomLUHfgPv9D9/9+uJyIFTmBYRkb0oSIuIjC3h/mXdxsCBzin7vHJGR3iYy8RFZG8K0yIisoeqkIK0iMhYUx1xMBjCjiHn2WG3t7LWkvMsYSdYIl4dUQwQGSn9KxIRkQFVIWgs0hdbREQqI+o6zKuPEg85+Bayw1ymnfUsvoV4yGF+XZSoqxggMlL6VyQiIgAkFKRFRMa0o5oShByIuIa+vL/fs9PWWvryPhHXEHKC64jIyClMi4gIiRBMUZAWERnTmmvCNMRDVEccPAtd2aEDtbWWrqyPZ4Ol4o3xELNqwmWqWGRiU5gWEZnk4iFo1B5pEZExzxjD2+cmSYQcklGXnG9pz3hkCnuHamstmYJPe8Yj51uSUZdEyOH0uclht9USkX0LVboAERGpnHgIpkRfOd1VRETGtqaqMMvm13H7uk4cE/Sf7sr6OCZY/u0QnNqd698jHXENtVGHRMhh2fw6mqo0Ky1SKgrTIiKTVNxVkBYRGY8OTkY5Z2EDd2/oIuwUKPiQLvjkfUvBBq/rsZBDPOQQcqAxHuL0uUkFaZESU5gWEZmE4m6wR1pBWkRkfGqqCvOhxY1s6cnzt9YU6zuyWF5Z6m2MYX5dlKOaEsyqCWtpt8goUJgWEZlkYgrSIiITgjGG5toIzbURsp5Pb84n71nCbtBHWu2vREaXwrSIyCQSUZAWEZmQoq5DNK7wLFJO+hcnIjJJhB2YGgNHQVpERERkxBSmRUQmgZADTXFwFaRFRERESkJhWkRkgnMNNMUUpEVERERKSWFaRGQCc0wwIx3Sq72IiIhISen2SkRkFFkL67oHf/zmFw3re4JxpWYIDhsL65VeREREpOR0mreIyCjZ2As/es5hS9vgaXZ1p+H551ya4pZz5vrMSpTuz2+IBW2wRERERKT0NF8hIjIKVnfAN1e6bOgxtGYGH9eWhdYsbO4z/PdzLs8XmcUejroIVOntUhEREZFRozAtIlJiG3vh2jUuHVnYli6+hLsuHDy+IwNdObhhvcuW1Mj+/Oow1EZGdg0RERERKU5hWkSkhKwNlnZ354KAHHeDk7QHE3ehKQpRF9qz0JuH321wDngPdU0YGqIH9lwRERER2X8K0yIiJdTSBS+nDO254OCvqTEwQ7SkMgYaI8GJ25152J42bOgd/p9dF4F6BWkRERGRslCYFhEpofu3OuR8yHqQDA8dpHcxBmpCkPMgZ2FF6/BenhuiWtotIiIiUk4K0yIiJZIuwJM7DT35oL9zYpgHgMXd4Hl9eVjVYch4Qz9nV/ur6vABlSwiIiIiB0hhWkSkRNqzYAlml+Pu/s9K72IMxBzI+8Hvu/NDP6chNvzQLiIiIiIjpzAtIlIi2f4Q7BPMMB8IY4JADsFS8WIao2p/JSIiIlIpCtMiIiUS7X9FdQD/AE/jtjZYug3BCd+DaYhClZZ2i4iIiFSMwrSISIk0RIMgHHEh7RXvL70v1kLGD04BNwZqBwnL9VHtkRYRERGpNIVpEZESiYfg6CmWmnAwM50qDO/5aS94XlUYFtdZYvuYma6LBL2kRURERKSyFKZFREro1Bk+ESdYot2V3//Zad9CTyGY1Y4YOK7J32tMXUTtr0RERETGCoVpEZESWpiEmQlLQyQ4lbs1M3Sgthbac1DwoS4M0+KWudV7jkkqSIuIiIiMKQrTIiIlZAx87DCf2ghMjUHGCwL1YNIetGaDk7sb+vdCv2euv0dbrdpIEKZFREREZOxQmBYRKbE51fCpRR71UZgeL95vujMfPD41FgTmD8zzmJV45fHqcLC8W0RERETGFoVpEZFRsLgevvAaj7k1lqbY4OMao9AUhYOqLOcd5nFo7SuPVYWC2WoRERERGXtClS5ARGSimlMNVxzt85dNPt/7877HHFFnOWmux9zqPWewEyFoLBLCRURERKSyFKZFREaRMTCvdvDHlx9sqa/Z83NxN5ixFhEREZGxS8u8RUTGkJgLU2LF91mLiIiISOUpTIuIjBExNziITEFaREREZOxTmBYRGQMUpEVERETGF4VpEZEKU5AWERERGX8UpkVEKijiKEiLiIiIjEcK0yIiFdQQVZAWERERGY8UpkVEKshRkBYREREZlxSmRURERERERIZJYVpERERERERkmEKVLkBEZKJrqK3mPz7zkUEfExEREZHxR2FaRGSUua7D1PraSpchIiIiIiWkZd4iIiIiIiIiw6QwLSIiIiIiIjJMCtMiIiIiIiIiw6QwLSIiIiIiIjJMCtMiIiIiIiIiw6QwLSIiIiIiIjJMCtMiIiIiIiIiw6QwLSIiIiIiIjJMCtMiIiIiIiIiw6QwLSIiIiIiIjJMCtMiIiIiIiIiw6QwLSIiIiIiIjJMCtMiIiIiIiIiw6QwLSIiIiIiIjJMCtMiIiIiIiIiw6QwLSIiIiIiIjJMCtMiIiIiIiIiw6QwLSIiIiIiIjJMCtMiIiIiIiIiw6QwLSIiIiIiIjJMoUoXICIyWaQL0J6FrA9RBxqiENersIiIiMi4pNs4EZFRZC20dMH9Lzs82Wawuz1mgKOnWE6d4bMwCcZUqkoRERERGS6FaRGRUbKxF370nMPLKUPOh5485DzwCfbYRFx4tNXwxE6XmQnLxw7zmVNd6apFREREZH8oTIuIjILVHXDtGpfuHLTnIOuBYyDuBr/6FvoKQcCOupD1DN9c6fKpRR6L6ytdvYiIiIgMRQeQiYiU2MbeIEh3ZGFbOljqPTUKByVgagwao8GvByWCz1sbjOvIBs/b2Fvpr0BEREREhqIwLSJSQtYGS7u7c7AjE8xEz4hDVXjvPdHGBJ+fEYeYG4zvzsGPn3Owdt/XFxEREZGxQWFaRKSEWrrg5ZShPQdhJ5iBHupgMWOgKRaMb8/BlpThua7y1CsiIiIiB0ZhWkSkhO7f6pDzgz3SyX3MRg/GmGB81oOcH1xHRERERMYu3a2JiJRIugBP7jT05INDxhLDPOIxEQqe15OHJ3Ya0oXRqVNERERERk5hWkSkRNqzYAnaX8Xd4feNNv2nfee84DodudGoUkRERERKQWFaRKREsn7wq08ww3wgHBM8HyDjlaIqERERERkNCtMiIiUS7X9FdQj6SB8I377ywhxzS1GViIiIiIyGYe7oExGRwTREwQARF/oKQZus4Sz1thbSHlT1752uj4xaqSIiMsFkPZ/enE/es4RdQ3XEIepq3kxkNClMi4iUSDwER0+xPNoaHEKWKgR9pPdXqhDMTNeE4ehGS1yv0CIiUoS1ls09eZ5uTbG+I4vllWVRBsO8+ihHNSVorgljhnuQh4gMSbdqIiIldOoMnyd2ukRd6MoHJ3Tvz/2Lb4PxURciTnAdERGRwbT25bl7Qxft6QIFH9IFn7xvB1ZFhR1DS1uGdR0ZGuIh3j43SdNw3uEVkSFp7YeISAktTMLMhKUhAnkfWjPB8u1irIUdmWB8QwRmJSyHJctTr4iIjD8vdmX5bUs72/vydGQ82tIFMgUf1wRvyLoGMgWftnSBjozH9r48v21p58WubKVLF5lQFKZFRErIGPjYYT61EZgaC07k3pqGvvzeodra4PNb08G4qTGojcBHD/OH3VZLREQmh9a+PLev66Q379OR8fCtJRl1mBJ3SUZdaqLBr8HvHXxr6ch49OZ9bl/XSWtfvtJfgsiEoTAtIlJic6rhU4s86qMwPR4E7B1ZeCkVzEC3ZYNfX0oFnzcmGFcfDZ43p7rSX4GIiIxF1lru3tBFquDTlfWIOIaGmEss5Oy1J9oYQyzk0BBziTiGrqxHquBzz4Yu7FBLpkRkvyhMi4iMgsX18IXXeMytscyIw8xEcEp3wQ9moQt+8PuZCZgRh0NqLF94jcfi+kpXLiIiY9Xmnjzt6QK9uWBJdzK6d4h+NWMMyaiDa6A3Fyz93tKj2WmRUtABZCIio2RONVxxtM9zXfCHrQ5P7jTsPhfgmODU7lNn+ByWHF4bLRERmXyebk1R8CHn2f0K0rsYY6gKO3RlfQp+cJ3mWvVfFBkphWkRkVFkDCysg4V1PukCdOSCmemYG/SRVvsrERHZH1nPZ31HlnTBxzEQdYf3DmzUNTgmOPV7XUeWrOerD7XICOk2TkSkTOIhhWcRETkwvTkfiyXvWyKuGXbfaGMMEdcE7bOw9OZ8onGFaZGR0L8gEREREZExLu8FG4WsPfAbeIdXOkvsup6IHDiFaRERERGRMS7cv6zbGPAP8Bo+r5zPER7mMnER2ZvCtIiIiIjIGFcdcTAYwo4h59lht7ey1pLzLGEnWCJeHVEMEBkp/SsSERERERnjoq7DvPoo8ZCDbyE7zGXaWc/iW4iHHObXRXX4mEgJ6F+RiIiIiMg4cFRTgpADEdfQl/f3e3baWktf3ifiGkJOcB0RGTmFaRERERGRcaC5JkxDPER1xMGz0JUdOlBba+nK+ng2WCreGA8xqyZcpopFJjaFaRERERGRccAYw9vnJkmEHJJRl5xvac94ZAp7h2prLZmCT3vGI+dbklGXRMjh9LnJYbfVEpF9U8dTEREREZFxoqkqzLL5ddy+rhPHBP2nrZMugwAARrhJREFUu7I+jgmWfzsEp3bn+vdIR1xDbdQhEXJYNr+OpirNSouUisK0iIiIiMg4cnAyyjkLG7h7Qxdhp0DBh3TBJ+9bCjZofxULOcRDDiEHGuMhTp+bVJAWKTGFaRERERGRcaapKsyHFjeypSfP31pTrO/IYnllqbcxhvl1UY5qSjCrJqyl3SKjQGFaRERERGQcMsbQXBuhuTZC1vPpzfnkPUvYDfpIq/2VyOhSmBYRERERGeeirkM0rvAsUk76FyciIiIiIiIyTArTIiIiIiIiIsOkMC0iIiIiIiIyTArTIiIiIiIiIsOkMC0iIiIiIiIyTArTIiIiIiIiIsOkMC0iIiIiIiIyTArTIiIiIiIiIsOkMC0iIiIiIiIyTArTIiIiIiIiIsOkMC0iIiIiIiIyTArTIiIiIiIiIsOkMC0iIiIiIiIyTArTIiIiIiIiIsOkMC0iIiIiIiIyTArTIiIiIiIiIsOkMC0iIiIiIiIyTArTIiIiIiIiIsOkMC0iIiIiIiIyTArTIiIiIiIiIsOkMC0iIiIiIiIyTArTIiIiIiIiIsOkMC0iIiIiIiIyTArTIiIiIiIiIsOkMC0iIiIiIiIyTArTIiIiIiIiIsOkMC0iIiIiIiIyTArTIiIiIiIiIsOkMC0iIiIiIiIyTArTIiIiIiIiIsOkMC0iIiIiIiIyTArTIiIiIiIiIsOkMC0iIiIiIiIyTArTIiIiIiIiIsOkMC0iIiIiIiIyTArTIiIiIiIiIsOkMD1CTz75JFdeeSVnnHEGBx10ENFolOrqahYsWMBHPvIR/vSnPw3renfffTdnn302zc3NRKNRmpubOfvss7n77rv3+xqpVIqrrrqKY489loaGBqqrq1m0aBGf+9zn2LRp03C/RBEREREREXkVY621lS5ivDr55JN56KGHhhz3oQ99iB/96EdEIpFBx1hr+cQnPsF111036Jjzzz+fH/7whxhjBh2zfv16zjzzTJ577rl9Pp5MJvnlL3/J0qVLh6x7uDZv3sxBBx0EwEsvvURzc3PJ/4wD9fLDt1S6BBGRMWfmicsrXcKE8Lt7V1a6BBGRMek9p72m0iWMKs1Mj8CWLVsAmDlzJp/+9Kf53e9+x2OPPcajjz7Kf/zHfzBr1iwAfv7zn/ORj3yk6LUuueSSgSC9ZMkSfvWrX/HYY4/xq1/9iiVLlgBw3XXXcemllw56jd7eXpYtWzYQpM877zz+8Ic/8Mgjj/D1r3+d6upqurq6OOecc1i5Uj/4RUREREREDpRmpkdg2bJlfPjDH+bd7343ruvu9fjOnTs54YQTWLt2LQAPPfQQb3rTm/Yat27dOhYtWkShUOCYY47hoYceIh6PDzyeSqX4/+3de5yUZf3/8fd1z2nPJ2DlGKAokKY/TVFTAzygJohWHioLFbRIVMzMskLT7KHlCbUy46CVmuZXJdCQVDBBiqMoBiQIJgddll0Wdnd2Tvf1++OGaZc9DszussPr+Xjw2Nm5r/uaz8yyu/Pe67qva/jw4Vq2bJn8fr/Wrl2rI444olE/d9xxh372s59Jkn75y1/qlltuaXB88eLF+uIXv6h4PK6RI0fqjTfeOKDnvy9GpgGga2FkOj0YmcbBIJJwVR11FUtYBXxGeUFHIR/jZuhcjEyjWXPmzNGll17aZJCWpO7du+v+++9Pfv7888832e7BBx9UPB6XJD3yyCMNgrQk5eTk6JFHHpEkxeNxPfTQQ436iMVimjp1qiRp6NChuvnmmxu1OfXUUzV+/HhJ0vz587V8+fJWniEAAAAOVtZafbwrqjnrd+qxFdv1x9Xl+vOaHfrj6nI9tmK75qzfqY93RcXYGdA+CNPtbMSIEcnbGzZsaHTcWqtZs7xR0yFDhuiUU05psp9TTjlFgwcPliS99NJLjX4oLliwQDt37pQkjRs3To7T9Je2/nTzF154oa1PAwAAAAeRspqY/vj+Dv3fugqt3VGnXdGEKuoS2hH2Pu6KJrR2R53+b12F/vj+DpXVxDq7ZCDjEKbbWTQaTd5uKuBu3Lgxee318OHDW+xr7/HNmzdr06ZNDY7VXzW8pX5OPPFE5ebmSpIWLlzYcvEAAAA46HxUFdFf1lbo05qYKusS2hGOqy7uymekoCP5jFQXd7UjHFdlXUKf1sT0l7UV+qgq0tmlAxnF39kFZLo333wzeXvIkCGNjq9Zs6bF4/XVP75mzRoNHDgw5X78fr+OOOIIvfvuuw3OaYvNmze3eHzbtm0p9QcAAIDUlNXENGf9TlXHXFVFEvIZqTDkKOQzDXZ8sdYqkrCqibmqrEvIDUlz1u/UJUNKVJob6MRnAGQOwnQ7cl1X99xzT/LzSy+9tFGbjz/+OHm7tQW79i7ute959T/Pzc1VUVFRq/28++672r59uyKRiEKhUIvtm3p8AAAAdCxrreZurFJt3AvSQceoMOQ0uW2qMUZZfqOQz6gq4rV3jPTqxipdcXS3FrdaBdA2TPNuRw8++KCWLFkiSbr44ot14oknNmqze/fu5O28vLwW+9s7PVvytsFqqp/W+mitHwAAABycNu+OqSIcV3XUTY5ItxaKjfECt89I1VFv6veW3Vw/DaQDI9Pt5M0339QPf/hDSVJpaal++9vfNtmurq4ueTsYDLbYZ/0R5HA43GQ/rfXRWj8t2Xc0fF/btm3TsGHD2twfAAAA2m5VWa3irhRN2DYF6b2MMcoNOKqKuIq7Xj99C1p/zwigZYTpdvD+++/r4osvVjweVygU0nPPPafDDjusybZZWVnJ2/UXK2tKJPK/RSP23T5rbz+t9dFaPy05mPaNBgAAOJREEq42VEYUjrtyjBTypTZNO+QzcowUjrtaXxlRJOGyDzVwgPgOSrONGzdq1KhRqqyslM/n0zPPPNPi6tr5+fnJ261Nua6pqUne3nc6995+2jJtu6V+AAAAcPCpjrqysoq5VsF9FhtrC2OMgj6jmGtlZVUdddupUuDQQZhOo61bt+rss8/W1q1bZYzRjBkzdPHFF7d4Tv3R3tZWy64/zXrfxcD29lNTU5Pcb7q1fnr06NHmxccAAADQeWIJK0mydv/fwDt7zq/fH4D9R5hOk/Lycp1zzjn68MMPJUmPPPKIvvWtb7V63mc/+9nk7bVr17bYtv7xoUOH7lc/8XhcGzZsaLIPAAAAHJwCe6Z1GyPt75iyu+f8+v0B2H+E6TSoqqrSueeeq3//+9+SpHvuuUfXXXddm84dOHCgevfuLanhntRN+cc//iFJ6tOnjwYMGNDg2Omnn5683VI/y5YtS07zPu2009pUIwAAADpXXtCRkVHAMYomrKxNbWTZWqtowirgeFPE84LEAOBA8V10gGpra3XBBRdoxYoVkqQf//jHuvXWW9t8vjFGY8eOleSNKP/zn/9sst0///nP5Ijz2LFjG10nM2LECBUWFkqSnnzyyWZ/wD7xxBPJ261NQQcAAMDBIeRzdERxSNl+R66VIilO044krFwrZfsdDSoKsfgYkAZ8Fx2AaDSqiy++WIsWLZIk3Xjjjfr5z3+ecj+TJ0+W3+8trH799dc32q4qHA7r+uuvlyT5/X5Nnjy5UR/BYFA33HCDJGnNmjW67777GrVZvHixpk+fLkkaPny4TjrppJRrBQAAQOc4rjRHfkcK+oxqYm6bR6ettaqJuQr6jPyO1w+AA8fWWAfga1/7mubNmydJOvPMMzV+/HitXr262fbBYFBHHXVUo/uPOuooff/739c999yjZcuW6bTTTtOtt96qI444Qhs2bNC9996rlStXSpJuueUWHXnkkU32f8stt+jZZ5/Vf/7zH/3gBz/Q+vXrdfnllys7O1vz58/XL37xC8XjcWVnZ+uhhx468BcAAAAAHaZvfkAl2X7FXKvKuoSqIm6r+01ba1UVcZWwUkHIUbdsv/rkBzqwaiBzGZvqBRdISnVLgv79+2vTpk1NHnNdV9dcc41mzJjR7Pnjx4/X448/LsdpfkLB+vXr9aUvfUkffPBBk8cLCgr01FNPafTo0SnV3habN29OrjL+8ccfH1T7Um9dOKuzSwCAg07v08d2dgkZ4fl573Z2CTiElNXE9Je1FaqOuaqKJOQzUm7AUWif7bKstYokvBHphJUKQz7lBRxdMqREpbmEaXSMr446trNLaFdM8z5IOI6j6dOn6+WXX9bYsWPVu3dvBYNB9e7dW2PHjtUrr7yiadOmtRikJWnQoEFauXKl7r33Xp144okqKipSTk6OBg8erJtuuknvvvtuuwRpAAAAtL/S3IBGDypSXsBRcZZPjjGqirgqDydUFUlod8T76H3uyjFGxVlekB49qIggDaQRI9NIG0amAaBrYWQ6PRiZRmcoq4lp7sYqVYTjirtSOO4q5lpZ621/FXCMsv2O/I7ULduvcwcWEqTR4TJ9ZJprpgEAAIAupjQ3oG8e3U1bdsf0TlmtNlRGZPW/MTJjjAYVhXRcaY765AdSvjwRQOsI0wAAAEAXZIxR34Kg+hYEFUm4qo66iiWsAj5vH2m2vwLaF2EaAAAA6OJCPkehbMIz0JH4jgMAAAAAIEWEaQAAAAAAUkSYBgAAAAAgRYRpAAAAAABSRJgGAAAAACBFhGkAAAAAAFJEmAYAAAAAIEWEaQAAAAAAUkSYBgAAAAAgRYRpAAAAAABSRJgGAAAAACBF/s4uAAAAAMCBiSRcVUddxRJWAZ9RXtBRyMe4GdCeCNMAAABAF2St1ebdMa0qq9WGyoisbPKYkdERxSEdV5qjvvkBGWM6sVIgMxGmAQAAgC6mrCamuRurVBGOK+5K4birmGtlrWSMFHCM1u6o0/rKOpVk+3XewEKV5gY6u2wgoxCmAQAAgC7ko6qI5qzfqdq4N7U7mrByjBT0GTlGciXVxV3VxlwFfUYx1+ovays0elCR+heGOrt8IGNwIQUAAADQRZTVxDRn/U5Vx1xV1iXkWqvCkKPu2T4VhnzKD3kfvc8dudaqsi6h6pirOet3qqwm1tlPAcgYhGkAAACgC7DWau7GKtXGXVVFEgo6RiVZPmX5nUbXRBtjlOV3VJLlU9AxqookVBt39erGKllrm3kEAKkgTANABwnHpS010oe7vY/heGdXBADoSjbvjqkiHFd11JXPSIWhxiF6X8YYFYYc+YxUHXW1IxzXlt2MTgPpwDXTANCOrJXWVklvbHW0YodR/bEAI+mE7lZn9nI1pNBbMAYAgOasKqtV3JWiCdumIL2XMUa5AUdVEVdx1+unb0GwnasFMh9hGgDayaZqado6R1trjaKutDsmRRPewjCOpKBPWlxmtLzcp945VhMGuxqQ19lVAwAORpGEqw2VEYXjrhwjhXyp/QU2tGdxsnDc1frKiCIJl32ogQNEmAaAdvB+pfToGp92RaWKqBRJSI6Rsn3eR9dKNXEvYId8UiRhdO+7Pk0amtDRxZ1dPQDgYFMddWVlFXOtgj6T8r7Rxpjkyt5WVtVRV6FswjRwIPgOAoA021TtBenKiPRJ2Jvq3SMk9cuRemRJ3ULex3453v3Weu0qI955m6o7+xkAAA42sYR3oZC1+/8G3tlzfv3+AOw/wjQApJG13tTuXVFpe503Et0rW8oNNL4m2hjv/l7ZUpbPa78rKk1f54iFVgEA9QX2TOs2e/aR3h+u/ve7KJDiNHEAjRGmASCN1lZJW2uNKqJSwPFGoFubiWeMVJrlta+ISltqjdZVdUy9AICuIS/oyMgo4BhFEzbl7a2stYomrAKON0U8L0gMAA4U30UAkEZvbHMUdb1rpAubGI1ujjFe+0hCirpePwAA7BXyOTqiOKRsvyPXSpEUp2lHElaulbL9jgYVhVh8DEgDvosAIE3CcWlFudHumLfIWE6KSzzm+L3zdsek5eWGfagBAA0cV5ojvyMFfUY1MbfNo9PWWtXEXAV9Rn7H6wfAgSNMA0CaVEQkK2/7q2xf6vtGmz2rfUcTXj+V0faoEgDQVfXND6gk26+8oKOElaoirQdqa62qIq4S1psq3i3brz75gQ6qGMhshGkASJPInhVhXHkjzPvDqbewTF0iHVUBADKFMUbnDSxUjt9RYcinqGtVUZdQXbxxqLbWqi7uqqIuoahrVRjyKcfv6NyBhSlvqwWgaewzDQBpEtrz50lH3j7S+8Ott+VJli8dVQEAMklpbkCjBxVpzvqdcoy3/3RVxJVjvOnfjrw/ykb3XCMd9BkVhBzl+B2NHlSk0lxGpYF0IUwDQJqUhCQjKeiTauLeNlmp/PHfWimckHL3XDtdHGy3UgEAXVj/wpAuGVKiuRurFHDiirtSOO4q5lrF9/zuyfI7yvY78jtSt2y/zh1YSJAG0owwDQBpku2XTuhutbjMW4SsNu7tI91WtXFvZDo/IJ3QzSqbn9AAgGaU5gb0zaO7acvumN4pq9WGyois/jctyhijQUUhHVeaoz75AaZ2A+2At2oAkEZn9nK1vNynkE+qinkrdLfl/YtrvfYhnxR0vH4AAGiJMUZ9C4LqWxBUJOGqOuoqlrAK+Lx9pNn+CmhfhGkASKMhhVLvHKtIwuiTsFRWJ5VmtRyorZW210kxV+qZLfXJsRpc2HE1AwC6vpDPUSib8Ax0JL7jACCNjJEmDHZVEJR6ZHkrcm8LSzUxLzTXZ613/7aw165HllQQlMYPdlPeVgsAAAAdi5FpAEizAXnSpKEJPbrGJ5+RKqLS9ojkRL19pB3jTesOJ7yPIZ83Il0Q9M4bkNfZzwAAAACtIUwDQDs4uli69diEpq1zFKo1irrS7pgUTezZh1reqt35Ae8a6T45VuMHuwRpAACALoIwDQDtZECedNcJrtZVSa9vc7Si3Kj+TG/HeKt2n9nL1eDC1LbRAgAAQOciTANAOzJGGlIkDSlyFY5LlVHv+ugsn7ePNNtfAQAAdE28jQOADpLtJzwDAABkClbzBgAAAAAgRYRpAAAAAABSRJgGAAAAACBFhGkAAAAAAFJEmAYAAAAAIEWEaQAAAAAAUkSYBgAAAAAgRYRpAAAAAABSRJgGAAAAACBFhGkAAAAAAFJEmAYAAAAAIEWEaQAAAAAAUuTv7AIA4FARjksVESniSiFHKglJ2fwUBgAA6JJ4GwcA7chaaW2V9MZWRyt2GNl6x4ykE7pbndnL1ZBCyZjOqhIAAACpIkwDQDvZVC1NW+doa61R1JV2x6RoQnLlXWMT9EmLy4yWl/vUO8dqwmBXA/I6u2oAAAC0BWEaANrB+5XSo2t82hWVKqJSJCE5Rsr2eR9dK9XEvYAd8kmRhNG97/o0aWhCRxd3dvUAAABoDQuQAUCabar2gnRlRPok7E317hGS+uVIPbKkbiHvY78c735rvXaVEe+8TdWd/QwAAADQGsI0AKSRtd7U7l1RaXudNxLdK1vKDTS+JtoY7/5e2VKWz2u/KypNX+fI2qb7BwAAwMGBMA0AabS2Stpaa1QRlQKONwLd2sJixkilWV77iqi0pdZoXVXH1AsAAID9Q5gGgDR6Y5ujqOtdI13YxGh0c4zx2kcSUtT1+gEAAMDBiwXIACBNwnFpRbnR7pi3yFhOij9hc/ySE/UWJVtebhSOsw81AKBtIglX1VFXsYRVwGeUF3QU8vGHWaA98TYNANKkIiJZedtfZftS3zfa7FntO5rw+qmMEqYBAM2z1mrz7phWldVqQ2VEVv9bcMPI6IjikI4rzVHf/IBMqr+UALSKt2kAkCYR1/voyhuZ3h+O8c6XpLpEOqoCAGSispqY5m6sUkU4rrgrheOuYq6Vtd4fZwOO0doddVpfWaeSbL/OG1io0txAZ5cNZBTCNACkSWjPbDpH3j7S+8O1/1vMIsuXjqoAAJnmo6qI5qzfqdq4N7U7mrByjBT0meQfZevirmpjroI+o5hr9Ze1FRo9qEj9C0OdXT6QMbiQAgDSpCQkGUlBnxROKOXtraz1zgv6vBHq4mC7lAkA6MLKamKas36nqmOuKusScq1VYchR92yfCkM+5Ye8j97njlxrVVmXUHXM1Zz1O1VWE+vspwBkDMI0AKRJtl86obtVfsAbYa6Np3Z+bdw7Lz8gndDNcr00AKABa63mbqxSbdxVVSShoGNUkuVTlt9pdE20MUZZfkclWT4FHaOqSEK1cVevbqySTfWvvQCaRJgGgDQ6s5eroCOFfFJVrO2j06712od8UtDx+gEAoL7Nu2OqCMdVHXXlM1JhqHGI3pcxRoUhRz4jVUdd7QjHtWU3o9NAOhCmASCNhhRKvXOsSoJSzJXK6loP1NZK2+u89iVBqU+O1eDCjqkXANB1rCqrVdyVogmr3EDrQXovY4xyA46iCau46/UD4MARpgEgjYyRJgx2VRCUemR5K3JvC0s1TYxSW+vdvy3steuRJRUEpfGD3ZS31QIAZLZIwtWGyojCcVeOkUK+1H5RhPYsThaOu1pfGVEkwQwo4EBxRR4ApNmAPGnS0IQeXeOTz0gVUWl7RHKi3j7SjvGmdYcT3seQT+qZ7QXpSUMTGpDX2c8AAHCwqY66srKKuVZBn0l532hjTHJlbyur6qirUDbjasCBIEwDQDs4uli69diEpq1zFKo1irrS7pgUTezZh1pSrt9bbCzoeFO7xw92CdIAgCbFEt70Jmu9P8ruD0dS3DbsD8D+I0wDQDsZkCfddYKrdVXS69scrSg3qv/WxTHeqt1n9nI1uFBM7QYANCuwZ1q32bOP9P5w9b/fNYEUp4kDaIwwDQDtyBhpSJE0pMhVOC5VRr3ro7N83j7SbH8FAGiLvKAjI6OAY1QXd2WtTWmqt7VW0YRNbqOVF2SKN3CgeBsHAB0k2094BgDsn5DP0RHFIa3dUafamKtIwirL3/YwHUlYuVbK9jsaVBRSyEeYBg4U30UA0EHCcWlLjfThbu9jON7ZFQEAupLjSnPkd6Sgz6gm5o1Ot4W1VjUxV0Gfkd/x+gFw4BgjAYB2ZK20tkp6Y6ujFTsaXjNtJJ3Q3btmegjXTAMAWtE3P6CSbL9irlVlXUJVEVeFoZb3m7bWqiriKmGlgpCjbtl+9ckPdGDVQOYiTANAO9lULU1b52hrM6t5B33S4jKj5eU+9c6xmsBq3gCAFhhjdN7AQv1lbYXckFQVSaiiLqHcgKPQPttlWWsVSXgj0gkrFYZ8yvE7OndgYcrbagFoGmEaANrB+5XSo2t82hX19pmOJLzVu+vvM10T9wJ2yCdFEkb3vuvTpKEJHV3c2dUDAA5WpbkBjR5UpDnrd8ox3v7TVRFXjvGmfzvy/mgb3XONdNBnVBBylON3NHpQkUpzGZUG0oUwDQBptqnaC9KVEWl7nRRwpB4hKcffcCq3tVJtXKqKSZ+EpYT1zrv12AQj1ACAZvUvDOmSISWau7FKASeuuCuF465irlXcer9rsvyOsv2O/I7ULduvcwcWEqSBNCNMA0AaWetN7d4V9YJ0tk/qkdX09dDGSLkBL2SX1XntfUaavs7RnSe4XEMNAGhWaW5A3zy6m7bsjumdslptqIzI1luZwxijQUUhHVeaoz75AaZ2A+2AMA0AabS2Stpaa1QR3TMi3UyQrs8YqTRL2hb2poSHao3WVXn7UwMA0BxjjPoWBNW3IKhIwlV11FUsYRXweftIs/0V0L4I0wCQRm9scxR1vWuke4TavkK3MVJhQNoekaKu18+QIrd9iwUAZIyQz1Eom/AMdCS+4wAgTcJxaUW50e6Yt8hYTop/rszxe+ftjknLyw37UAMAABzECNMAkCYVEcnK2/4q25f6vtFmz2rf0YTXT2W0PaoEAABAOhCmASBNIntmZbvyRpj3h2O88yWpLpGOqgAAANAeCNMAkCahPT9RHXn7SO8P1/7vB3OWLx1VAQAAoD0QpgEgTUpCkpEU9EnhhLdNViqs9c4L+rwR6uJgu5QJAACANCBMA0CaZPulE7pb5Qe8EebaFBcQq4175+UHpBO6WWWz3wIAAMBBizANAGl0Zi9XQUcK+aSqWNtHp13rtQ/5pKDj9QMAAICDF2EaANJoSKHUO8eqJCjFXKmsrvVAba20vc5rXxKU+uRYDS7smHoBAACwfwjTAJBGxkgTBrsqCEo9srwVubeFpZomRqmt9e7fFvba9ciSCoLS+MFuyttqAQAAoGNxRR4ApNmAPGnS0IQeXeOTz0gVUWl7RHKi3j7SjvGmdYcT3seQT+qZ7QXpSUMTGpDX2c8AAAAArSFMA0A7OLpYuvXYhKatcxSqNYq60u6YFE3s2YdaUq7fW2ws6HhTu8cPdgnSAAAAXQRhGgDayYA86a4TXK2rkl7f5mhFuVH9md6O8VbtPrOXq8GFYmo3AABAF0KYBoB2ZIw0pEgaUuQqHJcqo9710Vk+bx9ptr8CAADomngbBwAdJNtPeAYAAMgUrOYNAAAAAECKCNMAAAAAAKSIMA0AAAAAQIoI0wAAAAAApIgwDQAAAABAigjTAAAAAACkiE1aAKCDhONSRUSKuFLIkUpCbJUFAADQVfE2DgDakbXS2irpja2OVuwwsvWOGUkndLc6s5erIYWSMZ1VJQAAAFJFmAaAdrKpWpq2ztHWWqOoK+2OSdGE5Mq7xibokxaXGS0v96l3jtWEwa4G5HV21QAAAGgLwjQAtIP3K6VH1/i0KypVRKVIQnKMlO3zPrpWqol7ATvkkyIJo3vf9WnS0ISOLu7s6gEAANAaFiADgDTbVO0F6cqI9EnYm+rdIyT1y5F6ZEndQt7Hfjne/dZ67Soj3nmbqjv7GQAAAKA1hGkASCNrvandu6LS9jpvJLpXtpQbaHxNtDHe/b2ypSyf135XVJq+zpG1TfcPAACAgwNhGgDSaG2VtLXWqCIqBRxvBLq1hcWMkUqzvPYVUWlLrdG6qo6pFwAAAPuHMA0AafTGNkdR17tGurCJ0ejmGOO1jySkqOv1AwAAgIMX79YAIE3CcWlFudHumLfIWE6KSzzm+L3zdsek5eVG4Xj71AkAAIADR5gGgDSpiEhW3vZX2b7U9402e1b7jia8fiqj7VElAAAA0oEwDQBpEnG9j668Eeb94RjvfEmqS6SjKgAAALQHwjQApEloz09UR94+0vvDtf/7wZzlS0dVAAAAaA+EaQBIk5KQZCQFfVI4oZS3t7LWOy/o80aoi4PtUiYAAADSgDANAGmS7ZdO6G6VH/BGmGtTXECsNu6dlx+QTuhmlZ3iAmYAAADoOIRpAEijM3u5CjpSyCdVxdo+Ou1ar33IJwUdrx8AAAAcvAjTAJBGQwql3jlWJUEp5kplda0Hamul7XVe+5Kg1CfHanBhx9QLAACA/UOYBoA0MkaaMNhVQVDqkeWtyL0tLNU0MUptrXf/trDXrkeWVBCUxg92U95WCwAAAB2LK/IAIM0G5EmThib06BqffEaqiErbI5IT9faRdow3rTuc8D6GfFLPbC9ITxqa0IC8zn4GAAAAaA1hGgDawdHF0q3HJjRtnaNQrVHUlXbHpGhizz7UknL93mJjQceb2j1+sEuQBgAA6CII0wDQTgbkSXed4GpdlfT6Nkcryo3qz/R2jLdq95m9XA0uFFO7AQAAuhDCNAC0I2OkIUXSkCJX4bhUGfWuj87yeftIs/0VAABA18TbOADoINl+wjMAAECmYDVvAAAAAABSRJgGAAAAACBFhGkAAAAAAFJEmAYAAAAAIEUshQMAAAB0cZGEq+qoq1jCKuAzygs6CvkYNwPaE2EaAAAA6IKstdq8O6ZVZbXaUBmRlU0eMzI6ojik40pz1Dc/IGNMJ1YKZCbCNAAAANDFlNXENHdjlSrCccVdKRx3FXOtrJWMkQKO0doddVpfWaeSbL/OG1io0txAZ5cNZBTCNAAAANCFfFQV0Zz1O1Ub96Z2RxNWjpGCPiPHSK6kurir2piroM8o5lr9ZW2FRg8qUv/CUGeXD2QMLqQAAAAAuoiympjmrN+p6piryrqEXGtVGHLUPdunwpBP+SHvo/e5I9daVdYlVB1zNWf9TpXVxDr7KQAZgzANAAAAdAHWWs3dWKXauKuqSEJBx6gky6csv9PommhjjLL8jkqyfAo6RlWRhGrjrl7dWCVrbTOPACAVhGkAAACgC9i8O6aKcFzVUVc+IxWGGofofRljVBhy5DNSddTVjnBcW3YzOg2kA2EaAAAA6AJWldUq7krRhFVuoPUgvZcxRrkBR9GEVdz1+gFw4AjTAAAAwEEuknC1oTKicNyVY6SQL7WtrkJ7FicLx12tr4woknDbqVLg0EGYBgAAAA5y1VFXVlYx1yroM41GpV1rFXetYgnvo7vPddHGmOTK3lZW1VHCNHCg2BoLAAAAOMjFEl44tlZy9uRoa71wXRuziiQaLyoW8hvl+I0Cjhe+HUlx27A/APuPMA0AAAAc5AJ7pnWbPftIxxJWu6IJxV3JyspaycoL28ZIRlJd3CoSN/I7UkHQJ3fP+fX7A7D/CNMAAADAQS4v6MjIG2WujSUUibtyJbnWC9CSF6CNkWS9wC0rGWNlXamyLi4rKSfgkzFGeUGu9gQOFGEaADrIs+ulv34s7YpKBUHpwn7SZYM6uyoAQFcQ8jk6ojik1dvDirveVG93T4h29oxEa+9g855AbeW1SVjJ7mkfcIwGFYUU8hGmgQNFmM5Q//3vf/Xwww/r5Zdf1n//+1+FQiENGjRIl156qb773e8qJyens0sEDgnV1dLFb0k1CV+D+3fEpKlrvX+5voRePEPKy+ukIgEAXcKxPbL1r63VkryA7Mgbid4bmrXPZdDGeEHb7gnURlJNLKFje2R3cOVAZiJMZ6CXX35Z3/jGN1RVVZW8r7a2VkuXLtXSpUs1bdo0vfLKKzr88MM7sUog8130d6ks4mu1XU3Cp1ELpNJQQi+d0/51AQAygyvJ2EYZOsna5CB1Q1wuDaQF8zsyzKpVq3TppZeqqqpKeXl5uvvuu/X222/r9ddf1zXXXCNJWrdunS644AJVV1d3crVA5jrzlbYF6frKIj6d+Uo7FQQA6PLe3R5WbqDh75bW1uTe93huwKd3y8JprQs4VDEynWEmT56s2tpa+f1+zZs3T6eeemry2JlnnqkjjzxSP/jBD7R27Vo98MADmjJlSidWC2Smi/4u1bmpBem96lyfLvo7I9QAgIYiCVcbKiOqix/Y/tB1cVfrKyOKJFyumwYOEN9BGWTp0qVasGCBJGn8+PENgvReN998s4YOHSpJeuihhxSLxTqyRCDjVVenPiK9r7KIT0wcAQDUVx11ZWUV3hOmU52pvbd9OO71Ux09sFAOgDCdUV566aXk7auuuqrJNo7j6Fvf+pYkqbKyMhm+AaTHxW+lp58vL0xPPwCAzBBLWEUTNrmCtyQFHMnv/G81733/OcY7Hqj3jt+1UjRhFUu0NkEcQGsI0xnkrbe8d/G5ubn6/Oc/32y74cOHJ28vXMg7diCd9l21e39Vx9PTDwAgMwR8RrV7RqWtJN+evbCMjHzGyO8Y+RwjnyP5nD2fG++4ZOQz/7t+Ohx3FfCxChlwoLhmOoOsWbNGkjRo0CD5/c1/aYcMGdLonLbYvHlzi8c//vjj5O1t27a1ud+O8ElZeWeXgEPA7E1SfFf6QvDvliQ0ZkDaugMacVv5uY622bH9084uAYeA6lhcNRXbFXetF4qNZEzbA7G1VvE9q3tXO0bVlZKqiQJoX63lh87Ss2fPFvNSWxlrLXM8MkBdXZ2ys709Ay+44ALNmTOnxfZ5eXmqqanRKaecosWLF7fpMVL5gQ0AAAAAB6OPP/5Yffv2PeB+mOadIXbv3p28nZeX12r73NxcSWJ7LAAAAADYD8ztyBB1dXXJ28FgsNX2oVBIkhQOt32fwfrTuJurYe3atTrssMPUo0ePtEydADLJtm3bNGzYMEnSkiVL1KtXr06uCACQKfgdA7Rdz54909IPaSdDZGVlJW9Ho9FW20ciEUlKTg1vi7ZMhRg0aFCb+wMOZb169UrL9CIAAPbF7xigYzDNO0Pk5+cnb7dl6nZNTY2ktk0JBwAAAAA0RJjOEFlZWerevbuk1lfNq6ysTIbpfv36tXttAAAAAJBpCNMZZOjQoZKk9evXKx6PN9tu7dq1jc4BAAAAALQdYTqDnH766ZK8KdzLly9vtt2bb76ZvH3aaae1e10AAAAAkGkI0xnkoosuSt6eOXNmk21c19Uf/vAHSVJRUZFGjhzZEaUBAAAAQEYhTGeQYcOG6YwzzpAkTZ8+XYsXL27U5v7779eaNWskSTfeeKMCgUCH1ggAAAAAmYCtsTLM1KlTddpppykcDmvUqFG67bbbNHLkSIXDYf35z3/W448/Lkk66qijdPPNN3dytQAAAADQNRlrre3sIpBes2fP1hVXXKFdu3Y1efyoo47Syy+/zJ7QAAAAALCfCNMZ6qOPPtLUqVP18ssva/PmzQoGgxo0aJAuueQSTZo0STk5OZ1dIgAAAAB0WYRpAAAAAABSxAJkAAAAAACkiDANAAAAAECKCNMAAAAAAKSIMA0AAAAAQIoI0wAAAAAApIgwDQAAAABAigjTAAAAAACkiDANAAAAAECKCNMAAAAAAKSIMA0AKVqwYIGMMcl/l19+eavnXHnllcn2AABccMEFMsbIcRwtXLiwTecsXLhQjuPIGKPRo0e3c4UAWkOYBoAD9Nxzz+m9997r7DIAAF3I7373OxUUFMhaqwkTJqiurq7F9pFIRBMmTJC1VgUFBXrsscc6qFIAzSFMA8ABstbq9ttv7+wyAABdSN++fXXvvfdKktatW6ef/exnLba/8847tW7dOknSL3/5S/Xt27fdawTQMsI0AByA7t27S5JefPFFrVixopOrAQB0Jd/+9rc1fPhwSdJ9992nlStXNtlu1apV+uUvfylJGjFihK699toOqxFA8wjTAHAAbrzxRoVCIUlidBoAkBJjjKZNm6bs7GzF43FdffXVisfjDdokEgmNHz9e8Xhc2dnZmjZtGutvAAcJwjQAHIC+ffsmRwjmzJmjf/3rX/vd1/bt2/WTn/xExx9/vIqKipSVlaUBAwbom9/8ZpsXpwEAdC2DBg3SnXfeKUl655139Ktf/arB8QceeEDLly+XJN1111064ogjksc2b96sH/3oRzrhhBNUXFysrKwsfeYzn9Fll12m+fPnt/i4iURCTzzxhM4991z17NlTwWBQRUVFOvLII3XWWWfpF7/4hf7973+n+dkCmcVYa21nFwEAXcmCBQs0cuRISdLMmTN17rnn6ogjjlA4HNaoUaP06quvNjrnyiuv1JNPPinJu8Z6X/PmzdMll1yiXbt2Nfu41113nR5++GE5Dn8HBYBMkkgkdOqpp2rp0qUKhUJatWqVBg8erA0bNuhzn/ucwuGwTjrpJC1evFg+n0+SNH36dF1//fUKh8PN9jt+/Hg99thj8vv9De6vrq7Wl770Jb311lst1vWVr3xFzz///IE/QSBD8Y4MAA5Qr169NHHiREleKE51FPmdd97RmDFjtGvXLgUCAU2ePFnz58/XkiVL9Lvf/U4DBw6UJP3617/Wj370o7TXDwDoXD6fT9OnT1cgEFAkEtH48ePluq6uueYahcNhBQIBzZgxIxmkZ8yYoQkTJigcDuuYY47RI488ooULF2rFihX6v//7P33pS1+S5AXuW2+9tdHj3XHHHckgPXr0aD3zzDNatGiRli9frrlz5+ree+/VGWecwXRyoDUWAJCS+fPnW0lWkp05c6a11tqysjKbm5trJdmRI0c2OmfcuHHJc/Z10kknWUnW5/PZV199tdHxiooK+9nPftZKso7j2NWrV6f9OQEAOt+UKVOSvyvOOuus5O3bb7892ea///2vzcnJsZLsuHHjbCwWa7Kv2267Lfl7Y926dQ2O9evXz0qyX/3qV1usZ8eOHQf8nIBMxsg0AKRBjx49NGnSJEnS/PnzW71Wba8lS5Zo6dKlkqQJEyZo1KhRjdoUFxfr8ccflyS5rqvf/OY3aaoaAHAw+fGPf6yjjz5akvT6669Lko455hjddtttyTZTp05VbW2tevfu3eQU7r1+9rOfqU+fPnJdV3/4wx8aHPvkk08kSWeccUaL9ZSUlOz3cwEOBYRpAEiTW265Rfn5+ZKkn/70p20657XXXkveHj9+fLPtTjvtNA0dOrTROQCAzBEMBhtM5947/TsYDCbbzJo1S5I0ZswYZWVlNduX3+/XqaeeKklavHhxg2O9evWSJD377LOqra1N63MADiWEaQBIk27dumny5MmSpEWLFjW5ENm+Vq9eLcl7A3X88ce32Pbkk0+WJH3wwQeKRqMHViwA4KA0bNgw9e3bV5K3Y8SwYcOSx6qqqrR+/XpJ0u9+9zsZY1r8t3fxsL0j0XuNGzdOkvT2229r4MCBmjRpkl588UVt3769I54ikDEI0wCQRt/73vdUVFQkSZoyZUqr7SsqKiR5U+mam6q3V8+ePSV5q4FXVlYeWKEAgC6nrKxsv87bd/T5pz/9qa6++moZY1RWVqZf//rX+vKXv6zDDjtMn/vc53T77bfr008/TUfJQEZr+Z0bACAlRUVF+t73vqcpU6ZoyZIlmjNnjkaPHt3qeW1ZMdWykyEAHNISiUTy9uTJk1u8PKi++tPEJSkQCGj69Om6+eab9cwzz+iNN97QsmXLFI1GtXr1aq1evVoPPPCA/vSnP2ns2LFpfQ5AJiFMA0CaTZ48WVOnTtWOHTs0ZcoUXXDBBc223bu4y44dOxSPx1scnd47SmCMUXFxcXqLBgAc9Lp165a8XVtbq2OOOeaA+vvsZz+ru+66S3fddZfC4bAWLVqkp59+Wn/4wx9UXV2tr33ta9qwYUPyGmsADTHNGwDSLD8/X7fccoskaeXKlXrppZeabbv3jVA0GtXKlStb7HfJkiWSpCOPPLLRKAMAIPP16NFDffr0keQtRpnOGUvZ2dk6++yzNWPGDP3qV7+SJIXDYc2ZMydtjwFkGsI0ALSDSZMmqbS0VJJ0++23N/uG5+yzz07enj59erP9LV68WP/+978bnQMAOLRceOGFkqQPP/wwucBYup111lnJ2+Xl5e3yGEAmIEwDQDvIzc3VrbfeKkl677339MorrzTZbtiwYTrppJMkSdOmTdPf//73Rm2qqqr07W9/W5LkOI4mTpzYTlUDAA52t9xyi0KhkCTpO9/5jpYtW9Zi+1deeUXvvvtu8vOKigr99a9/bXFUe968ecnbAwcOPMCKgczFNdMA0E4mTpyo++67T9u2bWvxL/uPP/64Tj75ZEWjUV1wwQW6/vrrNWbMGOXl5WnlypW655579OGHH0qSvv/97x/wNXIAgK5r4MCBeuyxx3TVVVepoqJCp512mr75zW9q9OjR+sxnPqN4PK7NmzdryZIlev7557VhwwbNnj1bxx57rCRp165dGjt2rAYMGKAvf/nLOvnkk9W/f3/5/X5t27ZNs2fP1rRp0yR5W3ONGTOmM58ucFAzluVhASAlCxYs0MiRIyVJM2fO1JVXXtls20cffVTXX399g/ua+rE7b948XXLJJdq1a1ezfV133XV6+OGH5ThMKgKATDZgwAB99NFH6t+/vzZt2tRkm2effVbXXntti783JG9G02uvvZb8vbVp06Y2jTb36dNHs2fP1vHHH59y/cChgndkANCOrrnmGvXr16/VdqNGjdL69et122236f/9v/+ngoIChUIhfeYzn9E3vvENvfXWW3r00UcJ0gAASdJll12mTZs26Z577tGIESNUWlqqQCCgnJwcHX744RozZoweeOABbdq0KRmkJal///5655139Ktf/Urnn3++Bg8erKKiIvn9fnXv3l3Dhw/XfffdpzVr1hCkgVYwMg0AAAAAQIoY4gAAAAAAIEWEaQAAAAAAUkSYBgAAAAAgRYRpAAAAAABSRJgGAAAAACBFhGkAAAAAAFJEmAYAAAAAIEWEaQAAAAAAUkSYBgAAAAAgRYRpAAAAAABSRJgGAAAAACBFhGkAAAAAAFJEmAYAAAAAIEWEaQAAAAAAUkSYBgAAAAAgRYRpAAAAAABSRJgGAKALWrBggYwxMsZowYIFnV0OAACHHH9nFwAAQHurqanRU089pVmzZmnVqlUqLy+X3+9XaWmpDjvsMB133HEaMWKEhg8frl69enV2udgPxpgm78vLy1NhYaFKS0t1/PHHa9iwYfrKV76ibt26dUKVAIBMYqy1trOLAACgvSxZskSXXXaZNm3a1Grbww47TJ988kmD+0aMGKE333xTw4cPP6hGgBcsWKCRI0dKkubPn68RI0Z0bkEtGDBggD766CONGzdOTzzxRLs8RlNhujlZWVm6/PLL9atf/Urdu3dvl3oAAJmPkWkAQMZav369zjnnHO3atUuSdOGFF+qrX/2qjjrqKAWDQZWXl2vVqlX6+9//rvnz53dytUiHE088UTNnzkx+HolEVFlZqQ8++EALFy7Uiy++qHA4rCeeeEJz587Viy++qFNOOaUTKwYAdFWEaQBAxvrxj3+cDNIzZszQVVdd1ajNOeeco+9///vavn27nnvuuY4uEWmWm5urY445ptH9Z599tiZOnKjy8nJNnjxZTz31lD755BNdeOGFWrp0qfr3798J1QIAujIWIAMAZKREIqE5c+ZI8kYrmwrS9fXo0UPXXXddR5SGTtS9e3f96U9/0ne+8x1J0vbt23XjjTd2clUAgK6IMA0AyEjbt29XbW2tJGnQoEEpn3/llVfKGKM333xTkvTmm28mV8/e+2/AgAHJ9ps2bUre39p1wQMGDJAxRldeeWWzbcLhsO6++24dd9xxys3NVbdu3XTaaafp97//vVzXbfPzsNbq+eef11e+8hX169dPWVlZKi4u1rBhw3TXXXdp586drb4Ge5/nzp07NWXKFB199NHKzc1VUVGRvvjFL+qpp55q8vwRI0bIGKOPPvpIkvTkk082eg0761rvhx56SP369ZMk/fWvf9X777/fqM3eGu+4444W+9r7PJt6Lvuuum6t1fTp03X66aerW7duKigo0LBhw/THP/6xwXnRaFSPPfaYTjnlFJWUlCg/P1+nnXZai7Mnmvo/+MILL2jUqFEqLS1Vbm6ujjvuOD3yyCOKxWLJ86y1evrppzVixAiVlpYqJydHJ5xwgh577DE1tbTOww8/nHycf/3rXy2+NpL0la98RcYYFRUVKRwOt9oeALoKpnkDADJSMBhM3l6zZk0nVpK6rVu36qyzztLatWuT99XW1urtt9/W22+/rRdeeEE33XRTq/1s375dF198sRYtWtTg/kgkoqVLl2rp0qX69a9/rVmzZunkk09usa+1a9fq/PPPb7SQ21tvvaW33npLixcv1qOPPtr2J9nJQqGQJk6cqNtuu03WWs2aNUtHH310uz5mLBbT2LFjNXv27Ab3L126VN/61re0bNkyTZ06VZWVlbrooov0j3/8o0G7vV//9evX67bbbmv18b773e/qt7/9bYP73n33Xd1www1asGCBnnvuOcXjcV1xxRV6/vnnG7RbuXKlJk6cqBUrVujxxx9vcOyb3/ymbr31VtXV1WnmzJkt/t8pLy9PzhC5/PLLlZ2d3WrdANBVMDINAMhIJSUlyetgV61apXvvvTelEd27775b7733nk488URJ3lTx9957r8G/efPmpb3ueDyu0aNHJ4P0qFGj9OKLL2rZsmV64YUXdPbZZ2vu3Ln6yU9+0mI/NTU1Gj58uBYtWqRgMKhvf/vbmjVrllasWKG33npLd999t7p166ZPP/1U559/fnL0uCm1tbW68MILtWPHDv3kJz/RggULtGzZMv3+979X3759JUm//vWv9eqrrzY4b+bMmXrvvffUu3dvSdLYsWMbvYb1FwvraGeffXby9ltvvdXuj/fTn/5Us2fP1je+8Q29/PLLWr58uZ555hkNHjxYkjfi+9prr+nKK6/U22+/rYkTJ2revHlavny5pk+fnnwdp0yZ0uRIen2PPfaYfvvb3+pLX/qSXnjhBS1fvlwvvfRSMvi+8MILmjlzpm655RY9//zz+vrXv645c+Zo+fLl+vOf/6whQ4ZIkn7/+99r7ty5DfouLi7WxRdfLEn685//3OJo81NPPaVoNCpJuvrqq/fjVQOAg5gFACBD3XfffVZS8l///v3tpEmT7FNPPWXXr1/fpj6GDx9uJdnhw4e32G7jxo3Jx5k5c2aLbfv3728l2XHjxjU69vDDDyf7ufbaa5s8/+qrr27wvObPn9+ozaRJk6wkW1hYaJcuXdpkP5s2bbK9evWykuwVV1zR6Pi4ceOSj1FUVGRXr17dqM0HH3xgs7KyrCR74YUXpvx802Vvna19neqLRCLWcRwryR5++OHN9nn77be32E9L/0fmz5/f4Gv10EMPNWqzbds2W1BQYCXZHj16WGOMffHFFxu1W7VqVbLeG264odHx+v8HJdnJkyc3alNTU2MHDBhgJdnu3btbY0yzNeXn5zf7dX3jjTeSj/PUU08188pYe9xxx1lJ9phjjmm2DQB0VYxMAwAy1k033dRgNOyjjz7So48+qm984xsaNGiQevbsqcsvv1yzZ89u8trQzrB3Wu5hhx2mBx98sMk2U6dOVY8ePZrto7y8XNOmTZMk3XnnncnR9X31799fP/3pTyVJzz77bPIa86bceeedTU6DHjRokC666CJJHTO6m07BYFD5+fmSpMrKynZ/vJNPPrnJxc569uyZHOndvn27LrvssuRrWt+xxx6r008/XVLrr3W/fv30y1/+stH9OTk5GjdunCTv/0lbamrqsUaMGJFci6C52QUrVqzQqlWrJDEqDSAzEaYBABnLcRxNnz5df/vb33TOOefIcRr+2vv000/17LPP6sILL9SwYcO0YcOGTqrUs3Xr1uT13ZdeeqlycnKabJeXl6dLL7202X5effVV1dXVJftpyRe/+EVJ3vW8y5cvb7KNMUZf//rXm+3j85//vCQvkLa0oNnBKC8vT5K0e/fudn+syy+/vNljxx57bPL2ZZdd1my74447TpL04YcftvhYX/7ylxUIBNLyWE19XY0xyYD8+uuv67///W+j8/eG7EAgoCuuuKLFegGgKyJMAwAy3nnnnad58+apvLxcs2fP1u23367Ro0ersLAw2WbZsmU644wztG3btk6r87333kvePumkk1psO2zYsGaPLVu2LHm7V69ejVbQrv+v/p7Mn3zySZP9de/eXd26dWv28UpKSpK3OyKUptPeegsKCtr9sY466qhmjxUVFaXUrrXXOZ2P1dzjXXXVVfL7/bLW6sknn2xwLBKJ6Omnn5YkjRkzpsWZFADQVRGmAQCHjOLiYo0ePVp33HGHZs+erU8//VQzZsxQcXGxJGnbtm3Jac+dof5U49LS0hbbHnbYYc0eKysr26/Hb26ad3Mj5HvVH/FPJBL79didIRKJJENi/T8ItJeWXsf6r2Fb2rW2mF46H0tq+uvas2dPXXDBBZKkJ554osGlErNmzVJFRYUkafz48S3WCgBdFVtjAQAOWaFQSFdddZV69+6t8847T5K3yvHjjz/eaEp4R6gfRowxbW67r73BJxgMNjt1uyl7V+Y+VKxatSr5Ou5dURupmTBhgmbNmqUPP/xQ//jHPzR8+HBJ/5vi3bt3b5177rmdWSIAtBvCNADgkHfuueeqX79++vjjj1VZWakdO3akPC21fvhubdSwpqamyfvrj45++umnLfbR0ujz3inZ0WhU3bp1U69evVrs61D197//PXl778Je9RljZK3d76/noeD8889Xnz59tGXLFs2cOVPDhw/Xli1bkq/tuHHj5PP5OrlKAGgfTPMGAEBK7uErNQzGrY0Q77V3VWip5ZWhd+zYofLy8iaPfe5zn0veXrp0aYuP19Lx448/Pnm7PfbCTlVbX8OOVFdXp8cee0ySV9/YsWMbtWnLSt+u6+qDDz5onyK7AJ/PpyuvvFKS9Pzzz6u6ulpPPvlkcnbEVVdd1YnVAUD7IkwDAA55tbW1+ve//y3JW4iq/ghxVlaWJO/62pYUFxcnF2yqvwDYvp555plmj/Xu3VtDhw6VJP3lL39ROBxusl1NTY2ee+65Zvs5//zzkys5P/jgg4rH4y3W3t7a+hp2pJtuukmbN2+WJF100UXJ172+gQMHSmr56/nKK6+oqqqqfYrsIsaPHy9jjGpqavTss8/qiSeekOStFH/kkUd2bnEA0I4I0wCAjFRdXa2TTz5Zc+bMaXGaruu6uv7665MLUV144YUNRlL3TpH+8MMPW92Leu82U7NmzWpym601a9ZoypQpLfYxceJESd7K2jfffHOTbW666aYWp3n36dMnOSK4atUqffvb324xUJeVlSX3pW4Pe1/Dzt56TPL2Vr7iiiuSo9KHHXaYpk6d2mTbvdf//utf/9KiRYsaHd+2bZtuuOGG9iu2ixg4cKDOOussSdJPfvKT5Eg9e0sDyHRcMw0AyFhLlizRmDFj1KdPH1100UU69dRT1b9/f+Xn52vnzp1auXKlZsyYkdySqrCwUHfddVeDPr7whS9o5syZKisr0/e+9z1dccUVyS21AoGA+vfvn2z73e9+V3/9618VDoc1YsQI3XHHHTr++ONVXV2t1157TVOnTlVpaan8fr+2b9/eZM0TJ07UzJkztXLlSv32t7/Vxo0b9Z3vfCd5TfdvfvMbzZs3TyeddFKLU73vv/9+vf3221q9erVmzJihf/7zn7r22mv1+c9/Xnl5edq5c6fef/99vfbaa3rllVf0uc99ThMmTDjQl7xJX/jCFzR//nwtXbpU99xzj84//3zl5uZKkrKzs9WnT5+0PVZNTY1Wr16d/DwSiWjnzp364IMPtHDhQr3wwgvJEf/evXvrpZdeUr9+/Zrs69prr9VvfvMbxeNxjRkzRlOmTNHpp5+uaDSqRYsW6f7771c8HteRRx55SE/1lryFyF577bXk9mr5+fm65JJLOrkqAGhnFgCADBQOh23Pnj2tpDb9O/LII+2yZcsa9bN79257+OGHN3lO//79G7W/4YYbmn2Mfv362ffff9/279/fSrLjxo1rsvYtW7bYwYMHN9vPqFGj7Kuvvpr8fP78+U32s2PHDnveeee16fmPHDmy0fnjxo1r9nnWN3PmzGQ/GzdubHR88+bNtqSkpMnHHT58eIt9t1Vbv86SbFZWlr366qtteXl5q/0+8MADzfZTXFxs33zzTTt8+PBmn8v8+fNb/TpZ2/pruNftt9+ebLevjRs3Jo/NnDmz2T7SXZO11kYiEdu9e/dk+2uuuabF9gCQCZjmDQDISFlZWdqyZYsWLVqkn/3sZzr//PN1+OGHKzc3Vz6fTwUFBRoyZIguu+wyPf3001q9erU+//nPN+onLy9Pb7/9tm688UYNHTq01T2Xp06dqqefflpf/OIXVVBQoOzsbA0ePFg//OEPtXLlSn32s59ttfbevXtr5cqV+vnPf65jjjlG2dnZKioq0imnnKLf/OY3+tvf/qZgMNhqPyUlJfrb3/6m119/XVdddZWOPPJI5eXlye/3q6SkRCeddJKuu+46vfLKKw1Wtk63Pn36aMmSJRo/frwGDRqUvIa6I+Tl5al37946/vjjNX78eD3++OPasmWLpk+fnlz1vCU33XST5s6dq3PPPVfFxcUKhUIaOHCgrrvuOr3zzjvJqf2HumAw2GAkmineAA4FxtpWLgADAAAAWnHGGWdo4cKFGjp0aHJBPwDIZIxMAwAA4ID85z//0cKFCyV5q3sDwKGAMA0AAIADct9990nyLq8YN25cJ1cDAB2D1bwBAACQknA4rC1btqi2tlazZ8/W9OnTJXmrenfv3r2TqwOAjsE10wAAoFP95z//UTQaTfm80tJSlZaWtkNFaM2CBQs0cuTIBvf17dtXq1atUklJSSdVBQAdi5FpAADQqUaNGqWPPvoo5fNuv/123XHHHekvCG1mjFGvXr105pln6u677yZIAzikEKYBAACQkhEjRojJjQAOdUzzBgAAAAAgRazmDQAAAABAigjTAAAAAACkiDANAAAAAECKCNMAAAAAAKSIMA0AAAAAQIoI0wAAAAAApIgwDQAAAABAigjTAAAAAACkiDANAAAAAECKCNMAAAAAAKSIMA0AAAAAQIoI0wAAAAAApIgwDQAAAABAigjTAAAAAACkiDANAAAAAECKCNMAAAAAAKSIMA0AAAAAQIoI0wAAAAAApOj/AzpDKYrSkWemAAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {
"image/png": {
"height": 555,
"width": 489
}
},
"output_type": "display_data"
}
],
"source": [
"x_order = ['No', 'Yes']\n",
"\n",
"# Create grid\n",
"grid = sns.FacetGrid(data=df.to_pandas(),height=5) ;\n",
"\n",
"# Add a barpplot; we use map_dataframe so we can control hue separately for this layer\n",
"grid.map_dataframe(sns.barplot, 'Student', 'Balance', hue='Student',palette='deep', order=x_order, alpha=.5);\n",
"\n",
"# Add a regression using our new column\n",
"grid.map_dataframe(sns.regplot, 'Student_Dummy', 'Balance')\n",
"\n",
"# Aesthetics\n",
"grid.set(ylim=(0,1025));\n",
"grid.figure.suptitle(\"Treatment/Dummy Code =\\n Mean Difference as a Linear Model\", y=1.1);"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also see this by estimating a new model using our newly created column `Student_Dummy` as a predictor and comparing its output to our original *augmented model*:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Intercept 463.236842\n",
"Student_Dummy 401.447368\n",
"dtype: float64"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dummy_model = ols('Balance ~ Student_Dummy', data=df.to_pandas())\n",
"dummy_results = dummy_model.fit()\n",
"\n",
"dummy_results.params"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Intercept 463.236842\n",
"C(Student)[T.Yes] 401.447368\n",
"dtype: float64"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a_results.params"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Interpreting parameter estimates"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In our model our parameters represent:\n",
"\n",
"- $\\hat{\\beta_0} = StudentNo_{mean}$ (reference level)\n",
"- $\\hat{\\beta_1} = StudentYes_{mean} - StudentNo_{mean}$\n",
"\n",
"By default `ols` will use **alphabetically sort** the levels of your categorical predictor and use the **first one** as the reference level. In our case this is `No` as as `N` comes before `Y` alphabetically.\n",
"\n",
"But we can be more explicit and even control what group is the reference category. Let's switch it to `Student = Yes`\n",
"\n",
"We can do this by passing a second argument to `C()` in addition to our column name. We can use `Treatment(reference='category_level')` to tell `ols` that the reference category is `Yes`"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Balance R-squared: 0.151\n",
"Model: OLS Adj. R-squared: 0.140\n",
"No. Observations: 76 F-statistic: 13.16\n",
"Covariance Type: nonrobust Prob (F-statistic): 0.000523\n",
"================================================================================================================\n",
" coef std err t P>|t| [0.025 0.975]\n",
"----------------------------------------------------------------------------------------------------------------\n",
"Intercept 864.6842 78.252 11.050 0.000 708.765 1020.604\n",
"C(Student, Treatment(reference='Yes'))[T.No] -401.4474 110.664 -3.628 0.001 -621.951 -180.944\n",
"================================================================================================================\n",
"\n",
"Notes:\n",
"[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n"
]
}
],
"source": [
"# Set the reference group (intercept) to 'Yes'\n",
"ref_yes = ols(\"Balance ~ C(Student, Treatment(reference='Yes'))\", data=df.to_pandas())\n",
"\n",
"print(ref_yes.fit().summary(slim=True)) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now the intercept is the mean of `Student = Yes` and the slope is `No - Yes`\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"864.6842105263158"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"student_yes"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"-401.44736842105266"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"student_no - student_yes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Inspecting the design matrix we can see that the coding has simply been flipped from our *augmented model* above:"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[1., 0.],\n",
" [1., 0.],\n",
" [1., 1.],\n",
" [1., 1.],\n",
" [1., 0.]])"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# No = 1\n",
"# Yes = 0\n",
"ref_yes.exog[:5, :]"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[1., 1.],\n",
" [1., 1.],\n",
" [1., 0.],\n",
" [1., 0.],\n",
" [1., 1.]])"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Originally we had\n",
"# No = 0\n",
"# Yes = 1\n",
"a_model.exog[:5, :]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And just to confirm, we can see that the t-statistic and p-value that `ols` gives us is that same as running an independent t-test using `scipy`:\n"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Independent samples t-test t(74.0) = -3.628, p = 0.00052\n"
]
}
],
"source": [
"from scipy.stats import ttest_ind\n",
"\n",
"results = ttest_ind(\n",
" df.filter(col('Student') == 'No').select('Balance').to_numpy(),\n",
" df.filter(col('Student') == 'Yes').select('Balance').to_numpy())\n",
"\n",
"print(f\"Independent samples t-test t({results.df[0]}) = {results.statistic[0]:.3f}, p = {results.pvalue[0]:.5f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Or in APA style:"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Independent samples t-test t(74.0) = -3.628, p < .001\n"
]
}
],
"source": [
"print(f\"Independent samples t-test t({results.df[0]}) = {results.statistic[0]:.3f}, p < .001\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Categorical (2-level) and Continuous Predictors\n",
"\n",
"In the previous notebook `02_models` we saw that `Income` was also a meaningful predictor of `Balance`:\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"grid = sns.lmplot(data=df, x='Income', y='Balance')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's expand our model to account for this relationship when looking at the difference between Students and non-Students. \n",
"\n",
"Specifically let's estimate a *multiple regression* that asks: **do students have difference Balances than non-students when accounting for Income?**\n",
"\n",
"$$\n",
"\\hat{Balance}_{i}= \\beta_0 + \\beta_1 Student + \\beta_2 Income\n",
"$$\n",
"\n",
"We'll also estimate another *univariate* regression that only looks at the relationship between Balance and Income:\n",
"\n",
"$$\n",
"\\hat{Balance}_{i}= \\beta_0 + \\beta_1 Income\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Challenge\n",
"\n",
"1. Estimate the two models above\n",
"2. Use `anova_lm` to compare both models. Is the multiple regression *worth it*? \n",
"3. Use `anova_lm` to compare the multiple regression to `a_results`, your original augmented model (univariate with only `Student` as a predictor). Is the multiple regression *worth it*?\n",
"4. Create a new dataframe called `df_models` that includes the following columns:\n",
"\n",
"- `Balance` the original balance variable\n",
"- `Student` the original student variable\n",
"- `Income` the original income variable\n",
"- `balance_pred_si` the `.fittedvalues` attribute of the multiple regression\n",
"- `resid_si` the `.resid` attribute of the multiple regression\n",
"- `balance_pred_i` the `.fittedvalues` attribute of the univariate regression\n",
"- `resid_i` the `.resid` attribute of the univariate regression\n",
"- `balance_pred_s` the `.fittedvalues` from the univariate `a_results` we estimated above\n",
"- `resid_s` the `.resid` from the univariate `a_results` we estimated above\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Solution\n",
"# Student only\n",
"s_model = ols('Balance ~ C(Student)', data=df.to_pandas())\n",
"s_results = s_model.fit()\n",
"\n",
"# Income only\n",
"i_model = ols('Balance ~ Income', data=df.to_pandas())\n",
"i_results = i_model.fit()\n",
"\n",
"# Student + Income\n",
"si_model = ols('Balance ~ C(Student) + Income', data=df.to_pandas())\n",
"si_results = si_model.fit()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
],
"text/plain": [
"shape: (5, 9)\n",
"┌─────────┬─────────┬────────┬─────────────┬───┬────────────┬────────────┬────────────┬────────────┐\n",
"│ Balance ┆ Student ┆ Income ┆ balance_pre ┆ … ┆ balance_pr ┆ resid_i ┆ balance_pr ┆ resid_s │\n",
"│ --- ┆ --- ┆ --- ┆ d_si ┆ ┆ ed_i ┆ --- ┆ ed_s ┆ --- │\n",
"│ i64 ┆ str ┆ f64 ┆ --- ┆ ┆ --- ┆ f64 ┆ --- ┆ f64 │\n",
"│ ┆ ┆ ┆ f64 ┆ ┆ f64 ┆ ┆ f64 ┆ │\n",
"╞═════════╪═════════╪════════╪═════════════╪═══╪════════════╪════════════╪════════════╪════════════╡\n",
"│ 16 ┆ Yes ┆ 20.918 ┆ 727.826282 ┆ … ┆ 526.484832 ┆ -510.48483 ┆ 864.684211 ┆ -848.68421 │\n",
"│ ┆ ┆ ┆ ┆ ┆ ┆ 2 ┆ ┆ 1 │\n",
"│ 1216 ┆ Yes ┆ 10.842 ┆ 672.269098 ┆ … ┆ 471.318923 ┆ 744.681077 ┆ 864.684211 ┆ 351.315789 │\n",
"│ 148 ┆ No ┆ 29.705 ┆ 371.643114 ┆ … ┆ 574.593491 ┆ -426.59349 ┆ 463.236842 ┆ -315.23684 │\n",
"│ ┆ ┆ ┆ ┆ ┆ ┆ 1 ┆ ┆ 2 │\n",
"│ 108 ┆ No ┆ 76.348 ┆ 628.823915 ┆ … ┆ 829.963033 ┆ -721.96303 ┆ 463.236842 ┆ -355.23684 │\n",
"│ ┆ ┆ ┆ ┆ ┆ ┆ 3 ┆ ┆ 2 │\n",
"│ 532 ┆ Yes ┆ 30.622 ┆ 781.332328 ┆ … ┆ 579.614049 ┆ -47.614049 ┆ 864.684211 ┆ -332.68421 │\n",
"│ ┆ ┆ ┆ ┆ ┆ ┆ ┆ ┆ 1 │\n",
"└─────────┴─────────┴────────┴─────────────┴───┴────────────┴────────────┴────────────┴────────────┘"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Solution\n",
"df_models = df.select(\n",
" col('Balance'),\n",
" col('Student'),\n",
" col('Income'),\n",
" balance_pred_si = si_results.fittedvalues.to_numpy(),\n",
" resid_si = si_results.resid.to_numpy(),\n",
" balance_pred_i = i_results.fittedvalues.to_numpy(),\n",
" resid_i = i_results.resid.to_numpy(),\n",
" balance_pred_s = a_results.fittedvalues.to_numpy(),\n",
" resid_s = a_results.resid.to_numpy(),\n",
")\n",
"df_models.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Interpreting Parameter Estimates\n",
"\n",
"Now that we know the multiple regression is *worth it*, let's interpret the parameter estimates.\n",
"\n",
"Let's build some visual intuitions by plotting the predictions from the *multiple regression* and each separate *univariate* regression to see what's changing. In the figure below:\n",
"\n",
"- The scatterplot points represent the *raw data* separated by the levels of `Student`\n",
"- In **solid black line** is the relationshion between `Income` and `Balance` if we *ignore* `Student` \n",
"- The **dashed colored lines** represent the relationship between `Balance` and `Student` if we ignore `Income` \n",
"- The **solid colored lines** represent the relationship between `Balance` and `Income` if we account for difference in the *intercepts* for each level of `Student`\n"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMIAAAQ4CAYAAADrfnDfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3hUZfr/8c/MZJJJDwkkoRMSSkBRV0ARxYIFFFgpYhddxQa76toVKTYU26qrfhVdQV0r4C5FREFEUATsmhAgQKgpkACpM5n2+yM/syAHMoHkMMm8X9fldQ157nPmDpLMOfd5nvux+P1+vwAAAAAAAIBmznqsEwAAAAAAAADMQCEMAAAAAAAAIYFCGAAAAAAAAEIChTAAAAAAAACEBAphAAAAAAAACAkUwgAAAAAAABASKIQBAAAAAAAgJFAIAwAAAAAAQEigEAYAAAAAAICQQCEMAAAAAAAAIYFCGAAAAAAAAEIChTAAAAAAAACEBAphAAAAAAAACAkUwgAAAAAAABASKIQBAAAAAAAgJFAIAwAAAAAAQEigEAYAAAAAAICQEHasE0Dz4fF4VFBQIElKTU1VWBj/vAAAAAAAQPBgRhgaTEFBgdq3b6/27dvXFsQAAAAAAACCBYUwAAAAAAAAhISQLYQVFRVp/vz5mjhxogYPHqyWLVvKYrHIYrHo2muvrfP4vLy82vhA/+vUqZPhuc4666yAzxGIrKws3XzzzcrIyFBkZKRatWqlAQMG6NVXX5XH46nH3xIAAAAAAEDzEbJNnFJSUkx/z27dujX6e7zxxhsaN26cXC5X7decTqeWL1+u5cuXa8aMGZo/f76SkpIaPRcAAAAAAIBgErKFsP21b99emZmZ+uyzzwI+pm3btvr111/rjJs6dareffddSdKYMWMOG9u7d2+9+eabAefwR4sWLdKNN94on8+nlJQUPfjggzrllFNUUlKi6dOna86cOfr22281YsQILV26VFZryE4IBAAAAAAAIShkC2ETJ05Unz591KdPH6WkpCgvL09paWkBH2+323XccccdNsbr9erLL7+UJMXGxuriiy8+bHx0dHSd5zwUj8ej8ePHy+fzKS4uTl9//bXS09NrxwcNGqRx48bp5Zdf1ldffaV33nlH11xzzRG9FwAAAAAAQFMUslOCpkyZoiFDhjTqEsnFixdr586dkqRRo0YpKiqq0d7r448/Vm5uriTp/vvvP6AI9runnnpKLVq0qH0NAAAAAAAQSkK2EGaGt956q/Z1Xcsij9Z//vOf2teHavYfFRWl0aNHS5J+++03bdiwoVFzAgAAAAAACCYUwhpJWVlZbXGqY8eOGjBgQKO+3/LlyyXVNORPTU09ZNyZZ55Z+3rFihWNmhMAAAAAAEAwoRDWSGbNmqXKykpJ0jXXXCOLxVLnMTk5OerTp49iY2PlcDjUrl07/fnPf9Zbb70lt9t9yOPKy8u1fft2SVL37t0P+x77j69duzaQbwUAAAAAAKBZCNlm+Y1t/2WRgTalLywsVGFhYe2fd+zYoR07dmju3Ll68sknNWvWLGVmZh503Pbt2+X3+yVJ7dq1O+x7tG/fvvb1tm3bAspr//c5nPz8/HqdDwAAAAAAwEwUwhrB1q1btWzZMknSaaedpoyMjMPGW61WDRw4UBdeeKFOOOEEJSUlqaysTD/88INeffVVrV27VtnZ2Tr77LO1evVqdejQ4YDjy8rKal/HxMQc9r2io6NrX5eXl9fr+9q/iAYAAAAAANDUUAhrBO+8807tDK1AZoPNmTNHCQkJB339jDPO0K233qqxY8dq5syZKiws1O233645c+YcEOd0Omtfh4eHH/a9IiIial9XVVXVmRsAAAAAAEBzQSGsEbz99tuSaopOl156aZ3xRkWw39ntdr3++utatWqVcnJy9PHHH2vHjh1q27ZtbYzD4ah9XV1dfdj3crlcta8jIyPrzG1/dS2lzM/PV9++fet1TgAAAAAAALNQCGtgq1evVk5OjiRp2LBhhy1yBSosLEzXX3+97r77bknSsmXLdMUVV9SOx8bG1r6ua7ljRUVF7eu6llH+UV39xwAAAAAAAIIZu0Y2sCNpkh+IHj161L7esWPHAWP7F6jqami//6wuen4BAAAAAIBQQiGsAbndbn3wwQeSpOTkZA0aNKjBzv17zzEjMTExtUWt32ejHcr+40Y7UAIAAAAAADRXFMIa0IIFC7R7925J0hVXXKGwsIZbeZqdnV37uk2bNgeNn3766ZKkdevWqaCg4JDn+X03S0nq379/g+UHAAAAAAAQ7CiENaD9l0WOGTOmwc7r8Xj0r3/9q/bPAwYMOCjm4osvrn09Y8YMw/NUVlbqww8/lFSz1LJr164NliMAAAAAAECwoxDWQEpKSrRgwQJJ0vHHH68TTzwxoOOWLl2qvXv3HnLc7XbrhhtuqF3SOHToUMPeXsOHD1d6erokaerUqdq4ceNBMXfffbf27NlT+xoAAAAAACCUhOyukStWrFBubm7tn39f0ihJubm5B82quvbaaw97vvfff1/V1dWS6jcbbObMmRo2bJiGDRums846S926dVNcXJzKy8v1/fff69VXX9XatWsl1fQde/755w3PY7fb9cILL2jo0KEqLS1V//79NWHCBPXt21d79uzR9OnTNXv2bEk1yyivvvrqgHMEAAAAAABoDiz+w3Vhb8auvfZazZw5M+D4uv6aTj31VK1atUo2m03bt29Xampqg+Zx/PHH6/333z9g90gj06dP1/jx42uLcn/Ut29fLViwQC1btgwov/rYvn177Wy1bdu2HbCbJQAAAAAAwLEWsjPCGtKGDRu0atUqSdJ5550XcBFMku69916deOKJWrlypbKzs7Vr1y6VlJQoIiJCKSkp6t27t0aNGqXhw4fLZrPVeb6xY8eqX79+euGFF7RkyRLt3LlT0dHRyszM1JVXXqkbbrihQZv4AwAAAAAANBUhOyMMDY8ZYQAAAAAAIJjRLB8AAAAAAAAhgUIYAAAAAAAAQgKFMAAAAAAAAIQECmEAAAAAAAAICRTCAAAAAAAAEBIohAEAAAAAACAkUAgDAAAAAABASKAQBgAAAAAAgJBAIQwAAAAAAAAhgUIYAAAAAAAAQgKFMAAAAAAAAIQECmEAAAAAAAAICWHHOgEAAAAgVFW4PCoqc6m0yi2Xx6eIMKviIu1Kjo1QdASX6gAANDQ+XQEAAACTlVW5tbm4QrlF5Sosdcrp9tWOOexWpcQ5lJEco7SkaMVG2o9hpgAANC8UwgAAAAAT7amo1pq8EuXkl8nr9x807nT7tKW4UttLqlTQ2qk+nRLVIjr8GGQKAEDzQ48wAAAAwCRlVW6tyStR1s5SwyLY/rx+v7J2lmpNXonKqtwmZQgAQPNGIQwAAAAwyebiCuXkl9XrmJz8Mm0urmikjAAACC0UwgAAAAATVLg8yi0qr3Mm2B95/X7lFpWrwuVppMwAAAgdFMIAAAAAExSVuVRY6jyiYwtLnSoqczVwRgAAhB4KYQAAAIAJSqvcB+wOWR9Ot0+l9AkDAOCoUQgDAAAATODyHFkR7HfV3qM7HgAAUAgDAAAATBERdnSX3uE2Lt0BADhafJoCAAAAJoiLtMthP7LLb4fdqrhIewNnBABA6KEQBgAAAJggOTZCKXGOIzo2Jc6h5NiIBs4IAIDQQyEMAAAAMEF0RJgykmNks1jqdZzNYlFGcoyiI8IaKTMAAEIHhTAAAADAJGlJ0ereOrZex3RvHau0pOhGyggAgNDCYyUAAADAJLGRdvXplChJyskvk9fvP2SszWJR99ax6tMpUbH0BwMAoEFQCAMAAABM1CI6XP06Jyk13qHconIVljrldPtqxx12q1LiHMpIjlFaUjRFMAAAGhCFMAAAAMBksZF29WqXoPRWMSoqc6m0yq1qr0/htprdIZNjI+gJBgBAI+DTFQAAADhGoiPClEbBCwAA09AsHwAAAAAAACGBQhgAAAAAAABCAoUwAAAAAAAAhAQKYQAAAAAAAAgJFMIAAAAAAAAQEiiEAQAAAAAAICRQCAMAAAAAAEBIoBAGAAAAAACAkEAhDAAAAAAAACGBQhgAAAAAAABCAoUwAAAAAAAAhAQKYQAAAAAAAAgJFMIAAAAAAAAQEiiEAQAAAAAAICRQCAMAAAAAAEBIoBAGAAAAAACAkEAhDAAAAAAAACGBQhgAAAAAAABCAoUwAAAAAAAAhAQKYQAAAAAAAAgJFMIAAAAAAAAQEiiEAQAAAAAAICRQCAMAAAAAAEBIoBAGAAAAAACAkEAhDAAAAAAAACGBQhgAAAAAAABCAoUwAAAAAAAAhAQKYQAAAAAAAAgJFMIAAAAAAGiisnbuk8frO9ZpAE1G2LFOAAAAAE2Yq1wqL5Sq9kpel2SLkCITpJgUKSLmWGcHAM3W7nKXnvp0nT78fpseHtZTV/frdKxTApoECmEAAACoP2epVLJR2rVOKi2QPFX/GwuLlOJSpVbdpMR0yRF37PIEgGbG7fVp5jd5en7xBpW5PJKkZz5fryG92qhFdPgxzg4IfhTCAAAAUD+VxdKWlVJhtuT3HjzuqZJKNkt7tkopO6SO/aSoJPPzBIBmZvmGXZoyL1u5ReUHfH1vpVvPfr5ej1x83DHKDGg6KIQBAAAgcM7SmiJYwa91x/q9/4tLG8DMMAA4QluLK/Xogmx9ll1oOB4VblO7FpEmZwU0TRTCAAAAELiSjTUzweqjMFuKbyu1OalxcgKAZqqy2qOXl27Ua8s3qdpj3BB/xEltde/g7kqJc5icHdA0UQgDAKABVbg8KipzqbTKLZfHp4gwq+Ii7UqOjVB0BB+7aOJc5TU9wYyWQx6O3yvtWi8ldaGBPgAEwO/3a94v+Zr6yVrl73MaxhzfNl6Th/XQyR0TTc4OaNq4IgcAoAGUVbm1ubhCuUXlKix1yun+31Nbh92qlDiHMpJjlJYUrdhI+zHMFDgK5YU1jfGPRFl+zfEUwgDgsLJ27tOUudlanVdiOJ4YHa57LuimS3q3l81qMTk7oOmjEAYAwFHaU1GtNXklyskvk9fvP2jc6fZpS3GltpdUqaC1U306JbKrE5qmqr0H7g5ZH+6qmuMBAIb2VFTrmc/X6d1VW+U7+HJCNqtFY/p10m3ndlE8D9WAI0YhDACAo1BW5daavBJl7SytM9br99fG9eucxMwwND1e11EeX90weQBAM+Lx+vTu6q165rP12lflNozpn5GkyUN7qktKrMnZAc0PhTAAAI7C5uIK5eSX1euYnPwypcY71KtdQuMkBTQWW8RRHs9MSADY38qNxZoyL0s5BcbXEu1aRGrCRT10Qc8UWSwsgwQaAoUwAACOUIXLo9yicsPlkIfj9fuVW1Su9FYxNNBH0xKZIIVFHtnySHtkzfEAAO3YW6XHF6zVgl/zDccddqvGnZWhsQM6y2G3mZwd0Lxx9Q0AwBEqKnOpsNR4J6e6FJY6VVTmUhqFMDQlMSlSXKpUsrn+x8a2rjkeAEKY0+3Vq8s26ZVluQdsrLO/Ib1a6/4LM9U2IdLk7IDQwNU3AABHqLTKfciL2Lo43T6VHqIPCBC0ImKkVt2kPVslvzfw4yw2qVVXdowEELL8fr8+/a1Ajy5Yqx17jWfVdk+N1eRhPXVq5ySTswNCC4UwAACOkMtzZEWw31V7j+544JhITJdSdkgFvwZ+TEqPmuMAIAStLyzT5LlZ+mZjseF4fKRdd53fVZf37aAwm9Xk7IDQQyEMAIAjFBF2dBer4VzsoilyxEkd+9W8Lsw+/Mwwi62mCNaxX81xABBC9lW69dzi9Xr72y3y+g7uJ2q1SFee0lF/P6+rWkSzmQhgFgphAAAcobhIuxx26xEtj3TYrYqLtDdCVoAJopKktAFSfFtp13qpNP/ABvr2yJqeYK261swEowgGIIR4fX59+N02PbVonUoqqg1j+qYlavLQnurRht+PgNkohAEAcISSYyOUEufQluLKeh+bEudQcmxEI2QFmMQRJ7U5SUrqIpUXSlV7JW+1ZAuv2R0yJoWeYABCznd5JZo0N0tZO0sNx1vHO/TAhZka0qu1LBaLydkBkCiEAQBwxKIjwpSRHKPtJVXy+g9e8nAoNotFGckximbHSDQHETEUvACEvIJ9Tj2xcK3+89NOw/HwMKtuHtBZN5+VrqhwPv+BY4mfQAAAjkJaUrQKWjsP+eTXSPfWsUpLim7ErAAAgBlcHq9eX75ZLy3NVWW1cc/EC3qmaMJFPdQ+Mcrk7AAYoRAGAMBRiI20q0+nRElSTn7ZYWeG2SwWdW8dqz6dEhVLfzAAAJosv9+vJWuL9MiC7EO2SMhIjtHkoT11epeWJmcH4HAohAEAcJRaRIerX+ckpcY7lFtUrsJS5wEN9B12q1LiHMpIjlFaUjRFMAAAmrCNu8r18LxsLVu/y3A81hGmO87tqqv7dZSdHaKBoEMhDACABhAbaVevdglKbxWjojKXSqvcqvb6FG6r2R0yOTaCnmAAADRhZU63XvwiV/9asVke38EzwC0W6dLe7XXXBd3UMoYNcYBgxRU5AAANKDoiTGkUvAAAaDZ8Pr/m/LhDTyzM0e5yl2HMnzokaMqw43R8u3iTswNQX1ypAwAAAABg4KdtezVpbpZ+3rbXcDw5NkL3X9hdF5/YVhaLxdzkABwRCmEAmoQKl6d2uZnL41NEGMvNAAAA0Dh2lbk07dMcffT9dsNxu82i60/vrPHnZCiGa1GgSeEnFkBQK6tya3NxBQ3IAQAA0OiqPT7N/CZPLyzZoDKXxzBmYPdkTRjSQ2kto03ODkBDoBAGIGjtqajWmrwS5eSXyes/uCGp0+3TluJKbS+pUkFrp/p0SlSL6PBjkCkAAACaumXrd2nKvCxt2lVhOJ7WMloTh/TQ2d2TTc4MQEOiEAYgKJVVubUmr0RZO0vrjPX6/bVx/TonMTMMAAAAAdtSXKFH5q/V4rWFhuPR4Tb9bWAXXdc/TeFhVpOzA9DQKIQBCEqbiyuUk19Wr2Ny8suUGu9Qr3YJjZMUAAAAmo0Kl0cvf5mr6V9tVrXXZxgz8k/tdO+gbkqOc5icHYDGQiEMQNCpcHmUW1RuuBzycLx+v3KLypXeKoYG+gAAADDk9/s19+edevyTtSosdRnG9GoXr8nDeupPHVqYnB2AxsadIoCgU1TmUmGp84iOLSx1qqjMpTQKYQAAAPiD33bs0+S5Wfpuyx7D8ZYx4brngu4adXI7Wa0Wk7MDYAbuFAEEndIq9wG7Q9aH0+1TaZW7gTMCAABAU1Zc7tLTn63X+2u2ymjRQZjVomtP66S/ndtFcQ76zQLNGYUwAEHH5TmyItjvDtXjAQAAAKHF4/XpnW+36NnP16vU6TGMOaNLS00a2kMZybEmZwfgWKAQBiDoRBzlbjzhNnbzAQAACHXf5O7WlHnZWldovAFT+8RIPXRRD53XI0UWC8sggVBBIQxA0ImLtMthtx7R8kiH3aq4SKazAwAAhKptJZV6/JO1WvhbgeF4pN2mcWen64YzOstht5mcHYBjjUIYgKCTHBuhlDiHthRX1vvYlDiHkmMjGiErAAAABLOqaq/+b9lG/d+yjYdstTHshDa6/8Luah0faXJ2AIIFhTAAQSc6IkwZyTHaXlIlr1E300OwWSzKSI5RNDtGAgAAhAy/36+FvxXosQVrtWNvlWFMZus4TRnWU33TEk3ODkCw4W4RQFBKS4pWQWunsnaWBnxM99axSkuKbsSsAAAAEExyCko1ZW62Vm4qNhxvEWXXned30+V9O8hmpQ8YAAphAIJUbKRdfTrVPLHLyS877Mwwm8Wi7q1j1adTomLpDwYAANDs7a2s1nOfr9c7q7bK6zv4OtFqka4+taPuOK+rEqLCj0GGAIIVhTAAQatFdLj6dU5SarxDuUXlKix1HtBA32G3KiXOoYzkGKUlRVMEAwAAaOa8Pr/eX7NVTy9apz2VbsOYUzsnatLQnspsHWdydgCaAgphAIJabKRdvdolKL1VjIrKXCqtcqva61O4rWZ3yOTYCHqCAQAAhIA1eSWa9N8sZecbt85omxCpBy/K1ODjUmWxsAwSgDHuHgE0CdERYUqj4AUAABBy8vdVaeonOZr7807D8Ygwq24+M103n5muyHCbydkBaGq4qwQAAAAABB2n26s3VmzWP7/IVZXbaxgz+LhUPXBhptonRpmcHYCmikIYAAAAACBo+P1+LV5bpEfmZ2trSaVhTNeUGE0e2lOnZbQ0OTsATR2FMAAAAABAUMgtKtOUedlavmG34XicI0x/P6+rrjq1o8JsVpOzA9AcUAgDAAAAABxTpU63Xli8QTO+yZPH5z9o3GKRLuvTQXed31VJMRHHIEMAzQWFMAAAAADAMeHz+TXr++2atihHu8urDWN6d2yhycN66ri28SZnB6A5Ctm5pEVFRZo/f74mTpyowYMHq2XLlrJYLLJYLLr22msDOseMGTNqj6nrvxkzZtR5vsrKSj311FPq27evEhMTFRMTo8zMTN11113aunVrwN9bVlaWbr75ZmVkZCgyMlKtWrXSgAED9Oqrr8rj8QR8HgAAAABoLD9s3aPhL3+te2b/YlgES4mL0POXnaiPbu5HEQxAgwnZGWEpKSnHOoUDbNy4URdddJHWrVt3wNdzcnKUk5Oj119/Xe+++64uvPDCw57njTfe0Lhx4+RyuWq/5nQ6tXz5ci1fvlwzZszQ/PnzlZSU1CjfBwAAAAAcTlGpU09+uk6zf9huOB5us+qGM9I07uwMRUeE7C0rgEbCbxVJ7du3V2Zmpj777LMjPseiRYvUpk2bQ463a9fukGPl5eUaMmRIbRFs7NixuuyyyxQZGamlS5dq6tSp2rdvny655BKtXLlSvXr1OmQON954o3w+n1JSUvTggw/qlFNOUUlJiaZPn645c+bo22+/1YgRI7R06VJZrSE7IRAAAACAyao9Pr359Wa9+EWuyl3GK1XOzUzRhIsy1alltMnZAQgVIVsImzhxovr06aM+ffooJSVFeXl5SktLO+Lzde3aVZ06dTqiY59++mnl5ORIkqZNm6a77767dqxfv346++yzNWDAAFVWVur222/XF198cdA5PB6Pxo8fL5/Pp7i4OH399ddKT0+vHR80aJDGjRunl19+WV999ZXeeecdXXPNNUeULwAAAADUx9J1RXpkXrY27a4wHO/cKloTh/TQWd2STc4MQKgJ2SlBU6ZM0ZAhQ475Ekm3263nn39ekpSZmak777zzoJh+/frp+uuvlyQtXbpU33///UExH3/8sXJzcyVJ999//wFFsN899dRTatGiRe1rAAAAAGhMebsrdP2MNbruzTWGRbCYiDA9eGGmPr1tAEUwAKYI2UJYsPjyyy+1d+9eSdKYMWMOuVxx/wb+c+bMOWj8P//5j2Hs/qKiojR69GhJ0m+//aYNGzYcUc4AAAAAcDgVLo+e/DRH5z/3lZbkFBnGXHJyO31x15kaO6CzwsO4NQVgDn7bHGPLly+vfX3mmWceMq53796Kjq5ZJ79ixYpDnqdbt25KTU095Hn2fw+j8wAAAADAkfL7/fr4x+0655kv9cqXG1Xt9R0Uc0L7BH1862l66pITlBzrOAZZAghlIdsjrKFde+21Wrt2rfbs2aO4uDhlZGTo3HPP1S233KK2bdse8ri1a9fWvu7evfsh48LCwpSenq5ffvnlgGOkmmb727dvr/Mcfxz/43kAAAAA4Ej9un2fJs/L0vdb9hiOt4yJ0L2Dumnkn9rJarWYnB0A1KAQ1kCWLVtW+7q4uFjFxcVatWqVnnnmGf3jH//QTTfdZHjctm3bJEnR0dFKSEg47Hu0b99ev/zyi3bt2iWXy6WIiAhJ0vbt2+X3+yUdfnfK38/xx/cO1O/FtkPJz8+v1/kAAAAANH3F5S49/dk6vb9mm/7/bckBwqwW/eX0NP31nAzFOuzmJwgA+6EQdpQ6d+6sESNGqF+/frVFpk2bNmn27NmaNWuWnE6nbr75ZlksFt14440HHV9WViZJiomJqfO9fl8aKdXMAvu9EPb7OQI5zx/PUR/7F9EAAAAAhDa316e3V27Rc4vXq8zpMYwZ0LWVJg7poYzkuu93AMAMFMKOwvDhwzVmzBhZLAdO6+3Tp48uvfRSzZ8/XyNGjJDb7dYdd9yhYcOGHdS/y+l0SpLCw8PrfL/fC1+SVFVVddA5AjnPoc4BAAAAAIFasWG3pszL0oYi44frHRKjNHFIDw3MTD7ofgkAjiUKYUchPj7+sONDhgzRpEmTNGHCBFVWVuqNN97Qgw8+eECMw1HTHLK6urrO93O5XLWvIyMjDzpHIOc51DkCUddSyvz8fPXt27de5wQAAADQdGwrqdRjC9bq06wCw/GocJvGnZ2h609Pk8NuMzk7AKgbhbBGNnbsWD300EPy+/1atmzZQYWw2NhYSYEtU6yoqKh9vf8SyN/PEch5DnWOQNTVfwwAAABA81RV7dUrX+bq1a82yeU5eCdISbr4xDa6b3CmUuPZCRJA8KIQ1siSk5PVsmVL7dq1Szt27DhovF27dlq1apUqKiq0d+/ewzbM/31GVqtWrQ5Y4rh/gaquhvb7z+qi5xcAAACAw/H7/Vrwa74eX7BWO/c5DWN6tonT5GE91adTosnZAUD9WY91AqHAb7R1yv/Xo0eP2tc5OTmHjPN4PNq4caMkKTMz84CxmJiY2qLW4c7xx/E/ngcAAAAAfrc2v1SXvfatxr/7o2ERLDE6XFNHHK+540+nCAagyaAQ1siKiopUXFwsSWrTps1B46effnrt62XLlh3yPN99913tssb+/fsf8jzr1q1TQYHxev0/vofReQAAAACEtj0V1XroP7/poheWa9XmkoPGbVaLrj2tk5beeZYu79tBNivN8AE0HRTCGtlrr71WOyPszDPPPGj8rLPOqm26P3PmzEPOHpsxY0bt6+HDhx80fvHFFxvG7q+yslIffvihpJqZaF27dg3kWwAAAAAQArw+v97+dovOfuZLvf3tFvkMbk1OS0/SJ387Q5OH9VR8lN38JAHgKFEIO0J5eXn68ccfDxszf/58PfLII5Jqdna87rrrDooJDw/X3/72N0nS2rVr9fTTTx8Us3LlSr3xxhuSaoppffr0OShm+PDhSk9PlyRNnTq1dhnl/u6++27t2bOn9jUAAAAASNKqTcUa8uIKPfSf37S30n3QeNuESL1y5Z/07xtOUbfUWIMzAEDTELLN8lesWKHc3NzaP+/evbv2dW5u7kGzqq699toD/pyXl6ezzz5b/fr109ChQ3XiiScqOTlZfr9fmzZt0qxZszRr1qzaGV5PP/202rZta5jL3XffrQ8++EDr16/XPffco9zcXF122WWKjIzU0qVL9fjjj8vj8SgyMlL/+Mc/DM9ht9v1wgsvaOjQoSotLVX//v01YcIE9e3bV3v27NH06dM1e/ZsSTXLKK+++up6/o0BAAAAaG527q3S45+s1fxf8g3HI8KsuvWsDN10Zmc57DaTswOAhmfxH66TezN27bXXaubMmQHH//Gv6csvv9TZZ59d53FRUVF67rnndOONNx42Ljc3VxdeeKE2bNhgOB4XF6d///vfGjJkyGHPM336dI0fP17V1dWG43379tWCBQvUsmXLOnOvr+3bt9c27d+2bdsBu1kCAAAACB5Ot1fTv9qkl77MldPtM4y56PjWuv/C7mrXIsrk7ACg8YTsjLCjdfLJJ+udd97RypUr9d133yk/P1+7d++Wx+NRixYt1LNnTw0cOFA33HCDkpOT6zxfRkaGfvzxR7300kv66KOPlJubq+rqarVv314XXnihbrvtNnXs2LHO84wdO1b9+vXTCy+8oCVLlmjnzp2Kjo5WZmamrrzySt1www0KC+N/OwAAABCK/H6/FmUV6rFPsrWtpMowpntqrCYN7al+6UkmZwcAjS9kZ4Sh4TEjDAAAAAheGwrLNGVetlbk7jYcj4+0687zu+qKvh0UZqOdNIDmialBAAAAANCM7aty6/nFGzRzZZ68BltBWizSFX076M7zuykxOvwYZAgA5qEQBgAAAADNkM/n10ffb9O0T9epuOIQPYQ7JWrSsB7q2Sbe5OwA4NigEAYAAAAAzcz3W/Zo8tws/bpjn+F4apxDD1yUqaG9WstisZicHQAcOxTCAAAAAKCZKCx16smFOZrz4w7D8fAwq248o7NuPTtdUeHcDgIIPfzmAwAAAIAmzuXx6s2v8/Tikg2qqPYaxpzfI0UTLuqhDklRJmcHAMGDQhgAAAAANGFf5BTq4XnZyiuuNBxPbxWtSUN7akDXViZnBgDBh0IYAAAAADRBm3aV65H52Vq6bpfheGxEmG47t4vGnNZJdpvV5OwAIDhRCAMAAACAJqTc5dGLX2zQv1ZsltvrP2jcYpFGn9xed13QTa1iI45BhgAQvCiEAQAAAEAT4PP59fGPO/TEpznaVeYyjDmpQ4ImD+2pE9onmJscADQRFMIAAAAAIMj9vG2vJs/L0o9b9xqOt4qN0H2Dumv4SW1ltVrMTQ4AmhAKYQAAAAAQpHaXu/TUp+v04ffb5D94FaTsNov+0j9N48/JUKzDbn6CANDEUAgDAAAAgCDj9vo085s8Pb94g8pcHsOYs7q10sQhPdS5VYzJ2QFA00UhDAAAAACCyPINuzRlXrZyi8oNxzslRWni0B46p3uKyZkBQNNHIQwAAAAAgsDW4ko9uiBbn2UXGo5Hh9v014FddF3/TooIs5mcHQA0DxTCAAAAAOAYqqz26OWlG/Xa8k2q9vgMY0ac1Fb3Du6ulDiHydkBQPNCIQwAAAAAjgG/3695v+Rr6idrlb/PaRhzfNt4TR7WQyd3TDQ5OwBoniiEAQAAAIDJsnbu05S52VqdV2I4nhQdrrsv6KZLereXzWoxOTsAaL4ohAEAAACASfZUVOuZz9fp3VVb5fMfPG6zWjSmXyfddm4XxUfazU8QAJo5CmEAAAAA0Mg8Xp/eXb1Vz3y2Xvuq3IYxp2e01KShPdQlJdbk7AAgdFAIAwAAAIBGtHJjsabMy1JOQZnheLsWkXpoSA+d3yNFFgvLIAGgMVEIAwAAAIBGsGNvlR5fsFYLfs03HHfYrRp3VobGDugsh91mcnYAEJoohAEAAABAA3K6vXp12Sa9sixXTrfPMGZIr9Z64MJMtUmINDk7AAhtFMIAAAAAoAH4/X59+luBHl2wVjv2VhnGdE+N1eRhPXVq5ySTswMASBTCAAAAAOCorS8s0+S5WfpmY7HheEKUXXee302X92mvMJvV5OwAAL+jEAYAAAAAR2hfpVvPLV6vt7/dIq/Pf9C41SJdeUpH/f28rmoRHX4MMgQA7I9CGAAAAADUk9fn14ffbdNTi9appKLaMOaUtERNHtZTma3jTM4OAHAoFMIAADhKFS6PispcKq1yy+XxKSLMqrhIu5JjIxQdwUctADQ33+WVaNLcLGXtLDUcbxPv0AMXZeqi41vLYrGYnB0A4HC4OgcA4AiVVbm1ubhCuUXlKix1HrAzmMNuVUqcQxnJMUpLilZspP0YZgoAaAgF+5x6YuFa/eennYbj4WFW3Tygs24+K11R4dxqAUAw4rczAABHYE9FtdbklSgnv0xe/8E9YZxun7YUV2p7SZUKWjvVp1MivWEAoIlyebx6fflmvbQ0V5XVXsOYQT1T9eBFmWqfGGVydgCA+qAQBgBAPZVVubUmr+SQS2L25/X7a+P6dU5iZhgANCF+v19L1hbpkQXZ2lJcaRjTJTlGk4b21OldWpqcHSDJVS6VF0pVeyWvS7JFSJEJUkyKFBFzrLMDghKFMACHRe8j4GCbiyuUk19Wr2Ny8suUGu9Qr3YJjZMUAKBBbdxVrofnZWvZ+l2G47GOMN1xbldd3a+j7Darydkh5DlLpZKN0q51UmmB5Kn631hYpBSXKrXqJiWmSw42awD2x10sAEP0PgKMVbg8yi0qN1wOeThev1+5ReVKbxVDERkAgliZ060Xv8jVv1Zslsd38O96i0W6rE973XV+NyXFRByDDBHyKoulLSulwmzJb7BU11MllWyW9myVUnZIHftJUUnm5wkEKa7EARyE3kfAoRWVuVRY6jyiYwtLnSoqcymNQhgABB2fz685P+7QEwtztLvcZRjzpw4JmjLsOB3fLt7k7ID/z1laUwQr+LXuWL/3f3FpA5gZBvx/XIkDOAC9j4DDK61yHzBDsj6cbp9Kq9wNnBEA4Gj9tG2vJs3N0s/b9hqOJ8dG6P4Lu+viE9vKYrGYmxywv5KNNTPB6qMwW4pvK7U5qXFyApoYCmEADkDvI+DwXJ4jK4L9rtp7dMcDABrOrjKXpn2ao4++3244brdZdMMZnTXu7AzFMJsXx5qrvKYnmNFyyMPxe6Vd66WkLjTQB0QhDMB+6H0E1C0i7OgaIofTUBkAjrlqj08zv8nTC0s2qMzlMYwZ2D1ZE4b0UFrLaJOzAw6hvLCmMb6BskqX5q1cqysGnmh8bFl+zfEUwgAKYQD+h95HQN3iIu1y2K1HtDzSYa/ZdRUAcOwsW79LU+ZladOuCsPxtJbRmjikh87unmxyZkAdqvYeuDukJI/Ho1ufn6c5y7NUXFqpdi3jNeCEtIOPdVfVHA+AQhiA/6H3EVC35NgIpcQ5tKW4st7HpsQ5lBzLDmMAcCxsKa7QI/PXavHaQsPx6HCb/jawi67rn6bwo5z9CzQK74GbOLy58Dv99cX5qnBW137tb/+cr+//b5xsRjPQvdUHfw0IQRTCANSi9xFQt+iIMGUkx2h7SVW9lhHbLBZlJLN8GADMVuHy6OUvczX9q82HvFYZ+ad2undQNyXHOUzODqgHW83DtJ9yd2rU5He1cWfJQSE/b8zX65+s0U1DTzE4nl3eAYlCGID90PsICExaUrQKWjsD2l31d91bxyotiT4zAGAWv9+vuT/v1OOfrFVhqcswple7eE0e1lN/6tDC5OyA+it123TZ/W9p4aqcw8Y9+MbnGn1WL7WIjfzfF+2RUmRC4yYINBEUwgDUovcREJjYSLv6dEqUVLNr6uFmhtksFnVvHas+nRIVy88IAJjitx37NHlulr7bssdwvGVMuO4Z1F2j/tROVqvF5OyA+vH5fJo0aZKefPJJud11tyI5IT1VpRXOAwthsa2lmJRGzBJoOiiEAahF7yMgcC2iw9Wvc5JS4x3KLSpXYanzgCKyw25VSpxDGckxSkuKpggGACYoLnfp6c/W6/01W2X0jCLMatG1p3XS387tojgHv5cR/D755BNdc801Ki4urjM2zGbV3y85XU+MvUAWy34FXotNatWVHSOB/49CGHAEKlweFZW5VFrllsvjU0RYzWyo5NiIJt3/h95HQP3ERtrVq12C0lvF1P5OqPb6FG5rHr8TAKCp8Hh9eufbLXr28/UqdXoMY87o0lKThvZQRnKsydkB9bdlyxaNGDFCP/zwQ0Dx556coY8mXaaEmKiDB1N6SInpDZwh0HRxdQ7UQ1mVW5uLK5r17A96HwH1Fx0RpjQKXgBwTHyTu1tT5mVrXWGZ4XiHxChNuChT5/VIOXCWDBCEqqurdcMNN+idd96RP4AH051SE/ThpCvUp1u7gwcttpoiWMd+kiOuEbIFmiau2oEA7amo1pq8kkP2A3K6fdpSXKntJVUqaO1Un06JahHd9HZmofcRAABoCraVVOrxT9Zq4W8FhuORdpvGn5Oh609Pk8NuMzk7oP5efvll3XXXXaqqqqozNioqUs9MvEM3D+olleZLnv2OsUfW9ARr1bVmJhhFMOAAFMKAAJRVubUmrySgWVJev782rl/npCZZIKL3EQAACFZV1V7937KN+r9lG+XyGG/wM+yENrr/wu5qHR9pOA4Ek1WrVmn06NHaunVrnbEWi0VjxozR9OnTFRYWJrnKpfJCqWqv5K2WbOE1u0PGpNATDDgECmFAADYXVygn33i6/aHk5JcpNd6hXu0SGiepRkbvIwAAEEz8fr8W/lagxxas1Y69xjNmerSO0+RhPdU3LdHk7ID6Kykp0SWXXKIvvvgioPiTTz5Zc+bMUYcOHf73xYgYCl5APXEXC9ShwuVRblF5vZrHSzUzw3KLypXeqmk3kaf3EQAAONZyCko1eW6Wvt1UYjjeIsquuy7opsv6dJDNSh8wBDefz6e7775bzz//vLxeb53xrVq10syZMzV48GATsgOaP+5ugToUlblUWOo8omMLS50qKnNRSAIAADgCeyur9dzn6/X2t1vkM3gmabVIV5/aUXec11UJUU2vNytCz6xZszR27Fjt3bu3zli73a4HH3xQkyZNavzEgBDC3TlQh9Iq9wH9serD6faptMrdwBkBAAA0b16fX++v2aqnF63Tnkrja6l+nZM0aVgPdU+lETiC34YNGzRixAj99ttvAcUPGTJE7733nmJiWPYINDQKYUAdDtWENVDV3qM7HgAAIJSsySvRpP9mKTvfeJOitgmRevCiTA0+LlUWC8sgEdycTqeuvvpqzZ49W/4AWq106dJFs2fP1vHHH29CdkBoohAG1CEizHpUx4fbju54AACAUJC/r0pTP8nR3J93Go5HhFl185npuvnMdEWG20zODqi/p59+WhMmTJDL5aozNiYmRv/85z81ZswYEzIDQhuFMKAOcZF2OezWI1oe6bDX7LAIAAAAY063V2+s2Kx/fpGrKrdx4/ALj0/VAxdmql2LKJOzA+rvq6++0mWXXab8/Pw6Y61Wq2688Ua99NJLslp5gA6YgUIYUIfk2AilxDm0pbiy3semxDmUHBvRCFkBAAA0bX6/X4vXFumR+dnaWmJ8ndU1JUaTh/bUaRktTc4OqL/CwkKNHDlSX3/9dUDxp512mmbPnq3U1NRGzgzA/iiEAXWIjghTRnKMtpdUyRvAuv7f2SwWZSTHKJodIwEAAA6QW1SmKfOytXzDbsPxOEeY7jy/m648pYPCaDOBIOfz+TR+/Hi9+uqr8vnqXkXSunVrvfvuuzrrrLMaPzkAB+EOHQhAWlK0Clo7lbXTuGmrke6tY5WWFN2IWQEAADQtpU63Xli8QTO+yZPHd/ADRotFurxvB915XlclxTCrHsHv7bff1rhx41RWVlZnbEREhB5++GHdc889JmQG4FAohAEBiI20q0+nRElSTn7ZYWeG2SwWdW8dqz6dEhXbBPqDVbg8KipzqbTKLZfHp4iwmr5mybERzGYDAAANwufza9b32zVtUY52l1cbxvTu2EKTh/XUcW3jTc4OqL/ffvtNI0eO1Pr16+uMtVgsGjlypN5++205HA4TsgNwONzlAgFqER2ufp2TlBrvUG5RuQpLnQc00HfYrUqJcygjOUZpSdFBXwQrq3Jrc3FFs/heAABA8Pph6x5NmZuln7fvMxxPiYvQAxdmatgJbWSxWEzODqif8vJyXX755Zo/f35A8T169NCcOXPUrVu3Rs4MQKAohAH1EBtpV692CUpvFVM7i6ra61O4rWnNotpTUa01eSWHnN3mdPu0pbhS20uqVNDaqT6dEtUiOvwYZAo0b8zIBNCcFZU69eSn6zT7h+2G4+E2q244I03jzs7gdx6ahIcffliPPvqo3G53nbHx8fF67bXXNHr0aBMyA1AffOIARyA6IkxpTfSCrazKrTV5JQH1O/P6/bVx/TonMTMMaCDMyATQnFV7fHrz68168Ytclbs8hjHnZqbooSGZ6kg/VTQBixYt0tVXX61du3bVGWuz2XTbbbfpqaeektXKRg9AMGqad/IAjtjm4grl5NfdzHN/OfllSo13qFe7hMZJCgghzMgE0JwtXVekR+Zla9PuCsPxzq2iNXFID53VLdnkzID62759u4YPH67vvvsuoPizzz5bs2bNUmJiYiNnBuBoUAgDQkiFy6PcovLDNvs34vX7lVtUrvRWMSxdAI4CMzIBNFd5uyv0yPxsLckpMhyPiQjT7ed20TX9Oik8jFkyCG4ej0djx47VzJkz5Q/gurlDhw764IMPdOqpp5qQHYCjxR0tEEKKylwqLHUe0bGFpU4Vlbma7JJQIBgwIxNAc1Pu8uifX+TqXys2q9rrM4y55OR2untQNyXHslsegt9rr72mO+64Q5WVlXXGRkZGatq0aRo/frwJmQFoKNzRAiGktMp9QC+i+nC6fSqtqrsxKABjzMgE0Jz4/X7956cdmvpJjorKXIYxJ7RP0JRhPXVi+wRzkwOOwHfffadLLrlEeXl5dcZaLBZdeeWVeuONNxQeTvsCoKnhihoIIS7PkRXBfneoJ70A6saMTADNxa/b92nyvCx9v2WP4XjLmAjdO6ibRv6pnaxWi8nZAfWzd+9ejR49Wp9//nlA8SeeeKI+/vhjderUqXETA9BouKIGQkjEUfbkCLfR0wM4UszIBNDUFZe79PRn6/T+mm0ymtwaZrXoL6en6a/nZCjWQV9DBDefz6cHHnhAzzzzjDwe491N95eUlKQ333xTQ4cONSE7AI2JQhgQQuIi7XLYrUd0M+6wWxVHs27giDEjE0BT5fb69PbKLXpu8XqVOY0LBmd2baWHhvRQRnKMydkB9fff//5X1113nfbsMZ7VuL+wsDDde++9evjhh2W18lAYaA4ohAEhJDk2QilxDm0prrv55x+lxDmUHBvRCFkBoYEZmQCaohUbdmvKvCxtKCo3HO+YFKWJQ3ronO7JslhYBongtmnTJg0fPly//PJLQPGDBg3SBx98oLi4uEbODICZKIQBISQ6IkwZyTHaXlJVr4bdNotFGck06gaOBjMyATQl20oq9diCtfo0q8BwPCrcpvHnZOj609MUEWYzOTugfqqrqzVmzBh98MEH8gdwDZyenq6PPvpIJ510kgnZATAbd7VAiElLilZBa6eydpYGfEz31rFKS4puxKyA5o8ZmQCagqpqr175MlevfrXpkEu6Lz6xje4bnKnUeIfJ2QH1949//EP333+/nM66N6yJjo7W888/r+uvv96EzAAcKxTCgBATG2lXn06JkqSc/LLDzgyzWSzq3jpWfTolKpbZKMBRYUYmgGDm9/u14Nd8Pb5grXbuMy4YHNc2TpOH9lTv/38dAQSzr7/+Wpdddpm2b99eZ6zVatX111+vl19+WWFhfN4CzR0/5UAIahEdrn6dk5Qa71BuUbkKS50HLNdy2K1KiXMoIzlGaUnRFMGABsKMTADBaG1+qSbPzdKqzSWG44nR4br7gm4a3bu9bFb6gCG47d69WyNHjtRXX30VUPwpp5yiOXPmqE2bNo2cGYBgQSEMCFGxkXb1apeg9FYxKipzqbTKrWqvT+G2ml5EybERzEABGhgzMgEEkz0V1Xr28/X696ot8hn8OrJZLbr61I6649yuio/i9xCCm8/n0+23366XX35ZXq+3zviUlBS98847Ovfcc03IDkAw4S4XCHHREWFKo+AFmIYZmQCONa/Pr3dXb9Uzn63T3kq3Ycxp6UmaPKynuqbEmpwdUH/vvfeebr75ZpWW1j3jOjw8XBMnTtSDDz5oQmYAghF3vwAAmIwZmQCOlVWbijV5XrbW5hsXDNomROqhIZm6oGeqLBaWQSK4rV27ViNGjFBOTk5A8RdffLH+/e9/KyoqqpEzAxDMuMoGAOAYYUYmALPs3Fulxz9Zq/m/5BuOO+xW3XpWhm4c0FkOu83k7ID6qays1JVXXqn//Oc/AcV3795ds2fPVo8ePRo3MQBNAlffAAAAQDPldHs1/atNeunL3AOWYe/vol6t9cCFmWqbEGlydkD9TZ06VZMnT1Z1dXWdsXFxcXrllVd0xRVXmJAZgKaCQhgAAADQzPj9fi3KKtRjn2RrW0mVYUz31FhNGtpT/dKTTM4OqL8lS5boyiuvVGFhYZ2xNptN48aN03PPPSer1WpCdgCaEgphAADAXK5yqbxQqtoreV2SLUKKTJBiUqSImGOdHdDkbSgs05R52VqRu9twPD7SrjvP76or+nZQmI0iAYLbzp07NWLECK1atSqg+AEDBmjWrFlq1apVI2cGoKmiEAYAAMzhLJVKNkq71kmlBZJnv1kqYZFSXKrUqpuUmC454o5dnkATta/KrecXb9DMlXny+vwHjVst0hWndNDfz+umxOjwY5AhEDiPx6NbbrlF//rXv+TzGS/r3V+7du303nvv6fTTTzchOwBNGYUwAADQ+CqLpS0rpcJsye89eNxTJZVslvZslVJ2SB37SVEs1wIC4fX59dF32/TUonUqrjDum9S3U6ImDeuhnm3iTc4OqL833nhDt912myoqKuqMdTgcevzxx3XHHXeYkBmA5oBCGAAAaFzO0poiWMGvdcf6vf+LSxvAzDCgDt9v2aPJc7P06459huOpcQ49cFGmhvZqLYvFYnJ2QP389NNPGjVqlDZu3FhnrMVi0aWXXqo333xTDofDhOwANBcUwgAAQOMq2VgzE6w+CrOl+LZSm5MaJyegiSssderJhTma8+MOw/HwMKtuGtBZt5yVrqhwLvkR3EpLS3XppZfq008/DSi+V69emjNnjtLT0xs5MwDNEZ+KAACg8bjKa3qCGS2HPBy/V9q1XkrqQgN9YD8uj1dvfp2nF5dsUEW18c/V+T1SNOGiHuqQFGVydkD9+Hw+TZw4UdOmTZPb7a4zvkWLFnrjjTc0fPhwE7ID0FxRCAMAhAZ2Kjw2ygtrGuMfibL8muP5/wNIkr7IKdTD87KVV1xpOJ7eKlqThvbUgK7slofgN3/+fF177bUqLi6uMzYsLEx33nmnHn/8cVmt7HQK4OhQCAMANG/sVHhsVe098O+8PtxVNccDIW7TrnI9Mj9bS9ftMhyPjQjT7ed11TX9Ospuo0iA4LZlyxZdfPHF+umnnwKKP++88/Thhx8qISGhUfMCEDoohAEAmi92Kjz2vK6jPN54BzwgFJS7PHrxiw3614rNcnv9B41bLNLok9vr7kHd1DIm4hhkCASuurpaf/nLX/Tuu+/K7z/43/MfderUSR999JF69+5tQnYAQgmFMABA88ROhcHBdpQ357bwhskDaEJ8Pr8+/nGHnvg0R7vKjIvJJ3VI0OShPXVC+wRzkwOOwD//+U/dc889qqqqe4ZwVFSUnn32Wd10000mZAYgFFEIAwA0T+xUGBwiE2qWoB7J8kh7ZM3xQAj5edteTZ6XpR+37jUcbxUbofsHd9fFJ7aV1WoxNzmgnlatWqXRo0dr69atdcZaLBaNGTNG06dPV1gYt6kAGg+/YQAAzQ87FQaPmJSaPmwlm+t/bGzrmuOBELC73KWnPl2nD7/fJqNVY3abRX85PU1/PaeLYiK4hEdwKykp0ahRo7R06dKA4nv37q3Zs2erQ4cOjZwZAFAIAwA0R+xUGDwiYmo2I9iztX6FSYtNatWV/w9o9txen2Z+k6fnF29QmctjGHN2t1Z6aEgPdW7FzwOCm8/n0913363nn39eXm/dv/NbtWqlt956S4MGDTIhOwCoQSEMAND8sFNhcElMr9mMIJB+bb9L6VFzHNCMLd+wS1PmZSu3qNxwPK1ltB4akqlzujMzEsFv1qxZGjt2rPbu3VtnrN1u14MPPqhJkyY1fmIA8AcUwgAAzQ87FQYXR1zNjpzSoXfw/J3FVlME69iPTQvQbG0trtSjC7L1WXah4Xh0uE1/HdhF1/XvpIgwm8nZAfWzfv16jRgxQllZWQHFDxkyRO+9955iYpjhCODYoBAGAGh+2Kkw+EQl1ezIGd+2pg9baf6Bs/bskTU9wVp1rZkJRhEMzVBltUcvL92o15ZvUrXHZxgz4qS2undwd6XEOUzODqgfp9Opq666SnPmzJHfqLHdH3Tp0kVz5szRcccdZ0J2AHBoFMIAAM0POxUGJ0dczY6cSV1q+rBV7a2ZfWcLr/k7j0mhJxiaJb/fr3m/5GvqJ2uVv89pGHN823hNHtZTJ3dsYXJ2QP1NmzZNEydOlMtV9wzs2NhY/fOf/9Q111xjQmYAUDcKYQCA5oedCoNbRAwFL4SMrJ37NGVutlbnlRiOJ0WH655B3XTJye1ltVpMzg6ony+//FJXXHGF8vPz64y1Wq266aab9M9//lNWq9WE7AAgMBTCAADNDzsVAjjGSiqq9cxn6/Te6q3yGawaC7NadE2/Trrt3C6Kj7SbnyBQDwUFBRo5cqS++eabgOJPO+00zZ49W6mpqY2cGQDUH4UwAEDzxE6FAI4Bj9end1dv1TOfrde+KrdhzBldWmrikB7qkhJrcnZA/fh8Po0bN06vvfaafD7jvnb7a926td59912dddZZjZ8cABwhCmEAgOaJnQoBmGzlxmJNmZelnIIyw/H2iZF66KIeOq9HiiwWlkEiuL311lsaN26cysvL64yNiIjQww8/rHvuuceEzADg6FAIAwA0X+xUCMAEO/ZW6fEFa7XgV+O+SZF2m8adna4bzugsh91mcnZA/fz6668aOXKkNmzYUGesxWLRyJEj9fbbb8vhYKdTAE0DhTAAQPPGToUAGonT7dWryzbplWW5crqNl40NO6GN7r+wu1rHR5qcHVA/5eXluuyyy7RgwYKA4nv27Kk5c+aoa9eujZwZADQsCmEAgNDAToUAGojf79envxXo0QVrtWNvlWFMZus4TR7aQ6d0TjI5O6D+Jk+erMcff1xut3Ffu/3Fx8dr+vTpuuSSS0zIDAAaHoUwAAAAIEDrCso0ZV6WvtlYbDieEGXXXed30+V9O8hmpQ8YgtvChQs1ZswY7dq1q85Ym82m2267TU899ZSsVqsJ2QFA46AQBgAAANRhX6Vbzy1er7e/3SKvz3/QuNUiXXVqR/39vK5KiAo/BhkCgdu6datGjBih77//PqD4s88+W7NmzVJiYmIjZwYAjY9CGAAAAHAIXp9fH6zZpqc/W6eSimrDmFM7J2rS0J7KbH34DTcqXB4VlblUWuWWy+NTRJhVcZF2JcdGKDqCy3I0Po/Ho7Fjx2rmzJny+w8u6P5Rhw4d9OGHH+qUU04xITsAMAefuAAAAICB7/JKNGlulrJ2lhqOt4l36MGLeujC41NlsRx6GWRZlVubiyuUW1SuwlLnAY31HXarUuIcykiOUVpStGIj7Q3+fQCS9Oqrr+rvf/+7Kisr64yNjIzUtGnTNH78eBMyAwBzUQgDTMATYAAAmo6CfU49sXCt/vPTTsPxiDCrbjozXbecma7IcNthz7Wnolpr8kqUk18mr8EMHKfbpy3FldpeUqWC1k716ZSoFtEsrUTDWbNmjUaPHq28vLw6Yy0Wi6666iq9/vrrCg/n3yGA5ilk78CLioq0evVqrV69WmvWrNGaNWtUXFzT9HTMmDGaMWNGnedwOp1atGiRFi9erNWrV2vDhg0qKytTbGysunXrpgsuuEA33XSTWrdufdjznHXWWVq2bFlAeQcyhTkrK0svvviiFi9erB07digmJkaZmZm68sordf311yssLGT/t5uOJ8AAADQdLo9Xry/frJeW5qqy2msYM/i4VD1wYabaJ0bVeb6yKrfW5JUcckbZ/rx+f21cv85JXBfgqO3du1eXXHKJFi9eHFD8SSedpI8//lgdO3Zs5MwA4NgK2YpISkrKUR3/yy+/6PTTT1dZWdlBY3v27NG3336rb7/9Vs8++6xef/11jR49+qjeL1BvvPGGxo0bJ5fLVfs1p9Op5cuXa/ny5ZoxY4bmz5+vpCS28m5sPAEGAKBp8Pv9WrK2SI8syNaWYuNlY11TYjRpaE/1z2gZ8Hk3F1coJ//ga8XDyckvU2q8Q73aJdTrOOB3Pp9P999/v5599ll5PJ4645OSkjRjxgwNGTLEhOwA4NgL2ULY/tq3b6/MzEx99tlnAR9TWlpaWwTr37+/hgwZot69eyspKUm7du3SnDlz9Prrr6usrExXXHGFYmNjNXjw4MOes3fv3nrzzTeP+PtYtGiRbrzxRvl8PqWkpOjBBx/UKaecopKSEk2fPl1z5szRt99+qxEjRmjp0qVse9yIeAIMAEDTsHFXuR6el61l63cZjsc6wvT387rqqlM7ym4L/NqpwuVRblG54cOww/H6/cotKld6qxjaJ6DePv74Y11//fXas2dPnbFhYWG67777NGXKFO4LAISUkP10nThxovr06aM+ffooJSVFeXl5SktLC/h4q9Wq0aNHa9KkSerRo8dB4+eff74GDx6s4cOHy+v16q9//as2bNhw2Eaq0dHROu64447o+/F4PBo/frx8Pp/i4uL09ddfKz09vXZ80KBBGjdunF5++WV99dVXeuedd3TNNdcc0XuhbjwBBgAguJU53XphyQa9+XWePL6Di1UWi3RZnw666/yuSoqJqPf5i8pcKix1HlFuhaVOFZW5lEYhDAHauHGjhg8frl9//TWg+MGDB+v9999XXNzhdzoFgOYoZD9dp0yZclTHn3baaTrttNMOG/PnP/9ZI0aM0OzZs7Vx40b99NNPOumkk47qfQ/l448/Vm5uriTp/vvvP6AI9runnnpK7733nvbs2aOnnnqKQlgj4Qkw6ovNFADAPD6fX7N/2K4nP12n3eUuw5iTO7bQlGE9dVzb+CN+n9Iq9wG9QevD6faptMp9xO+N0OF0OnXttdfqww8/DKiXcHp6umbNmqUTTzyx8ZMDgCDFHVYjO/vsszV79mxJNU9qGqsQ9p///Kf29bXXXmsYExUVpdGjR+vVV1/Vb7/9pg0bNqhLly6Nkk8o4wkwAsVmCgBgrp+27dWkuVn6edtew/GUuAjdPzhTfz6xzWFn8QfC5TmyItjvqr1Hdzyav3/84x+6//775XTWfd0ZHR2t559/Xtdff70JmQFAcONuu5Ht37S+MdfeL1++XJLUrVs3paamHjLuzDPP1KuvvipJWrFiBYWwRsATYASCzRQAwDxFZU5N+3SdZn2/3XA83GbVDWekadzZGQ02Ezci7Oiu+8Lr0Y8MoWXFihW67LLLtGPHjjpjrVarrr/+er388svsHA8A/x+/DRvZsmXLal937979sLE5OTnq06ePcnJy5Ha71bJlS5188skaOXKkLr/8ctntxjNCysvLtX379oDeY//xtWvXBvptoB4a6gkwy+WaLzZTAABzVHt8mvlNnp5fskHlLuPd887NTNaEi3qoU8voBn3vuEi7HHbrET0cc9hrPvOB/RUVFWnUqFG1D8Drcsopp2jOnDlq06ZNI2cGAE0Ld9ON6Oeff9aCBQskST179jRsqr+/wsJCFRYW1v55x44d2rFjh+bOnasnn3xSs2bNUmZm5kHHbd++vbYnQLt27Q77Hu3bt699vW3btoC/l9/f53Dy8/Prdb7m6mifAFsk5RaV6Zft+1gu10yxmQIANL4v1xXp4fnZ2rSrwnC8c8toPTS0h87ultwo758cG6GUOIe2FFfW+9iUOIeSY+vfoB/Nk8/n02233aZXXnlFXq+3zvjU1FS98847GjhwoAnZAUDTQyGskbhcLt1www21H1aPP/74IWOtVqsGDhyoCy+8UCeccIKSkpJUVlamH374Qa+++qrWrl2r7OxsnX322Vq9erU6dOhwwPFlZf+7oY6JiTlsXtHR/3vaWV5eXq/vaf8iGg7taJ4AW1QzI+zrDcUqqaw+aJzlck0fmykAQOPK212hRxdka/HaIsPxmIgw3Tawi8ac1knhR/nw6nCiI8KUkRyj7SVV9fqdb7NYlJHM73rUePfdd3XLLbeotLTuWeTh4eGaNGmSHnjgARMyA4Cmi0/YRjJ+/Hh99913kqQxY8Zo2LBhh4ydM2eOEhISDvr6GWecoVtvvVVjx47VzJkzVVhYqNtvv11z5sw5IG7/Bpnh4YcvikRE/O/pYlVVVSDfCurpSJ8AV3u8inHYVe70GBbB9sdyuaaLzRQAoHFUuDx6aWmuXl+++ZCN5ked3E73DOqm5FiHKTmlJUWroLUzoKXwv+veOlZpSQ27TBNNT3Z2tkaMGKF169YFFH/xxRfr3//+t6Kioho5MwBo+ribagRTp07V66+/Lkk6+eST9dJLLx023qgI9ju73a7XX39dq1atUk5Ojj7++GPt2LFDbdu2rY1xOP53MVddffgCyv7N+yMjIw8b+0d1LaXMz89X375963XO5uhInwCXOj3qkhKrPXUUwfbHcrmmh80UAKBh+f1+zf15px7/ZK0KS12GMSe0i9fkYT11UocWpuYWG2lXn06JknTIzVF+Z7NY1L11rPp0SuQBVwirrKzUFVdcof/+978BxXfv3l1z5swxbJ8CADBGIayBvfrqq7XTkbt166aFCxcesBzxSISFhen666/X3XffLammAf8VV1xROx4bG1v7uq7ljhUV/+uTUdcyyj+qq/8Y/qe+T4DdXp/SW0UrzmHX2vzAnxqzXK7paajNFAAA0m879mny3Cx9t2WP4XjLmHDdO6i7Rv6pnaxWi8nZ1WgRHa5+nZOUGu9QblE5/T9xSI899pgefvjhOh9sS1JcXJz+7//+T5dffrkJmQFA88KdcwN67733dOutt0qSOnbsqMWLF6tVq1YNcu79G+3/cavk/QtUdTW0339WFz2/Gk99nwB3So5Ri+hwbSgsl8dXv95RLJdrWo52M4VwW+P1swGApqK43KWnP1uv99dsldFHbJjVouv6d9JfB3ZRnOPYF5ZiI+3q1S5B6a1ianeErvb6FG5jR2hIixcv1lVXXXXAplmHYrPZNG7cOD333HOyWrkmAIAjwSduA5k7d66uueYa+Xw+tW7dWkuWLGnQGVT+wxRSYmJi1L59e23btk05OTmHPc/+40yhblz1eQIcZbdp6bpdh9za/XBYLte0HM1mCg57zQ0TAIQqj9end77domc/X69Sp/Fn5oCurTRxSA9lJNdv5rsZoiPCeHCFWjt27NCIESO0evXqgOIHDBig2bNnq2XLlo2cGQA0b3wSN4AlS5Zo9OjR8ng8SkpK0ueff6709PQGfY/s7Oza123atDlo/PTTT9d7772ndevWqaCgQKmpqYbnWbZsWe3r/v37N2iOOFigT4C/yys5oiLY71gu13Qc6WYKkpQS51BybETdgQDQDH2du1tT5mVpfaFxG4gOiVGaOKSHBmYmy2I5NssggUB4PB7dfPPNevPNN+Xz1X0N165dO7333ns6/fTTTcgOAJo/5tMepW+++UZ//vOf5XK5FBcXp0WLFqlnz54N+h4ej0f/+te/av88YMCAg2Iuvvji2tczZswwPE9lZaU+/PBDSTVLLbt27dqgeeLQoiPClNYyWie0T1CfTok6oX2C0lpG1y6DsB/lcjeWyzUdv2+mYKvnTZrNYlFGMr3gAISebSWVuuWd73Xl66sMi2CRdpvuvqCbPrtjgM7tkUIRDEHtjTfeUEJCgt544406i2AOh0PPPfectm3bRhEMABoQd89H4aefftJFF12kiooKRUdH65NPPtHJJ59cr3MsXbpUe/fuPeS42+3WDTfcULukcejQoYa9vYYPH147C23q1KnauHHjQTF333239uzZU/saweP35XJHguVyTU9aUrS6t46tO3A/3VvHKi3p6DbeAICmpKraq2c/X69zn12mhb8VGMb8+cQ2+uKuMzXu7Aw57DaTMwQC9+OPPyo9PV033HDDAZtXGbFYLLrsssu0Z88e3X777eYkCAAhJGSnFqxYsUK5ubm1f969e3ft69zc3INmVV177bUH/Hnjxo264IILaotYjz76qOLj4/Xbb78d8j2Tk5OVnJx8wNdmzpypYcOGadiwYTrrrLPUrVs3xcXFqby8XN9//71effVVrV27tvb4559/3vDcdrtdL7zwgoYOHarS0lL1799fEyZMUN++fbVnzx5Nnz5ds2fPllSzjPLqq68+7N8PzMVyudBS380UureOVZ9OiewkBiAk+P1+ffJrgR5bkK2d+5yGMT3bxGnysJ61v0uBYFVaWqrRo0dr0aJFAcX36tVLc+bMafA2KwCA/7H4D9eFvRm79tprNXPmzIDj//jXNGPGDF133XX1es9JkyZp8uTJR5TH8ccfr/fff/+A3SONTJ8+XePHjz/ktst9+/bVggULGqXJ5vbt22tnq23btq1BNwtoSBUuT22/LpfHp4iw4Nix6Zfte/Vlzq7DFkX+yGax6KzurdSrXULjJYZGU1bl1ubiijo3U0hLiqYIBiAk5BSUavLcLH27qcRwvEWUXXdf0F2X9mkvm5UlkAhePp9PDz30kKZNmyaPp+4+sImJiXrjjTcOaHcCAGgcITsjLFjce++9OvHEE7Vy5UplZ2dr165dKikpUUREhFJSUtS7d2+NGjVKw4cPl81W95T/sWPHql+/fnrhhRe0ZMkS7dy5U9HR0crMzNSVV16pG264QWFhofm/PdiLDmlJ0Spo7VTWztKAj2G5XNMW6GYKANDc7a2s1rOfr9c7326Rz+B5kM1q0dWndtQd53ZVfBQPBhDc5s2bp+uuu07FxcV1xoaFhemuu+7SY489JquVrjUAYIaQnRGGhhfMM8L2VFRrTV5JvZahtYgONzHDGk0lTwAAGoLX59d7q7fqmc/WaU+l2zCmX+ckTR7WU91S69dbETBbXl6ehg8frp9++img+PPOO08ffvihEhISGjUvAMCBmGqAZq+syq01eSUBzbTy+v21cf06J5k+M6xFdLj6dU5SarwjaGeuAQDQEFZvLtGkuVlam2/8+dw2IVITLsrUoONS2QkSQa26ulp/+ctf9O677x7UTsVIp06d9NFHH6l3794mZAcA+CMKYWj2NhdXKCe/rF7H5OSXKTXecUx6b7FcDgDQnO3cW6WpC3M07+edhuMRYVbdcla6bhqQrshwdoJEcHvxxRd17733qqqqqs7YqKgoPffcc7rxxhtNyAwAcCjcTaNZq3B5lFtUXq8G9FLNzLDconKlt4o5ZkWn6IgwpVHwAgA0E063V68v36SXlm5UldtrGHPR8a11/4Xd1a5FlMnZAfWzcuVKXXrppdq2bVudsVarVWPGjNFrr70Wsr16ASCY8JsYzVpRmUuFpcZbr9elsNSpojIXxSgAAI6C3+/XZ9mFenRBtraVGM+a6ZYSq0nDeui09Ibf1RpoSMXFxRo1apS+/PLLgOJ79+6tOXPm1PbRBQAce9zho1krrXIf0GOrPpxun0qrjBv3AgCAuuUWlWnKvGwt37DbcDw+0q6/n9dVV57SQWE2dsxD8PL5fLrzzjv14osvyus1ntG4v1atWuntt9/WBRdcYEJ2AID6oBCGZs3lObIi2O+qvUd3PAAAoajU6dbzizdo5jd58vgObk9gsUhX9O2gO8/vpkR2P0aQ++ijjzR27Fjt27evzli73a4JEyZo4sSJJmQGADgSFMLQrEWEHd3T5XCeTgMAEDCfz69Z32/XtEU52l1ebRjTp1MLTRraU8e1jTc5O6B+1q1bpxEjRig7Ozug+CFDhui9995TTExMI2cGADgaFMLQrMVF2uWwW49oeaTDXrNLIwAAqNv3W/Zoyrws/bLdeNZMapxD91/YXcNOaCOLxWJydkDgKisrdc0112jOnDnyB7DhUteuXTV79mwdd9xxJmQHADhaFMLQrCXHRiglzqEtxZX1PjYlzqHk2IhGyAoAgOajqNSpJz7N0ZwfdhiOh9usunFAZ91yVvox24kZCNS0adM0ceJEuVyuOmNjY2P10ksv6eqrrzYhM6AObqdUukNKSj/WmQBBj6sRNGvREWHKSI7R9pIqeQN4ovc7m8WijOQYLtgBADgEl8erN7/O04tLNqii2rh5+Hk9UjThokx1TIo2OTugfr788ktdfvnlKigoqDPWarXq5ptv1osvviirlTYaOMb8fmndQmnR/ZLVLt3yjRRG70XgcLjLR7OXlhStgtZOZe0sDfiY7q1jlcZFOwAAhpbmFOnh+dnavLvCcDy9VbQmDe2pAV1bmZwZUD8FBQUaMWKEVq5cGVB8//79NWvWLKWmpjZyZkAAdq2TPr1P2vjF/762+jXptPHHLiegCaAQhmYvNtKuPp0SJUk5+WWHnRlms1jUvXWs+nRKVCz9wQAAOMDm3RV6ZH62vsgpMhyPjQjTbed20ZjTOsnOhjMIYl6vV+PGjdP06dPl89XdS7ZNmzZ69913deaZZ5qQHVAH5z5p2TRp1f9JPs+BY8uelHqNlmKSj01uQBNAIQwhoUV0uPp1TlJqvEO5ReUqLHUe0EDfYbcqJc6hjOQYpSVFUwQDAGA/5S6P/vlFrt5YsUlur/EDpdG92+nuC7qrFf01EeRmzpyp8ePHq7y8vM7YiIgIPfLII7r77rtNyAyog88n/fRvackUqWKXcUxypuQqoxAGHAaFMISM2Ei7erVLUHqrGBWVuVRa5Va116dwW83ukMmxEfQEAwBgPz6fX//5aYeeWJijojLj5uEntk/QlGE9dUL7BHOTA+rpl19+0ahRo7Rhw4Y6Yy0Wi0aOHKm3335bDofDhOyAOmxbIy28R9r5g/F4bGvpvEek40dJ7MwLHBZ3/Qg50RFhSqPgBQDAYf2yfa8mz83SD1v3Go63io3QfYO6a/hJbWW1ctOF4FVeXq7LLrtMCxYsCCi+Z8+e+vjjj9WlS5dGzgwIQFmBtHiK9PO7xuO2cKnfeOmMO6WIGHNzA5ooqgEAAACotbvcpac+XacPv98mo7aadptFf+mfpvHnZCjWQSsBBLfJkyfr8ccfl9vtrjM2ISFB06dP16hRo0zIDKiDp1pa9Yq07Cmpusw4putg6YLHpKR0c3MDmjgKYQAAAJDb69NbK7foH4vXq8zpMYw5s2srTRzaQ+mtmHWA4LZw4UKNGTNGu3Ydoo/Sfmw2m26//XZNmzZNViubPCAIbPi8ZjfI4lzj8aQu0qAnpC7nmpsX0ExQCAMAAAhxyzfs0pR52cotMm4e3ikpShOH9tA53VNMzgyon61bt2rEiBH6/vvvA4o/55xz9NFHHykxMbGRMwMCULxRWvSAtP5T4/HwWOmse6W+N0lh4ebmBjQjFMIAAABC1NbiSj26IFufZRcajkeF2/TXc7roL6d3UkSYzeTsgMC53W6NHTtWb731lvxGa3r/oEOHDvrwww91yimnmJAdUAdXubT8aWnlS5K32jjmxCulgZOkWB5IAEeLQhgAAECIqaz26JUvN+rVrzap2uMzjBl+UlvdN7i7UuLYMQ/B7ZVXXtFdd92lysrKOmMjIyP11FNPady4cSZkBtTB75d++VBaPEkqyzeOaXuyNHia1K63ubkBzRiFMAAAgBDh9/s1/5d8Pf7JWuXvcxrGHNc2TlOG9dTJHVkqhuC2Zs0aXXLJJdqyZUudsRaLRVdddZVef/11hYezpAxBYOeP0sJ7pW2rjMejk6VzJ0snXC7Ruw5oUBTCAAAAQkD2zlJNnpel1ZtLDMcTo8N1zwXddEnv9rJZLSZnBwRu7969GjVqlJYsWRJQ/EknnaSPP/5YHTt2bOTMgABU7JaWPCz98JYkg2W81jDplJulM++RHPGmpweEAgphAAAAzdieimo98/k6vbtqq3wG91w2q0XX9Ouo28/tqvhIu/kJAgHy+Xy677779Nxzz8njMd7ZdH9JSUmaMWOGhgwZYkJ2QB28bmnN69LSqZJrn3FM+sCa3SBbdTU3NyDEUAgDAABohjxen95bvVVPf7Ze+6rchjH9M5I0aWhPdU2JNTk7oH7mzJmjG264QXv27Kkz1m6367777tPkyZNlZUkZgsHGpdKn90m7cozHW3SqKYB1HSRZmJELNDYKYQAAAM3Myo3FmjIvSzkFZYbj7VpEasJFPXRBzxRZuOlCENu4caOGDx+uX3/9NaD4wYMH6/3331dcXFwjZwYEYM8W6bMHpbXzjMft0dKAO6VTx0l2NiYBzEIhDAAAoJnYsbdKj3+yVgt+Md59zGG36tazMnTjgM5y2G0mZwcEzul06tprr9WHH34ov99gTe8fpKena/bs2TrhhBNMyA6oQ3WltOI56ZsXJI/xxiQ6frR03hQpro25uQGgEAYAANDUOd1evfbVJr38Za6cbp9hzJBerXX/hZlqmxBpcnZA/Tz77LN68MEH5XQeooCwn+joaL3wwgv6y1/+YkJmQB38finrY+mzh6TS7cYxqb2kwdOkjv3MzQ1ALQphAAAATZTf79eirAI9umCttu+pMozpnhqrycN66tTOSSZnB9TPihUrdNlll2nHjh11xlqtVl1//fV6+eWXFRbGLQ2CQMFv0sJ7pS0rjMejkqSBE6WTrpaszMgFjiU+NQAAAJqg9YVlmjIvS1/nFhuOx0faddf5XXV53w4Ks9EwHMGrqKhII0eO1IoVhygg/MGpp56q2bNnq00blpQhCFSWSEsfk777l+Q3mJFrsUl9x0pn3SdFtjA/PwAHoRAGAADQhOyrcusfi9frrZVb5PUd3DvJapGuPKWj/n5eV7WIDj8GGTauCpdHRWUulVa55fL4FBFmVVykXcmxEYqO4NK2KfH5fLrtttv0yiuvyOv11hmfmpqqd955RwMHDjQhO6AOPq/0/ZvSF49KVYfYzTRtgDToSSmlh7m5ATgsrhYAAACaAK/Prw+/26anFq1TSUW1YUzftERNHtpTPdo0vx3zyqrc2lxcodyichWWOg/oheawW5US51BGcozSkqIVG2k/hpkiEP/+97916623qrS0tM7Y8PBwTZ48Wffff78JmQEByPu6Zhlk4SF2M41vL13wmJQ5TGJnXiDoUAgDAAAIct9vKdGkuVn6bYdx0aB1vEMPXJipIb1ay9IMb7r2VFRrTV6JcvLL5DXYQdDp9mlLcaW2l1SpoLVTfTolNsvZcM1BVlaWRo4cqXXr1gUUP3z4cL3zzjuKiopq5MyAAOzbLn0+UfpttvF4mEM6/Q7ptL9J4fybBYIVhTAAAIAgVVjq1BMLc/Txj8bNw8PDrLppQGfdcla6osKb52VdWZVba/JKlLWz7plDXr+/Nq5f5yRmhgWRiooKXXnllfrvf/8bUHxmZqZmz56tzMzMRs4MCIDbKX3zorTiWcldaRzT42Lp/EekhA6mpgag/prnFRMAAEAT5vJ49a8VeXrxiw2qrDbunXRBzxRNuKiH2ic271kHm4srlJNfVq9jcvLLlBrvUK92CY2TFOrl0Ucf1SOPPKLqauMlvfuLi4vTa6+9pksvvdSEzIA6+P1SzgJp0QPS3i3GMck9pMFP1vQDA9AkUAgDAAAIEn6/X1/kFOmR+dnKKzaedZCRHKNJQ3vojC6tTM7OfBUuj3KLyg2XQx6O1+9XblG50lvF0ED/GPr888911VVXqaioqM5Ym82mcePG6bnnnpPVyi6nCAJFOdKn90qbvjQedyRI50yQTr5OsvF7BmhK+IkFAAAIAht3leuR+dn6ct0uw/FYR5juOLerru7XUXZbaBQKispcKix1HtGxhaVOFZW5lEYhzHTbt2/XyJEjtXr16oDiBwwYoNmzZ6tly5aNnBkQgKq90rInpVWvSn6jGbkWqfd10tkTpOgks7MD0AC4MgAAADiGypxuvfhFrt78erPc3oNnPlks0qW92+uuC7qpZUzEMcjw2Cmtch+wO2R9ON0+lVa5GzgjHI7H49HNN9+sN998Uz5f3f/f2rVrp/fff1/9+/c3ITugDj6f9NM70uIpUuVu45gO/WqWQbY+wdzcADQoCmEAAADHgM/n15wfd+iJhTnaXe4yjPlThwRNHtYzZHtduTxHVgT7XbX36I5H4N544w3ddtttqqioqDPW4XBo6tSpuv322xs/MSAQ21ZLn9wt5f9kPB7bpqYR/nEja55OAGjSKIQBAACY7OdtezVpbpZ+2rbXcDw5NkL3De6ui09sK6s1dG+6IsKObgloeIgsIT2WfvjhB11yySXatGlTnbEWi0WXXXaZ3nzzTUVEhNbsRgSpsgLp80nSL+8bj9vCpdP+Jp3xdyk82tzcADQaCmEAAAAm2VXm0rRPc/TR99sNx+02i64/vbPGn5OhGHpbKS7SLofdekTLIx12q+Ii7Y2QFSRp3759uvTSS7Vo0aKA4k844QTNmTNHnTt3buTMgAB4XNK3r0hfPSVVlxvHdLtIuuBRKZF/s0BzwxUWAABAI6v2+PTWyjw9v3iDylwew5hzuifroSE9lNaSWQe/S46NUEqcQ1sOsYPm4aTEOZQcy6yjhubz+TRhwgQ99dRT8niM/y3vLzExUf/617/05z//2YTsgACs/0z69D6pZKPxeMuu0qAnpIyB5uYFwDQUwgAAABrRV+t3acq8LG3cZdw7Ka1ltB4akqlzuqeYnFnwi44IU0ZyjLaXVMnrP3gjgUOxWSzKSI5RNLPqGtTcuXN13XXXqaSkpM7YsLAw3XXXXXrsscdktbJEFUFgd6606H5pw2fG4xFx0ln3SX1vlGzMJgWaM64OAAAAGsGW4go9Mn+tFq8tNByPDrfpbwO76Lr+aQo/yl5YzVlaUrQKWjuVtbM04GO6t45VWhIz6xrK5s2bNWLECP30008BxZ9//vn64IMPlJCQ0Kh5AQFxldUsgVz5suQz2knWIp10pTRwkhSTbHp6AMxHIQwAAKABVbg8evnLXE3/avMhdy0c8ae2um9QdyXHOUzOrumJjbSrT6dESVJOftlhZ4bZLBZ1bx2rPp0SFUt/sKNWXV2t6667Tu+99578AczIS0tL04cffqjevXubkB1QB59P+uUDafEkqdz4gYTa9ZEGPym1Pdnc3AAcUxTCAAAAGoDf79fcn3dq6ic5Kih1GsYc3zZek4f11MkdW5icXdPWIjpc/TonKTXeodyichWWOg9ooO+wW5US51BGcozSkqIpgjWAF198Uffcc4+cTuN/y/uLiorSc889pxtvvNGEzIAA7PhBWniPtH2N8XhMinTuFKnXpRJLd4GQQyEMAADgKP22Y5+mzMvSmrw9huNJ0eG6d1B3jTq5naxWi8nZNQ+xkXb1apeg9FYxKipzqbTKrWqvT+G2mt0hk2Mj6AnWAFauXKlLL71U27ZtqzPWarVqzJgxeu211xQWxt89gkD5LmnJFOnHdyQZzGK02qVTb5EG3C054kxPD0Bw4BMLAADgCJVUVOvpz9bpvdVbZbRyLMxq0ZjTOulvA7sonllKDSI6IkxpFLwa3O7du3XJJZfoyy+/DCi+T58+mjNnjtq1a9e4iQGB8Lql1dOlL6dKrkP0E8w4r2Y3yJYZ5uYGIOhwFQEAAFBPHq9P/161Vc98tk6lTo9hzBldWmrikB7qkhJrcnZA4Hw+n+688069+OKL8nq9dcYnJyfrrbfe0gUXXGBCdkAANn4hLbxP2r3OeDyxc00BrCv/ZgHUoBAGAABQD99s3K0pc7O1rrDMcLx9YqQeuqiHzuuRIouFZZAIXh9++KFuvPFG7du3r85Yu92uCRMmaOLEiSZkBgSgZLP02QQpZ77xuD1aOvNu6dRbpbAIc3MDENQohAEAAARg+55KPf7JWn3ya4HheKTdpnFnp+uGMzrLYbeZnB0QuHXr1mn48OFau3ZtQPFDhw7Vu+++q5iYmEbODAhAdYW04jnp6xckr8s4ptdl0rmTpbjWpqYGoGmgEAYAAHAYTrdX/7dso175cqNcHp9hzLAT2uj+C7urdXykydkBgausrNTVV1+tjz/+WH6jpnZ/0LVrV82ePVvHHXecCdkBdfD7pd9mS59PlEp3GMe0PlEaPE3qcIqpqQFoWiiEAQAAGPD7/Vr4W4EeW7BWO/ZWGcZkto7T5KE9dErnJJOzA+rnySef1KRJk+RyHWIGzX5iY2P18ssv66qrrjIhMyAABb9Kn9wjbf3GeDwqSRo4STrpKsnKjFwAh0chDAAA4A/WFZRp8twsrdxUbDieEGXXXed30+V9O8hmpQ8YgtcXX3yhK6+8UgUFxkt692e1WnXzzTfrxRdflNVqNSE7oA6VJdIXj0rfvyn5DWbkWmzSKTdJZ94rRSaYnh6ApolCGAAAwP+3r9Kt5xav19vfbpHXd/DSMatFuurUjvr7eV2VEBV+DDIEAlNQUKARI0Zo5cqVAcX3799fs2fPVkpKSiNnBgTA66kpfn3xqOTcaxyTdmbNMsjk7qamBqDpoxAGAABCntfn1wdrtumpRTnaU+k2jDm1c6ImDe2pzNZxJmcHBM7j8Wj8+PGaPn26fD7jnnb7a9Omjd577z0NGDDAhOyAAGxeLi28VyrKMh5P6CBd8LjUfYjEzrwAjgCFMAAAENLW5JVo8twsZe0sNRxvE+/Qgxf10IXHp8rCTReC2MyZMzV+/HiVl5fXGRsREaFHH31Ud911lwmZAQHYu036/CEp62Pj8bBI6Yw7pdPGS3Y2JgFw5CiEAQCAkFSwz6mpC9fqvz/tNByPCLPqpjPTdcuZ6YoMp/kygtcvv/yikSNHKjc3t85Yi8WiUaNG6a233pLD4TAhO6AO7irp6xekFc9JHuONSdRzhHTew1JCe3NzA9AsUQgDAAAhxen26o0Vm/XS0lxVVnsNYwYfl6oHLsxU+8Qok7MDAldeXq5LL71Un3zySUDxxx13nObMmaMuXbo0cmZAAPx+ae08adGD0r6txjEpx0mDn5Q6nW5ubgCaNQphAAAgJPj9fi1eW6RH5mdra0mlYUzXlBhNGtpT/TNampwdEDi/36/Jkydr6tSpcruNe9rtLyEhQdOnT9eoUaNMyA4IQNHamj5gm5cZj0e2kM6ZIP3pWsnGLSuAhsVvFQAA0OzlFpXr4fnZ+mr9LsPxWEeY/n5eV111akfZbVaTswMC98knn2jMmDHavXt3nbE2m0133HGHnnzySVmt/LtGEKjaK335hLT6NclvMCPXYpV6/0U6+0EpKtH09ACEBgphAACg2Sp1uvXC4g2a8U2ePD7/QeMWi3RZnw666/yuSoqJOAYZAoHZunWrRowYoe+//z6g+HPOOUcfffSREhMpJiAI+LzSj29LSx6WKouNYzr2r1kGmXq8ubkBCDkUwgAAQLPj8/k164ftmvZpjnaXVxvGnNyxhaYM66nj2sabnB0QuOrqao0dO1Zvv/22/P6Di7l/1LFjR33wwQc65ZRTTMgOCMDWb6WF90j5PxuPx7WVzn9U6jm85ukEADQyCmEAAKBZ+XHrHk2em6Wft+8zHE+Ji9D9gzP15xPbyMJNF4LYK6+8ojvvvFNVVYfYSW8/kZGRevrpp3XrrbeakBkQgNJ8afEk6ZcPjMdtEVL/26TTb5fCo01NDUBooxAGAACahaIyp55cuE6zf9huOB5us+qGM9I07uwMRUdwCYTgtWbNGl1yySXasmVLnbEWi0VXXXWVXn/9dYWHh5uQHVAHj0ta+ZL01dOSu8I4pvsQ6YLHpBadTE0NACQKYQAAoImr9vg045vNemFJrspdHsOYczOTNeGiHurUklkHCF4lJSUaPXq0lixZElD8n/70J82ZM0cdO3Zs5MyAAPj90vpF0qf3SXs2G8e06i4NekJKP9vc3ABgPxTCAABAk7V0XZEemZetTbuNZx10bhmth4b20Nndkk3ODAicz+fTfffdp+eee04ej3Exd39JSUmaMWOGhgwZYkJ2QAB2b5A+vV/K/dx4PCJeOvt+qc8Nks1ubm4A8AcUwgAAQJOTt7tCj8zP1pKcIsPxmIgw/W1ghq49LU3hYVaTswMCN2fOHF1//fXau3dvnbF2u1333XefJk+eLKuVf9cIAs5S6atp0revSD6jIq5F+tPV0jkTpZhWpqcHAEYohAGAWVzlUnmhVLVX8rpqmsRGJkgxKVJEzLHODmgSKlwe/XNprt5YvlnVXp9hzKiT2+meQd2UHOswOTsgcLm5uRoxYoR+/fXXgOIHDx6s999/X3FxcY2cGRAAn0/65X3p80lShfEDCbXrK104TWpzkrm5AUAdKIQBQGNzlkolG6Vd66TSAsmz3+5fYZFSXKrUqpuUmC45uMEBjPj9fv33p52aunCtCktdhjEntIvX5GE9dVKHFiZnBwTO6XRqzJgx+uijj+T3++uMz8jI0OzZs9WrVy8TsgMCsON76ZN7pB3fGY/HpErnPSz1Gi2xMy+AIEQhDAAaU2WxtGWlVJgt+b0Hj3uqpJLN0p6tUsoOqWM/KSrJ/DyBIPbbjn2aNDdL32/ZYzjeMiZc9wzqrlF/aierlZsuBK/nnntODzzwgJxOZ52x0dHRevHFF3XdddeZkBkQgPIiafEU6ad3jMetdqnfOGnAXVJErLm5AUA9UAgDgMbiLK0pghUEsOzF7/1fXNoAZoYBkorLXXr6s3V6f802GU2cCbNadF3/TvrrwC6Kc9B8GcFr+fLluvzyy7Vjx446Y61Wq2644Qa99NJLCgvjUh1BwFMtrX5NWvak5Co1juk6SLrgcSkp3dzcAOAI8OkKAI2lZGPNTLD6KMyW4tvSTwMhze316Z1vt+jZz9erzGm8g96Arq00cUgPZSTTXw/Bq6ioSCNHjtSKFSsCiu/Xr59mzZqlNm3aNHJmQIByl0if3iftXm88npguDXpC6nq+uXkBwFGgEAYAjcFVXtMTzGg55OH4vdKu9VJSFxroIyR9nbtbU+ZlaX1hueF4h8QoTRzSQwMzk2Wh9wyClM/n02233aZXXnlFXm/dnwOpqal65513NHDgQBOyAwJQskla9KC07hPj8fAY6cx7pFNukcLCzc0NAI4ShTAAaAzlhTWN8Y9EWX7N8RTCEEK2lVTqsQVr9WmW8c9NpN2m8edk6PrT0+Sw20zODgjcu+++q1tuuUWlpYdYQraf8PBwTZkyRffdd58JmQEBcJVLK56VvnlR8lYbx5xwhXTuJCk21dzcAKCBUAgDgMZQtffA3SHrw11VczwQAqqqvXpl2Ua9umyjXB6fYcyfT2yj+wZ3V+v4SJOzAwKXnZ2tESNGaN26dQHFDx8+XO+8846ioqIaOTMgAH6/9Oss6fOJUtlO45g2J0mDn5La9zE3NwBoYBTCAKAxeF1HefwhnsICzYTf79cnvxbosQXZ2rnPeAe9Hq3jNOXPPdWnU6LJ2QGBq6io0BVXXKG5c+cGFJ+ZmanZs2crMzOzkTMDApT/s7TwXmnrSuPx6FbSwEnSiVdKVqu5uQFAI6AQBgCNwRZxlMfTbwPN19r8Uk2em6VVm0sMx1tE2XXXBd10WZ8OslnpA4bg9dhjj+nhhx9WdXXdDy/i4uL02muv6dJLLzUhMyAAFcXSF49I38+QZLA1rzVMOuXmml5gjnizswOARkMhDAAaQ2SCFBZ5ZMsj7ZE1xwPNzN7Kaj37+Xq98+0W+QzuuWxWi64+taPuOLer4qPs5icIBOjzzz/XVVddpaKiojpjbTab/vrXv+qZZ56Rldk0CAZej/Tdv6Slj0rOfcYx6efU7AbZqpu5uQGACSiEAUBjiEmR4lKlks31Pza2dc3xQDPh9fn17uqteuazddpb6TaM6dc5SZOG9VD31DiTswMCt2PHDo0YMUKrV68OKP7MM8/UrFmz1LJly0bODAjQ5q9qlkEWZRuPJ3SUBk2Vul0osTMvgGaKQhgANIaImJqnqHu2Sn5v4MdZbFKrruwYiWZj1aZiTZ6XrbX5xjvotU2I1ISLMjXouFRZuOlCkPJ4PLr55pv15ptvyucz3tRhf+3bt9cHH3ygfv36mZAdEIC9W6XPJkjZ/zUet0dJZ9wp9Rsv2R3m5gYAJqMQBgCNJTFdStkhFfwa+DEpPWqOA5q4nXurNHVhjub9bLz7WESYVbecla6bBqQrMtxmcnZA4N544w3ddtttqqioqDPW4XDoiSee0G233WZCZkAA3FXS189LK56TPMYbk+i4UdJ5D0vxbc3NDQCOEQphQBNS4fKoqMyl0iq3XB6fIsKsiou0Kzk2QtER/DgHHUec1PH/zwYozD78zDCLraYI1rFfzXFAE+V0ezX9q016+cuNqnIb/5u/8PhUPXBhptq1iDI5OyBwP/74o0aNGqVNmzbVGWuxWHT55ZfrzTffVHg4m50gCPj9NbO/PntI2rfVOCbleOnCaVLH08zNDQCOMe6cgSagrMqtzcUVyi0qV2GpU073/5ZlOOxWpcQ5lJEco7SkaMVG0mA6qEQlSWkDap6y7lovleYf2EDfHlnTE6xV15qZYBTB0ET5/X59ll2oRxdka1uJ8SYR3VJiNWlYD52WTr8kBK99+/bp0ksv1aJFiwKKP/HEEzVnzhylpaU1cmZAgAqzpYX3SHnLjccjE6WBD0l/GiNZmZELIPRQCAOC3J6Kaq3JK1FOfpm8/oO3WXO6fdpSXKntJVUqaO1Un06JahHN0+ig4oiT2pwkJXWRygulqr2St1qyhdfsDhmTQk8wNGm5RWWaMi9byzfsNhyPc4TpzvO76cpTOijMxq55CE4+n08PPfSQpk2bJo/HU2d8YmKi3nzzTQ0bNsyE7IAAVO2Rlk6V1rxuPAvdYpX63CCddb8UlWh+fmhQrBQBjhw/IUAQK6tya01eibJ2GjeZ3p/X76+N69c5iZlhwSgihoIXmpVSp1vPL96gmd/kyeM7uFBvsUiX9+2gu87vpkQK9Ahic+fO1V/+8hcVFxfXGRsWFqa7775bjz76qKxWCrsIAj6v9MNb0pKHpaoS45hOZ0iDnpBSjzM3NzQ4VooAR49CGBDENhdXKCe/rF7H5OSXKTXeoV7tEhonKQAhz+fz66Pvt2nap+tUXFFtGNOnUwtNGtpTx7WNNzk7IHB5eXkaPny4fvrpp4DiL7jgAn3wwQeKj+ffNYLElpU1yyALfjEej28vnf+o1OPPNU8n0KSxUgRoGBTCgCBV4fIot6jc8EPucLx+v3KLypXeKoZp0QAa3Pdb9mjKvCz9sn2f4XhqnEP3X9hdw05oIws3XQhS1dXVuu666/Tee+/JH8DnbOfOnfXRRx/pT3/6kwnZAQEo3Sl9PlH69SPj8TCH1P92qf9tUjgbkzQHrBQBGg53yUCQKipzqbD0ENtc16Gw1KmiMpfSKIQBaCBFpU498WmO5vyww3A83GbV2AFpuvWsDIrwCGovvvii7rnnHjmddX/GRkdH67nnntPYsWNNyAwIgNsprfyntPxZyV1hHJM5rGYWWIuO5uaGRsVKEaDhcKUKBKnSKvcBa/7rw+n2qbTK3cAZAQhFLo9Xb36dpxeXbFBFtUHzZUnn9UjRhIsy1TEp2uTsgMB98803uuyyy7Rt27Y6Y61Wq6699lq9+uqrCgvjchlBwO+X1i2UFt0v7ckzjmmVKQ1+Uup8pqmpofGxUgRoWPw0AEHK5TmyItjvqr1HdzwALM0p0sPzs7V5t/Gsg86tojVpaE+d2bWVyZkBgdu9e7dGjRqlZcuWBRTft29fzZ49W+3atWvkzIAA7VovfXqftHGJ8bgjXjr7Qan39ZKN27vmiJUiQMPipwEIUhFhR7cTVbit+e1kxTbRgDk2767QI/Oz9UVOkeF4TESYbj+3i67p10nhR/m7CmgsPp9Pd955p1588UV5vcazGfeXnJyst99+W+eff74J2QEBcO6Tlk2TVv2f5PMYBFikk8dI5zwkRbc0PT2Yh5UiQMPizhEIUnGRdjns1iP60HPYawpEzQXbRAPmKHd59OIXG/SvFZvl9hovvxjdu53uvqC7WsVGmJwdELgPPvhAN910k/btM97UYX/h4eGaMGGCHnroIRMyAwLg80k/vystnixV7DKOaX+KNHia1OZEMzPDMcJKEaBhUQgDglRybIRS4hzaUlxZ72NT4hxKbiY3qWwTDTQ+n8+v//y0Q1MX5mhXmcsw5sT2CZo8rKdObJ9gbnJAPaxbt04jRoxQdnZ2QPHDhg3Tu+++q+ho+tshSGz/TvrkbmnnD8bjsa2l8x6Rjh8lsTNvyGClCNCwKIQBQSo6IkwZyTHaXlJVr8aYNotFGcnNoyEm20QDje+X7Xs1eW6Wfti613C8ZUyE7hvcXSNOaiurlZsuBKfKykpdffXV+vjjj+UP4DOzW7dumj17tnr27GlCdkAAygqlJVOkn/5tPG4Ll/qNl864U4qIMTc3HHOsFAEaVtO/UwaasbSkaBW0dgZUCPpd99axSmsmO7exTTTQeHaXu/TUp+v04ffbZFQ3sNss+kv/NI0/J0OxDi6gEbyefPJJTZo0SS6X8WzG/cXGxuqVV17RlVdeaUJmQAA81TU9wJZNk6oPcc3T7ULp/EelpHRzc0PQYKUI0LAohAFBLDbSrj6dEiXpkEsDf2ezWNS9daz6dEpsFrOh2CYaaBxur09vrdyifyxerzKnUfNl6cyurTRxaA+lt2LWAYLX0qVLdcUVV6igoKDOWKvVqltuuUUvvPCCrFaWCCFIbFgsfXqvVJxrPJ7URRr0hNTlXHPzQtBhpQjQsPiJAIJci+hw9eucpNR4R0g1i2ebaKDhLd+wS1PmZSu3qNxwvGNSlCYO6aFzuifLQu8ZBKn8/HyNHDlSK1euDCj+9NNP1+zZs5WcnNzImQEBKt4oLXpQWr/QeDw8VjrrXqnvTVIYfU9RI9RXigANibtEoAmIjbSrV7sEpbeKUVGZS6VVblV7fQq31az5T46NaHZPetgmGmg4W4sr9eiCbH2WXWg4HhVu0/hzMnT96WmKCLOZnB0QGK/Xq3Hjxmn69Ony+er+fGjTpo3ef/99nXHGGSZkBwTAVS4tf1pa+ZLkrTaOOfEqaeBEKTbF3NwQ9EJ5pQjQ0JrXnTPQzEVHhIXMLCe2iW4eKlye2uKty+NTRFjzLd4Go8pqj175cqNe/WqTqg/xMzX8pLa6b3B3pcQ5TM4OCNyMGTP017/+VeXlxrMZ9xcREaHHHntMd955pwmZAQHw+6VfP5I+nyiV5RvHtD1ZGjxNatfb3NzQpITqShGgoXEXAiAosU1001ZW5dbm4gou0o4Rv9+veb/ka+ona5W/z3iJ8XFt4zR5aE/1/v9Pl4Fg9Msvv2jkyJHKzT1ED6X9WCwWXXLJJZo5c6YcDgq7CBI7f5IW3iNtW2U8Hp0snTtZOuFyif51CEAorhQBGho/IQCCEttEN117Kqq1Jq/kkNP2nW6fthRXantJlQpaO9WnU6JaRNMDpaFk7yzV5LlZWp1XYjieGB2uuy/optG928tmpQ8YglNZWZkuv/xyLViwIKD4448/XrNnz1aXLl0aOTMgQBW7pSUPSz+8JclgCZs1TDrlZunMeyRHvOnpoekLpZUiQEPjJwdAUGKb6KaprMqtNXklATVy9fr9tXH9OicxM+wo7amo1jOfr9O7q7bKZ3DPZbNadE2/jrp9YFfFR/F3jeDk9/s1efJkTZ06VW533b0eExIS9Prrr2vkyJEmZAcEwOuW1rwhLX1ccu0zjkkfWLMbZKuu5uYGAJBEIQxAkGKb6KZpc3GFcvLL6nVMTn6ZUuMd6tUuoXGSauY8Xp/eXb1Vz3y2XvsOsUlE/4wkTRraU11TYk3ODgjcwoULdc0112j37t11xtpsNt1xxx168sknZWU5GYLFpi+lhfdJu9Yaj7foVFMA6zpIYmdeADhmuFMEELTYJrppqXB5lFtUXq/CpVQzMyy3qFzprShg1tfKjcWaMi9LOQXGxcd2LSI14aJMXdAzVRZuuhCktmzZohEjRuiHH34IKH7gwIH68MMPlZhIfzsEiT1bpM8elNbOMx63R0sD7pROHSfZ6V8HAMcadxwAghbbRDctRWUuFZYaN2avS2GpU0VlLnpdBGjH3io9/slaLfjFePcxh92qW8/K0I0DOstht5mcHRAYt9utG264QW+//bb8ARTQO3bsqI8++kh9+vQxITsgANWV0tf/kL5+XvIc4vPv+NHSeVOkuDampgYAODTuOAAENbaJbjpKq9xHtLmBVNNAv/QQy/rwP063V699tUkvf5l7yL/ri3q11gMXZqptQqTJ2QGBe+WVV3TXXXepsrLuPpCRkZF6+umndeutt5qQGRAAv1/K/o+0aIJUut04JrWX/h979x0eRfU1cPy7u+m9kIRAAoQOEaQXQbp0ULoKCkhRROwI/KSDoggqKiAozY4UC70XpTdRSCiBEAiEhDTSy2b3/WNfIjGTZBOSyZKcz/P4uOSemT1pm5mz955Lj/lQtbWqqQkhhChYuS2ERUVFcfz4cY4fP86JEyc4ceIEMTExAAwfPpzVq1cX6nzbt29n+fLlHD9+nDt37uDl5UWLFi0YO3Ys3bt3N+scKSkpLF68mHXr1hESEkJGRgb+/v706tWLV199lSpVqph1nvPnz/P555+ze/dubt68iZOTE/Xq1WPo0KGMGjUKK6ty+20XDynZJvrhkK4vWhHsnoysBzu+LDMajew4f5u5W4IJj0tVjKlb0ZkZfQJpXcNT5eyEMN+JEycYNGgQYWFhBcZqNBqee+45vvrqK2xsZGdZYSFun4NtkyDsT+VxB0/oPB0aPwdamZErhBCWSGM0Zy56GZRfr5TCFMKMRiMvvfQSy5cvzzNm7NixfPnll/k+55UrV+jVqxcXL15UHHd1deWHH36gZ8+e+eazYsUKxo8fT3p6uuJ4q1at2Lx5M56exX+jFB4ejr+/PwA3btzAz8+v2J9DCGG5zt6IZ8f52ySn60nXG9AbjFhpNdhaaXG0tcJal39D6051vXnU302dZB8ilyITmbXpPIdCYhTHXe2tebtrbZ5pUQWrAr7GQpSWuLg4Bg0axJ49e8yKb9q0KRs3bjT7TUAhSlxKrGknyJMrwKjwxo1GBy3GQIfJYO+ufn5CCCHMJlfMgL+/P127di3SsVOnTs0ugjVu3Jgff/yR48eP8+OPP9K4cWMAli9fzrRp0/I8R1JSEr17984ugo0ZM4Y9e/Zw+PBh3nvvPZycnLh79y6DBg3i77//zvM8O3bsYOzYsaSnp+Pj48Nnn33GsWPH2LZtG/379wfg6NGj9O/fH4NBZl4IIYpPUlomBqORiLuphEQlERqdzI3YFEKjkwmJSspe1pqhz1I83s7aNLtP/OtuaiazNp2nx6I/FItgWg0Ma1WF/W934LnW1aQIJiySwWBg4sSJeHt7m1UEq1ChAlu3buXkyZNSBBOWwZAFJ76Gz5vAia+Ui2AB7eClP6HHh1IEE0KIh0C5nRE2Y8YMmjdvTvPmzfHx8eHatWsEBAQA5s8ICwkJoV69euj1epo1a8bBgwext/+3J0tKSgrt27fn5MmTWFlZceHCBWrUqJHrPDNnzmTWrFkAzJ8/n4kTJ+YYP3LkCO3atUOv19OxY0f27t2b6xx6vZ569eoREhKCi4sLp0+fzvVc48ePZ8mSJQCsWbOG559/vsDPsTBkRpgQ5VNccgYnrsWi02g4FhrD2fC7inEaoIKzLZXd7HM1cK/q6UC3wIqyxBXIMhj5+eQNPtpxkdjkDMWYFgEezOwTSP1KLipnJ4T5NmzYwOjRo4mPjy8w1tramilTpjBz5kzZ4VRYjmuHTMsgI/9RHnetAt3mQr2+ID+3Qgjx0Ci3bx/PmjWL3r174+PjU+RzfPLJJ+j1egA+//zzHEUwAAcHBz7//HPAVKj69NNPc50jMzOTRYsWAVCvXj3eeuutXDGtW7dm1KhRAOzbt49Tp07livnll18ICQkBYMqUKYoFt48++gh3d/fsx0II8aASUzM5cS2W87cSiEnOoE5FF6y0yjcDRuBOYjo341NzzAzTaTTU9HaSIhhw8losTy7+kykb/1Esgvm62vH5M41ZO7bVgxfB0pMg5gqEn4Kww6b/x1wxfVyIBxASEkKDBg0YOHCgWUWwXr16ERMTw6xZs6QIJizD3XBY/wKs7qlcBLOygw7/g1eOQ/0npQgmhBAPmXJbCHtQRqOR3377DYC6devSqlUrxbhWrVpRp04dAH799ddc24Pv378/+yJx+PDhaLXK35IRI0ZkP964cWOu8V9//VUx9n4ODg4MHjwYgHPnznH58mXFOCGEMFdoTDIXIhIBiExIw9XemlbVPcnvliA6MZ24lH93iKzr60yAp2MJZ2rZIhPSeGPtXwz88gjnbibkGrex0jKhU032vNWePo9WerBiQVoC3DoDFzZD0Ca4vBOuHjD9P2iT6eO3zpjihCiEtLQ0hgwZQu3atTl37lyB8TVr1uTs2bNs3rwZZ2dnFTIUogCZaXDgI/iiOZzboBxT/yl45QR0mATWsjuvEEI8jKQQVkShoaHcvHkTgPbt2+cbe288PDyca9eu5Rj7448/csUpadasGY6OphvFP//MvUvNvfPUqVOHihUrFphLXucRQghzJafrCYlKIuv/C/x6g5HQ6GTqV3KhTc0K+c4Mi03OwGAwEljJhebVPHAup/3B0vVZLNkfQscF+/nlzE3FmK71fdj9Rnve6loHB5sHnDWXEgOhB+HSLogNBf1/dqDUp5o+fmmXKS5FuUG/EP+1cOFC3Nzc+Pnnn3O96fdfTk5OrF69msuXL9OwYUOVMhQiH0YjBG+GxS1g31zITMkd4x0IwzfD4DXgJv3rhBDiYSbrUIooODg4+3HdunXzjb1/PDg4OLsXWWHOY2VlRY0aNfj7779zHAOmZvvh4eFFykUIIYoqKjGdyIS0HB9LStdz9U4y9XxdqORmz8XIRK5EJZGUrs+OcbazooaXI21qeRLo61oui2BGo5G9F6KYvTmIsBiFGy6gprcTM/rU5/FaXsXzpGkJEHYEbufR6yZHgln/xgW0AzvpRSaU/fHHHzz99NPcunWrwFitVsuYMWP44osvsLKSS1BhIe5cNPUBu7pPedzODTpNhaYjQSc/t0IIURbIq3kR3bhxI/txQU3h7zWQ/+9x9//b0dERNze3As/z999/c+fOHdLT07G1tQVMM83uvfv6ILkU5F6xLS8RERGFOp8Q4uGWkJpJWmbu3bOS0vUERyTg7WJLs6ruNPZ3IzFdT6begLWVFmdbK3RaDRUcbctlEezKnSTmbA5i/8U7iuPOtla8/kRtnm9dFevi3Aky9gpEBhXumMggcK0MlRoXXx6iTIiKimLAgAFmzy5v3bo1GzduzHfWuhCqSrsL+z+E48vAoFcI0ECzkdBxKjh6qp6eEEKIkiOFsCJKTEzMfuzk5JRv7L0ljWCavaV0noLOoXSee4Ww4sqlIPcX0YQQIl2vsIX8/9MbjNyKT+NWfBpuDtbYWeuwttKSZTByOyGN+JRM3B1tVMy29CWmZfL53hBW/hmK3pB76ZhGA4Ob+jOxex0qONkW75OnJ5lmPRizCo69nzEL7lwCz1pgW/DfKVH2GQwGXn31Vb788kuysgr+eapYsSLff/89nTp1UiE7IcxgMMBf38HuWZASrRxT5THo8SH4ytJdIYQoi6QQVkRpaf8uB7Kxyf9m7l7BCiA1NWc/lnvnKegc+Z2nuHIRQojCsLUyb7ZSfEomkJnr4zbFOdvJghkMRjaeuckH2y4QnZSuGNO4ihsz+wTyqL9bySSRFAkJt4t2bGKE6XgphJV733//PePGjcvxBlxebGxsmD17NpMmTVIhMyHMdOM4bHvHtCGIEudK0HUOPDJAdoIUQogyTAphRWRnZ5f9OCMj9xb390tP//fGx94+5+4y985T0DnyO09x5VKQgpZSRkRE0KJFi0KdUwjx8HKxt8bOWqu4PLIgdtZaXMrBssizN+KZ8ft5/roRrzju5WzLlB51eapRZbR5bC5QLFLjczfGN1dmqul4UW6dP3+eAQMGcPHixQJjNRoN/fr149tvv8XBwUGF7IQwQ+Jt2D0Tzv6oPK6zgcdehcffBJvyvYuxEEKUB1IIK6L7t/kuaIlhcnJy9uP/Ll28dx5zlinmdZ7iyqUgBfUfE0KUL97Otvi42OXZ7D0/Pi52eDsX8/I/C3InMZ2Pdlzg55PKvRWtdRpeaBvAhE61cLJV4U9xlvJMNPOPL/jNGlH2JCUlMXToUH7//Xez4uvXr8+GDRsK3LhHCNXo0+HoUjj4EWTkcY1cpxd0mwse1dXNTQghRKmRQlgR3V8UKqiJ/P0zqf7bZ8vPz49jx46RnJxMfHx8vg3z753Hy8srxxLH4spFCCEKw9HWipreToTHppJlzN3zKi86jYaa3k44qlEAUllmloE1h6+xaPdlEtOVmi9Dp7reTO1Vj+peKi411D1g0VFXvvq5CZgzZw5z5841a8a6q6sry5YtY8iQISpkJoSZLu2E7ZNNG4UoqVAbun8ANTurm5cQQohSV/buQlRSv3797McXLlzIN/b+8Xr16uU6z4YNG7LjWrVqpXgOvV7PlStXFM/h5OSEv78/N27ceKBchBCisAI8Hbntm8b5WwlmH1PX15kAz7K39OTgpTvM2nSeK3eSFccDKjgyrXc9OtX1UTkzwN4NrOyLtjzS2t50vCgXdu3axbBhw4iKiiowVqfTMWHCBBYuXIhWWz56/omHQMwV2D4FLu9QHrd1gQ6TocVY0JX9JfpCCCFyk0JYEQUEBFCpUiVu3brFgQMH8o09ePAgAJUrV6ZatWo5xtq2bZv9+MCBA3kWwk6ePJm9rLFNmza5xtu2bcuPP/7IxYsXuX37dp7bk9+fq9J5hBCiMJztrWlezQOACxGJ+c4M02k01PV1pnk1D5zLUH+w6zEpzNkSxK6gSMVxRxsdEzrXYmSbatha6VTO7v85+YBLRYgNLfyxzr6m40WZFh4eTv/+/Tlx4oRZ8R06dGDdunVUqFChhDMTwkzpiaYlkEeWgCH3Bi2ggcZDofMMcPJWPT0hhBCWQ96+KyKNRsOTTz4JmGZZHT16VDHu6NGj2bOwnnzySTT/2YGmQ4cOuLq6ArBmzRqMedxErl69Ovtxv379co0/9dRTirH3S0lJ4eeffwZMM9Fq166tGCeEEIXh7mhD6+qedKjrRVVPB+ysc/5psbPWUtXTgQ51vWhd3RN3x7KxzC4lQ8+CHRfp8smBPItg/RtXZu/bHXipfY3SK4KBacdHrzqgKWQOGh141ZYdI8swvV7PCy+8QNWqVc0qgvn7+3P48GH27dsnRTBhGQwGOPsTfN4UDi1SLoL5NYcxe+DJxVIEE0IIIYWwB/H6669jZWWaVDdhwgRSU3MuOUlNTWXChAkAWFlZ8frrr+c6h42NDa+++ioAwcHBLFiwIFfMkSNHWLFiBQDt27enefPmuWL69etHjRo1AJg3b172Msr7TZw4kbi4uOzHQghRXJztrWno50a3wIp0f8SXTnW9aVurAp3qetP9EV+6BVakoZ9bmZgJZjQa+e2vm3RacIAv9oWQoc+9a2aDyq5sGPcYHw9phI+LncJZSoFHDfCpX3Dc/Xzqm44TZdLXX3+Nm5sbq1atwmDIf/dXOzs7PvvsM65fv07r1q1VylCIAtw8DSu7wS8vQpLCGxJOPvDUl/DCTqjcVP38hBBCWCSNMa8pSGXcn3/+SUhISPa/o6Ojs4tDbdq0YfTo0TniR4wYoXieKVOm8MEHHwDQuHFjJk2aRI0aNbhy5QoffvghZ86cyY57//33Fc+RmJhIs2bNuHTpEgBjx47l6aefxt7enn379vH++++TlJSEvb09hw8fplGjRorn2bp1K3369MFgMODj48PUqVNp0aIFcXFxfPXVV9m9yNq2bcv+/fvR6Yp3dkJ4eHh2A/4bN27ILpNCiDLn/K27zPz9PCeuxSmOezra8E73Ogxq6o9Wq1GMKVUpMRB2BCKDwJiVd5xGZyqCVW0NDp7q5SdUcfr0aQYNGsTVq1cLjNVoNDzzzDOsWrUKG5uyMZtTlAFJd2DPLDjzHaBwK6O1hlbjoN1EsHNRPT0hhBCWrdwWwkaMGMGaNWvMjs/ry2QwGBgzZgwrV67M89hRo0axfPnyfBvJhoSE0LNnTy5fvqw47uLiwvfff0/v3r3zzfOrr77ilVdeyXOXpxYtWrBly5YSWc4ghTAhRFkVm5zBwp0X+fH4dQwKfw6stBqGP1aNVzvXwtXSZ72lJZh2UbtzCRIicjbQt7Y39QTzqm2aCSY3kGVKfHw8Q4YMYefOnWbFN2rUiI0bNxIQEFDCmQlhpqxMOP4V7P8A0u8qx9R8wrQbZIWa6uYmhBDioSGFMDMV9GXaunUry5cv58SJE0RHR1OhQgWaN2/Oiy++SI8ePcx6juTkZBYvXsy6desICQkhIyMDf39/evbsyWuvvUbVqlXNOs+5c+f47LPP2LNnD7du3cLR0ZF69eoxdOhQRo8enb2cs7hJIUwIUdboswx8f+w6C3deJCFNrxjTtmYFZvSpTy0fZ5Wze0DpSaalRKnxkJUBOhvT7pBOPtITrIwxGAy8++67LFiwAL1e+ef4fh4eHqxatYq+ffuqkJ0QZrqyF7ZNhuiLyuMe1U0FsNrd1M1LCCHEQ6fcFsJE8ZNCmBCiLDl8JZpZvwdxMTJRcdzfw56pverTtb5Pro1QhLAUv//+OyNHjiQ2NrbAWCsrKyZOnMjcuXPzncUuhKpiQ2HnVLiwWXncxsm0BLLVOLCyVTc3IYQQD6WSmRokhBBCPKTC41KYt/UCW/6JUBy3t9YxvmMNRj9eHTvrUtwJUoh8hIaG0q9fP86ePWtWfLdu3fj5559xcZHlsMJCZCTDn5/Aoc8gK105puHT0GUmuPiqmpoQQoiHmxTChBBCCCAtM4svD1xh6f4rpCvsBAnQ59FKTOlRl0pu9ipnJ4R5MjIyGDFiBD/99FOBbR0Aqlevzrp162jSpIkK2QlhBqMRzm2AXdMh4aZyjG8j6DEfqrRUNTUhhBBlgxTChChJOXrwpIPOVnrwCGFhjEYj28/dZu6WYG7GpyrG1PN1YWaf+rSsLjsoCsv12WefMWnSJNLS0gqMdXR05NNPP821S7YQper2P7D1Hbh+WHncoQJ0ng6Nh4FWZuQKIYQoGimECVESsndluwgJt3PuymZlDy4VwauO7MomRCm7eDuRWZvOc/hKjOK4m4M1b3etwzMtqqDTSh8wYZkOHTrE008/TXh4eIGxWq2WkSNH8uWXX5bY5jlCFFpKLOydC6dWgVFhRq5GBy1fhPaTTG8oCiGEEA9AroCEKG4pMRB2BCKDwJiVe1yfamr8GncdfG5C1dbgILNMhFDT3ZRMPtl9iW+PhpFlyL18TKuBYa2q8uYTtXFzsCmFDIUoWHR0NAMHDuTAgQNmxbdo0YINGzbIZjbCcmTpTcWvvXMhLV45pnoH6P4heNdVMzMhhBBlmBTChChOaQmmItjtfwqONWb9GxfQTmaGCaGCLIORtSdu8NGOC8SlZCrGtKruwYw+gdTzld9JYZkMBgNvvfUWn3/+OVlZCm+4/Ie3tzffffcdTzzxhArZCWGm0D9g2ySIOq887lYFus2Dur1AduYVQghRjKQQJkRxir1imglWGJFB4FoZKjUumZyEEACcvBbLjN/Pc/5WguJ4JVc73u1Vn54NKqKRmy5hodauXcuLL77I3bt3C4y1sbFh2rRpTJ06VYXMhDBT/A3YNQ3O/6I8bmUPj78Fj70C1rIxiRBCiOInhTAhikt6kqknmNJyyPwYs+DOJfCsJQ30hSgBt++mMW9bML/9dUtx3NZKy4vtazCufQ3sbaT5srBMFy5coH///gQHB5sV/+STT/LDDz/g4OBQwpkJYabMVDj0Gfz5Sc7eqfcL7A9PzAY3f3VzE0IIUa5IIUyI4pIUaWqMXxSJEabjpRAmRLFJy8xixZ+hLN4XQkqGcoG6xyMV+V/Pevh7SLFAWKaUlBSGDRvGr7/+itGYu5/df9WpU4cNGzYQGBioQnZCmMFohOBNsONduHtdOcbnEejxIVRrq25uQgghyiUphAlRXFLj836HsyCZqabjhRAPzGg0sic4ijlbggiLSVGMqe3jxIw+gbSpWUHl7IQw3wcffMDMmTNJT08vMNbZ2ZmlS5cydOhQFTITwkxRwaY+YKF5bOhg7w6dpkKTEaCT2xIhhBDqkL84QhSXrIJvVPI/PqN48hCiHAuJSmL25iAOXrqjOO5sZ8WbT9RmWKuqWOu0KmcnhHn27t3L0KFDuX274FnGOp2OcePGsWjRIrRa+ZkWFiI1HvZ/AMeXK7eM0Gih2QvQ8V1w8FA9PSGEEOWbFMKEKC462wc83qZ48hCiHEpMy+SzPZdZdegaekPu5WMaDTzdvApvd62Np9MD/q4KUUJu3brFgAEDOHr0qFnxjz/+OOvXr8fb27uEMxPCTIYsOPMt7JkNKTHKMVXbmJZBVmygbm5CCCHE/5NCmBDFxd7NtNNRUZZHWtubjhdCFIrBYGT96XDmb79IdJLyrMymVd2Z1TeQRyq7qpydEObR6/WMHz+er7/+GoPBUGB85cqV+emnn2jbVvopCQty/ShsewciziqPu1SGrnMhsJ/p3QkhhBCilEghTIji4uQDLhUhNrTwxzr7mo4XQpjtzPU4Zm4K4uyNeMVxHxdbpvSox5ONKqGRmy5hoVatWsWrr75KUlJSgbG2tra89957vPXWWypkJoSZEiJg9wz4e63yuM4W2rwGbV8HG0dVUxNCCCGUSCFMiOJi6wRedSDuunI/jLxodOBVW3aMFMJMUYlpzN9+kfWnwhXHbXRaRj8ewPiONXG0lT9zwjKdPXuWgQMHEhISUmCsRqNh8ODBrF69Gjs7OxWyE8IM+nQ4shgOLoDMZOWYur2h23vgXk3V1IQQQoj8yB2CEMXJowb43ITb/5h/jE9903FCiHxl6A2sOXyNRXsuk5SuV4zpUs+bqb3qU62CzDoQlikhIYFnnnmGrVu3mhXfoEEDfvnlF2rUkL8TwkIYjXBpB2yfDHF5zIL3qgvdP4AaHdXNTQghhDCDFMKEKE52LlC1telxZFD+M8M0OlMRrGpr03FCiDztvxjF7M1BXL2jPOugegVHpvWpT8c60jRcWCaDwcDMmTP54IMPyMzMLDDe3d2dr7/+mv79+6uQnRBmir4M26dAyC7lcVtX6DgFmo8GnbW6uQkhhBBmkkKYEMXNwRMC2oFrZbhzydQ74/4G+tb2pp5gXrVNM8GkCCZEnq5FJzN3SxC7g6MUx51srXi1c01GPBaAjZVW5eyEMM/WrVsZPnw40dHRBcZaWVnxxhtv8MEHH6DVys+0sBBpCXBwPhxdCgalGbkaaPIcdJoOTl6qpyeEEEIURqkXwtLS0jh16hS3b98mJSWFJ598EhcXKQyIh5ydC1RqDJ61ICkSUuMhKwN0NqbdIZ18pCeYEPlITtfzxb4QVvwRSkaW8i56A5v68U73Ong7S88kYZnCwsLo378/p0+fNiu+S5cu/Pzzz7i7u5dwZkKYyWCAv3+CXTMgWfkNCfxaQM/5puseIYQQ4iFQaoWwGzduMHXqVNauXZtjicA///xD/fr1s/+9YsUKli1bhqurKzt37pSdv8TDxdZJCl5CFILRaOS3v24xb1swkQnpijGP+rkys28gjatIsUBYpoyMDEaPHs13332H0WgsML5q1aqsW7eO5s2bq5CdEGa6eQq2vgM3TyqPO1WEJ2ZDw8Eg1+dCCCEeIqVSCDt+/Dg9e/YkLi4uxwWiUpGrb9++jB8/nszMTHbu3Em3bt3UTFUIIYRKzt28y8zfz3MyLE5xvIKTDe90r8vAJn5otXLTJSzTkiVLePvtt0lNTS0w1t7enoULFzJu3DgVMhPCTElRsHsW/PWd8rjWGh57BR5/C2yd1c1NCCGEKAaqF8Lu3r3Lk08+SWxsLL6+vkybNo3HH3+cBg0aKMZ7eXnRo0cPfv/9d7Zs2SKFMCGEKGNiktJZsPMSP524jtLkGSuthpFtqjGhcy1c7KT5srBMx48fZ/DgwYSFhRUYq9FoeP7551m+fDk2NjYqZCeEGfQZcHw5HPgQ0hOUY2p3h27vg6fsYiqEEOLhpXoh7PPPPycyMpIKFSpw5MgRqlSpUuAxTzzxBL/99hvHjx9XIUMhhBBqyMwy8N3RMD7ZdYmENKXmy9CuthfTe9enprcsMRaWKTY2lkGDBrF3716z4ps2bcrGjRvNuv4RQjUhu027QUZfUh73qAHdP4DaXdXNSwghhCgBqhfCNm3ahEaj4c033zT7IjAwMBCAK1eulGRqQgghVHIoJJpZm85zKTJJcbyKhwPTe9encz1v6Q0pLJLBYGDSpEl8+umn6PXKhdz7eXl5sWbNGnr06KFCdkKYKfYq7HgXLm5VHrdxgvbvQMtxYCWzF4UQQpQNqhfCLl++DEC7du3MPsbNzQ2AhIQ8pmkLIYR4KNyITeG9LcFsP39bcdzeWscrnWoyqm0AdtY6lbMTwjwbNmxg9OjRxMfHFxhrbW3N//73P2bOnFnieQlhtvQk+PNjOPy5aVdrJY8+C11mgHNFdXMTQgghSpjqhbB7zWMdHR3NPiYpyTRjwM7OrkRyEkIIUbJSM7JYeuAKyw5cIV1vUIx5slElJveoi6+rvcrZCWGey5cv079/f86dO2dWfK9evfjpp59wcpKlvcJCGI3wz3rYNQ0SI5RjKjWGHh+Bv+xiKoQQomxSvRDm5eXFzZs3uXHjBo8++qhZx5w6dQoAX1/fkkxNCCFEMTMajWz95zbvbw3mZrzyLnqBlVyY2TeQ5tU8VM5OCPOkpaXx/PPPs379+hy7XeelVq1arF+/noYNG6qQnRBmijgL2ybB9SPK445e0HkGNBoKWq26uQkhhBAqUv2vXIsWLQDYtm2bWfFZWVksX74cjUZD27ZtSzI1IYQQxejC7QSe+eoo4384rVgEc3ew5v1+Dfj9lbZSBBMWa+HChbi5ubFu3boCi2BOTk6sXr2aS5cuSRFMWI7kGNj0Oixrr1wE01pB61dgwilo8pwUwYQQQpR5qs8Ie+aZZ9i4cSMrV65k9OjRNG7cOM9Yg8HASy+9RFBQEBqNhmHDhqmYqRBCiKKIT8ng412X+O5oGAaFuoFOq+G5VlV5o0ttXB2s1U9QCDMcPHiQZ555hlu3bhUYq9VqGTt2LJ9//jlWVqpfWgmhLEsPJ1fAvvcg7a5yTI1Opt0gveqom5sQQghRilS/WhswYACPPfYYhw8fpnPnzsyZM4dBgwZlj2s0GiIjI9m5cyeffPIJZ8+eRaPR0L17dzp06KB2ukIIIcyUZTDyw/HrLNx5kfiUTMWY1tU9mdk3kDoVnVXOTgjzREVF0b9/fw4dOmRW/GOPPcaGDRuoWFEaigsLcvUAbJ8MUUHK425Vofs8qNMTZGdeIYQQ5YzGaE6zi2IWHR1Nu3btuHDhApr//PG1sbEhI+Pf3WuMRiMNGjTgwIED2btHCssUHh6Ov78/ADdu3MDPz6+UMxJCqOXY1RhmbgoiOEJ5d9/KbvZM7VWP7o9UzPW6L4QlMBgMTJgwgS+//BKDQXlDh/v5+vry/fff07FjRxWyKz3J6XqiEtNJSM0kXW/A1kqLi7013s62ONrK7DeLE38ddk6FoN+Ux60d4PG3TEshrWUTKiGEEOVTqVzBVKhQgZMnTzJp0iRWrFhBWlpa9lh6enr2Y2tra0aOHMnChQsLtcukEEJYmrJ6M3krPpV52y6w6azy8jFbKy3jOtTgxXY1sLfRqZydEOb57rvvePnll0lMTCww1tbWltmzZ/POO++okFnpSUzNJDQmmZCoJCIT0kjL/Lc4aGetxcfFjpreTgR4OuJsL0ucS11GChxaBIc+BX2acswjA+GJ2eBaWdXUhBBCCEtTKjPC7hcTE8OOHTs4efIkUVFRZGVl4enpSePGjenRoweVKlUqzfREIciMMCFyK6s3k2mZWXx18CpL9l8hNTNLMaZXA1+m9KyLn7uDytkJYZ7z58/Tv39/Ll26VGCsRqOhf//+fPvtt9jb26uQXemJS87gxLVYLkQkkpXPZaJOo6GurzPNq3ng7mijYoYim9Fomv21cyrcvaEc49MAes6Hqo+pm5sQQghhoUq9ECbKDimECZFTWbyZNBqN7AyKZO6WIG7E5t4JEqCOjzMz+tbnsRoVVM5OCPMkJSXx7LPPsmnTJrPi69evz8aNG6lTp+w3FE9MzeTI1RjO31Je5qwksJILrat7PlTF/DIh8jxsmwTX/lAet/eAztOgyXDQyoxcIYQQ4p6Hdz2OEEJYsMTUTE5cizXrZjLLaMyOs+SbyZCoRGZtCuKPy9GK4y52VrzVtQ5DW1bBSqdVOTshzDN79mzee++9HP1I8+Lq6sry5csZPHiwCplZhtCYZC5EFLxE9H4XIhKp6GpHQz+3kklK5JQaB/vmwYmvwagwI1ejheajocMUcPBQPz8hhBDCwkkhTAghSkBZupm8m5rJot2X+ebINfSG3DPbNBp4unkVJnarg4eFz2gT5dfOnTt57rnniIqKKjBWp9Px6quvsmDBArTa8lPUTU7XExKVlO8MViVZRiMhUUnU8HJ6qHseWjxDFpxeA3vmQGqscky1x6HHh+ATqG5uQgghxENE9auVM2fO0KxZM2xsbAgJCaFy5fwbdt68eZMaNWqg1+v5+++/qV+/vkqZCiFE0ZSVm0mDwci6UzeYv/0iMcnKs2eaV3NnRp9AHqnsqnJ2QpgnPDyc/v37c+LECbPiO3TowLp166hQofwt7Y1KTCcyIY9G6wWITEgjKjGdAAt47SqTwo7Atolw+x/lcVd/6DoX6j9pendCCCGEEHlS/W3OtWvXYjQa6d27d4FFMIDKlSvTt29fDAYDP/30kwoZCiHEgymOm8nSdiosjqeWHGLShn8Ui2AVXexY9HQjfn6xtRTBhEXS6/W88MILVK1a1awimL+/P4cPH2bfvn3lsggGkJCamWNDj8JIyzSQkJpZzBkJ7t6E9aNgVXflIpiVHbSfDOOPQ+BTUgQTQgghzKB6IWz//v1oNBp69Ohh9jG9evUCYPfu3SWVlhBCFJuH+WYyKiGNN9f+xYClh/k7/G6ucRudlvEda7DnrfY82agyGrnpEhZo+fLluLq6smrVKgyG/H8X7e3t+eyzz7h+/TqtW7dWKUPLlK4v2uvWPRlZD3a8uE9mGhxcAF80g3PrlWPq9TUVwDpOARvZnVcIIYQwl+rz12/cMG3tXJgljvd2aQoPDy+RnIQQojg9jDeT6fosVh26xud7LpOcodB8GXiivg9Te9WjqqejytkJYZ7Tp08zcOBAQkNDC4zVaDQ8++yzrFy5Ehsb6W0HYGv1YO+P2sgmGQ/OaISL22DHFIi7phzjVc/UB6x6e1VTE0IIIcoK1QthMTExANjZ2Zl9jK2tLYBZDW6FEKK0PWw3k/suRDF7cxCh0cmK49W9HJnRJ5D2tb1UzUsIc8XHxzNkyBB27txpVnyjRo3YuHEjAQEBJZzZw8XF3ho7a22RZrTaWWtxsdAdbx8ady7B9slwZY/yuJ0rdHwXmo0CnfRiE0IIIYpK9b+i7u7uREVFcf36dRo1amTWMfdmgrm4uJRgZkIIUTwelpvJ0Ohk5mwOYu8F5TcZnG2teK1LLZ5vXQ2bByzuCVESDAYD7777LgsWLECv1xcY7+HhwapVq+jbt68K2T18vJ1t8XGxIywmpdDH+rjY4e1sWwJZlQNpd+HAfDj2JRiUfo410HQ4dJoGjuWzf50QQghRnFQvhNWvX5+oqCh+//13sy9Ef/nlF+DfJZJCCGHJLP1mMildz+d7L7Pyz1Ays5R3thzczI+J3eriJTe2wkL9/vvvjBw5ktjY2AJjrayseOedd5gzZw5arRR18+Joa0VNbyfCY1MLteutTqOhprdl7Hb7UDEY4OwPsHsmJN9RjvFvZVoGWamRmpkJIYQQZZrqVyw9e/Zk3759fPPNNwwfPpzHH3883/iDBw/y7bffotFo6N27t0pZCiFE0VnqzaTBYOTXv24yb9sF7uSxM2Ujfzdm9g2kkb9bieQgxIMKDQ2lX79+nD171qz47t27s3btWplVbqYAT0du+6Zx/laC2cfU9XUmQHoHFk74Sdg6EW6dVh539oUn5kCDgbITpBBCCFHMNEZjIe7SikFSUhLVq1cnJiYGBwcH3n//fcaMGZOrZ1haWhrLly/n3XffJTk5GQ8PD65evSoXshYsPDwcf39/wLQpgp+fXylnJETpSUzN5MjVmELdTAZWcqF1dU+cS2Bp5N/h8cz8/Tynr8crjldwsmVKj7r0a1wZrVZuuoTlycjIYMSIEfz000+Yc+lSvXp11q1bR5MmTVTIrmyJS87gxLVYLkQk5lvM12k01PV1pnk1D9wdZcMBsyRGmmaAnf1BeVxnA61fgcffAlsnVVMTQgghygvVC2EAu3fvpmfPnmRlmXYmc3BwoFmzZvj6+qLRaLh16xYnT54kJSUFo9GItbU1mzdv5oknnlA7VVEIUggTIidLuJmMTkrno+0X+fnUDZRSsNZpeKFNAK90qomznTS6FpZp0aJFTJ48mbS0tAJjHR0d+fTTTxk9erQKmZVdiamZhMYkExKVRGRCWo6eh3bWWnxc7Kjp7USAp2OJFO/LHH2GqQfYgfmQkagcU6cndJ0LnjXUzU0IIYQoZ0qlEAawb98+hg0bRkREhCmR/0z7vpdW5cqV+fbbb+nQoYPaKYpCkkKYELmV1s1kZpaBb46E8enuSySmKTcRb1/bi+l96lPDS2YdCMt06NAhnn766exNc/Kj1Wp54YUXWLp0KVZW0ququCSn64lKTCchNZOMLAM2OtOGHt7OttITzFyXd5l2g4wJUR73rAXdP4BaXdTNSwghhCinSq0QBqblj9988w1btmzhzJkzREdHA1ChQgWaNGlCnz59GDZsGLa20qz5YSCFMCHypubN5B+X7zBrUxAhUUmK49U8HZjWuz6d6nrnehNCCEsQHR3NwIEDOXDggFnxLVq0YMOGDfJ3R1iWmCuw439wabvyuI0zdJgELV4EK1laKoQQQqilVAthomyRQpjlu78Yk643YGsl7+yXJddjUpi7JYidQZGK4w42OiZ0qsULbatha6VTOTshCmYwGHjjjTdYvHhxdvuE/Pj4+PDtt99K6wRhWdKT4I8FcGQxZGUoxzQaBp2ng7OPurkJIYQQQv1dI4UQ6pNeL2VbSoaepfuvsOzgVTL0BsWYfo0rM7lHXXxc7BTHhShtP/30Ey+++CIJCQVvMGFjY8P06dN59913VchMCDMZjfD3z7B7BiRGKMdUbgo95oNfM3VzE0IIIUQ2KYQJUcYV1LA9LdNAWEwK4bGp3PZNk92/HiJGo5FNf0cwb2swEXeVm4g/UtmFWX0DaVrVQ+XshDBPcHAwAwYMIDg42Kz4p556iu+//x4HB4cSzkyIQrh1BrZNghvHlMcdvaHLTHj0GdBqVU1NCCGEEDlZRCEsISGBxMREs5ZBVKlSRYWMhCgbElMzOXEtlvO3Cp5hkWU0Zse1ru4pM8MsXNCtBGb+fp7j12IVxz0cbXinWx0GNfNHp5U+YMLypKSkMGzYMH799VfM6dJQt25d1q9fT2BgoArZCWGm5GjYMxtOfwMo/BxrraDVOGj3Dti5qJ6eEEIIIXIrtULYrl27WLJkCX/88QdxcXFmHaPRaNDrlXc/E0LkFhqTzIWIPLZpz8OFiEQqutrR0M+tZJISDyQuOYOFuy7yw7HrGBTuuXRaDc+3rsrrXWrjKsVMYaHmzZvHzJkzycjIo3/SfVxcXFiyZAlDhw5VITMhzJSVCSe+hn3zIP2uckyNzqbdIL1qq5ubEEIIIfJVKoWwV199lcWLFwOY9S6wEKLwktP1hEQlKS6HzE+W0UhIVBI1vJykgb4F0WcZ+OH4dRbuvMTd1EzFmDY1PZnRJ5DaPs4qZyeEefbu3cvQoUO5fft2gbE6nY6XX36ZTz/9FK0sJROW5Op+0zLIOxeUx90DoPs8qN0dZGdeIYQQwuKofpf7ww8/8MUXXwBgZ2fHU089RdOmTfHw8JALXSGKUVRiOpEJyn2jChKZkEZUYjoBUgizCEeuxDBr03ku3Fae3efnbs/UXvXpFuiDRm66hAW6desWAwYM4OjRo2bFP/7446xfvx5vb+8SzkyIQogLg53vQvAm5XFrR2j3NrQeD1a26uYmhBBCCLOpfpe7bNkyAPz9/dm7dy81atRQOwUhAIhJSi/ysY62VthZ6xTHYpMzijzT0d5Gh4ON8q9lfEoGWUpr4fJwIzaF2GTTsiMrrRYbK+VCc3pmVq5ZYykZpuNd7PJ/ibC20uJip7z8LiEtk8w8djAsiJVOm+eyvqR0PemZBfcTVKLTanBzUN4IICVDT2pG0c6r0WjwyGODgbTMLJLTi7akO+JuGksPXGHL38q7j9laaRnZphrPtaqKnbUu+/ttDncHG7QKvcMy9AYS05RnnJnD1d4aK13unzV9liHPmWzmcLazVvwZNhiMxKWY/3n/l5OdFbZWyr/LZf014n621jqc8ih8303NRJ9VtN9lDQYmv/kaK1aswGAo+By+lSrx1apvaPVYWyDv74G8RvzL00m54JKuzyIprejnldcIEyc7K2wN6XDoUzi0CPTKbzCl1xtASrvpGJx9IQ0g/9cPeY0wkesIE3mN+NdD+RphAdcReX2fhRDKNEaV1ya6u7uTkJDAV199xQsvvKDmU4sSFh4ejr+/PwA3btzAz8+vlDPKX7XJW4p87OwnA3m+dTXFsSZzdhWqIHG/1zrX4o0nlHuJPPHxAS5HJRXpvA0ru9KxrvLMivWnwrkZn1qk8/ZsUJElQ5sqjr38/Sm2/lPw8iclLQM8WPtia8Wxab+e49ujYUU6by1vJ3a92V5x7JNdl1i053KRzuvhaMPpaU8ojn1z5BrTfztfpPPmp2kVd05dN6+/opJTU7soXjQduRLDM1+ZN2tHyc432ikuzbwUmUjXTw4W+bw/jmlF6xqeuT4ek5RO07m7i3zexc82oVdDX8Wx8vQa8Vyrqsx56hHFsSHLjnAsVHlThvwk/r2LhL3L0aeb8fqis8a93fO4tOhn1rnlNeJf1z7opfjxLX9HMP6H00U+r7xGABjZ2C6KJhcWQkK4YsQ5QzVmZA7nlLFOoc4srxEmch1hIq8R/3q4XiMs5zoir++zKFv2799Px44dAdi3bx8dOnQo3YQeYqrPCMvMNFXyGzdurPZTCyHEQ69uRWdm9g0kJimDUz8UvRAmRElJj7xK9K/z0Mcrz2T8L4d67fDs+TpaK+XZEEKUhrqa68y0XkOT48HKAQ6eTL7bj5+zOmBAWnsIIYSlSU5O5vvvv+e3337j7NmzREdHY2Vlhbe3Nz4+Pjz66KN06NCB9u3b4+urXMwUZZfqhbBq1aoRHBxMUlLR3pESQojyyNXemre71uaZFlWw0mnzXC4pRGkxpKVwZ9OHpF09ZVa8h39N7HpMwtpdLj6F5XAjkTet1jNUtxudRmHRhEYHLcZAh8n8NOuw+gkKIYQo0PHjxxkyZAjXrl3L8fH09HRCQ0MJDQ3l6NGjLFu2DB8fn1yb+HTo0IEDBw7Qvn179u/fr17iZUi1atUICwtj+PDhrF69urTTyUX1Qlj//v1577332LNnD48//rjaTy+EEA8VrQaGtqzKm0/Uxj2P/iFClCaDwcDdQ9+TcHQ9GAruj+Pu7s6KFSvYlVKlyMuehChuWgw8q9vDW1brcNfk8WZtQDvo/iH41Fc3OSGEEGYLCQnhiSeeICEhAYC+ffsycOBAateujY2NDdHR0Zw9e5Zdu3axb9++Us5WlBbVe4TdvXuXRo0aERcXx9GjR6lbt66aTy9K0MPWI6w8NMIOikjg0OVoNBqN2c3ydRoNbWpVoL6vS4Hnlya3JkVpcptlMPLbX7dYvD+E+BTl5q9Nqrgx96kG1K+U+3shTW5NykqTW3NZWiPsXTu2M/7FUcTGxBT4HFZWVrz55pvMmzcPrVb7cL9GpCdC3DWIuQKJUZB1Xx80nT04e4NnDXCvBrbO0gj7Ppb4GmF14wiOe/+H1Z08+jC5VoFuc6FeX7hvZ155jTCRZvkm0izfpCy+RuTHUq4jpFn+v4YMGcLPP/8MwMqVKxk5cmSesXfu3OHnn39m/PjxOT5uqTPCHqYeYTIj7D9cXV3Zvn07ffv2pU2bNsyZM4dnnnkGd3d3tVMR5VxJ/cHI60LmQeV14ZWfRn5upGZkcf5WQp4xtv/5IxtYyYVGfm4453EBaa68LmwflJOtVZ4X4w/CwcYqz5uHB2Fnrct1IXPyWiwzN53n3E3l74uvqx3v9qpHrwa+aDS5LzIBbK102DopXyA9CBsrbYn8bljpSua8Wq2mxH6Xy8NrhDmUbibDwsLo378/p0+b12i5S5curFu3Djc3t+yPPbSvESkxEHUUIoPAmAU6TP9lS4KUJEgNg8z6ULU1OORu0HyP0mtEcZDXCJN8XyPuhsOu6XBuQx5J2UHbN6HNq2Btn2tYXiNM8io4PaiH9jWimMlrhIlcR/yrpF4jyoKsrCw2b94MQLNmzfItggF4eXnlKoKJ8kH17p7Vq1enR48e3L17l7i4OCZMmICXlxcVK1akevXq+f5Xo0YNtdMV4qHmbG9N82oeBFZyQZdHQeUenUZDYCUXmlfzeOAimFAWmZDGG2v/YuCXRxSLYDZWWiZ0qsmet9rTu2GlPItgQpSWjIwMnn/+eQICAswqglWtWpXjx4+za9euHEWwh1ZaAoQdgdv/mIpg+TFmmeLCjpiOE5YjMw0OfARfNM+7CFb/KXjlBHSYpFgEE0IIYXnu3LlDSkoKADVr1iz08SNGjECj0XDgwAEADhw4gEajyfFftWrVsuOvXbuW/fGCZj1Vq1YNjUbDiBEj8oxJTU3lvffe49FHH8XR0RFPT0/atGnDV199hcFg/gxZo9HI+vXrGTBgAP7+/tjZ2eHu7k6LFi2YM2cO8fHxBX4N7n2e8fHxTJ8+ncDAQBwdHXFzc6Ndu3Z8//33isd36NABjUZDWJhpd941a9bk+hpawkw21WeE/bdhndFoxGg0EhUVVeCxclMoyqPkdD1RiekkpGaSrjdga6XFxd4ab2dbHM14R9Pd0YbW1T2p6GpHSFQSkQlppGX++0JqZ63Fx8WOmt5OBHg6ShGsBKTrs1jxZyhf7A0hJY9lE90CfZjaqz7+Hg4qZyeEeZYsWcLbb79NampqgbEODg4sWLCAcePGqZCZimKvmGaCFUZkELhWhkqyW3apMxrhwhbY8T+ID1OO8Q6EHh9CgPSxFUKIh42Nzb+z5YKD89j110LdunWLzp07c+HCheyPpaSkcPjwYQ4fPszGjRt54403CjzPnTt36NevH4cOHcrx8fT0dE6cOMGJEydYvHgxv/32Gy1btsz3XBcuXKBHjx65ajh//PEHf/zxB0eOHOGLL74w/5O0IKoXwoYPH672UwrxUEpMzSQ0JrlYilfO9tY09HOjhpdTdlEtI8uAja5wRTVROEajkT3BUczZEkRYTIpiTC1vJ2b0CaRtrQoqZyeEeY4dO8bgwYO5fv16gbEajYbhw4fz1VdfYWVVxl5T0pPgzsWCZ4L9lzEL7lwCz1pg61QyuYmCRV2A7ZPg6n7lcTs36DQVmo4EXRn72RVCiHLCw8ODqlWrEhYWxtmzZ/nwww+ZOHEiWq15C+Hee+893n77bUaOHMnJkydp1qwZq1atyhFzf7GtuOj1enr37p1dBOvatSvjxo3D39+f69evs2TJErZv305MAT1Zk5OTad++PcHBwdjY2DBy5Eh69uyJv78/ycnJHDx4kI8//pjIyEh69OjBmTNnqFq1quK5UlJS6Nu3LzExMUydOpUuXbrg5OTEmTNnmDVrFuHh4SxevJg+ffrQrVu37ONWrVpFcnIy3bp149atWzz55JPMnTs3x7kdHR0f8Cv24FT/S//fHyQhRG5xyRmcuBbLhYjEHI3s70nLNBAWk0J4bCq3fdNoXs3DrB0FHW2tCJCClyqu3Eli9qYgDly6ozjubGfF611q83zrqlgrNIUVorTFxsYyaNAg9u7da1Z806ZN2bhxI1WqVCnhzEpJUiQkFHGXy8QI0/FSCFNfajwc+BCOLcujiKmBZiOh41RwzLuXmxBCiIfDhAkTePvttwGYPHkyS5cupU+fPrRu3ZqWLVvm226pcuXKVK5cObtQ4+joyCOPPFLiOS9dupQzZ84AMHbsWJYtW5Y91rRpU/r168eoUaNYuXJlvueZPHkywcHBuLq6snv3bpo1a5ZjvG3btgwdOpTWrVsTERHB1KlT+fbbbxXPdefOHTIzMzly5AiBgYE58unQoQMNGjQgLS2NJUuW5CiEBQQEAGBtbZqo4ebmpsrXsLDk7ksIC5OYmsmJa7Gcv5WgWAS7X5bRyPlbCZy4FkviA+ykI4pPYlom728NptsnBxWLYBoNPN3cn31vd2BU2wApggmLYzAYePvtt/H29jarCObl5cXWrVs5efJk2S2Cgamgoi94WaiizFTT8UI9BgOc/gY+bwpHlygXwao8Bi8ehN6fSBFMCCHKiDfeeIMXXngh+99hYWF88cUXDB06lJo1a1KxYkWefvppNm3aVOQdeovb0qVLAfDx8eGTTz5RjFm0aBFeXl55niM6Opqvv/4agNmzZ+cqgt1TtWpVpk2bBsDatWuze6opmT17do4i2D01a9bkqaeeAkzLJB9GcgcmhIUJjUnmQkRioY65EJFIaExyCWUkzGEwGFl/KpyOCw6w/OBV9Apb1Dep4sZv49vwwYCGVJBtroUF2rBhA56enixcuJCsrPyXAFpbWzNjxgyioqLo0aOHShmWoqz0Bzw+o3jyEAW7cRy+6gi/T4CU6NzjzpVgwAoYuRV8G6qfnxBCiBKj1WpZsWIF27Zt44knnsi1LDIyMpK1a9fSt29fWrRowZUrV0opU5Nbt25l9zMbPHgwDg7K/YKdnJwYPHhwnufZsWMHaWlp2efJT7t27QDIzMzk1KlTijEajYZnn302z3M0bdoUgLi4uHyb71sqWSMlhAVJTtcTEpVU4Eyw/8oyGgmJSqKGl5P0+ioFZ2/EM+P38/x1I15x3MvZlik96vJUo8potbLph7A8ly9fpn///pw7d86s+F69evHTTz/h5FSOlvrpHrB4rZPt7ktcQgTsngl//6Q8rrOFxybA42+CTen3JxFCCFFyunfvTvfu3YmLi+PQoUOcPHmSU6dO8ccff3D37l0ATp48yeOPP86pU6fw9fUtlTz/+eef7MfNmzfPN7ZFixYsXrxYcezkyZPZjwvzudy+rdz2oUKFCnh65j1b2sPDI/txYmLiQ7c7eKnfMcfFxXH27Fmio6NJTU0tcHri888/r1JmQqgvKjGdyIS0Ih0bmZBGVGK69ABT0Z3EdOZvv8C6U+GK49Y6DaPaVueVTjVxku+LsEBpaWk8//zzrF+/3qzlAbVq1WL9+vU0bFgOZ9HYu4GVfdGWR1rbm44XJUOfDkeXwsGPICNJOaZub+g6FzwC1M1NCCFEqXJ3d6d379707t0bMO2e+MMPP/DWW28RFxdHREQE06ZNy15WqLa4uLjsx97e3vnG+vj45DkWFRVVpOfPa2lkXjPT7rl/pl1BqwgsUandme3fv58ZM2bw559/mn2MRqORQpgo0xJSM3PsDlkYaZkGEqRPmCoy9Aa+OXKNRbsvk5iuV4zpVNebab3rE1BBZh0Iy7Rw4ULeffdd0tMLXvLn5OTEF198Ub53fnbyAZeKEBta+GOdfU3Hi+J3aQdsnwyxV5XHK9SG7h9Azc7q5iWEEMIi2draMnLkSCpVqkT37t0B2LhxI8uXLzd7d8nidP8bkRpN/itH8nvT8l4xysbGJs/ljkr8/PzMji1LSqUQtnTpUiZMmIDRaLSYBnVCWIJ0fdGKYPdkZD3Y8aJgBy7dYfam81y5o9yTLaCCI9N616NTXbnpFZbp4MGDPPPMM9y6davAWK1Wy9ixY/niiy/Q6XQqZGfBbJ3Aqw7EXc9j98E8aHTgVVt2jCxu0SGwYwpc3qk8busCHSZDi7Ggs1Y3NyGEEBavW7du+Pv7c+PGDeLi4oiJicm3Gb2S+wtnBkP+92HJycr3DvcvMYyMjMz3HPnN+rq3jDEjIwNPT89SW+r5sFC95BkcHMyrr76K0WikQYMG/Prrr2zZsgUwVUCvXLnCyZMn+fLLL2nSpAlg2ubz/PnzXL2ax7t9QpQRtlYP9itpIzsQlpiwmGRGrznJ8JXHFYtgjjY6pvSoy47X20kRTFikqKgo2rZtS/v27c0qgj322GPcvHmTpUuXShHsHo8a4FO/cMf41DcdJ4pHeiLsmg5LWuVRBNNA4+dgwiloPV6KYEIIIfJUqVKl7Mf3F7UKmpl1j7Ozc/bj+5c4/ldMTAzR0QqbtwANGjTIfnzixIl8ny+/8caNG2c/3rkzjzeJVGTu17C0qH7X/Pnnn5OVlUWFChX4448/6Nu3b47t1gMCAmjSpAljx47lxIkTTJw4kT///JMJEyZQtWpVtdMVQlUu9tbYWRft19LOWouLvVzwF7fkdD0f7bjAEx8fZHew8rs0/ZtUZt/bHXixfQ1sHrCYKURxMxgMjB8/Hl9fXw4dOlRgvK+vL/v27ePQoUNUrFhRhQwfInYuULU1VGxgmumVH43OFFe1tek48WAMBvjrR/i8KRxaBAaFVgB+zWHMHnjyC3DKv8+KEEKI8i0lJYWgoCAAXFxccszMsrOzAyiwfYS7u3t2k/j7m9X/148//pjnWKVKlahXrx4A69atIzVVuRdpcnIyP//8c57n6dGjB9bWpnvBTz75BL1euX2LWsz9GpYW1e/YDhw4gEaj4dVXX81RQVWi0Wj48MMP6dSpE/v27WPlypUqZSlE6fB2tsXHxa5Ix/q42OHt/IC7molsRqOR3/66SaeF+1m874ristMGlV3ZMO4xPh7cCO8ift+EKEnfffcdbm5uLFmypMAp+7a2tnz44YfcunWLDh06qJPgw8jBEwLaQe0nwKO6qYH+/aztTR+v/YQpziHvHZeEmW6ehpVd4deXIEnhDQknH3jqS3hhJ1Ruqn5+QgghLEJSUhItW7Zk8+bN+V73GAwGJkyYQGJiIgB9+/bNMYPp3rLCq1evFtjKqV27dgD89ttvXLlyJdd4cHAw06dPz/cc48aNA0w7OL711luKMW+88Ua+SyMrV67MyJEjATh79iwvvvhivsWwqKioEt0g4N7XUOlrYglU7xEWHm7aXe3eskfIOW0uMzMzu5J5z9ixY9m7dy/fffcdL7zwgjqJClEKHG2tqOntRHhsKlmF6J+n02io6e2Eo+xMWCzO3bzLrE3nOXFNeYqzp6MNk7rXZWBTP7Ray572K8qnc+fOMWDAAC5dulRgrEajoX///nz77bfY29sXGC8wzfCq1Bg8a5kKM6nxkJUBOhvT7pBOPtITrDgk3YE9s+DMd4DC30StNbQaB+0myqw7IYQQABw/fpw+ffpQuXJlnnrqKVq3bk3VqlVxdnYmPj6eM2fOsHLlSv755x8AXF1dmTNnTo5zPPbYY6xatYqoqCjefPNNhg0bhqurKwDW1tY5Vqq9/PLL/P7776SmptKhQwdmzpxJ48aNSUpKYvfu3SxatAhvb2+srKy4c+eOYs7jxo1j1apVnDlzhqVLlxIaGspLL72U3cNsyZIl7Ny5k+bNm+e7PHLhwoUcPnyYc+fOsXLlSo4ePcrYsWNp2rQpTk5OxMfHc/78eXbv3s3WrVtp0KABo0ePftAvuaLHHnuMffv2ceLECT744AN69OiBo6NpEzF7e3sqV65cIs9rLo1R5W71tra26PV6Tp8+zaOPPgpAWFgYAQEBaDQaIiIicm0bevr0aZo1a4a3tze3b99WM11RCOHh4fj7+wNw48aNcrsDxYNKTM3kyNUYzt9KMPuYwEoutK7uibMsjXwgMUnpLNh5iZ9OXEfpldFKq2H4Y9V4tXMtXOVrLSxQUlISzzzzDJs3bzYrvn79+mzcuJE6deqUcGZCFEJWJhz/CvbPg/Q8/hbWfMK0G2SFmurmJoQQwmKlpaUREBBgds2gVq1a/PjjjzRtmnM2cVJSEo8++qhij/KqVaty7dq1HB977bXX+OyzzxSfw9/fn+3bt9OzZ0/CwsIYPnw4q1evzhV369YtOnXqxMWLFxXP07VrV9566y26desGwL59+xRn8MfGxjJ06FC2b9+ueJ77dezYkb179+b42IgRI1izZo3i53m/1atXZ89ACw0NpVq1ajnGb968ScOGDYmNjc11bPv27dm/f3+B+ZUk1ZdG3lt7e/+uCV5eXtmzwpTevb7XWC4+Pr7kExSilDnbW9O8mgeBlVzQFdBkUKfREFjJhebVPKQI9gD0WQZWHwql44L9/HhcuQj2eK0KbHvtcab1ri9FMGGRZs+ejaenp1lFMFdXV9auXcv58+elCCYsy5W9sLSNaUdIpSKYR3V49mcYtl6KYEIIIXKws7Pj5s2bHDp0iFmzZtGjRw+qV6+Oo6MjOp0OFxcX6taty5AhQ/jhhx84d+5criIYgJOTE4cPH+a1116jXr16ODg45Pu8ixYt4ocffqBdu3a4uLhgb29PnTp1mDx5MmfOnKF+/YI32qlUqRJnzpxh7ty5PPLII9jb2+Pm5karVq1YsmQJ27Ztw8bGpsDzeHh4sG3bNvbs2cPIkSOpVasWTk5OWFlZ4eHhQfPmzRk/fjxbt25l165dBZ6vqCpXrszx48cZNWoUNWvWzO4ZZilUnxHWsWNHDh48yMqVKxk+fHj2x+vWrcvly5d56623mD9/fo5jXnnlFZYsWULlypW5ceOGmumKQpAZYcUrMTWT0JhkQqKSiExIIy3z33XudtZafFzsqOntRICnoxTBHsDhkGhmbQriYmSi4ri/hz3TetXnifo+Fr/7iSifduzYwXPPPZfndPv76XQ6Xn31VRYsWJBjdyQhSl1sKOycChfyKOTaOJmWQLYaB1bSD1MIIYQQRad6Q6G2bdty4MABDh48mKMQ1r9/fz744AM+++yz7CptSkoKa9asYfny5Wg0Gjp16qR2ukKUGmd7axr6uVHDy4moxHQSUjPJyDJgozPtDuntbCs9wR7AjdgU3t8azLZzylOn7a11jO9Yg9GPV8fOuoDd4YQoBeHh4fTr1y/fXYru17FjR9avX59jVyQhSl1GMvzxMRz+HLLy2Fmq4dPQZSa4+KqamhBCCCHKJtVnhB07dozWrVvj4eFBeHh49hS5mJgY6tSpQ1xc7ubURqMRe3t7Tp48mb21qLA8MiNMPAxSM7L48sAVvjxwhXS98m4yfR+txJSedfF1lcbhwvLo9XrGjh3LmjVrCtwJEky9KdauXUvr1q1VyE4IMxmNcG4D7JoOCTeVY3wbQY/5UKWlqqkJIYQQomxTfTpJy5YtWbVqFXq9nri4uOxtNT09PdmxYweDBw8mNDQ0xzHe3t588803UgQTQhSZ0Whk27nbvLclmJvxqYox9XxdmNmnPi2re6qcnRDmWb58OW+88QYpKSkFxtrb2zN//nxeeeUVFTITohAi/oZtk+D6YeVxhwrQeTo0HgZamZErhBBCiOKl+oywgmRmZrJ3717Onz+PXq+nVq1adOvWrcAGdaL0yYwwYaku3E5g1u9BHLkaozju5mDN213r8EyLKui00gdMWJ5Tp04xaNCgXG8UKdFoNDz77LOsXLnSrKaqQqgmOQb2zYVTq8GoMJtRo4OWL0L7SWDvpnZ2QgghhCgnLK4QJh5eUggTliY+JYNPdl3i26NhGBRe6bQaGNaqKm8+URs3BykYCMsTHx/P4MGDzd7Vp1GjRmzcuJGAgIASzkyIQsjSw6lVsHcupMUrxwS0Ny2D9K6rampCCCGEKH+k07YQoszJMhj56cR1Fuy4SFxKpmJMq+oezOgTSD1fF5WzE6JgBoOBd999lwULFqDX6wuM9/T0ZNWqVfTp00eF7IQohNA/TMsgo84rj7tVgW7zoG4vkJ15hRBCCKECKYQJIcqUE9dimfHbeYIiEhTHK7na8W6v+vRsUBGNBdx0Jafrs3cFTdcbsLWSXUHLu99++40XXniB2NjYAmOtrKx45513mDNnDlqtVoXshDBT/A3YORWCflUet7KHx9+Cx14Ba9mYRAghhBDqKbG7rIMHD5bIedu1a1ci5xVCPNwi7qYyb+sFfj97S3Hc1krLi+1rMK59DextSr/5cmJqJqExyYREJRGZkEZa5r/9cuystfi42FHT24kAT0ec7a1LMVOhltDQUJ566in+/vtvs+K7d+/O2rVrcXGRWY3CgmSmwqHP4M9PQK+8MQmPDIAnZoOrtFAQQgghhPpKrBDWoUOHYp9todFozFoiIoQoP9Iys1jxZyhf7A0hNTNLMabHIxX5X896+HtYxqYbcckZnLgWy4WIRLIU2jSmZRoIi0khPDaV275pNK/mgbuj9DArqzIyMhg+fDhr167FnLad1atXZ926dTRp0kSF7IQwk9EIwb/Djqlw97pyjM8jpj5g1dqom5sQQgghxH1KdN2N9OEXQpQUo9HI7uAo5mwO4npsimJMbR8nZvQJpE3NCipnl7fE1ExOXIvl/C3lpZv3yzIas+NaV/eUmWFl0KJFi5g8eTJpaWkFxjo6OrJo0SJGjRqlQmZCFEJkEGyfBKF5rAawd4dOU6HJCNDJkm8hhBBClK4SuxrZt29fSZ1aCFHOhUQlMXtzEAcv3VEcd7Gz4o0najOsVVWsdZbVNyk0JpkLEYmFOuZCRCIVXe1o6OdWMkkJ1R06dIinn36a8PDwAmO1Wi0vvPACS5cuxcpKigjCgqTGwf4P4PhXYFSYkavRQrNR0PF/4OChfn5CCCGEEApK7Iq6ffv2JXVqIUQ5lZCWyed7LrPq0DX0htwzTjUaeLp5Fd7uWhtPJ9tSyDB/yel6QqKSFJdD5ifLaCQkKokaXk7SQP8hFx0dzYABA8zuo9myZUs2btxIpUqVSjgzIQrBkAWnv4G9cyAlRjmmalvo8SFUfETd3IQQQgghCiB3VEIIi2cwGFl/Opz52y8QnZShGNO0qjuz+gbySGVXlbMzX1RiOpEJBS+BUxKZkEZUYjoBUgh7KBkMBt544w0WL15MVpZyL7v7+fj48N1339GlSxcVshOiEK4fha0T4XYemzq4+EHX2RDY3/TuhBBCCCGEhZE7KiGERTtzPY6Zm4I4eyNecdzHxZb/9axH30crFfsGHcUtITUzx+6QhZGWaSAhNbOYMxJq+PHHH3nppZdISCi4L5yNjQ3Tp0/n3XffVSEzIQoh4RbsmgH//Kw8rrOFtq9Dm9fBxjI2JhFCCCGEUCKFMCGERYpKTGP+9ousP6XcQ8lGp2XU4wG80rHmQ7NcMF1ftCLYPRlZD3a8UFdwcDD9+/fnwoULZsU/+eST/PDDDzg4SBFBWBB9Ohz5Ag4uhMxk5Zh6faDrXHCvpmpqQgghhBBFUap3j4mJiezevZuzZ88SHR1NampqvjtNajQaVqxYoWKGQgi1ZegNrD4cymd7QkhK1yvGdK7rzbTe9alWwVHl7B6MrdWDNe63sbDG/0JZSkoKw4YN45dffjErvm7duqxfv57AwMASzkyIQjAa4dJ22D4F4kKVY7zqmvqAVe+gampCCCGEEA+iVAphBoOBOXPmsHDhQpKT83h38T+MRqMUwoQo4/ZfjGL2piCuRiu/LlSv4Mi0PvXpWMdb5cyKh4u9NXbW2iItj7Sz1uJib10CWYniNG/ePGbOnElGhnIvu/u5uLjw5Zdf8swzz6iQmRCFEH0Ztk+GkN3K47aupp0gm48CnbwuCSGEEOLhUiqFsBEjRvD9999jNBrR6XR4enoSFRWFRqPBz8+PuLg4kpKSANMssAoVKshSESHKsGvRyczdEsTu4CjFcSdbK17rXIvhj1XD5gFnVZUmb2dbfFzsCItJKfSxPi52eDtb3k6YwmTv3r0MHTqU27dvFxir0+l4+eWX+fTTT9FqH96fZ1EGpSXAgQ/h2JdgUJqRq4Emz0Pn6eBYQfX0hBBCCCGKg+qFsB07dvDdd9+h0WgYMWIECxcu5ObNmzRs2BCAsLAwAC5dusTSpUv54osvcHd359dff6Vu3bpqpyuEKEHJ6Xq+2BfCij9C8+x/NbCpH+90r4O3s53K2RU/R1srano7ER6bSlY+y8D/S6fRUNPb6aHphVae3Lp1iwEDBnD06FGz4tu1a8e6devw9n44ZzWKMspggLM/wu6ZkKz8hgR+LaDnfKjUWNXUhBBCCCGKm+p3VatWrQIgMDCQlStXAqYbif+qXbs2n3zyCZ07d6Zfv3707NmTM2fO4Orqqmq+QojiZzQa+e2vW8zbFkxkQrpizKN+rszsG0jjKu4qZ1eyAjwdue2bxvlbBe8geE9dX2cCPB+ufmhlnV6v5+WXX2bFihUYDAUvdfXz8+PHH3+kbdu2KmQnRCGEn4JtE+HmKeVxp4rQdQ40GAQWvjOvEEIIIYQ5VF+TcfToUTQaDePHjzcrvnfv3gwfPpywsDA+++yzEs5OCFHS/gm/y8Avj/D62r8Ui2AVnGz4aGBDfnm5TZkrggE421vTvJoHgZVc0BVwU6nTaAis5ELzah44S38wi7Fq1Src3Nz46quvCiyC2dnZ8fHHH3Pjxg0pggnLkhgJv74MX3dSLoLpbKDtGzDhJDQcLEUwIYQQ4iHWq1cvNBoNWq2WP//806xj/vzzT7RaLRqNht69e5dwhurSGPPbprEEODg4kJ6ezu7du+nYsSMAFy5coH79+mg0GlJSUrC1zdkHZ/v27fTs2ZNGjRpx+vRpNdMVhRAeHo6/vz8AN27cwM/Pr5QzEpYkOimdBTsusvbkDZReday0Gka2qcaEzrVwsSv7RZ/E1ExCY5IJiUoiMiEtRwN9O2stPi521PR2IsDTUYpgFuKvv/5i4MCBXLlypcBYjUbDkCFDWLVqFXZ2D/+yXlGG6DPg+DLY/yFkJCrH1O4O3d4Hzxrq5iaEEEKIEhEeHk5gYCAJCQnUqVOHv/76K99r1PT0dB599FEuXryIi4sL58+fL1P396XWcMbDwyP7sbOzc/bjqKio7GLKPfd6qVy7dk2V3IQQxSczy8C3R8L4ZPclEtOUmi9Du9peTO9dn5reTipnV3qc7a1p6OdGDS8nohLTSUjNJCPLgI3OtDukt7Ot9ASzEAkJCTz99NNs27bNrPgGDRrwyy+/UKOGFBGEhbm827QbZMxl5XHPmtD9A6j1hLp5CSGEEKJE+fn58eGHHzJu3DguXrzIrFmzmDdvXp7xs2fP5uLFiwDMnz+/TBXBoBQKYT4+Ply/fp3Y2NgcH7OxsSEzM5O///47VyHs+vXrAKSlpamaqxDiwfx5OZpZm85zOSpJcbyqpwPTetWncz1vNOV02Y2jrRUBUvCySAaDgRkzZvDhhx+SmZlZYLy7uzsrVqygX79+KmQnRCHEXoUd78LFrcrjNs7Q/h1o+RJY2aibmxBCCCFU8eKLL/LTTz9x4MABFixYwODBg2ncOPcmOGfPnmX+/PkAdOjQgbFjx6qdaolTvUdYgwYNAAgKCsr+mJWVVfY34F4z/fstW7YMgKpVq6qQoRDiQd2ITeGlb08xbMUxxSKYg42Od7rXYecb7ehS36fcFsGE5dqyZQve3t7MnTu3wCKYlZUV77zzDtHR0VIEE5YlPQl2z4LFLfMugjUaChNOQZtXpQgmhBBClGEajYavv/4ae3t79Ho9L7zwAnp9zhU7WVlZjBo1Cr1ej729PV9//XWZvFdTvRDWoUMHjEYju3fvzvHxYcOGYTQa+eWXX3j++efZsmUL69ato0+fPuzYsQONRsOTTz6pdrpCiEJIzcji450X6fLxAbafv60Y81SjSux9qwMvd6iJrZVO5QyFyF9YWBhNmjShd+/exMTEFBjfpUsX7ty5w4cffohWq/qfVCGUGY3w9zr4ohn8+TFkZeSOqdQERu+Bp5aAs4/6OQohhBBCdTVr1mT27NmAqf/tRx99lGP8448/5tQp0yY6c+bMydHqIzw8nClTptCkSRPc3d2xs7OjSpUqDBkyhH379uX7vFlZWaxevZpu3bpRsWJFbGxscHNzo1atWnTu3Jn3338/x2SpkqZ6s/zQ0FBq1KiBra0t165dw8fHdPGl1+tp1aoVp0+fzlVxNBqNVK1aldOnT+PuXvZ2kSsrpFl++WU0GtnyTwTvbwnm1l3lJcyPVHZhZp9AmlXzUBwXojRlZGQwevRovvvuO8z5s1itWjXWrVtHs2bNVMhOiEKIOAtb34EbR5XHHb2gy0x49FmQ4q0QQghR7mRlZdG6dWtOnDiBra0tZ8+epU6dOly5coUGDRqQmppK8+bNOXLkCDqdaeLCihUrmDBhAqmpqXmed9SoUXz55ZdYWeVs+5KUlETPnj35448/8s1rwIABrF+//sE/QTOo3pgmICCAq1evkpWVhYuLy7+JWFmxa9cuXn31VX7++efspSgajYZevXqxdOlSKYIJYYGCIxKY+ft5joXGKo57ONowsVsdBjfzR6cte9NqxcNvyZIlvP322/n+Yb/HwcGBjz/+mBdffFGFzIQohORo2DsHTq0BFIq5WitTD7D274Cdq+rpCSGEEMIy6HQ6VqxYQdOmTUlPT2fUqFEcPHiQMWPGkJqairW1NStXrswugq1cuZLRo0cD8Mgjj/Diiy/SuHFjHBwcCA0NZcWKFWzdupUVK1bg6urKwoULczzfzJkzs4tgvXv3ZujQoVSpUgU7Ozvu3LnD2bNn2bx5s6pLMFWfEWaOxMRELl++jF6vp2bNmjl2mLQkHTp04MCBA4U6Zt++fXTo0CH736tXr2bkyJFmHbtq1SpGjBiRb0xKSgqLFy9m3bp1hISEkJGRgb+/P7169eLVV1+lSpUqhcq3MGRGWPkSl5zBx7su8f2xMAwKryI6rYbnWlXljS61cXWwVj9BIQpw7NgxBg8enL0hS340Gg3Dhw/nq6++yvUulxClKksPJ1fAvvcg7a5yTI1O0P1D8Kqtbm5CCCHEAzIYjMSlKCzxL8PcHWzQqjCBYMaMGdnLJDt37syePXuyPz5z5kzAdF9ft25dUlJSGD58OF9//bXitfC7777L+++/j1arJTg4mNq1/73mqFKlCjdu3GDgwIGsW7cuz3xiY2NVq/1Y5NW8s7MzTZo0Ke00ip1Wq6VWrVoldv4rV67Qq1ev7G1O77lw4QIXLlzg66+/5ocffqBnz54lloMo+7IMRn44fp2FOy8Sn6LcRPyxGp7M6BNInYrOKmcnRMFiY2MZOHBggb0M7mnatCkbN24s0TcShCiSqwdg2yS4E6w87l4Nus2DOj2gDDa6FUIIUfbFpWTQdO7uggPLkFNTu+DpZFviz/Puu++yYcMGzp8/n10Ee+SRR/jf//6XHbNo0SJSUlKoVKmS4rLHe2bNmsWaNWu4efMm33zzDXPnzs0eu33b1Dv68ccfzzcfNSdAWWQhLD4+nszMTCpUqGDROxSsWrWK5OTkfGOCgoIYMmQIYKqyVq5cOc/YHTt2UKlSpTzH85thlZSURO/evbOLYGPGjOHpp5/G3t6effv2MW/ePO7evcugQYM4cuQIDRs2zDdvIZQcuxrDzE1BBEckKI5XdrNnWu96dAusaNG/u6J8MhgMTJw4kUWLFpGVlVVgvJeXF2vWrKFHjx4qZCdEIcSFwc6pEPy78ri1A7R7G1qNB2s7dXMTQgghxEPBxsaGlStX8thjj5GVlZW9ZNLG5t9dpH/77TcA+vTpg51d3tcUVlZWtG7dmvXr13PkyJEcY76+vly/fp21a9cyevRoHBwcSuYTKgTVCmFZWVkEBweTlpZGlSpV8Pb2zjGenp7OvHnzWLFiBbdu3QLAzs6O7t27M3v2bAIDA9VK1WwBAQEFxnz77bfZj59//vl8Y2vXrk21atWKlMuCBQu4cOECAPPnz2fixInZY61bt6Zjx460a9eOlJQUXn/9dfbu3Vuk5xHl0634VN7fGszmvyMUx22ttLzcoSYvtq+OnbXsBCksz/r16xkzZgzx8fEFxlpbW/Puu+8yY8aMkk9MiMLISIFDi+DQp6BX3piEBoOgyyxwzfuNNyGEEEIIgBYtWuDn50dYWBh+fn60aNEie+zu3buEhIQAsGzZMpYtW2bWOe/NALtn+PDhzJkzh8OHDxMQEMCgQYPo3Lkzbdu2xcvLq/g+mUIo8UKY0Whk9uzZfPrppyQk/DuLpEWLFnz66ae0bNmSzMxMevTokd1v617bstTUVH799Ve2b9/O77//TufOnUs63WJlMBj4/vvvAXBycqJ///4l8jyZmZksWrQIgHr16vHWW2/limndujWjRo1i2bJl7Nu3j1OnTtG0adMSyUcA6UmQFAmp8ZCVDjpbsHcDJx+wdSrt7MyWlpnFVwevsnh/CGmZBsWYXg18mdKzLn7upV/ZF+K/Ll++TL9+/Th//rxZ8b179+bHH3/Eyenh+T0V5YDRCEG/ws5pcPeGckzFBtDjI6jaWtXUhBBCCFE2RUVFFem4lJSUHP+eNm0aN2/eZNWqVURFRbF48WIWL16MRqMhMDCQ/v378/LLL+Pj41McaZulxAthY8aMYdWqVQA5tqQ/duwYPXr04OjRo3z11Vfs378fMK0LrVWrFnq9nqCgIFJTU0lNTWXo0KFcvHgRV9eHZ6ejPXv2cPPmTQAGDhxYYlMA9+/fnz3LYfjw4Wjz2A59xIgR2VXcjRs3SiGsJKQlQOwVuHMREm6D/r5d6KzswaUieNUBjxpg55L3eUqZ0WhkZ1Akc7cEcSNWeSe9uhWdmdEnkNY1PFXOToiCpaWl8dxzz7FhwwbM2ROmVq1abNiwgQYNGqiQnRCFEHne1AfsWh5bjtt7QOdp0GQ4aGVGrhBCiLLF3cGGU1O7lHYaqnJ3sCk4SAX3txJ5/fXXGTVqlFnH3b+0EkyrLVasWMFbb73Fjz/+yN69ezl58iQZGRmcO3eOc+fO8fHHH/Pdd9/x5JNPFuvnkJcSLYQdOHCAlStXotFosLOzo1evXlSrVo1r166xZcsW7t69y6effsratWuxtrZm8eLFjBo1Kru3UGpqKtOnT2fhwoXcuXOH1atX89prr5VkysXqm2++yX5c0LLIB3FvK1KA9u3b5xnXrFkzHB0dSU5O5s8//yyxfMqtlBgIOwKRQWBU6D+kT4XYUIi7Dj43Te/aO1heESkkKpFZm4L443K04rirvTVvda3Nsy2qYKVTLroKUZo++ugjpk2bRnp6eoGxTk5OLF68uERfo4UokpRY2D8PTnwNRoUZuRodNB8NHaeAvbv6+QkhhBAq0Go1qjSOF7l5ev57r5qSksIjjzzyQOerX78+c+bMYc6cOaSmpnLo0CF++OEHvvnmG5KSknjmmWe4cuUKvr6+D5p6gUq0EHZvJpi3tzd79+6lXr162WMXLlygU6dOfPXVV9kNjEePHp3jeHt7ez766CPOnTvHjh072LJly0NTCEtKSuKXX34BTNuFdujQocBjRowYQXBwMHFxcbi4uFCzZk26dOnCuHHj8m2yHxz8725RdevWzTPOysqKGjVq8Pfff+c4RhSDtARTEez2PwXHGrP+jQtoZzEzwxLSMlm0+zJrDl9Db8g9g0ajgWdaVOHtrnXwcLSMdymEuN/Bgwd5+umniYhQ7mV3P61Wy9ixY1m8eHGes2iFKBWGLDi1GvbOhdRY5Zhqj0OPD8HH8vqnCiGEEKJs8PLyonLlyty8eZPdu3djNBqLbUM0e3t7unTpQpcuXWjQoAFvvvkmqampbN68mTFjxhTLc+SnRK/+jxw5gkaj4Y033shRBANTweaNN97Inm733HPP5Xme4cOHA5jd48USbNiwIXtHyeeee86sH5gDBw4QFRVFZmYmMTExHDt2jPfee4+aNWvm25juxg1TvxBHR0fc3NzyfQ5/f38A7ty5Y9ZsifuFh4fn+585N59lVuwV00ywwogMMh1XygwGI2tPXKfTgv2s+DNUsQjWvJo7m15py/v9GkgRTFic27dv06ZNG9q3b2/W69Bjjz3GzZs3Wbp0qRTBhGUJOwzL28OWN5WLYK7+MPgbGL5JimBCCCGEKHF9+/YF4OrVq6xfv75EnuP+XvDR0cqrkopbic4Iu7f7Y+vWyo1b7/94zZo18zxPrVq1AIiNzeOdUQtUmGWR1atXp3///rRu3Tq7UHX16lU2bNjA+vXrSUtL46WXXkKj0TB27NhcxycmJgKY1dzZ0dEx+3FSUhK2tuZPM72Xm/iP9CRTTzCl5ZD5MWbBnUvgWavUGuifCotj1qbz/B1+V3G8oosdU3rWpe+jlYqt+i9EcTEYDLzyyissW7YMg0F5M4f7+fr68sMPP5g1Q1cIVd29Cbumw7k8LjCt7KDtG/DYq2AjG5MIIYQQQh0TJ05k5cqVpKen89JLLxEQEECzZs3yjN+6dSt+fn40bNgQMNVw/vzzT/r06ZPn/eTOnTuzHwcEBBTvJ5CHEi2EJScno9Fo8PDwUBy/f/ZSfgUZOzs7ADIyMoo1v5ISHh6e3fy/VatW1K5dO8/Yfv36MXz48Fw/FM2bN2fIkCFs3ryZ/v37k5mZyRtvvEHfvn2pWLFijti0NNMW6v9tSqfk/q9zaqpyE3RRSEmRpsb4RZEYYTpe5UJYZEIaH267wMYzNxXHbXRaxrarzssda+BgU+J7aghRaN988w2vvPJK9hsB+bG1tWX27Nm88847KmQmRCFkpsGRz+GPjyEzRTmm/pPQdS64VVE3NyGEEEKUewEBAXz55ZeMHDmS2NhY2rRpw3PPPUfv3r2pUqUKer2e8PBwjh8/zvr167ly5QqbNm3KLoQlJCTw5JNPUq1aNfr370/Lli2pWrUqVlZWREREsGnTJr7++msA/Pz86NOnjyqflyp3uHlV/srqDJPvvvsue3bCvWWdeSloF8zevXszY8YMpk6dSkpKCitWrODdd9/NEVOYQuH9yyHt7e0LjL/fvSWYeYmIiKBFixaFOmeZkBqfc3fIwshMNR2vknR9FqsOXePzPZdJzlCewdalng/Tetejqqej4rgQpencuXP079+fy5cvFxir0WgYMGAA3377bfbrpBAWwWiEi1th+xSID1OO8a5v6gMW0E7d3IQQpS89yfRGaWo8ZKWDzhbs3cDJp9RWEQghyq8RI0Zgb2/P2LFjSUhIYMWKFaxYsUIxVqvV5liFds+1a9f4+OOP83yOypUr8/vvvyseWxJkqkcJ+PbbbwHTLIQhQ4Y88PnGjBnDtGnTMBqNHDhwIFchzNnZGTAtdSzIvb5lYN5Syvv5+fkVKr7cyCpcr7Xcx6sz03HfhShmbw4iNDpZcbyGlyMz+gTSrraXKvkIURj3dpLZvHmzWfGBgYFs2LCBOnXqlHBmQhTSnYuwfTJc2as8bucKHadCsxdAJ5dpQpQraQmm/rF3LppWG9z/RquVPbhUBK864FHDYjZbEkKUD0OGDKFr164sX76c7du3ExQURFxcHNbW1lSsWJHAwEA6duzIwIEDc7RUqlq1Kn/99Re7du1i7969XL16lcjISJKSknBzcyMwMJA+ffowduzY7LqGGuQKq5idPHmSoCBT0/TevXvj7v7gW5p7e3tToUIF7ty5w82buZey+fn5cezYMZKTk4mPj8+3Yf69WV1eXl6F6g8m8qF7wK+jrmSbz1+9k8SczUHsu3hHcdzZ1orXutRi+GPVsNaVbOPw5HQ9UYnpJKRmkq43YGulxcXeGm9nWxxt5eVIKJs1axbvvfcemZmZBca6urqyfPlyBg8erEJmQhRC2l3Y/yEcXwYGvUKABpqOgE7TwNFTYVwIUaalxJh2II8MUu47q0+F2FCIuw4+N6Fqa3CQ1wohxIO7du2aWXHu7u5MmjSJSZMmmX1ujUbDo48+yqOPPsrbb79dxAyLnyp3nkuWLMHb2zvXx6OiorIfz549O8/j74+zdPc3yS9oWWRhGI25d/K7p379+mzYsAGACxcu0KpVK8U4vV7PlSumXQr/u4uneAD2bqZ36YqyPNLa3nR8CUhK1/P53sus/DOUzCzln59BTf14p3tdvJxLtiiamJpJaEwyIVFJRCakkZb5b2NzO2stPi521PR2IsDTEWd76xLNRTw8duzYwXPPPcedO8pF3PvpdDpee+01PvroI9kJUlgWgwH++h72zILkPH6Wq7Q2LYP0fVTd3IQQliEtwVQEu/1PwbHGrH/jAtrJzDAhhCgCVQphS5cuzXPsXp+wWbNmqZFKicrMzOSnn34CTDOuevToUSznjYqKIiYmBoBKlSrlGm/btm324wMHDuRZCDt58mT20sg2bdoUS24CU78Gl4qmd+kKy9nXdHwxMhiM/HLmJh9sv8CdROVlm4383ZjVN5BH/d2K9bmVxCVncOJaLBciEslSKOimZRoIi0khPDaV275pNK/mgbtjyc6SE5bt+vXr9O/fn1OnTpkV37FjR9avX5/nxixClJobJ2DbO3DrtPK4cyXoOgceGQBltG+qEMIMsVdMM8EKIzIIXCtDpcYlk5MQQpRhJV4Iy28mU1mzbdu27JkLzz77LFZWxfPlXb58efbXsX379rnGO3TogKurK3fv3mXNmjW88847ihsRrF69Ovtxv379iiU3galpqVcd01R1pansedHowKt2sTY9/Ts8nhm/n+fM9XjFcS9nWyZ3r0u/xpXRakv+pisxNZMT12I5fyuhwNgsozE7rnV1T5kZVg7p9XrGjBnDmjVrzPrbUaVKFdauXZtn8V+IUpN4G3bPgrM/KI/rbOCxCdD2TWl8LUR5l55k6glWmGtIMMXfuQSeteR1RAghCqlEC2H79u0rydNbnPuXRT7//PMFxl+7do24uDgaN877nZzNmzczZ84cwLQ75MiRI3PF2NjY8OqrrzJnzhyCg4NZsGABEydOzBFz5MiR7J0d2rdvT/Pmzc36nISZPGqY+jWYM6X9Hp/6puOKQXRSOh9tv8jPp26gVD+w1ml4oU0Ar3SqibOdegWm0JhkLkQkFuqYCxGJVHS1o6GfW8kkJSzSsmXLePPNN0lJSSkw1t7envnz5/PKK6+okJkQhaDPgGNL4cB8yMhjA5s6vaDbXPCorm5uQgjLlBRpaoxfFIkRpuOlECaEEIVSooUwpdlLZVVcXFz2bmaPPPIITZo0KfCYa9eu0bFjR1q3bk2fPn1o1KgR3t7eGI1Grl69yvr161m/fn32zIgFCxZQuXJlxXNNnDiRtWvXcunSJd555x1CQkJ4+umnsbe3Z9++fbz//vvo9Xrs7e359NNPi+3zFv/PzsXUtBTybnJ6j0ZnKoJVbf3AfR0yswx8cySMT3ddIjFdqfkydKjjxfTe9anupe5FUnK6npCoJMXlkPnJMhoJiUqihpeTNNAvB06ePMmgQYPMatKp0WgYOnQoK1aswMZGls8KC3N5l2k3yJgQ5XHPWtDjA6jZRd28hBCWLTW+aH1mATJTTccLIYQoFLnLLCZr164lPd3Uj8mc2WD3O3LkCEeOHMlz3MHBgU8++YSxY8fmGePs7MyWLVvo2bMnly9fZvny5SxfvjxHjIuLC99//z2NGjUqVH7CTA6epqalrpVNU9UTInJe2Fjbm3qCedUulm2v/7h8h1mbggiJUp51UM3Tgel96tOpbvH2IDNXVGI6kQlpRTo2MiGNqMR0AqQQVmbFx8czaNAgdu/ebVZ848aN2bhxI9WqVSvZxIQorJgrsON/cGm78riNM3SYDC3GgpUUcIUQ/5Gl3M/V/OMziicPIYQoR+Qus5h8++23gGnnsqFDh5p1TNOmTfnuu+84cuQIJ0+eJCIigujoaPR6Pe7u7gQGBtK5c2dGjx6tuOvmf9WsWZMzZ86wePFi1q1bR0hICBkZGfj7+9OzZ09ee+01qlat+kCfpyiAnYupaalnLdNU9dR40wWKzsa0O6STzwNPX78ek8LcLUHsDIpUHHe00TGhcy1GtqmGrZXugZ7rQSSkZubYHbIw0jINJKRmFnNGwhIYDAamTJnCxx9/jF6vPIvxfp6enqxevZrevXurkJ0QhZCeCAcXwJHFYMjj9arxMOg8A5wK/hsuhCindA+4c7dOCuxCCFFYGmN56mYvSlR4eDj+/v4A3LhxAz8/v1LOqGxJydCzdP8Vlh28SoZeucDUv3FlJvWoi4+LncrZ5XY8NJZDIdFFPr5trQo0rya7AJYlv/76Ky+88AJxcXEFxlpZWTFp0iRmz56NVqtVITshzGQ0wt8/w67pkJRHX5/KzaDHfPBrqm5uQoiHT8wVCNpUtOWR1vZQrw94Fk/PWSGEKC9kRpgQFs5oNLLp7wjmbQ0m4q7yUsMGlV2Z2bc+TataTuHI1urBihc2Oil+lBVXrlyhX79+/POPeZtJdO/enbVr1+Li8mDLh4UodrfOwNZ3IPy48rijNzwxCxo+DVLAFUKYw8kHXCpCbGjhj3X2NR0vhBCiUKQQJoQFC7qVwMxN5zkeGqs47ulow8RudRjUzB+dVqNydvlzsbfGzlpbpOWRdtZaXOzV291SlIy0tDRGjhzJ2rVrMWfycY0aNVi/fr30MRSWJ+kO7J0Np78FFH6WtdbQ6iVo984D938UQpQztk7gVQfirue/2dJ/aXSmvrOyY6QQQhSaFMKEsEBxyRks3HWRH45dx6Bwz6XTahjeuhqvdamFq4UWjLydbfFxsSMsJqXQx/q42OHt/IA9M0Sp+vTTT5kyZQppaQVvmODo6MiiRYsYNWqUCpkJUQhZmXDia9g3D9LvKsfU7ALdP4AKtdTNTQhRdnjUAJ+bcNu8mdOAaQdyD1kSKYQQRSGFMCEsiD7LwI/Hr7Ng5yXu5tEsvm3NCszoU59aPs4qZ1c4jrZW1PR2Ijw2laxCtCLUaTTU9HbCUXaMfCgdOnSIIUOGcPPmzQJjtVoto0aNYsmSJVhZyfdbWJgr+2D7ZLhzQXncPcBUAKvdDTSWNSNXCPGQsXOBqq1NjyOD8p8ZptGZimBVW8sMVCGEKCK58xDCQhy5EsOsTee5cDtRcdzP3Z6pverRLbAimofkpivA05Hbvmmcv5Vg9jF1fZ0J8HQswaxESYiOjqZ///788ccfZsW3bNmSjRs3UqlSpRLOTIhCirsGO96FC5uVx60dod3b0Ho8WMnMVSFEMXHwhIB24FoZ7lyChIicDfSt7U09wbxqm2aCSRFMCCGKTAphQpSym/GpvL81mC1/RyiO21lrGd+hJmPaVcfOWqdydg/G2d46e+fHCxGJ+c4M02k01PV1pnk1D5wtdLmnyM1gMPD666+zZMkSsrIK7m3i4+PD999/T+fOnVXITohCyEiGPz+FQ4sgK105puEQ6DITXKSAK4QoAXYuUKkxeNaCpEhIjYesDNDZgL2bqTG+9AQTQogHJoUwIUpJWmYWyw5cZemBkDwbyvdu6MuUnvWo7GavcnbFx93RhtbVPanoakdIVBKRCWk5Pl87ay0+LnbU9HYiwNNRimAPkR9//JGXXnqJhISCZ/zZ2Ngwffp03n33XRUyE6IQjEY4vxF2ToOEPJb0+j4KPeZDlVbq5iaEKJ9snaTgJYQQJUgKYUKozGg0suP8beZsDuZmfKpiTN2KzszsG0ir6p4qZ1cynO2taejnRg0vJ6IS00lIzSQjy4CNzrQ7pLezrfQEe4gEBwfTv39/LlzIo3fSfzz11FN8//33ODg4lHBmQhTS7X9g2yQIO6Q87uAJnadD4+dA+3DNyBVCCCGEEMrkzlMIFV2KTGTWpvMcColRHHdzsOatrnV4prk/VjqtytmVPEdbKwKk4PXQSklJYejQofz6669mxdetW5eNGzdSr169kk1MiMJKiYV978HJlWBUmJGr0UGLMdBhMti7q5+fEEIIIYQoMXJHKoQK7qZm8unuS3xzJIwsQ+4+WVoNDG1ZlTefqI27o00pZChE/t5//31mzZpFRkZGgbEuLi58+eWXPPPMMypkJkQhGLLg1CrYOxdS45RjAtqZlkF6SwFXCCGEEKIskkKYECUoy2Dk55M3+GjHRWKTlQsILQI8mNknkPqVZPcfYXn27NnD0KFDiYyMLDBWp9Mxfvx4PvnkE7TasjejUTzkrv1pWgYZeU553LUKdHsP6vWBh2RnXiGEEEIIUXhSCBOiuKUnQVIkJ69GMfPAXc5FK++k5+tqx/961qN3Q180ctMlLMytW7fo378/x44dMyu+Xbt2rF+/Hi8vrxLOTIhCuhtuaoR/fqPyuJU9tH0D2rwK1g/vxiRCCCGEEMI88pa9EMUlLQFunSHy9Bbe+OE4AzfEKhbBbHQaXu1Ukz1vtafPo5WkCCYsil6vZ8yYMfj7+5tVBPPz8+OPP/7gwIEDUgQTliUzFQ7Mh8+b5V0EC+wHr5yADpOkCCaEEEKIMm3//v1oNJrs/55++ukCjxkxYkR2fFkihTAhikNKDOkhB1my/QwdN9vzy03lZY7dfBLY86SBN9tWwMFGJmQKy7JixQrc3Nz4+uuvMRgUGojfx87Ojk8++YQbN27Qtm1blTIUwgxGIwRvgsUtTA3x9Qq783oHwvDNMGg1uPmrnqIQQgghRGn7+eef+eeff0o7jVIhd+JCPCBj6l32/HmEOUcyCEv1UYyp5ZjGjHq3aOuZBMlAGKaGzHbSF0yUvr/++ouBAwdy5cqVAmM1Gg1Dhgxh1apV2NnZqZCdEIUQdQG2T4Kr+5XH7dyg01RoOhJ0cgkkhBBCiPLLaDQyY8YMNm7MY+Z8GSZXgUI8gCt3kpi9/gQHwjSAba5xZ6ssXq8RyfNVorG+f/5lZBC4VoZKjVXLVYj/SkhIYMiQIWzfvt2s+IYNG7Jx40Zq1KhRwpkJUUip8XDgQzi2DIxKfRk10GwkdJwKjp5qZyeEEEIIYVEqVKhAdHQ0v/zyC6dPn6ZJkyalnZKqZGmkEEWQmJbJ+1uD6fbJQQ6Epeca12DkGb8Y9j9+gVHV/lMEA9ON2p1Lpsb6QqjMYDAwdepUKlSoYFYRzN3dnY0bN3L27FkpggnLYsiCU2vg86ZwdIlyEazKY/DiQej9iRTBhBBCCCGA1157DVtb00SOGTNmlHI26pNCmBCFYDAYWX8qnI4LDrD84FX0BmOumCZuyfzeKoR5gTfxtFHeMRKAxAhIiizBbIXIbfPmzXh7e/Pee++RmZmZb6yVlRWTJ08mOjqafv36qZShEGa6fgy+6gSbXoWU6NzjzpVgwAoYuRV8G6qfnxBCCCGEhfLz82Ps2LGA6f7A3J3ildy5c4epU6fSuHFj3NzcsLOzo1q1ajz33HP8+eefxZVysZKlkUKY6a8b8cz4/Txnb8QrjnvbZjKldgRP+cZj1qYamamm5TxCqCAsLIynnnqKv/76y6z4J554gp9//hk3N7cSzUuIQkuIgN0z4O+1yuM6W3hsAjz+Jtg4qpubEEIIIcRDYsqUKXz99dekpqYyffp0duzYUehz7Ny5k0GDBpGQkJDj42FhYYSFhfHdd98xfvx4PvvsM7Ray5mHZTmZCGGh7iSmM3HdWZ5afEixCGajMTAuIIq9bS/Sr5KZRbB7sjKKLU8hlGRkZDBs2DACAgLMKoJVq1aNEydOsHPnTimCCcuiT4c/PzEtg8yrCFa3N4w/Bp2nSRFMCCGEECIfvr6+jBs3DjAVtAo7e+uvv/6iT58+JCQkYG1tzeuvv86+ffs4fvw4y5YtIyAgAIDFixczZcqUYs//QciMMCHykKE3sObwNT7bc5nEdL1iTOdqtkz1O0uAYxELWjqbB8hQiPx98cUXvPPOO6SmphYY6+DgwCeffJI9RVoIi3JpB2yfDLFXlccr1IbuH0DNzurmJYQQQoiSZTBAamxpZ6Euew9QafbU5MmTWbZsGcnJyUyfPp29e/eafezYsWPJyMhAp9OxefNmunbtmj3WvHlzBg0aRNu2bQkKCmLBggU8//zzBAYGlsSnUWhSCBNCwYFLd5i16TxX7yQrjlev4Mi0PvXpWCERgs6Bcp0sf9b2YO/2QHkKoeTYsWMMHjyY69evFxir1WoZPnw4y5cvx8pK/iQICxMdYiqAhexSHrd1gQ6TocVY0Fmrm5sQQgghSl5qLHxUzjZrmngFHCuo8lReXl688sorfPjhh+zbt499+/bRsWPHAo87fvw4J06cAGD06NE5imD3uLu7s3z5ctq2bYvBYGDJkiUsXry42D+HopC7HiHuExaTzJzNwewOVm5i72ij47UutRjxWAA2VlpIdwCXihAbWvgnc/YFJ58HzFiIf8XGxjJw4ED27dtnVnyzZs3YuHEj/v7+JZyZEIWUlgAHP4KjS8GgtKmDBhoPg87Twclb9fSEEEIIIcqKiRMnsmTJEhITE5k2bZpZSyR3796d/XjUqFF5xrVp04Z69eoRHByc45jSJj3ChACS0/V8tOMCT3x8MM8i2IAmfux7uwNj29UwFcEAbJ3Aqw5odIV7Qo0OvGqbjhfiARkMBt566y28vb3NKoJ5eXmxbds2Tpw4IUUwYVkMBvjrR/iiGRz+TLkI5tccxuyBJ7+QIpgQQgghxAPy9PTk9ddfB+DQoUNmNc0/d+4cADY2NjRu3Djf2JYtWwJw+fJlMjIso0e2FMJEuWY0Gvntr5t0WrifxfuukJFlyBXzqJ8rv7z8GAsHP4q3i13uk3jUAJ/6hXtin/qm44R4QOvXr8fDw4OPP/6YrKysfGOtra2ZNWsWUVFRdO/eXaUMhTDTzVOw4gn49SVIUnhDwskHnvoSXtgJlZuqn58QQgghRBn15ptvZm+UNX369ALjY2NNfds8PDwKbK9SsWJFwHTvHRcX92CJFhNZGinKrXM37zLz9/OcDFP+ZazgZMM73esysIkfWm0+W0HauUDV1qbHkUFgzKcYodGZimBVW5uOE6KILl26RL9+/QgKCjIrvnfv3vz44484OcksRGFhkqJgzyw4853yuNYaWr8M7SaCrbO6uQkhhBCidNl7mHpmlSf2Hqo/pZubG2+++SbTp0/n+PHjbN68md69exd4nEaTz33y/zMajcWRYrGSQpgod2KTM1iw8yI/Hr+O0u+klVbDiMeq8WqXWrjYmdl82cETAtqBa2W4cwkSIkB/30591vamnmBetU0zwaQIJoooLS2NYcOGsXHjRrP+qNSuXZsNGzbwyCOPqJCdEIWQlQnHl8P+DyA9QTmmVlfoNg8q1FQ3NyGEEEJYBq1Wtcbx5d3rr7/OokWLiImJYfr06fTq1SvPWA8PU7EuJiYGvV6f76ywyEjTTH+NRoO7u3vxJl1EUggT5crJa7G8sPoECWnK2zw+XqsCM/rUp6Z3EWYd2LlApcbgWcu0rCc1HrIyQGdj2h3SyUd6gokHMn/+fKZPn056enqBsc7OzixevJjnnntOhcyEKKSQPabdIKMvKY97VIfuH0DtburmJYQQQghRTjk7OzNx4kQmT57MmTNn+PXXX/OMvfcme0ZGBmfOnKF58+Z5xh4/fhyAWrVqYWNjU6w5F5X0CBPlSp2Kztha525sX8XDgeXPNeWbF1oUrQh2P1sn8KwBfk1NSyD9mpr+LUUwUUT79++nUqVKTJo0qcAimFar5eWXXyY+Pl6KYMLyxIbCj8/Cd/2Vi2A2TtBlFrx8VIpgQgghhBAqe+WVV/D2Nm1GNGPGjDxXoHTp0iX78YoVK/I835EjR7Jbudx/TGmTQpgoV5ztrJnUvW72v+2tdUzsVoedb7Sja2BFs9Y4C2GO5HQ9odHJnL0Rz/HQWM7eiCc0OpnkdOXZiEpu375NmzZt6NixIxEREQXGt2nThps3b7J48WK0Wnl5FxYkIxn2zIHFLeHiFuWYhk/DKyeh7etgZatqekIIIYQQAhwdHZk0aRIA//zzD1u3blWMa9GiRfYssK+//ppdu3blirl79y4vvvgiYHqzfty4cSWUdeHJ0khR7vRvXJnvj4Xh7+7AlJ518XW1L+2UptWIDgAAh61JREFUhCVJT7pvaWs66GwLtbQ1MTWT0JhkQqKSiExIIy3z351I7ay1+LjYUdPbiQBPR5ztlXvQGQwGxo8fz/LlyzEYcu9k+l+VKlXihx9+oH379uZ+lkKow2iEcxtg5zRIvKUc49sIesyHKi1VTU0IIYQQQuQ2btw4FixYQEREBNHR0XnGLV++nJYtW5KRkUGvXr2YMGECffr0wcnJiTNnzvDBBx9w9epVAN5++22L6lkshTBR7mi1Gn4c0wo7hSWSohxLS4DYK3DnIiTczrnZgZU9uFQErzr5bnYQl5zBiWuxXIhIJEthGnFapoGwmBTCY1O57ZtG82oeuDvmXCf/zTffMH78eJKSkgpM2dbWljlz5jBx4sTCfa5CqCHib9j2Dlw/ojzuUAG6zIBGw0yNcIUQQgghRKmzt7fnf//7HxMmTMg3rlGjRmzatIlBgwaRkJDAxx9/zMcff5wrbvz48cybN6+k0i0SKYSJckmKYCKHlBgIOwKRQWDMyj2uTzX1Noq7Dj43Tb3fHDxzhCSmZnLiWiznb+Wx+919sozG7LjW1T1xtrfmn3/+YcCAAVy+fLnA4zUaDQMGDODbb7/Fzs7OvM9RCLUkx8C+uXBqNRgVZjRqdNDyRWg/yTTbUgghhBBCWJQxY8Ywf/58bty4kW9c165dCQkJ4dNPP2Xr1q1cvXqV9PR0fHx8ePzxx3nppZdo27atSlmbT2PMq/uZEIUUHh6Ov78/ADdu3MDPz6+UMxLCDGkJEHoQbv9j/jEVG0BAuxwzw/4Oj2f/hTuKM8HyotNoaOFnz9y3X2LLljz6Jv1HYGAgGzdupHbt2ubnK4QasvRwcqWpCJZ2Vzmmegfo/iF411UeF0IIIYQQooTJjDAhRPkWe8U0E6wwIoPAtTJUagyYGuOHRCUVqggGsPWbz3nzxy/J0mcWGOvm5sZXX33FwIEDC5erEGoIPQjbJkFUHr9LblWg2zyo2wtkUxIhhBBCCFGKpBAmhKV6wKbtwgzpSaaeYErLIfNjzII7l8CzFtg6EZWYTmRCmtmHB584yA/zJ5F8N7bAWJ1Ox+uvv878+fNlJ0hheeKvmxrhB/2qPG5lD4+/BY+9AtayMYkQQgghhCh9UggTwtIUQ9N2YaakSNPXuCgSI0zH2zqRkJqZY3fIvMRHRbBy1iuEXz5n1lN07NiR9evX4+HhUbQchSgpmalw6DP485Ocr1H3e2QAPDEbXGWZvBBCCCGEsBxSCBPljyXPtCqGpu2iEFLj876JL0hmqul4IF2ffxFMr9ez7tOpnNz1K+a0ZaxSpQo///wzLVu2LFpuQpQUoxGCf4cdU+HudeUYn0egx3yo1kbd3IQQQgghhDCDFMJE+WHpM63SEkxFMHOathuz/o37T9N2UQhZ6Q94fAYAtlZ5L1k8vPknfls2j8z0gpdO2tvb89FHHzF+/PgHy0uIkhAZBNsnmfqBKbF3h05TockI0MnlhRBCCCGEsExypSrKh4dhplUxNG0XhaSzfcDjbQBwsbfGzlqbY3nk9Yv/sGbua8RF3izwNBqNhmHDhvH1119jY2PzYDkJUdxS42DfPDjxtfLrp0YLzUZBx/+BgyzjFUIIIYQQlk0KYaLsexhmWhVT03ZRSPZuptmARVkeaW1vOh7wdrbFx8WOsJgUUpISWDPnNS6fOWzWaQLqPsLm336lfu0ahc9BiJJkyILT38Ce2ZCax8YOVdtCjw+h4iPq5iaEEEIIIUQRSSFMlH0Pw0yrYmraLgrJyce0JDY2tPDHOvuajgccba2oXsGBxR/OZv+GlRiyCi5oOri4MfTtD3hl5BDq+7kV/vmFKEnXj8LWiXD7b+VxFz/oOgcC+4FGo25uQgghhBBCPAAphImy7WGZaVVMTdtFIdk6mfrCxV0v3M+IRgdetbN/Nn755RdeGDWK+Li4Ag/V6qzoPGQs3Z6fQAM/NwI8HYuavRDFL+EW7JoO/6xTHtfZQtvXoc3rYOOgZmZCCCGEEEIUCymEibLtYZlpVUxN20UReNQw9YUzZ+nsPT71waMGV65coV+/fvzzj3nH1m3ejuf/9wmOTs7U9XWmeTUPnO2ti5i4EMUoMw2OLoaDCyEzWTmmXh/oOhfcq6mamhD/x959h0dZpn0f/03LZJJJCAlJIID0JjYUlFhAxAa2Bcvy7KroWnZdH1d9VdS1YUd0V31Yd5V17V1Rd9euLGBDKeJaaIZeQhISIG0ymXK/f9wSEjJJZpLJJJn5fo7DwyFXmfPOcE+YM9d1XgAAANFEIgzxraustIpS0Xa0QnK6eTiC1PRhCntZbFLugarJHaWLL/6tXn31VRmG0eJT9Mg7QNNv+z8NGj5SuenJGpzj1oCsVJJg6HiGIa39QPrgZmlXE1uEs4dLp86SBk2IbWwAAABAOyARhvjWVVZaRaloO1opJcs8HKFbb3NLbHlhw9fC4TJrgmUP1SMvfqCbbz9XNTU1LU+bkqoZd87S5HN+pSSbVekuh3LSnEp18taLTqBkrfThzVLBJ6Hbnd3MkyDHXCLZSNoCAAAgPvBpDPGtq6y0ilLRdrRBcrp5OELWEHNLrGe3mQi1JUmuDH3x3Qb98rQztG3bthanslqtuuSSS/TXv/5Vdjtvs+hkavZIi2ZLXz8uBf0hOlikwy+UJt4upfaIeXgAAABAe+ITGuJbV1lpFaWi7YgCp7vB93Pnzp2aOmWqPvvss7CGjx07VvPmzVNeXl57RQi0TjAo/fcl6ZOZUlVJ6D59jpQmz47dibkAAABAjJEIQ3zrSiut2lC0HdEXDAZ1zTXX6K9//asCgZaTkz179tQLL7ygiRMnxiA6IEJbl0nvz5C2LQ/d7u4pnXSXdMh5ksUS29gAAACAGCIRhvjWlVZataJou/rlm+MQVS+//LJ+97vfqby8vMW+SUlJuuOOO/THP/4xBpEBEaookubfKX37Yuh2W5KUf6V03HWSMy22sQEAAAAdgEQY4l9rVlr1GSNlDW2/mJoSQdF2ZQ4iCRZlq1at0tSpU7V69eqw+k+ZMkUvvPCCUlJS2jkyIEL+WrMG2KLZUm1F6D5DJ0mn3CtlsaoUAAAAiYNEGOJfuCutrA4pPc9cQZbkkkpWm6dO2pxmrTB3bmxWiLVQtD1mcSSQ6upq/frXv9bbb78dVv8RI0Zo3rx5GjFiRPsGBrTGT59IH9wolRaEbs8aLJ06SxpyUmzjAgAAADoBEmFIDC2ttErNlnIPMr9WvFKqKm3YbneZtcayh8VuJdZ+RdvRPu677z7deeedqq2tbbFvenq6nnjiCU2bNi0GkQERKl0nfXiLtPb90O1JadLxN0pH/layx+hEXAAAAKCTIRGGxNHUSqukVCnJLe34zkyShVox5veYBfd3bTa3WfbLN5Nr6LLmz5+vX//61yoqKmqxr81m05VXXqmHH35YVqs1BtEBEfBWSp89JC1+zHxPC+WwX0sT75DSYngACAAAANAJkQhD4tl/pVVNubThU6l4VctjjcC+WmMDxlGjqwvavn27pkyZoiVLloTVf9y4cZo3b5569OjRzpEBETIM6fvXpY9vlyoKQ/fJO1ya/KDUZ3RsYwMAAAA6KRJhQNk6s3ZYJIpWmtss80a1T0yIOr/fryuuuEJPPfWUgsFgi/379OmjV155Rcccc0wMogMitP1b6f0bpS1fhW5PzZZOvFM69H8kVjECAAAAdUiEIbF5K6WSNU0X0G+KETC3UWYNoY5XF/CPf/xDV199taqqqlrsm5ycrFmzZunqq6+OQWRAhKp2Sv+5W1r+rCSjcbvVLh31O2n8DCm5W8zDAwAAADo7EmFIbJVFUvmO1o2tKDTHkwjrtL799ludc845WrduXYt9LRaLpk2bpmeeeUZJSRQSRycT8ElL/yEtvE+q2RO6z6CJ5mmQ2UNjGxsAAADQhZAIQ2Lz7G54OmQkfB5zPDqd8vJy/fKXv9QHH3wQVv9DDz1Ub775pgYOHNjOkQGtsH6h9P5NUkkTdQy79zcTYENPlSyWWEYGAAAAdDkkwpDYAt42jm/ihDZ0iGAwqNtuu02zZ8+W3+9vsX9mZqaeeuopnXXWWTGIDojQrk3SR7dIq/4dut2RIo27Xhp7peRIjm1sAAAAQBdFIgyJzeZs43i20HUW77zzji666CKVlpa22Ndut+v666/XvffeKyuFxNHZ1FZLXzwiffGo5K8J3efgc81i+N16xzQ0AAAAoKsjEYbE5sqQ7K7WbY90uMzx6FCbNm3SL37xC3377bdh9T/ppJP02muvKSMjo13jAiJmGNLKt6UPb5XKt4bu0/MQadJsqV9+TEMDAAAA4gWJMCQ2d66U3lMq2xD52LRe5nh0iNraWv3mN7/RSy+9JMMIcXrefgYMGKDXXntNo0ePjkF0QISKfpTev1Ha+FnodlemNPF26fALJasttrEBAAAAcYREGBKb0y1lD5N2bZaMQPjjLDbzZDZOjOwQf/nLXzRjxgx5PC2v5EtJSdHDDz+syy+/PAaRARGqLpMW3Cct+4dkBBu3W2zSmEulCTdLru6xjw8AAACIMyTCgMxBUu42acf34Y/JPdAch5j6+uuvdd5552nz5s0t9rVarZo+fbrmzp0ru523OnQywYC0/BnpP/dInrLQffofZ26DzD0wpqEBAAAA8YxPh0By+r56O0Urm18ZZrGZH0r75ZvjEBNlZWU655xztGDBgrD6jx49Wm+99Zb69OnTzpEBrbDpS+m9GVJRE8n3bn2lU+6VRpwpWSyxjQ0AAACIcyTCAElKyZIGjDNPYCtZK5UXNiyg73CZNcGyh5orwUiCxUQwGNT111+v//u//1Mg0PLW1ezsbD3//PM65ZRTYhAdEKE926SPb5d+eCN0uz1ZOvZa6eg/SEkpsY0NAAAASBAkwoC9ktOlvFFS1hCpskjy7JYCtZItyTwd0p1LTbAYeuONN3TppZdqz549LfZ1OBy69dZbdfvtt8cgMnR53sp697hXsjnb9x731UiL50if/VnyVYfuc+AvpJPvljIOiP7zAwAAAKhDIgzYn9NNwqsDrVmzRlOnTtXKlSvD6n/GGWfopZdektvNa4YW1JRLZeukkjVS+Y6Gqz7tLvME2exh0Vv1aRjSmvekD26Wdm8K3SfnQGnSA+aKVAAAAADtjkQYgE6hpqZG559/vt58800ZhtFi/6FDh2revHk66KCDYhAdurzqUmnT4qbrAPo9UtkG8wTZ3G1mHcCUrNY/X8ka6YObpHX/Cd2enCFNuEUa/RvJxo9iAAAAIFb41zeADjd79mzdfvvt8nq9LfZNS0vTX//6V51//vkxiAxxoabcTIKFczKsEdjXb8C4yFeG1eyRFj4gLXlCCvpDdLBIoy+WJtwqpbYh0QYAAACgVUiEAegwCxcu1K9+9SsVFha22Ndqtep3v/ud5syZI6vVGoPoEDfK1pkrwSJRtNI8PCNvVHj9g0Hp2xel+XdKVSWh+xyQb26D7HVoZLEAAAAAiBoSYUgcsS6QjSbt2LFDZ599tr788suw+h9zzDGaN2+ecnNz2zkyxB1vpblNMdR2yOYYAfME2awhLb8/bFkqvX+DtH1F6Pa0PLMQ/kFnSxZLZHEAAAAAiCoSYYh/sS6QjSYFg0FdeeWVmjt3roLBYIv98/Ly9NJLL2n8+PExiA5xqbLIvO9bo6LQHN9UIqxih/TJndJ/XwrdbkuSjv6DdOy1JNsBAACAToJEGOJbrAtko0nPPfecrrzySlVWVrbY1+l06p577tH1118fg8gQ1zy7Gya/I+HzmOP356+Vvv6btGi2VNvE3+dhp0mn3CNlDmzdcwMAAABoFyTCEL9iWSAbTfruu+90zjnn6Keffmqxr8Vi0TnnnKPnnntOycnJMYgOcS/Q8gEMzY+vbfjnnz42T4MsLQjdP2uINGmWNPjEtj0vAAAAgHZBIgzxKxYFstGkyspKTZs2Te+++25Y/UeOHKm33npLQ4YMaefIkFBszjaOTzL/X7pO+uBm6acPQ/dzpkvjb5SOvFyyJ7XtOQEAAAC0G45eQ3xqa4Fsb8vb99C0mTNnKjMzM6wkWEZGhl5//XX98MMPJMEQfa4MsxZgazhcks0hfXyH9NhRTSfBRp0vXbVcOvp/SYIBAAAAnRwrwhCf2rNANpr0/vvva/r06SopKWmxr81m07XXXqsHHnhAVis5ebQTd655IEbZhsjGGYa0a5P04jnm+0EovUdLk2ZLfY5oe5wAAAAAYoJEGOJTexTIRpM2b96sqVOnavny5WH1P+GEE/T6668rMzOznSNDwnO6zVNhd20Of4VoxQ6p4BOpfGvo9tQc6aS7pEN+KZHEBQAAALoUEmGIT9EukI2Q/H6/Lr30Uj333HMyDKPF/v369dOrr76qo446KgbRAT/LHGSeCtvSwRm1VdKGT6Ud/w3dbnVIY6+Qxt3AgRoAAABAF0UiDPEpWgWy0aTHH39c1113naqrq1vs63K59OCDD+rKK6+MQWTAfpLTpX755uOilY1XhgUD0vZvpI2fN51EH3yidOosqQd17AAAAICujEQY4tPeAtmt2R7pcJnjEdLSpUt17rnnatOmTS32tVgsOv/88/Xkk08qKYnkIjpQSpY0YJx5KmzJWqm80Hx/2LXR3AZZvTP0uMyB0in3S0NPkSyWmIYMAAAAIPpIhCE+tbZAtiSl9TLHo4Hdu3frnHPO0fz588Pqf/jhh+vNN99Uv3792jkyIEzJ6VLeKClriLTtG+nT2dLGz0L3daRK42+Qxv5esrdxhSkAAACAToNEGOJTawpkS5LFJmUP5cTIeoLBoG666SY9/PDD8vv9Lfbv0aOHnnnmGZ122mkxiA6IUG2V9MWj5n9NbYM85JfSiXdK6b1iGxsAAACAdkciDPEr3ALZ9eUeaI6DJGnevHm67LLLtGvXrhb7OhwO3XTTTZo5c6asnKSHzsYwpB/flD66TSrfFrpPr0OlSQ9KB3CYAwAAABCvSIQhfrVUILs+i81MgvXL5zQ4SevWrdOUKVP0/ffhJREnTZqkV155RenpfO/QCe34Xnr/RmnTF6HbU7KkiXdIo86XrLbYxgYAAAAgpkiEIb41VSB7L4fLrAmWPdRcCZbgSbCamhpddNFFeu2112QYRov9Bw8erHnz5umQQw6JQXRAhKrLpAX3Ssuekoxg43aLTTrycun4mzggAwAAAEgQJMIQ/+oXyK4skjy7pUCtZEsyP/y6c6kJJunPf/6zbrnlFtXU1LTYNzU1VXPmzNHFF18cg8iACAX80vKnzSSYp4ltvQPGS5MekHJGxDY2AAAAAB2KRBgSh9NNwiuEzz//XNOmTdO2bU3UTarHarXq0ksv1WOPPSa7nbcPdEIbPze3QRb9ELo94wDp5HulEWdIFktsYwMAAADQ4fgkCySo4uJinX322fr888/D6j927FjNmzdPeXl57RwZ0Ap7tpqF8H98M3S73SUd9/+ko68yt0QDAAAASEgkwoAEEwwGdfXVV+tvf/ubAoFmDhD4Wc+ePfXCCy9o4sSJMYgOiJDPI305R/rszw3r/9U3cop00t1SRt/YxgYAAACg0yERBiSQl156SVdccYXKy8tb7JuUlKSZM2fq5ptvjmoMVV6/iiu8Kvf45PUH5bRble5yKCfNqVQnb0kIk2FIq9+RPvyjtHtz6D45I806YAOOi21sAAAAADotPnUCCWDlypWaOnWq1qxZE1b/X/ziF3rxxReVkpIStRgqPD5tKK1SQXGlisprVOPbd4pfssOq3PRkDc5xa0BWqtJcjqg9L+JQ8Wrpgxul9QtDtydnSCfcKh1xsWTjxxwAAACAffiEAMSx6upq/epXv9I///nPsPqPGDFC8+bN04gR0T1Jb1dVrZZuLNPqwgoFDKNRe40vqE2l1dpa5tGOXjUa0z9T3VOTohoD4oBnt7RwlrRkrmSE2NZrsZrJrxNulVIyYx4eAAAAgM6PRBgQp+69917dddddqq2tbbFvenq65s6dq1/+8pdRj6PC49PSjWX6cXvL2zEDhlHXL39gFivDYAoGpBUvSPPvlKpLQ/fpd4y5DbLnwbGNDQAAAECXQiIMiDMff/yxLrjgAhUVFbXY12az6corr9TDDz8sq9XaLvFsKK3S6sKKiMasLqxQz27JOqRPRrvEhC5k89fS+zOkwm9Dt6f3lk6+Wxo5VbJYYhoaAAAAgK6HRBgQJ7Zv364pU6ZoyZIlYfUfN26c5s2bpx49erRbTFVevwqKK0Nuh2xOwDBUUFypQdluCugnqvJC6ZM7pO9eDd1uc0rH/EE69lopKTW2sQEAAADosviECXRxfr9fV1xxhZ566ikFg8EW+/fp00evvPKKjjnmmHaPrbjCq6LymlaNLSqvUXGFVwNIhCUWv1f66q/SogclX1XoPsNPl06+R8ocENvYAAAAAHR5fMIEurB//OMfuvrqq1VV1UTCoJ7k5GTNmjVLV199dQwiM5V7fA1Oh4xEjS+oco8vyhGhU1v7ofTBTVLZ+tDtPYZJk2ZJg06IbVwAAAAA4gaJMKALWrFihc455xytX99EwqAei8WiadOm6ZlnnlFSUmxPYvT6W5cE26s20Lbx6CJ2/iR9cLNU8HHodme6dPzN0pGXSTYOUAAAAADQeiTCgC6kvLxc5513nj788MOw+h966KF68803NXDgwHaOLDSnvW0F+JNs7VPAH51ETbn06YPSV3+TgqFW/1mkUedLE++Q3NkxDw8AAABA/CERBnQBwWBQt912m2bPni2/399i/8zMTD311FM666yzYhBd09JdDiU7rK3aHpnssCrdxeqfuBQMSt+9In0yU6ps4nTTPmOkSbOl3ofHNDQAAAAA8Y1EGNDJ/etf/9JvfvMblZaWttjXbrfr+uuv17333iurteNXU+WkOZWbnqxNpdURj81NT1ZOmrMdokKH2rZcem+GtG1Z6HZ3rnTSXdLB50md4O8wAAAAgPhCIgzopDZs2KCpU6fq22+/Dav/ySefrFdffVUZGRntGlckUp12Dc5xa2uZRwHDCHuczWLR4By3UjkxMn5UFkvz75RWvBC63eqQ8n8vjbtBcqbFNjYAAAAACYNPmUAnU1tbq4svvlgvv/yyjDCSRwMGDNBrr72m0aNHxyC6yA3IStWOXjX6cXt52GOG90rTgKzUdowKMRPwSV8/IS16QPI28XdgyCnSKfdJPQbHNjYAAAAACYd9J21ksVjC+u/4449vca4PPvhAU6dOVZ8+feR0OtWnTx9NnTpVH3zwQdjxVFdX68EHH9SRRx6pzMxMud1ujRgxQtdff702b97chitFLMyZM0fdunXTSy+91GISLCUlRU888YTWr1/faZNgkpTmcmhM/0yNzEuXzWJptq/NYtHIvHSN6Z+pNOqDdX0F86W/HS19dEvoJFjmIOlXr0m/fo0kGAAAAICYsBjhLDlBkywtfLDfa/z48Vq4cGHINsMw9Lvf/U5z585tcvzll1+uxx9/vNnnW7dunU477TStWbMmZPveBMvkyZPDijlSW7duVd++fSVJW7ZsUZ8+fdrleeLRl19+qWnTpmnLli0t9rVarZo+fbrmzp0ru73rLOqs8Pi0obRKBcWVKiqvaVBAP9lhVW56sgbnuDUgK5UkWFdXtkH68BZpzbuh25Pc5hbIsVdIdurAAQAAAIidrvMpupO74oor9Pvf/77J9tTUprd53XrrrXVJsFGjRmnGjBkaNGiQ1q1bp9mzZ2vFihWaO3eusrOzdc8994Sco7KyUqeffnpdEuyyyy7TtGnT5HK5tGDBAt1///3as2ePzj33XC1evFiHHHJIG64W0bJz506dc845WrRoUVj9x4wZozfffLNLJhnTXA4d0idDg7LdKq7wqtzjU20gqCSbeTpkTpqTmmBdXW2V9NmfpS/nSAFv6D6H/o904kwprWdMQwMAAAAAiRVhbbZ3hdYdd9yhmTNnRjy+oKBAI0aMkN/v1+jRo/Xpp5/K5XLVtVdXV2v8+PFatmyZ7Ha7Vq9erUGDBjWaZ+bMmbrzzjslSbNnz9YNN9zQoH3x4sUaN26c/H6/JkyYoP/85z8Rx9oSVoSFLxgM6rrrrtOcOXMUCARa7J+Tk6PnnntOp5xySgyiAyJkGNIP86SPbpMqtofu0+swafKDUt8jYxoaAAAAANRHjbAO9vDDD8vv90sy60PVT4JJZh2oOXPmSJL8fr8eeeSRRnP4fD49+uijkqQRI0bouuuua9QnPz9fl1xyiSRpwYIFWr58eTQvAxF49dVXlZmZqUceeaTFJFhSUpLuuusuFRUVkQRD51T4nfT0JGneJaGTYCk9pDPnSJctIAkGAAAAoMORCOtAhmHon//8pyRp+PDhGjt2bMh+Y8eO1bBhwyRJb7/9dqMi6gsXLtTu3bslSdOnT5fVGvplveiii+oev/nmm22MHpFas2aNDjzwQE2bNk179uxpsf+ZZ56p0tJS3XbbbTGIDohQVan0zrXS3PHS5sWN2612aeyV0lXLpcMvlJp4XwIAAACAWOKTSQfasGGDtm3bJskspt+cve1bt27Vxo0bG7R99tlnjfqFMnr06LpaZZ9//nlrQkYrVFdXa+rUqRoxYoRWrVrVYv+hQ4fq+++/1z//+U+53e4YRAhEIOCXvp4rzRklLXtKMoKN+ww8XvrdF9Kp90mujFhHCAAAAABNIhEWJa+//rqGDRsml8ultLQ0DRkyRNOnT9eCBQuaHFM/KTJ8+PBm56/fvn8yJdx57HZ7XX2xcBIyaLtZs2YpMzNTb731VqOVfPtLS0vT888/rzVr1uiggw6KUYRABDZ8Kj1xnPT+DVJNiFWNGf2kX74oXfC2lNP8exoAAAAAdASOaIuSlStXNvhzQUGBCgoK9Nxzz+kXv/iFnnnmGXXr1q1Bny1bttQ9bqmw/N4i9PuPq//n1NRUZWRktDjPd999p5KSEnm9Xjmdzmb717d169Zm2wsLC8OeK94tWLBAv/rVr7Rjx44W+1qtVl1xxRX6v//7vya3tQIdavdmsxD+yrdDtztSpOP+n5R/leRIjmloAAAAABAJEmFtlJKSojPPPFMTJ07U8OHD5Xa7VVJSokWLFunxxx9XaWmp3n77bZ111ln6+OOP5XA46sZWVFTUPW5pC9zeLY2SVFlZ2aBt7zzhbKPbf55IEmH1k3EIbceOHTr77LP15ZdfhtX/2GOP1bx585STk9POkQGt4PNIXzwqff6w5K8J3eegs6WT7pK6cUosAAAAgM6PRFgbbdu2LeQqrJNOOklXXXWVJk2apBUrVmjRokX629/+pj/84Q91fWpq9n2wTEpKavZ56iesPB5Pg7a987Q0R0vzoPX8fr/+93//V3//+98VDIaombSfvLw8vfzyyxo3blwMogMiZBjSqn9JH94q7dkcuk/uwdKkB6T+x8Q2NgAAAABoAxJhbdTcVsTc3Fy98cYbGjFihGprazVnzpwGibDk5H1biGpra5t9Hq/XW/fY5XI1aNs7T0tztDRPS/bfkrm/wsJCHXnkkRHNGQ+effZZ/e///m+jlXqhOJ1O3XvvvbruuutiEBnQCkUrpQ9uNOuBheLqLp1wm3TERZLVFtPQAAAAAKCtSIS1s4EDB+qkk07Su+++q4KCAm3fvl15eXmSzOLoe7WURKmqqqp7vP8WyL3zhJOIaW6elrRUxyzRfPfddzrnnHP0008/tdjXYrHonHPO0XPPPdcgAQp0Gp5d0oL7paVPSkagcbvFKo2+RJrwRyklM/bxAQAAAEAUUJk7Bg488MC6x9u2bat7XD+x1FIh+vqrsfav1bV3nqqqKu3evTusebKzsyOqD4Z9Kisrdfrpp+vQQw8NKwl20EEHac2aNXrttddIgqHzCQakZU9L/3e4tOSJ0EmwfsdKv/1MOu0hkmAAAAAAujQSYTFgGEbIr9dPkK1evbrZOeq3jxgxolXz+P1+rVu3LuQcCM/MmTOVmZmpd999t8W+GRkZeuONN/T9999ryJAhMYgOiNDmr6S5x0vvXCN5yhq3p/eRznlauugdqedBsY4OAAAAAKKOrZExsHLlyrrHe7dFStKAAQOUl5en7du3a9GiRc3O8emnZr2e3r17q3///g3ajj322LrHixYt0tixY0POsWzZsrqtkcccQ4HrSLz33nu66KKLVFJS0mJfm82ma6+9Vg888ICsVnLN6ITKt0sf3y59/3rodptTOvYa6ZhrpKSUWEYGAAAAAO2KT+ntbP369fr4448lmfXCevfuXddmsVh01llnSTJXcn311Vch5/jqq6/qVnqdddZZslgsDdqPP/54devWTZJZuL2pFWjPPPNM3eMpU6a07oISzObNmzV69GiddtppYSXBTjjhBBUXF+vBBx8kCYbOx1cjffYnac7oppNgI86Q/neJWQuMJBgAAACAOMMn9Tb497//Lb/f32R7UVGRzjnnHPl8PknSlVde2ajPNddcI7vdXJh31VVXyePxNGj3eDy66qqrJEl2u13XXHNNozmSkpLqTqNctWqVHnrooUZ9Fi9erH/84x+SpPHjx2vMmDFhXGHiqq2t1UUXXaT+/ftr+fLlLfbv16+fvv76a82fP1+ZmdRQQidjGNLq96S/jpXm3yX5qhr3yR4uXfhP6ZcvSN37xzxEAAAAAIgFi9HU8iG0qH///vL5fDr77LOVn5+v/v37y+VyaefOnVq4cKEef/xxlZaWSjK3L37yySchC9TffPPNmjVrliRp1KhRuvHGGzVo0CCtW7dODzzwgFasWFHX77777gsZS0VFhUaPHq21a9dKki6//HJNmzZNLpdLCxYs0H333afKykq5XC59+eWXOuyww6L+/di6dWtdIf8tW7Z02VMm//a3v+m6665rlJQMxeVy6aGHHtLvf//7GEQGtELJWumDm6R180O3O7uZq7/GXCLZHLGNDQAAAABijERYG/Tv31+bNm1qsd/ZZ5+tJ598UhkZGSHbg8GgLrvsMj311FNNznHJJZdo7ty5zW63Kygo0OTJk5s8yTA9PV0vvviiTj/99BZjbo2unghbunSpzj333LBeU4vFogsuuEB///vflZSUFIPogAjVlEuLHpC+flwKhlq5apEOv1CaeLuU2iPm4QEAAABARyAR1gaLFi3SokWLtHjxYq1fv147d+5UeXm53G63+vbtq6OPPlrTp09Xfn5+WPO99957mjt3rpYuXaqdO3eqR48eGjNmjH77299q0qRJYc1RVVWlxx57TK+//roKCgpUW1urvn37avLkybr66qvVr1+/tlxys7pqImzXrl0699xzNX9+Eytm9nP44YfrzTffbNfvJdBqwaD035ekT+6UqopD9+l7lDTpASlvVGxjAwAAAIAORiIMUdPVEmHBYFA33nijHnnkkWZrve3Vo0cPPfvss5o8eXIMogNaYesy6f0Z0rYm6tq5e0on3y0dfK6036EbAAAAAJAI7B0dANAR3nzzTV1yySXavXt3i30dDoduuukmzZw5k5Mg0TlVFEnz75S+fTF0uy1Jyr9SOu46yZkW29gAAAAAoBMhEYaEUlBQoKlTp+r7778Pq//kyZP1yiuvKC2N5AE6IX+ttOQJaeEDUm1F6D5DJ0mn3CtlDYptbAAAAADQCZEIQ0Lw+/269dZbNXv2bIWzG3jw4MGaN2+eDjnkkBhEB7TCT5+Yp0GWhj4cQ1mDpVNnSUNOim1cAAAAANCJkQhDQnjvvff0wAMPtNjP7XbrL3/5i6ZPnx6DqIBWKF0nfXiLtPb90O1JadL4GdJRv5PsnGgKAAAAAPWRCENCOOOMM3Tsscfq888/D9lutVp12UXn6y9/fkB2u12q2tn0ZEmpksMVuq2qVFIrz59wuMy5Q6kuk4xg6+a1O5uuC+XZLQVbPiggJJtDSu4Wuq1mjxTwtW5eq11yZYRu81ZIfm/r5rVYpZTM0G21VZLP07p5ZZFSs0I3+Tzm3K2V2mPfY2+l9NlD0uLHpEBt6P4HnS0dd4Pkzpa85VJT3ypXphSq3p2/1hzXWskZki3Ej5WAX6rZ3fp5nemhk3rBoOQpa8O8aeb9EUpz7wEt4T3CxHvE3olj8x5Rn99rfi9ai/eIn+flPUIS7xF78R6xD+8RP8/bCd8jmnrNATTAqZGIms5+auSKFSt0xBFHNNoaOba3VfPOS1FeepiF8Cc/JB15Wei22QOl6tLWBTj+JmnCzaHbHjtKKlndunnHXCqd9qfQbU+fJm0KnRxs0YFnSec9F7rttQullf9s3bz9jpUufjd027vXSUufbN282cOlK78O3bbgfmnRrNbNm5IlzVgfum3J36X3rm/dvJI0c49kGNL3r0sf3y5VFLZ+rvpuWBf6H0obPpOePb318/7+KylnROOvF6+S/jq29fNOf0cacFzjr1ftlB5sQ+2zc5+RRk4J3TaziQ9n4eA9wsR7hKm93yNC+fEt6fWLWj8v7xEm3iNMvEeYeI/Yh/cIU2d8j2jqNQfQAEfgIWGMGjVKl156ad2fe7otmn9hihZf6g4/CQbE0vZvpadOld68LHpJMAAAAABIYGyNREK599579eOPP+rSHt/o4lHUT0InN/d4hVz+brFJRiDW0QAAAABAl8cyGCSU7OxsffHFFyTB0EWESIINOkE6+e7YhwIAAAAAcYAaYYiazl4jrAGK3JoocmvqDEVuN30h/eduaedPodu795dOuV8aNskslk+R2/gsctsc3iNMifoeEQqFsE28R5h4jzDxHrEP7xGmRHqPoFg+EBYSYYiaLpUIAzqLXZukj26RVv07dLsjRRp3vTT2SsmRHNvYAAAAACDOUCMMADpCbbX0xSPSF49K/prQfQ4+VzrxTqlb75iGBgAAAADxikQYAMSSYUgr35Y+vFUq3xq6T8+DpUkPSv3yYxoaAAAAAMQ7EmEAECs7fpDev1Ha9Hno9uQM6YiLpcETJVuSVLpOcudKTndMwwQAAACAeEUiDADaW3WZtOA+adk/QhcrtlilAeOlPkdJFkkbf06U2V1Sek8pe5iUOUhKTo9p2AAAAAAQb0iEAUB7CQak5U9L/7lH8uwK3SdnpHTA0aFPjPJ7pLIN0q7NUu42c6tkShMnSwEAAAAAWkQiDOhAVV6/iiu8Kvf45PUH5bRble5yKCfNqVQnt2eXtvELcxtk0feh29N7Swedba76slian8sISDt+nmfAOFaGAQAAAEAr8Ukb6AAVHp82lFapoLhSReU1qvHt2y6X7LAqNz1Zg3PcGpCVqjSXowMjRcT2bJU+vl36YV7odnuydOy10sDx0vrPzCRXuIpWmidI5o2KTqwAAAAAkGBIhAExtquqVks3lml1YYUChtGovcYX1KbSam0t82hHrxqN6Z+p7qlJHRApIuKrkRbPkT77s+SrDt3nwF9IJ98tuTKl1e9ElgSTzP4la6WsIRTQBwAAAIBWIBEGxFCFx6elG8v04/byFvsGDKOuX/7ALFaGdVaGIa1+V/rwj9LuTaH75BwoTXrA3NYomadBlu9o3fNVFEqVRSTCAAAAAKAVSIQBMbShtEqrCysiGrO6sEI9uyXrkD4Z7RMUWq9kjVkHbP2C0O3JGdKEW6TRv5Fs9d5uPbvNQvit4fOY4wEAAAAAESMRBsRIldevguLKkNshmxMwDBUUV2pQtpsC+p1FzR5p4QPSkiekoD9EB4s0+mJpwq2hT4MMeNv2/IHato0HAAAAgATFp2ogRoorvCoqr2nV2KLyGhVXeDWglYkwTqeMkmBQ+vZFaf6dUlVJ6D4H5JvbIHsd2vQ8Nmfb4rBRMw4AAAAAWoNPwECMlHt8DU6HjESNL6hyjy/icZxOGUVblkjvz5C2rwjdnpZnFsI/6GzJYml+LleGZHe1bnukw2WOBwAAAABEjEQYECNef+uSYHvVBiIb39lPp+wyq9QqdkifzJT++3LodluSdPQfpGOvDb+AvTtXSu8plW2IPJ60XuZ4AAAAAEDEOtGnTSC+Oe3WNo1PsoU/vjOfTtllVqn5vdJXf5M+fVCqrQzdZ9hp0in3SJkDI5vb6Zayh0m7NktGIPxxFpuUPZQTIwEAAACglUiEIfF4K6XKIvPkvYDXrNfkyjBX2bRjgiHd5VCyw9qq7ZHJDnO1VLg66+mUnX2VWp21H0kf3CSVrQvdnjVEmjRLGnxi658jc5CUu03a8X34Y3IPNMcBAAAAAFqFRBgSR025mdgoWSOV72hYn8nuMreqZQ8zEw3J6VF/+pw0p3LTk7WptDrisbnpycpJC6/Aemc9nbIzr1KrU7pO+uBm6acPQ7cnpUnH3yQdeblkb2OCLjld6pdvPi5a2fzKMIvNTIL1y2+Xv5sAAAAAkChIhCExVJdKmxY3nXDwe8x6Tbs2m6t0+uVLKVlRDSHVadfgHLe2lnkiSlLZLBYNzgk/OdWRp1M2p7OuUpMkeSvMLZCL/yoFmziUYNT50sQ7JHdO9J43JUsaME7q1lsqWSuVFzZM0DpcZk2w7KHtlqAFAAAAgERCIgzxr6bcTIKFswXNCOzrN2Bc1BMPA7JStaNXTVirovYa3itNA7JSw+7fEadTtqSzrlJTMCh9/5r08e3mdtlQeh8hTXpQ6nNE9J9fMv+O5Y0yt1vWbdmtNYvwx2DLLgAAAAAkEhJhiH9l68yVYJEoWmmu0skbFdVQ0lwOjemfKUlN1snay2axaHivNI3pnxnR1sBYn04Zjk65Sm3bN9L7N0pbl4RuT82RTrpTOmSaZG3bQQdhcbpJeAEAAABAOyMRhvjmrTRrgkVyMp9k9i9Za67SiXJyontqkvIHZqlnt+R2OTkxlqdThqtTrVKrLJHm3ymteEFSiESk1SGNvUIadwNbEQEAAAAgzpAIQ3yrLDIL47dGRaE5vh1W6aS5HDqkT4YGZbtVXOFVucen2kBQSTbzdMicNGertwLG8nTKcHWKVWoBn7Tk79LCWZJ3T+g+g0+UTp0l9RjS9ucDAAAAAHQ6JMIQ3zy7GxYfj4TPY45vR6lOe9S3/MXqdMpIdPgqtXX/kd6/Sdq5JnR79wHSqfdLQ0+VLJa2PRcAAAAAoNMiEYb4FvC2cXxtdOKIoVidThmJDlulVrZB+uhWafU7odsdqdK466X8KyV79BOAAAAAAIDOhUQY4putjckNW1J04oixWJxOGYmYr1KrrZI+f1j64v+aToYefJ500l1Seq+IYwIAAAAAdE0kwhDfXBmS3dW67ZEOlzm+C4rF6ZSRiNkqNcOQfnxT+ug2qXxb6D69DpUmzZYOGBt2HACAduKtNOtxenabv7iwOc2fve5cTtIFAADtgkQY4ps7V0rvaW6Ri1RaL3N8F9Xep1NGqt1Xqe34Xnr/RmnTF6HbU7KkibdLoy6QrLawYwAAtIOacqlsnXmyc/mOhr+wsrvMn93Zw6TMQZzgCwAAoopEGOKb023+Q3rXZskIhD/OYpOyh3b530a35+mUrYmlXVapVZdJ/7lHWv60ZISoQWaxSUdeLh1/o+Tq3pZLAABEQ3WptGmxVLQy9M9mv8f8BdauzVLuNqlfvvnLDAAAgCggEYb4lznI/If0ju/DH5N7oDkuTrTH6ZStEdVVagG/mfz6zz1Sze7QfQaMM7dB5oyI7oUAAFqnptxMgoXzM9kI7Os3YBwrwwAAQFR0/CdjoL0lp5u/TZaa/u3zXhabmQTrl88/uNtJVFapbfjM3AZZ/GPo9m4HSKfcK404Q7JYon8RAIDWKVtn/iyORNFKqVtvKW9U+8QEAAASCokwJIaULPO3yd16SyVrpfLChvVIHC6zJlj2UOqRxEirVqnt3iJ9fJv041uh2+0u6dhrpWP+YL6mAIDOw1tp1gSLpFSBZPYvWStlDenyJQsAAEDHIxGGxJGcbv42OWtIvROqaiVbEidUdXY+j/TlHOmzPzd9AujIKdJJd0sZfWMbGwAgPJVFZmH81qgoNMfzcxoAALQRiTAkHqebf0h3FYYhrX5H+vCP0u7NofvkjJQmz5b6Hxvb2AAAkfHsbvqXGS3xeczxAAAAbUQiDEDnVLzKrAO2YVHo9uQM6YRbpSMulmxNv5VVef11tci8/qCc9tifmAkAkBTwtnF8bXTiAAAACY1PgQA6F89uaeEsacnc0HVkLFYz+XXCrVJKZpPTVHh82lBa1fbTKQEA0WFztnF8UnTiAAAACY1EGIDOIRiQVrwgzb9Tqi4N3affMdKkB6SeBzc71a6qWi3dWKbVhRUKGEaj9hpfUJtKq7W1zKMdvWo0pn+muqfyAQsA2pUrwzzUpDXbIx0uczwAAEAbkQgD0PE2fy29P0Mq/DZ0e3pv6eS7pZFTJYul2akqPD4t3VimH7eXt/i0AcOo65c/MIuVYQDQnty5UnpPqWxD5GPTepnjAQAA2ohEGICOU14ofXKH9N2rodttTumYP0jHXislpYY15YbSKq0urIgojNWFFerZLVmH9MmIaBwAIAJOt5Q9TNq1OfTW96ZYbFL2UA66AQAAUUEiDEDs+b3SV3+VFj0o+apC9xl+unTyPVLmgLCnrfL6VVBcGXI7ZHMChqGC4koNynZTQB8A2lPmICl3m7Tj+/DH5B5ojgMAAIgCPvEBiK21H0of3CSVrQ/d3mOYNGmWNOiEiKcurvCqqLymVWEVldeouMKrASTCAKD9JKdL/fLNx0Urm18ZZrGZSbB++eY4AACAKOATH4DY2FlgJsAKPg7d7kyXjr9ZOvIyyda6Wl3lHl+D0yEjUeMLqtzja9VYAEAEUrKkAeOkbr2lkrXmNvn6BfQdLrMmWPZQcyUYSTAAABBFJMIAtK+acunTB6Wv/iYFQyWaLNKo86WJd0ju7DY9ldffuiTYXrWBto0HAIQpOV3KGyVlDZEqiyTPbilQK9mSzNMh3bnUBAMAAO2CRBiA9hEMSt+9In0y0/yQE0qfMdKk2VLvw6PylE67tU3jk2xtGw8AiJDTTcILAADEFIkwANG3bbn03gxp27LQ7e5c6aS7pIPPk6zRSz6luxxKdlhbtT0y2WFVuqt1WzIBAAAAAF0DiTAA0VNZLM2/U1rxQuh2q0PK/7007gbJmRb1p89Jcyo3PVmbSqsjHpubnqycNGfUYwIAAAAAdB4kwgC0XcAnff2EtOgByVseus+QU6RT7pN6DG63MFKddg3OcWtrmUcBwwh7nM1i0eAct1I5MRIAAAAA4hqf+gC0TcF88zTInWtDt2cOkk69Xxp6SkzCGZCVqh29avTj9iYSciEM75WmAVmp7RgVAAAAAKAzIBEGoHXKNkgf3iKteTd0e5JbGj9DOuoKyZ4Us7DSXA6N6Z8pSVpdWNHsyjCbxaLhvdI0pn+m0qgPBgAAAABxj0QYgMh4K6XP/yx9+Rcp4A3d59D/kU6cKaX1jGloe3VPTVL+wCz17JasguJKFZXXNCign+ywKjc9WYNz3BqQlUoSDAAAAAASBIkwAOExDOmHedJHt0kV20P3yRslTXpQ6jsmtrGFkOZy6JA+GRqU7VZxhVflHp9qA0El2czTIXPSnNQEA+KZt1KqLJI8u82kvc0puTLMU2ud7o6ODgAAAB2ET4EAWlb4X+n9G6XNi0O3p/QwV4Ad9mvJao1paC1Jddo1gIQXkDhqyqWydVLJGql8h+T37Guzu6T0nlL2MLN+YXJ6x8UJAACADsGnQwBNqyqV/nO3tPwZSSFqbVnt0pGXS+NvNFdaAEBHqi6VNi2WilZKRqBxu99j1jfctVnK3Sb1y5dSsmIfJwAAADoMiTAAjQX80rKnpAX3SjW7Q/cZeLx06gNSzvBYRgYAodWUm0mwHd+33NcI7Os3YBwrwwAAABIIiTAADW341NwGWbwydHtGP+mU+6Thp0kWS2xjA4CmlK0zV4JFomil1K23Wd8QAAAACYFEGADT7s3SR7dKK/8Zut2RIh33/6T8qyRHcmxjA4DmeCvNmmChtkM2xwhIJWulrCEU0AcAAEgQJMKAROfzSF88Kn3+sOSvCd1n5FTp5Lulbn1iGxsAhKOyyCyM3xoVheZ4EmEAAAAJgUQYkKgMw1z99dFt0p7NofvkHixNekDqf0xsYwOASHh2NzwdMhI+jzkeAAAACYFEGJCIilZK78+QNn4Wut2VKZ1wq3TERZLVFtPQACBiAW8bx9dGJw4AAAB0eiTCgETi2SUtuF9a+mToWjoWqzTmUun4m6WUzNjHBwCtYXO2cXxSdOIAAABAp0ciDEgEwYD0zbPS/LslT1noPv2Pk06dJfU8KLaxAUBbuTIku6t12yMdLnM8AAAAEgKJMCDebVosvX+DtOP70O3pfaRT7pEO/IVkscQ0NACICneulN5TKtsQ+di0XuZ4AAAAJAQSYUC8Kt8ufXy79P3rodvtydLRf5COvVZKSoltbAAQTU63lD1M2rU59LbvplhsUvZQTowEAABIICTCgHjjq5EW/0X67M+Sryp0nxFnSiffI3XvF9vYAKC9ZA6Scrc1vfo1lNwDzXEAAABIGCTCgHhhGNKa96UPb5Z2bQzdJ3uENGmWNPD4WEYGAO0vOV3ql28+LlrZ/Mowi81MgvXLN8cBAAAgYZAIA+JByVrpg5ukdfNDtzu7SRP+KI25RLI5YhsbAMRKSpY0YJzUrbf5vlhe2LCAvsNl1gTLHmquBCMJBgAAkHBIhAFdWc0eadFs6evHpaA/RAeLdMR06YTbpNQeMQ8PAGIuOV3KGyVlDZEqiyTPbilQK9mSzNMh3bnUBAMAAEhgJMKArigYlP77kvTJTKmqJHSfvkdJk2ZLeYfFMjIA6BycbhJeAAAAaIREGNDVbF0mvXeDtP2b0O1pvaST7pIOPleyWGIbGwAAAAAAnRiJMKCrqCiS5t8pffti6HZbkpT/v9Jx17EKAgAAAACAEEiEAZ2dv9asAbZotlRbEbrP0EnSKfdKWYNiGxsAAAAAAF0IiTCgM/vpE/M0yNKfQrdnDZZOnSUNOSm2cQEAAAAA0AWRCAM6o9J10oe3SGvfD92elCYdf6N05G8le1JsYwMAAAAAoIsiEQZ0Jt5K6bOHpMWPSYHa0H0O+7U08Q4pLTe2sQEAAAAA0MWRCAM6A8OQvn9d+vh2qaIwdJ+8w6XJD0p9Rsc2NgAAAAAA4gSJMKCjbf9Wen+GtOXr0O2p2dKJd0qH/o9ktcY0NAAAAAAA4gmJMKCjVO2U5t8lffOcJKNxu9UuHfU7afwMKblbzMMDAAAAACDekAgDYi3gk5b+Q1pwn+TdE7rPoInmaZDZQ2MbGwAAAAAAcYxEGBBL6xdK798klawK3d69v5kAG3qqZLHEMjIAAAAAAOIeiTAgFnZtkj66RVr179DtjhRp3PXS2CslR3JsYwMAAAAAIEGQCAPaU2219MUj0hePSv6a0H0OPtcsht+td0xDAwAAAAAg0ZAIA9qDYUgr35Y+vFUq3xq6T89DpEmzpX75MQ0NAAAAAIBERSIMiLYdP0jv3yht+jx0uytTmni7dPiFktUW29gSnbdSqiySPLulgFeyOSVXhuTOlZzujo4OAAAAANDOSIQB0VJdJi24V1r2lGQEG7dbbNKYS6Xjb5JSMmMfXyKrKZfK1kkla6TyHZLfs6/N7pLSe0rZw6TMQVJyesfFCQAAAABoVyTCgLYKBqTlT0v/uUfy7Ardp/9x0qQHpNyRsY0NUnWptGmxVLRSMgKN2/0eqWyDtGuzlLvN3KqakhX7OAEAAAAA7Y5EGNAWG78wt0EWfR+6vVtf6eR7pAPPkiyW2MYGcyXYpsXSjiZen/qMwL5+A8axMgwAAAAA4hCJMKA19myVPr5d+mFe6HZ7snTstdLRf5CSUmIbG/YpW2euBItE0UrzBM+8Ue0TEwAAAACgw5AIAyLhq5G+nCN9/mfJVx26z4G/kE6+W8o4IKahYT/eSrMmWKjtkM0xAlLJWilrCAX0AQAAACDOkAgDwmEY0up3pQ//KO3eFLpPzoFmHbAB42IbG0KrLDIL47dGRaE5nkQYAAAAAMQVEmFAS0rWmHXA1i8I3Z7cTTrhNumIiyUbt1Sn4dnd8HTISPg85ng0q8rrV3GFV+Uen7z+oJx2q9JdDuWkOZXq5F4AAAAA0PnwSQVoSs0eaeED0pInpKA/RAeLNPpiacKtUiqnDHY6AW8bx9dGJ444VOHxaUNplQqKK1VUXqMaX7CuLdlhVW56sgbnuDUgK1VpLkcHRgoAAAAADZEIA/YXDErfviB9cqdUvTN0nwPyzW2QvQ6NbWwIn83ZxvFJ0YkjzuyqqtXSjWVaXVihgGE0aq/xBbWptFpbyzza0atGY/pnqnsq30sAAAAAnQOJMKC+LUul92+Qtq8I3Z6WZxbCP+hsyWKJbWyIjCtDsrtatz3S4TLHo4EKj09LN5bpx+3lLfYNGEZdv/yBWawMAwAAANApkAgDJKlih/TJTOm/L4dutyVJR/9BOvZaCqh3Fe5cKb2nVLYh8rFpvczxaGBDaZVWF1ZENGZ1YYV6dkvWIX0y2icoAAAAAIgAiTAkNr9X+upv0qcPSrWVofsMO0065R4pc2BsY0PbON1S9jBp12bJCIQ/zmKTsoeS8NxPldevguLKkNshmxMwDBUUV2pQtpsC+gAAAAA6HJ9KkLjWfiR9cJNUti50e4+h0qmzpMETYxsXoidzkJS7Tdrxffhjcg80x6GB4gqvisprWjW2qLxGxRVeDSARBgAAAKCD8akEiad0nfTBzdJPH4Zud6ZLx98kHXm5ZKOuUZeWnC71yzcfF61sfmWYxWYmwfrlm+PQQLnH1+B0yEjU+IIq9/iiHBEAAAAARM7a0QF0dd98843uu+8+TZo0SX379pXT6ZTb7dbQoUN10UUX6bPPPmtxjmeeeUYWiyWs/5555pkW56uurtaDDz6oI488UpmZmXK73RoxYoSuv/56bd68OQpX3UV5K6SP75AeO6qJJJhFGnW+dNVyKf9KkmDxIiVLGjBOGnqSub3V7mrY7nCZXx96ktkvJatj4uzkvP7WJcH2qg20bTwAAAAARAMrwtpg/Pjx+vTTTxt9vba2Vj/99JN++uknPfvss7rgggv05JNPKikpqd1jWrdunU477TStWbOmwddXr16t1atX68knn9RLL72kyZMnt3ssnc5PH0tfPBK6rfdoafJsqfcRMQ0JMZKcLuWNkrKGSJVFkme3FKg1D0FwZZiF8akJ1iynvW2/N0my8XsXAAAAAB2PRFgbbNu2TZKUl5enc889V8cdd5wOOOAABQIBLV68WH/605+0bds2Pf/88/L7/XrppZdanPPDDz9UXl5ek+19+vRpsq2yslKnn356XRLssssu07Rp0+RyubRgwQLdf//92rNnj84991wtXrxYhxxySIRX3MWNnCItmSttXrzva6k50kl3SodMk6x8UI97TjcJr1ZKdzmU7LC2antkssOqdBcrLAEAAAB0PBJhbTB8+HDdd999Ovvss2Wz2Rq0jR07VhdccIGOOeYYrV27Vi+//LKuuOIKHXfccc3OOXToUPXv379V8Tz00ENavXq1JGn27Nm64YYb6try8/M1YcIEjRs3TtXV1brmmmv0n//8p1XP02VZLNKk2dLc8WY9qLFXSONuoB4UEIacNKdy05O1qbQ64rG56cnKSXO2Q1QAAAAAEBmWwLTBO++8o/POO69REmyvHj166E9/+lPdn9944412i8Xn8+nRRx+VJI0YMULXXXddoz75+fm65JJLJEkLFizQ8uXL2y2eTqvXIdLkh6TfL5ZOvpskGBCmVKddg3PcslksEY2zWSwanONWKidGAgAAAOgESIS1s+OPP77u8bp169rteRYuXKjdu3dLkqZPny5rE9v8LrroorrHb775ZrvF06mNuUTqMaSjowC6nAFZqRreKy2iMcN7pWlAVmo7RQQAAAAAkSER1s5qa2vrHjeVnIqG+qdTjh8/vsl+o0ePVmqq+aH0888/b7d4AMSfNJdDY/pnamReeosrw2wWi0bmpWtM/0ylUR8MAAAAQCdBIqydLVq0qO7x8OHDW+x/0UUXKTc3V0lJSerRo4fGjh2rW2+9ta4wf1NWrVoV1vPY7XYNGjSo0RgACEf31CTlD8zS8cOz1S8rRcmOhj9Gkh1W9ctK0fHDs5U/MEvdU9v/tFwAAAAACBdFW9pRMBjUrFmz6v583nnntTimfuKstLRUpaWl+vrrr/WnP/1JjzzyiH7729+GHLdlyxZJUmpqqjIyMpp9jr59++q7775TSUmJvF6vnM7wilhv3bq12fbCwsKw5gHQtaW5HDqkT4YGZbtVXOFVucen2kBQSTbzdMicNCc1wQAAAAB0SnxSaUcPP/ywlixZIkmaMmWKRo8e3WTfgQMHaurUqcrPz1ffvn0lSevXr9e8efP0xhtvqKamRr/73e9ksVh0+eWXNxpfUVEhSXK73S3GtXdrpCRVVlaGnQjbGxcASGYB/QEkvAAAAAB0IRbDMIyODiIeLVq0SCeeeKL8fr9ycnL03XffKTc3N2TfPXv2KD09XZYmau688847mjp1qnw+n1JSUrRu3Tr17NmzQZ9BgwZp/fr16tu3rzZv3txsbBdeeKGef/55SeZKsj59+oR1TU3FF0ok8wIAAAAAAMQCNcLawY8//qgpU6bI7/fL6XTqtddeazIJJkndunVrNsl0+umn64477pAkVVdX6x//+EejPsnJyZIaFudvitfrrXvscrla7L/Xli1bmv1v7+o3AAAAAACAzohEWJRt2LBBJ598snbt2iWbzaaXX3652VMcw3XZZZfVJcvq1xHbKy0tTZK51bElVVVVdY/D2Uq5V58+fZr9r1evXmHPBQAAAAAAEGskwqJo+/btOvHEE7V9+3ZZLBY99dRTmjJlSlTmzsnJUY8ePSQp5AmSe7chVlVVaffu3c3OtbewfnZ2dtj1wQAAAAAAALo6EmFRsnPnTp100klav369JGnOnDm68MILo/oczZVzO/DAA+ser169usl+fr9f69atkySNGDEiesEBAAAAAAB0ciTComDPnj065ZRTtHLlSknSrFmzdOWVV0b1OYqLi1VaWipJysvLa9R+7LHH1j0OtXVyr2XLltVtjTzmmGOiGiMAAAAAAEBnRiKsjaqrq3Xaaafpm2++kSTdcsstuvHGG6P+PHPnzq1bERaq5tjxxx+vbt26SZKeffbZJlePPfPMM3WPo7VtEwAAAAAAoCsgEdYGtbW1mjJlir744gtJ0tVXX6177rknojk2btyoFStWNNvnnXfe0d133y3JPB3y4osvbtQnKSlJf/jDHyRJq1at0kMPPdSoz+LFi+tOnBw/frzGjBkTUawAAAAAAABdmb2jA+jK/ud//kcfffSRJOmEE07QJZdcoh9++KHJ/klJSRo6dGiDr23cuFETJkxQfn6+zjjjDB122GHKycmRYRhav3693njjDb3xxht1K7weeugh9e7dO+T8N9xwg1599VWtXbtWM2bMUEFBgaZNmyaXy6UFCxbovvvuk9/vl8vl0iOPPBKdbwIAAAAAAEAXYTGaq8COZlksloj69+vXTxs3bmzwtYULF2rChAktjk1JSdHDDz+syy+/vNl+BQUFmjx5sn766aeQ7enp6XrxxRd1+umnhx13uLZu3aq+fftKMk+m3HuSJQAAAAAAQGfAirAOdsQRR+iFF17Q4sWLtWzZMhUWFmrnzp3y+/3q3r27Ro4cqYkTJ+rSSy9VTk5Oi/MNHjxYK1as0GOPPabXX39dBQUFqq2tVd++fTV58mRdffXV6tevXwyuDAAAAAAAoHNhRRiihhVhAAAAAACgM6NYPgAAAAAAABICiTAAAAAAAAAkBBJhAAAAAAAASAgkwgAAAAAAAJAQSIQBAAAAAAAgIZAIAwAAAAAAQEIgEQYAAAAAAICEQCIMAAAAAAAACcHe0QEAsVTl9au4wqtyj09ef1BOu1XpLody0pxKdXI7AAAAAAAQz/jkj4RQ4fFpQ2mVCoorVVReoxpfsK4t2WFVbnqyBue4NSArVWkuRwdGCgAAAAAA2guJMMS9XVW1WrqxTKsLKxQwjEbtNb6gNpVWa2uZRzt61WhM/0x1T03qgEgBAAAAAEB7okYY4lqFx6elG8v04/bykEmw+gKGoR+3l2vpxjJVeHwxihAAAAAAAMQKiTDEtQ2lVVpdWBHRmNWFFdpQWtVOEQEAAAAAgI5CIgxxq8rrV0FxZYsrwfYXMAwVFFeqyutvp8gAAAAAAEBHIBGGuFVc4VVReU2rxhaV16i4whvliAAAAAAAQEciEYa4Ve7xNTgdMhI1vqDKqRMGAAAAAEBcIRGGuOX1ty4JtldtoG3jAQAAAABA50IiDHHLaW/bX+8kG7cHAAAAAADxhE/6iFvpLoeSHa37K57ssCrd5YhyRAAAAAAAoCORCEPcyklzKjc9uVVjc9OTlZPmjHJEAAAAAACgI5EIQ9xKddo1OMctm8US0TibxaLBOW6lOu3tFBkAAAAAAOgIJMIQ1wZkpWp4r7SIxgzvlaYBWantFBEAAAAAAOgoLHlBXEtzOTSmf6YkaXVhhQKG0WRfm8Wi4b3SNKZ/ptKoDwYAAAAAQNwhEYa41z01SfkDs9SzW7IKiitVVF6jGl+wrj3ZYVVuerIG57g1ICuVJBgAAAAAAHGKRBgSQprLoUP6ZGhQtlvFFV6Ve3yqDQSVZDNPh8xJc1ITDAAAAACAOMcnfySUVKddA0h4AQAAAACQkCiWDwAAAAAAgIRAIgwAAAAAAAAJgT1iANAGVV5/Xd05rz8op526cwAAAADQWfEpDQBaocLj04bSKk4iBQAAAIAuhEQYAERoV1Wtlm4s0+rCCgUMo1F7jS+oTaXV2lrm0Y5eNRrTP1PdU5M6IFIAAAAAQH3UCAOACFR4fFq6sUw/bi8PmQSrL2AY+nF7uZZuLFOFxxejCAEAAAAATWFFGID25a2UKoskz24p4JVsTsmVIblzJae7o6OL2IbSKq0urIhozOrCCvXslqxD+mS0T1AAAAAAgLCQCAPQPmrKpbJ1UskaqXyH5Pfsa7O7pPSeUvYwKXOQlJzecXFGoMrrV0FxZYsrwfYXMAwVFFdqULabAvoAAAAA0IH4RAYg+qpLpU2LpaKVkhFo3O73SGUbpF2bpdxtUr98KSUr9nFGqLjCq6LymlaNLSqvUXGFVwNIhAEAAABAh6FGGIDoqik3k2A7vg+dBKvPCJj9Ni02x3Vy5R5fg9MhI1HjC6qcOmEAAAAA0KFIhAGIrrJ15kqwSBStNMd1cl5/65Jge9UG2jYeAAAAANA2JMIARI+30qwJ1tJKsP0ZAalkrTm+E3Pa2/aWmWTjLRcAAAAAOhKfygBET2WRWRi/NSoKzfGdWLrLoWRH6942kx1WpbscUY4IAAAAABAJEmEAosezu+HpkJHweczxnVhOmlO56cmtGpubnqycNGeUIwIAAAAARIJEGIDoCXjbOL42OnG0k1SnXYNz3LJZLBGNs1ksGpzjVionRgIAAABAhyIRBiB6bG1c8WRLik4c7WhAVqqG90qLaMzwXmkakJXaThEBAAAAAMJFIgxA9LgyJLurdWMdLnN8J5fmcmhM/0yNzEtvcWWYzWLRyLx0jemfqTTqgwEAAABAh2OfDoDocedK6T2lsg2Rj03rZY7vArqnJil/YJZ6dktWQXGlisprVOML1rUnO6zKTU/W4By3BmSlkgQDAAAAgE6CRBiA6HG6pexh0q7NkhEIf5zFJmUPNcd3EWkuhw7pk6FB2W4VV3hV7vGpNhBUks08HTInzUlNMAAAAADoZPiUBiC6MgdJudukHd+HPyb3QHNcF5TqtGsACS8AAAAA6BL49AYgupLTpX755uOilc2vDLPYzCRYv3xzHAAAAAAA7YhEGIDoS8mSBoyTuvWWStZK5YWS37Ov3eEya4JlDzVXgpEEAwAAAADEAIkwAO0jOV3KGyVlDZEqiyTPbilQK9mSzNMh3bldqiYYAAAAAKDrIxEGoH053SS8AAAAAACdgrWjAwAAAAAAAABigUQYAAAAAAAAEgKJMAAAAAAAACQEaoQBABDvvJX1Dq3wSjYnh1YAAAAgIZEIAwAgXtWUS2XrpJI1UvkOye/Z12Z3Sek9pexhUuYg86RXAAAAIM6RCAMAIB5Vl0qbFktFKyUj0Ljd75HKNki7Nku526R++VJKVuzjBAAAAGKIGmEAAMSbmnIzCbbj+9BJsPqMgNlv02JzHAAAABDHSIQBABBvytaZK8EiUbTSHAcAAADEMbZGAnGoyutXcYVX5R6fvP6gnHar0l0O5aQ5lerktgfimrfSrAnW0kqw/RkBqWStlDWEAvoAAACIW3wiBuJIhcenDaVVKiiuVFF5jWp8wbq2ZIdVuenJGpzj1oCsVKW5HB0YKYB2U1lkFsZvjYpCczyJMAAAAMQpEmFAnNhVVaulG8u0urBCAcNo1F7jC2pTabW2lnm0o1eNxvTPVPfUpA6IFEC78uxueDpkJHweczwAAAAQp6gRBsSBCo9PSzeW6cft5SGTYPUFDEM/bi/X0o1lqvD4YhQhgJgJeNs4vjY6cQAAAACdEIkwIA5sKK3S6sKKiMasLqzQhtKqdooIQIexOds4npWiAAAAiF8kwoAursrrV0FxZYsrwfYXMAwVFFeqyutvp8gAdAhXhmR3tW6sw2WOBwAAAOIUiTCgiyuu8KqovKZVY4vKa1Rc0cZtVAA6F3eulN6zdWPTepnjAQAAgDhFIgzo4so9vganQ0aixhdUOXXCgPjidEvZwySLLbJxFpuUPZQTIwEAABDXODUS6OK8/tYlwSTJbrUoyW6VvJVSZZF5WlzAa9YYcmWYK0P4UAx0PZmDpNxt0o7vwx+Te6A5DgAAAIhjJMKALs5pb93CTrfTrkOyLepVtVoqXi+V75D8nn0d7C5ze1X2MPPDcXJ6lCIG0O6S06V++ebjopWSEWi6r8VmJsH65XOfAwAAIO6RCAO6uHSXQ8kOa0TbI91Ou47INpReskRGVYGUHGILld8jlW2Qdm02V5b0y5dSsqIYOYB2lZIlDRgndestlayVygsbJrsdLrMmWPZQkt0AAABIGCTCgC4uJ82p3PRkbSqtDqu/3WrRIdkWpRZ9Ld/275Wak9r8ACOwb3vVgHF8WAa6kuR0KW+UlDWk3vbnWsmWxPZnAAAAJCQSYUAXl+q0a3COW1vLPAoYRov9c9OT1b1mo3Zv+Fb9MpOVZAtza2XRSnNlSd6oNkYMIOacbhJeAAAAgDg1EogLA7JSNbxXWlh9+6QG5S9apaxUuzJSHOE/iREwt1d5K1sZJQAAAAAAHYtEGBAH0lwOjemfqZF56bJZLE32y0hxKNPYJVdNsfIyXHLaQ9QGa05Fobm9CgAAAACALoitkUCc6J6apPyBWerZLVkFxZUqKq9pUEA/2WHVgB6p6mndIVeqIk+CSZLPY9YYAgAAAACgCyIRBsSRNJdDh/TJ0KBst4orvCr3+FQbCCrJZlW6y6Ge6U65Cguk1iTB9grURi9gAAAAAABiiEQYEIdSnXYNcDZxe9ucbZvcltS28QAAAAAAdBBqhAGJxpUh2V2tG+twmeMBAAAAAOiCSIQBicadK6X3bN3YtF7meAAAAAAAuiASYUCicbql7GGSJcI6YRablD3UHA8AAAAAQBdEIgxIRJmDpNwDIxuTe6A5DgAAAACALopi+UAiSk6X+uWbj4tWSkag6b4Wm5kE65dvjgMAAAAAoIsiEQYkqpQsacA4qVtvqWStVF4o+T372h0usyZY9lBzJRhJMAAAAABAF0ciDEhkyelS3igpa4hUWSR5dkuBWsmWZJ4O6c6lJhgAAAAAIG6QCANgJrtIeAEAAAAA4hyJMABdl7ey3ko2r2RzspINAAAAANAkEmEAup6acqlsnVSyRirf0bC2md0lpfeUsodR2wwAAAAA0ACJMABdS3WptGlx06dd+j1S2QZp12Ypd5t52mVKVuzjBAAAAAB0OtaODgAAwlZTbibBdnwfOglWnxEw+21abI4DAAAAACQ8EmEAuo6ydeZKsEgUrTTHAQAAAAASHokwAF2Dt9KsCdbSSrD9GQGpZK05HgAAAACQ0EiEAegaKovMwvitUVFojgcAAAAAJDQSYQC6Bs/uhqdDRsLnMccDAAAAABIaiTAAXUPA28bxtdGJAwAAAADQZZEIA9A12JxtHJ8UnTgAAAAAAF0WiTAAXYMrQ7K7WjfW4TLHAwAAAAASGokwAF2DO1dK79m6sWm9zPEAAAAAgIRGIgxA1+B0S9nDJIstsnEWm5Q91BwPAAAAAEhoJMIAdB2Zg6TcAyMbk3ugOQ4AAAAAkPDsHR0AAIQtOV3ql28+LlopGYGm+1psZhKsX745DgAAAACQ8EiEAehaUrKkAeOkbr2lkrVSeaHk9+xrd7jMmmDZQ82VYCTBAAAAAAA/IxEGdEFVXr+KK7wq9/jk9QfltFuV7nIoJ82pVGcC3NbJ6VLeKClriFRZJHl2S4FayZZkng7pzqUmGAAAAACgkQT4xAzEjwqPTxtKq1RQXKmi8hrV+IJ1bckOq3LTkzU4x60BWalKczk6MNIYcbpJeAEAAAAAwkYiDOgidlXVaunGMq0urFDAMBq11/iC2lRara1lHu3oVaMx/TPVPTWpAyIFAAAAAKBz4tRIoAuo8Pi0dGOZftxeHjIJVl/AMPTj9nIt3VimCo8vRhECAAAAAND5kQgDuoANpVVaXVgR0ZjVhRXaUFrVThEBAAAAAND1kAgDOrkqr18FxZUtrgTbX8AwVFBcqSqvv50iAwAAAACgayERFqc2b96s66+/XiNGjFBqaqoyMzN15JFH6qGHHlJ1dXVHh5cwqrx+bdhZpf9u2a0lG8r03y27tWFnVUTJqeIKr4rKa1r1/EXlNSqu8LZqLAAAAAAA8YZi+XHo3Xff1a9//Wvt2bOn7mvV1dVaunSpli5dqieffFLvvfeeBg4c2IFRxrcqr19bdlVr5fbyNp/u6A8EleywNZgjXDW+oMqpEwYAAAAAgCQSYXHnv//9r8477zxVV1fL7Xbr5ptv1oQJE+TxePTKK6/o73//u9asWaPTTjtNS5culdvt7uiQuwZvpVRZLAV8kgKSt0ryVUsWi+RIlZxuyeGSaj2qqSzVruqAavwpcqmbLJKqvD4l2W1y2Kwtn+7orZQqiyTPbingVWaNRWMzklXWPVPbqqwqKq+RPxj+NsnaQL0E2n5zy+aUXBmSO9e8hnD62RxS1U6pfJtUVSL5vFJSiuTOMduDAalyh2SxhZ472sK9pmiPBQAAAAB0OSTC4sw111yj6upq2e12ffTRR8rPz69rO+GEEzRkyBDNmDFDq1ev1p///GfdfvvtHRhtF1BTLpWtk3ZvkewpUnWJVPSjVPqTFAxK7mwp6JeCQQXS8uTvMUy7Ayn6/ttlqq2tVfeeB+jQniNU1KO3Fm/1ymKxqHuKQ0l2W93pjpJ09KAsueUxn6tkjVS+Q/J7JEm+8hpVVhjq3qOPsnNHaFdeH31XYqgyzO2VqUm2fdex39ySJLtLSu8pZQ+T0vuYiaGiHxr3S+8t5R0m7dkqbVkibfrCTA46XGbyy5km9R0t9TtG6naAVPhfM8G0d+7MQVJyepReGIV/TaGety1jAQAAAABdlsUwIqzAjU5r6dKlOvLIIyVJv/3tb/X444836hMMBnXQQQdp1apV6t69u4qKiuRwNL81L1xbt25V3759JUlbtmxRnz59ojJvh6kulTYtNpNgmQOkHT9IGz81E182p5SSaSaCdm9W0J4sn8OtykCSqvPy5ckaobUrv5WnYpesNrvyhhyhsh5H6L0CryxWi3pnuJTssEmSuiU7dMZQp7LLvpGKVkpGoEEYu6prVVBcKX/QkMVqU/cBh6kq90gtL7G0mAzLcifprKHJ6la8LOTcDfi9Urc8qVt/qXSt5K13SqWru9TrEGn9Qmn5M+b1O9PMNm+FVLNH0s9vJc50afTF0qATpMLvpIpCc3VY7oFSv3wpJSuilyGkva9NS9cU6nnbMhYAAAAA0KVRLD+OvP3223WPL7744pB9rFarLrzwQknSrl27tHDhwhhE1gXVlJvJkuLVUmZ/Mwm2foGZBLPYpJTuZhJs1wYFg355q8plqSmXPVijypUfK7l0lQYOO0Q2R5KCAb+2rl6izJ3LNXGgS+Uen7bt9qjWH5DdatHIHpJ3/Req3fbfkImZVKddbqe5eNMIBlS27hulFi3RIdkW2a2WJi/BbrXoyF52pe5YIu34vuUk2O5N0o//lHZ8J2UNkqx7E6Q2qefPSbCvHpd8HslbLhmG+bh+Ekwy2756XFr3H6nXoeZKOiNgxrBpsfm9bYu9r01L1yQ1ft62jAUAAAAAdHkkwuLIZ599JklKTU3VEUcc0WS/8ePH1z3+/PPP2z2uLqlsnbliKC3X3N638VPVJXuSUiVfjZk4kuQPGAoEDQW8lbL6vUp2WFW5eoHSjEpl5PT9eUJD239arl7B7erfI1U7K7zaVe1Tbnqyutds1Y61y5s8STLJZlVmalK9m9XQrg3fqnvNVuWkO5u8hF7dktUzsF32ktUtX6+nTKosMa9x46fmNaflmm1Z/aXy7dKyp/d9D+zJZo20mj2SJcTbSMArLX9W2rNFyhm27+tFK83vbVvsfW0iUbTSrFvW2rFtjRkAAAAA0CmQCIsjq1atkiQNHjxYdnvT5d+GDx/eaAzq8VaataOMgLklruhHcyXYXo4Us0i8EVTQMOQLBGWxSMGgoUBtlVIdFingU3DHSmXn5kkyV20FA375dqzWgVnmlshdVbXqlRKQv2iVfH6/vP6mT4XMSHGoR9q+pJcRDChQtFp9Upve2XxoT4dS9hS0vPIpUGtuF9TPzx/0S8UrzWsP1Eppvcx6YP6aet8Dl1RbZSa8rLbQ89ZWmqup3Dn7vmYEpJK15ve4Neq/NpEwAlJVmbTjx9aNbUvMAAAAAIBOg2L5caKmpkY7d+6UpBZrc3Xv3l2pqamqqqrSli1bwn6OrVu3NtteWFgY9lydWmWRWUDd1d1MCpX+tK/N7pKM4M+JI5krwQxDNotFhiR/bY2SnH457FZ5Clcrve9ouTN6qHJ3iSRpV9Em9e5Trtz0ZNmsFqX7S1W1c2vdXE1x2m3Ky3BJknZWeBWUVLlzizL7likjJUO7q311fW0Wiw7vl6EDHLuVVFXc8vXWVjZO8uz8SeozRuoxzNz+uPGzfW22JPO0TF+VeWCAzTBXhRn7JfKCATOBNuxUqXt/addG8+sVheb3uDWnMu59bSLl6i55Ss3X0p4c+fi2xAwAAAAA6DRIhMWJiop9hc3d7pY/rO9NhFVWhr/KZW8h/Ljn2W2eIpiSadaGql803uYw62kFaiWZZbIMQ5LFXPcVDAZlCQZkt9pU69kjq7dSSa5U6edEWK2nSrbaPUpL7mWO8ZTK7602p26m3pckuRw29enukttpV1lVrSq9Hllr9ijZkSXJp2SHVbnpyRqc49agbLecJZsbnobYFF+NFPQ1/Jr353paqTlm0q+yaF+b1W4mufaukjOC2rvqrSHDTCBVlzY8edHnMb/HrbH3tYmUI0Wq3iVVl0npeZGPb0vMAAAAAIBOg0RYnKip2bdtLSkpqcX+Tqe5zc7jaUVSId4FvOb/rVYz6VWfxdJgm+TeNVxBw0xkmbmsYF1ayAh6ZbXtdypnoFZ2m7krOeg3E2p2q0VOe8s7lZ12m3LTbeqemqQqr1+WVKtGdcuQt1dQ6S6HctKcSv25sH7ddbSkqa2CQZ9kd5hJoAYsjVd/WdSgXn4Dfm/jlVQ/JxIjFu417W/vaxnptsgGz93KmAEAAAAAnQaJsDiRnLxvu1dtbcsf2L1eM6HgcrnCfo6WtlEWFhbqyCOPDHu+Tsv2cy2uYHDf470MQ7Lsu232JryChiG7LLJbrZKsdTkhi9WpYKB6v/mT5A8EJYtktZtJS7fTvi+BFYYkm1VJKUmSO1UZvdJDd9o/9qZYmqjxZXVIfp9ZD6wBo3GB/KZ3dUp2pxTYb8WZreVkbUjhXtP+9r6WTV1rWM/dypgBAAAAAJ0GibA4kZaWVvc4nO2OVVVVksLbRrlXS7XH4oYrw6wF5qs2t9E50/Ztjwz4zD/bkqRArSwWc5GYYZjJsCSHXT6rTf6gIZurm4JOt2o9+2qrJblSFUjqpooav2xWiwxXhpKcKcpMtSjJFuHZFQ6XGWtL19HSVkJHspn0qr890plubmf0lJlF8925+7ZHBv2SNeXnLZLBn+uDhVppZTEL7adkmadOhht3c8K9pv35qqWMvuZ219ZoS8wAAAAAgE6DUyPjRHJysnr06CGp5aL2u3btqkuEJUzdr0i4c6X0npJnl5nsyRqyr83vMRM/KVmSzO2QNou5LiwQNGRzOCV7knz+oFy9hqu8VqrcvbNuePfcftrmT1dReY2qvH6V27PUq+8AZaTst30yHGm9zFhbuo6WJLkbb13sMcS89p1rzCRQ/+P2tQVqzcyfI1Wy2X/OBIY48dJqk/odYyYO9xbKDyfu5oR7Tfvz7JJcWQ1fy0i0JWYAAAAAQKdBIiyOjBgxQpJUUFAgv9/fZL/Vq1c3GoN6nG4pe5i5ja66VModaSaF9vJVS6nZksUqq8Uih81qbpG0WBS0u2S12pXuTpGt10iVFG3X3n2DVptdjp7DtbLUXD3VI80pZ0qaegw4RE5HhNvuLDYpe2jzpxjWv47m2JJ+Tuz9/HZgtUs5B5rXbksyC973O6bhaYs+j5SUam43DDZRdyvJLfXLlyrrnVwZTtzNCfea9mexSamZUs+RrRvblpgBAAAAAJ0GibA4cuyxx0oytz0uX768yX6LFi2qe3zMMce0e1xdUuYgKfdAqaLI3BLXf5zqKoLVVpnbCTP6SZLsNjMZZk92y2d1qtIbUMaIE+R0Z8rpKfl5y6NFeUOOUKE1TzsrvTpuaLbOPryPRvRMV1LOEPO5IpF7oBljuNfRElem5M42r7H/OPOaK37eClm60dwiOvrifd8Df415EmNyt9CrwWxO6YjpUre+UvGayOOOxjXVl3ug5O7Z+rFtjRkAAAAA0ClQIyyO/OIXv9D9998vSXr66ad11FFHNeoTDAb13HPPSZIyMjI0YcKEmMbYZSSnm6uZJKlso9TzIPPxxk/NGlnVuyR3jiTJunuznKnJqrW7VeWzyzF0nCoyhqt8yyr1dNuUm9ZdSb0PVlXukSqtTNL5Y3M0NCdNPdL2Fn537HuuopXNn2xosZmJmX75ZoyRXEdzc9udZmKvX77Urb9UurZezbCAtOM7aeDx5h+XP/Nz4XmLuW0yuZtUs0d1FfOd6WbSbNAJUuF/JX915HFH45qk0M/bXt9rAAAAAECnZzEMo7nz3tDFjBs3Tp999pnsdrs+/fRT5efnN2h/8MEHNWPGDEnSHXfcoZkzZ0btubdu3VpXc2zLli3xUVy/plwqWyft3iLZU6TqEql4pbRzrVko3p1jJowMKZDWS77MIaqUW9vW/6Da2lq5e/RVct4IedP7a08wWVlup3qmJ8udHKIm2N7nKlkrlRc2LAjvcJl1qrKHmquTIk3MhDt3eh+zKH7Rj437pfeW8g6T9myTtnwtbfrC3PbocJnbI53pUt8xPyfTDjCTYDW72xZ3NK4p1PO25/caAAAAANBpkQiLMytWrNAxxxwjj8cjt9utP/7xj5owYYI8Ho9eeeUVzZ07V5I0dOhQLVu2rMFpk20Vl4mwvbyVZtInUCvJMP/sqzYL5ztSzPpRDpdUWy1/9W7VBC3yOdJVldRDNUqW3WZVdppTqc4wFmF6K81klGe3+Xy2JHOroju37XWqwp27uX42h1S1UyrfJlWVSP5a89rdOWZ70G9+ryzW6MUdjWuK9lgAAAAAQJdDIiwO/fvf/9b555+v8vLykO1Dhw7Vu+++q8GDB0f1eeM6EQYAAAAAALo8iuXHoTPOOEPfffedrr32Wg0dOlQpKSnKyMjQ6NGj9cADD2jFihVRT4IBAAAAAAB0dqwIQ9SwIgwAAAAAAHRmrAgDAAAAAABAQiARBgAAAAAAgIRAIgwAAAAAAAAJgUQYAAAAAAAAEgKJMAAAAAAAACQEEmEAAAAAAABICCTCAAAAAAAAkBBIhAEAAAAAACAhkAgDAAAAAABAQiARBgAAAAAAgIRAIgwAAAAAAAAJgUQYAAAAAAAAEgKJMAAAAAAAACQEEmEAAAAAAABICCTCAAAAAAAAkBBIhAEAAAAAACAhkAgDAAAAAABAQiARBgAAAAAAgIRAIgwAAAAAAAAJgUQYAAAAAAAAEgKJMAAAAAAAACQEEmEAAAAAAABICCTCAAAAAAAAkBBIhAEAAAAAACAhkAgDAAAAAABAQiARBgAAAAAAgIRAIgwAAAAAAAAJgUQYAAAAAAAAEgKJMAAAAAAAACQEe0cHgPjh9/vrHhcWFnZgJAAAAACAzqhnz56y20lFoOPwtw9RU1JSUvf4yCOP7MBIAAAAAACd0ZYtW9SnT5+ODgMJjK2RAAAAAAAASAgWwzCMjg4C8aGmpkbff/+9JCk7O5vlrl1MYWFh3Uq+JUuWqFevXh0cEaKN1zj+8RrHP17j+MdrHP94jeMfr3Hz2BqJjsbfPkRNcnKyxowZ09FhIAp69erFcuU4x2sc/3iN4x+vcfzjNY5/vMbxj9cY6HzYGgkAAAAAAICEQCIMAAAAAAAACYFEGAAAAAAAABICiTAAAAAAAAAkBBJhAAAAAAAASAgkwgAAAAAAAJAQSIQBAAAAAAAgIVgMwzA6OggAAAAAAACgvbEiDAAAAAAAAAmBRBgAAAAAAAASAokwAAAAAAAAJAQSYQAAAAAAAEgIJMIAAAAAAACQEEiEAQAAAAAAICGQCAMAAAAAAEBCIBEGAAAAAACAhEAiDAAAAAAAAAmBRBgAAAAAAAASAokwIA598803uu+++zRp0iT17dtXTqdTbrdbQ4cO1UUXXaTPPvusxTmeeeYZWSyWsP575pln2v+i0EC4r83xxx/f4lwffPCBpk6dqj59+sjpdKpPnz6aOnWqPvjgg/a/EDTp+OOPD/t13vvfwoULG8zBfdyxiouL9c477+j222/XpEmT1KNHj7rv90UXXRTxfNG4V6urq/Xggw/qyCOPVGZmptxut0aMGKHrr79emzdvjjimRBeN17impkb//Oc/ddVVV+moo45SZmamHA6HMjMzlZ+fr5kzZ6qwsLDFeSJ5z0D4ovEaR/u9mPs4utr6Gm/cuDHin9f9+/cPORf3MRAb9o4OAEB0jR8/Xp9++mmjr9fW1uqnn37STz/9pGeffVYXXHCBnnzySSUlJXVAlOgMDMPQ7373O82dO7fB17dt26a33npLb731li6//HI9/vjj/IOrC7BarRoyZEhHh4F6cnNzozJPtO7VdevW6bTTTtOaNWsafH316tVavXq1nnzySb300kuaPHlyVOJOBG19jb/77jsde+yxqqioaNS2a9cuffXVV/rqq6/05z//WU8++aTOO++8Nj0fIhet+zhauI+jryNe42HDhsX8OQHsQyIMiDPbtm2TJOXl5encc8/VcccdpwMOOECBQECLFy/Wn/70J23btk3PP/+8/H6/XnrppRbn/PDDD5WXl9dke58+faIWPyJzxRVX6Pe//32T7ampqU223XrrrXUfrEeNGqUZM2Zo0KBBWrdunWbPnq0VK1Zo7ty5ys7O1j333BP12NG8p59+WlVVVc32WblypX75y19KkiZOnKjevXs32Zf7uGP17dtXI0aM0EcffRTx2Gjcq5WVlTr99NPrPjxfdtllmjZtmlwulxYsWKD7779fe/bs0bnnnqvFixfrkEMOaf3FJqjWvMbl5eV1SbBjjjlGp59+ukaPHq2srCyVlJTozTff1JNPPqmKigr96le/UlpamiZNmtTsnKNHj9bTTz/dpmtBaG25j/dqy3sx93H7a81r3Lt3b33//fct9rv//vvr/t09ffr0ZvtyHwPtzAAQV0477TTj1VdfNfx+f8j2kpISY+jQoYYkQ5Lx6aefhuz39NNP1/XZsGFDO0aM1tj72txxxx2tGv/TTz8ZdrvdkGSMHj3aqK6ubtBeVVVljB492pBk2O12o6CgIApRI9pmzJhR93fh+eefb9TOfdyxbr/9duPf//63sWPHDsMwDGPDhg11r8f06dPDmiNa9+odd9xR99yzZ89u1P7ll1/WPc+ECRMiu9AE1tbX+IsvvjDOO+8848cff2yyz9tvv21YLBZDkjFo0CAjGAyG7Dd+/HhDkjF+/PjWXAqaEI37OFrvxdzH7SMar3FL/H6/kZeXZ0gy0tLSjKqqqpD9uI+B2KBGGBBn3nnnHZ133nmy2Wwh23v06KE//elPdX9+4403YhUaOpGHH35Yfr9fkjRnzhy5XK4G7SkpKZozZ44kye/365FHHol1iGhBMBjUiy++KElyu92aOnVqB0eE/d155506/fTT27TtJhr3qs/n06OPPipJGjFihK677rpGffLz83XJJZdIkhYsWKDly5e3OuZE0tbX+Oijj9arr76qAw88sMk+Z511Vt39vW7dOn377betei60TjTu42jgPm4/sXiNP/nkE23fvl2SdM455yglJaXdngtAy0iEAQmofgH1devWdVwg6BCGYeif//ynJGn48OEaO3ZsyH5jx46tq2Hx9ttvyzCMmMWIls2fP79uKzT/qI5P0bpXFy5cqN27d0syt+NYraH/+Ve/KPSbb77ZxugRTRMmTKh7zM/txMR93LU999xzdY9b2hYJoP2RCAMSUG1tbd3jpv4hhfi1YcOGugTK+PHjm+27t33r1q3auHFje4eGCNT/R/WFF17YgZGgvUTrXq1/UnBz84wePbquruDnn3/empDRTrxeb91jfm4nJu7jrquiokJvv/22JKlfv34aN25cxwYEgEQYkIgWLVpU93j48OEt9r/ooouUm5urpKQk9ejRQ2PHjtWtt95a9wENHef111/XsGHD5HK5lJaWpiFDhmj69OlasGBBk2NWrVpV97il179+e/1x6FiVlZV66623JEkHHHBAg1WeTeE+7nqida+GO4/dbtegQYNCzoGOFcnP7dWrV2vMmDFKS0tTcnKy+vTpo7POOkvPPfecfD5fe4eKFrT2vZj7uOt64403VF1dLcn8xVU4J3FzHwPti0QYkGCCwaBmzZpV9+dwjmJftGiRiouL5fP5VFpaqq+//lr33nuvBg8erCeeeKI9w0ULVq5cqbVr16qmpkaVlZUqKCjQc889pxNOOEFTpkzRnj17Go3ZsmVL3eOWTgrs27dvyHHoWPPmzas7UfKCCy4I6x/V3MddT7Tu1b1/Tk1NVUZGRljzlJSUNFiFhI7z3//+V++++64kaeTIkc3WE5OkoqIiLVu2TJWVlfJ6vdq2bZv+9a9/afr06TrssMNIjnSw1r4Xcx93Xa1Zwc19DLQve0cHACC2Hn74YS1ZskSSNGXKFI0ePbrJvgMHDtTUqVOVn59f94+q9evXa968eXrjjTdUU1Oj3/3ud7JYLLr88stjEj9MKSkpOvPMMzVx4kQNHz5cbrdbJSUlWrRokR5//HGVlpbq7bff1llnnaWPP/5YDoejbmxFRUXdY7fb3ezz7N1eIZmrkNA5RPKPau7jrita9+reeVqaI9Q8TqczrFjRPrxery699FIFAgFJ0n333ddkX6vVqokTJ2ry5Mk69NBDlZWVpYqKCn3zzTd64okntGrVKq1cuVITJkzQkiVLdMABB8TqMqC2vxdzH3dNmzdvrlvRefTRR2vw4MHN9uc+BmKkYw+tBBBLCxcurDtWOycnp+6Y6FB2797d5BHthmEY//73vw2Hw2FIMlJSUozCwsL2CBlN2LVrV5NtO3bsMEaNGlV39Pejjz7aoP2uu+6qa5s/f36zzzN//vy6vnfffXc0QkcbbdmyxbBarYYkY+zYsc325T7uXDZs2FB3P02fPr3F/tG6VwcOHGhIMvr27dvic15wwQV182zZsqXF/mgo0te4JZdeemnY8zX3c6G2ttaYPn163VxTpkxpc2yJqjWvcTTei7mPYyea9/G9995bN9fjjz/eYn/uYyA22BoJJIgff/xRU6ZMkd/vl9Pp1GuvvdbsMdHdunVrdrvV6aefrjvuuEOSVF1drX/84x9RjxlNa25bRG5urt544w0lJSVJkubMmdOgPTk5ue5x/YMTQqm/pcLlcrUiUkTbCy+8oGAwKKnlk6e4j7u2aN2re+dpaY6W5kFs3X///XryySclSUcccYQee+yxZvs393PB4XDoySefrKst9dZbb1EfMIai8V7Mfdw1Pf/885Ikp9OpX/7yly325z4GYoNEGJAANmzYoJNPPlm7du2SzWbTyy+/3OIJZOG47LLL6v5hV7+QLzrewIEDddJJJ0mSCgoKtH379rq2tLS0usctbXfcW4dKCm87BtpfpP+obgn3cecVrXt17zzhbG/mnu8cnnjiCf3xj3+UJA0bNkzvv/9+g+1urWG323XJJZfU/Zn7vXNp6b2Y+7jrWbJkiVavXi1JOvPMM1us7RYO7mMgOkiEAXFu+/btOvHEE7V9+3ZZLBY99dRTmjJlSlTmzsnJUY8ePSSJ30h1QvULKtd/feoX3d66dWuzc9Qvul2/GDc6xrJly7Ry5UpJ5gqC7t27t3lO7uPOK1r36t55qqqqtHv37rDmyc7Opq5QB3n55Zf1+9//XpLUr18/ffLJJ8rOzo7K3E39XEDHa+m9mPu462lNkfxwcB8DbUciDIhjO3fu1EknnaT169dLMrfIRfMHsSQZhhHV+RA9Tb029f8Btfc3lU2p3z5ixIjoBIZWq/+P6pa2RUaC+7hzita9Gu48fr9f69atCzkHYuNf//qXLrzwQgWDQfXq1Uvz589v8cTQSHCvd27NvT7cx12Lz+fTq6++KslMcp566qlRm5v7GGg7EmFAnNqzZ49OOeWUutUjs2bN0pVXXhnV5yguLlZpaakkKS8vL6pzo+32vvZSw9dnwIABdX9uaUn9p59+Kknq3bu3+vfvH/0gETafz6dXXnlFkvlb/kmTJkVlXu7jzita9+qxxx5b97i5eZYtW1a3peqYY45pTchog/nz5+u8886T3+9XVlaWPv74Yw0aNCiqz9HUzwV0vJbei7mPu5Z3331XO3fulCT96le/kt1uj9rc3MdA25EIA+JQdXW1TjvtNH3zzTeSpFtuuUU33nhj1J9n7ty5db+VikbNMUTP+vXr9fHHH0sy64X17t27rs1iseiss86SZP5W+auvvgo5x1dffVX3W+ezzjqr2UK/aH/vv/++SkpKJEX3H9Xcx51XtO7V448/Xt26dZMkPfvss02uJnjmmWfqHkdrCz3C8+WXX+qss86S1+tVenq6PvzwQ40cOTKqz+H3+/XUU0/V/XncuHFRnR9t09J7Mfdx19JeK7i5j4Eo6aDTKgG0E6/Xa5x88sl1RytfffXVEc+xYcMG45tvvmm2z7///W8jKSnJkGQkJycbW7dubWXEiNS//vUvw+fzNdm+Y8cOY9SoUXV/B/70pz816rNmzRrDbrcbkozRo0cb1dXVDdqrq6uN0aNHG5IMu91urF27NurXgcicffbZda/p8uXLW+zPfdz5bNiwoe41nD59elhjonWv3nbbbXXPPXv27EbtX375Zd3zjB8/PtJLw89a8xqvWLHCyMjIMCQZqampxueffx7x8/7nP/8xdu3a1WR7bW2tMX369LrYzjjjjIifA6ZIX+NovhdzH8dGa+7j+kpLS+tez4MPPjjscdzHQOxEb40mgE7hf/7nf/TRRx9Jkk444QRdcskl+uGHH5rsn5SUpKFDhzb42saNGzVhwgTl5+frjDPO0GGHHaacnBwZhqH169frjTfe0BtvvFH328iHHnqowYojtK+rrrpKPp9PZ599tvLz89W/f3+5XC7t3LlTCxcu1OOPP163veLYY48NuSV26NChuv766zVr1iwtW7ZMxxxzjG688UYNGjRI69at0wMPPKAVK1ZIkm644QYNGTIkpteIhnbt2qV33nlHknTQQQfp8MMPb3EM93HH+/zzz1VQUFD3573bZCTzNNf6Kzck6aKLLmo0R7Tu1RtuuEGvvvqq1q5dqxkzZqigoEDTpk2Ty+XSggULdN9998nv98vlcumRRx5p87Unira+xuvWrdMpp5xSV/z8nnvuUbdu3Zr9uZ2Tk6OcnJwGX3v22Wd15pln6swzz9Txxx+vYcOGKT09XZWVlVq+fLmeeOIJrVq1qm78o48+2oqrTUxtfY2j+V7Mfdw+ovFeXd8rr7yi2tpaSZGtBuM+BmKoI7NwAKJPP/+WKNz/+vXr12iOBQsWhDU2JSXFeOKJJ2J/kQmuX79+Yb0+Z599drO/WQwEAsZvfvObZue45JJLjEAgELuLQ0h/+9vfml0FEAr3ccer/5v7cP5rSrTu1Z9++skYMmRIk3Okp6cb//73v6P9bYhrbX2Nn3766Yh/bt9xxx2tjuPggw82fvzxxxh8Z+JHW1/jaL8Xcx9HX7Teq/c66qijDEmGzWYzCgsLox4H9zHQdqwIA9DIEUccoRdeeEGLFy/WsmXLVFhYqJ07d8rv96t79+4aOXKkJk6cqEsvvbTRb6XR/p599lktWrRIixcv1vr167Vz506Vl5fL7Xarb9++OvroozV9+nTl5+c3O4/VatU//vEPnX322Zo7d66WLl2qnTt3qkePHhozZox++9vfRq0gO9rm+eeflyTZbDb9+te/DmsM93H8iNa9OnjwYK1YsUKPPfaYXn/9dRUUFKi2tlZ9+/bV5MmTdfXVV6tfv34xuCJE24033qjDDjtMixcv1sqVK1VSUqKysjI5nU7l5uZq9OjROuecczRlyhTZbLaODjehRPu9mPu4c/vpp5/09ddfS5JOOukk9ezZM+yx3MdA7FgMg/NXAQAAAAAAEP84NRIAAAAAAAAJgUQYAAAAAAAAEgKJMAAAAAAAACQEEmEAAAAAAABICCTCAAAAAAAAkBBIhAEAAAAAACAhkAgDAAAAAABAQiARBgAAAAAAgIRAIgwAAAAAAAAJgUQYAAAAAAAAEgKJMAAAAAAAACQEEmEAAAAAAABICCTCAAAAAAAAkBBIhAEAAAAAACAhkAgDAAAAAABAQiARBgAAAAAAgIRAIgwAAAAAAAAJgUQYAADotBYuXCiLxSKLxaKZM2d2dDgAAADo4kiEAQAAAAAAICGQCAMAAAAAAEBCIBEGAAAAAACAhEAiDAAAAAAAAAmBRBgAAOiS6hfSX7hwoSTptdde08SJE5WdnS2Xy6Vhw4ZpxowZKisrC2vO9957T+eff74GDhyo1NRUdevWTSNHjtS0adM0b948eTyekOOCwaBeeOEFTZ48WT179lRSUpKys7M1YcIE/fWvf1VtbW2Tzzlz5sy665Ck8vJyzZw5UwcffLDcbrdyc3M1efJkffnllw3GFRcX69Zbb9XIkSOVmpqqrKwsnXXWWVqxYkVY17pmzRr94Q9/0MiRI9WtWze5XC4NHDhQF198sb755puw5gAAAOhqLIZhGB0dBAAAQCgLFy7UhAkTJEl33HFHg5Mj67d98skneuqpp/TSSy+FnGfw4MH67LPP1LNnz5DtpaWl+uUvf6n58+c3G8/TTz+tiy66qMHXysrKdOaZZ+qLL75octyIESP0/vvvq1+/fo3aZs6cqTvvvFOStHnzZp144olau3Zto342m00vv/yyzj33XH333XeaPHmytm3b1qif0+nUe++9pxNOOKHJeO6++27ddddd8vv9IdstFotuu+22urgAAADiBSvCAABAl3f77bfrpZde0i9+8Qu9+eabWr58ud577z2ddtppkqSCggJde+21IcdWV1drwoQJdUmwI444Qk888YS++OILLVu2TG+99ZauvfZa5eXlNRobCAR0+umn1yXBxo8fr9dff13Lli3Tv/71L/3iF7+QJK1atUoTJ05UZWVls9dx7rnnauvWrbr55pu1aNEiLV26VA8//LDS09MVCAR0ySWXaMOGDTr99NPl8Xh077336vPPP9fXX3+tO++8U0lJSfJ6vbr44oubXIV2++236/bbb5ff79fRRx+tJ598UosXL9ayZcv04osvKj8/X4Zh6K677tKcOXPC+v4DAAB0GQYAAEAntWDBAkOSIcm44447mmyTZNxzzz2NxgeDQePkk082JBl2u90oLi5u1Oeaa66pm+PKK680gsFgyFi8Xq+xY8eOBl/7y1/+Ujf2wgsvDDn2j3/8Y12fGTNmNGq/44476tqdTqfx1VdfNerz7rvv1vXJzs42evToYRQUFDTq99hjj9X1e/PNNxu1L1myxLBarYYk49Zbbw15nYFAwDj//PMNSUZaWpqxa9eukP0AAAC6IlaEAQCALu+II47QH//4x0Zft1gs+n//7/9Jkvx+vxYvXtygfdeuXZo7d64k6fDDD9ejjz5aV6trf0lJScrNzW3wtccee0yS1KNHD/3lL38JOfauu+7S8OHDJUl///vf5fV6m7yOa665RkcddVSjr0+ePLluW2VJSYnuueceDRo0qFG/iy++WMnJyZKkzz77rFH7Aw88oGAwqCOOOEJ33XVXyBisVqvmzJkjp9OpiooKvfHGG03GCwAA0NWQCAMAAF3er371qyYTWEcccUTd4/Xr1zdoW7BggaqrqyVJf/jDH2Sz2cJ+zu3bt2vVqlWSpPPOO09paWkh+9lsNl188cWSzMRbc4Xop02b1mTbIYccIslM7p133nkh+7hcLg0ZMkRS42v1+Xx6//33JUnnnHNOk98vScrIyNDBBx8sSY2ShwAAAF0ZiTAAANDl7V1xFUpmZmbd44qKigZt9U9YHDduXETP+cMPP9Q9DrWKq7767fXH7W/o0KFNtmVkZEgyV5917969xX77X+vKlSvrkn4333xz3UmVTf23bNkySdKOHTuavTYAAICuhEQYAADo8lJSUppss1r3/XMnEAg0aNu5c2fd4169ekX0nGVlZXWP998yub/6p1XWH7e/cK6juT71++1/rcXFxc2Oa8re5BkAAEA8sHd0AAAAAF1dc9sMJckwjBhF0rT6ibEHH3xQp556aljjUlNT2yskAACAmCMRBgAAElaPHj3qHhcWFmrAgAFhj62/5bKl7YNFRUUhx8VSVlZW3WOfz6eDDjqoQ+IAAADoSGyNBAAACevwww+ve/zpp59GNLZ+Iunrr79utu+SJUtCjoulkSNHKikpSZL00UcfdUgMAAAAHY1EGAAASFgTJkyo2/o3Z86cRnW1mpOXl6cRI0ZIkl5//fVGxen3CgQCeuaZZyRJ3bt3b5B8i6WUlBRNnDhRkrRw4cIGyTkAAIBEQSIMAAAkrIyMDP32t7+VJC1fvlzXXHNNk/W8fD5fo4LzV155pSSppKREV111Vcixd955p1auXClJuuyyy+R0OqN5CRG55ZZb6uqZTZs2TevWrfv/7dw7Sx1IGMfh/xJvqIXRAzaiiCIICmkExUasrGyOlfZip5XYKIKfQLAQrCQQUoigeOnkKAin8fIFxEZ7i7Rht95NArtgFHaep34H3ml/DPPL2e/fv+fLly95enp6q/UAAH47IQwAKNrW1lZGR0eTJDs7OxkbG8ve3l7q9Xpub29zfHyc1dXV9Pf35+zs7G9nl5aWMjExkSTZ39/P9PR0Dg4Ocnt7m9PT01Sr1WxtbSVJBgYGsr6+/raX+4fJyclsbGwkSR4fH/Pp06esrKzk7Owsd3d3qdfr+fr1a5aXl9Pb25uFhYW8vLy8684AAK/JZ/kAQNFaW1tzcXGRarWaq6ur3NzcZHFx8V+d/fDhQ05OTjI7O5vr6+vUarXUarUf5oaHh3N+fp729vZX3v6/29zcTEdHR9bW1vLt27dsb29ne3v7p7NNTU1paWl54w0BAH4fL8IAgOJVKpVcXl7m8PAwc3Nz6enpSXNzcz5+/JiRkZEsLCzk6Ogo8/PzP5zt7OzM1dVVPn/+nJmZmXR3d6exsTFdXV2ZmprKzs5O7u/v09fX9w43+7mVlZU8PDxkfX094+PjqVQqaWhoSFtbW4aGhlKtVrO7u5vn5+cMDg6+97oAAK/mjz9/9REGAAAAAPyPeBEGAAAAQBGEMAAAAACKIIQBAAAAUAQhDAAAAIAiCGEAAAAAFEEIAwAAAKAIQhgAAAAARRDCAAAAACiCEAYAAABAEYQwAAAAAIoghAEAAABQBCEMAAAAgCIIYQAAAAAUQQgDAAAAoAhCGAAAAABFEMIAAAAAKIIQBgAAAEARhDAAAAAAiiCEAQAAAFAEIQwAAACAIghhAAAAABRBCAMAAACgCEIYAAAAAEUQwgAAAAAoghAGAAAAQBH+ApUSg3wrzpmAAAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {
"image/png": {
"height": 540,
"width": 609
}
},
"output_type": "display_data"
}
],
"source": [
"# Create grid\n",
"grid = sns.FacetGrid(data=df_models.to_pandas(), hue=\"Student\", height=5.5, aspect=1);\n",
"\n",
"# Plot data\n",
"grid.map(sns.scatterplot, \"Income\", \"Balance\",alpha=.5);\n",
"\n",
"# Plot our predictions from student only model\n",
"grid.map(sns.lineplot, \"Income\", \"balance_pred_s\", ls='--');\n",
"\n",
"# Plot our predictions from income only model\n",
"grid.map(sns.lineplot, \"Income\", \"balance_pred_i\", ls='-', color='black', lw=2);\n",
"\n",
"# Plot our predictions student + income\n",
"grid.map(sns.lineplot, \"Income\", \"balance_pred_si\");\n",
"\n",
"# Aesthetics\n",
"grid.set(ylabel='Balance');\n",
"grid.add_legend();"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's take a look at the parameter estimates...\n"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Intercept 207.855285\n",
"C(Student)[T.Yes] 404.633047\n",
"Income 5.513813\n",
"dtype: float64"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"si_results.params"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"$\\hat{\\beta_0}$ is supposed to be the *mean* of `Student = No`...but its not\n",
"\n",
"$\\hat{\\beta_1}$ is supposed to be the *mean difference* between `Student = Yes` and `Student = No`...but its not\n",
"\n",
"$\\hat{\\beta_2}$ is supposed to be the *slope* of `Income`...but it doesn't match our univariate regression `i_results`\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Our model with just `Student` shows that the $\\hat{\\beta}_0$ was the mean of `Student = No`"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Intercept 463.236842\n",
"C(Student)[T.Yes] 401.447368\n",
"dtype: float64"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a_results.params"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And our model with just `Income` shows that the $\\hat{\\beta}_1$ was the slope of `Income`"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Intercept 411.959178\n",
"Income 5.474981\n",
"dtype: float64"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"i_results.params"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**What's going on?**\n",
"\n",
"\n",
"Remember what we learned in notebooks `02_models` and `03_models`:\n",
"\n",
"In the GLM, we interpret each parameter estimate **assuming other parameter estimates = 0**\n",
"\n",
"Because of this:\n",
"\n",
"$\\hat{\\beta_0}$ is the *mean* of `Student = No` **when `Income = 0`**\n",
"\n",
"$\\hat{\\beta_1}$ is the *mean difference* between `Student = Yes` and `Student = No` **when `Income = 0`**\n",
"\n",
"$\\hat{\\beta_2}$ is the *slope* of `Income` **when `Student = 0 (No)`**\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Challenge\n",
"\n",
"Can you make the parameter estimates **more interpretable** using an approach we learned in class and demonstrated in `02_models`? Think about how to change what value the regression \"fixes\" `Income` to from `0` to something more useful...\n",
"\n",
"1. Fit a new more interpretable multiple regression called `si_interp_model` using `Student` and `Income` as predictors and save the results to `si_interp_results`\n",
"2. Compare your parameter estimates from `.summary()` or `.params` to the estimates from the original multiple regression. What do you notice?\n"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Balance R-squared: 0.322\n",
"Model: OLS Adj. R-squared: 0.304\n",
"No. Observations: 76 F-statistic: 17.37\n",
"Covariance Type: nonrobust Prob (F-statistic): 6.75e-07\n",
"=====================================================================================\n",
" coef std err t P>|t| [0.025 0.975]\n",
"-------------------------------------------------------------------------------------\n",
"Intercept 461.6440 70.383 6.559 0.000 321.371 601.917\n",
"C(Student)[T.Yes] 404.6330 99.538 4.065 0.000 206.254 603.012\n",
"center(Income) 5.5138 1.283 4.298 0.000 2.957 8.071\n",
"=====================================================================================\n",
"\n",
"Notes:\n",
"[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n"
]
}
],
"source": [
"# Solution\n",
"si_interp_model = ols('Balance ~ C(Student) + center(Income)', data=df.to_pandas())\n",
"\n",
"si_interp_results = si_interp_model.fit()\n",
"\n",
"print(si_interp_results.summary(slim=True))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Visualizing intutions\n",
"\n",
"Hopefully you remembered that you can *center* a predictor to change what the *fixed* value is when intepreting *other parameters*. It doesn't change the estimate for what you're centering (`Income`), but it always changes the intercept and other categorical parameters!\n",
"\n",
"Let's visualize the effect of centering a predictor - we'll annotate the same plot as earlier illustrating the shift in coefficient interpretation: \n",
"\n",
"1. We'll add a vertical line for `Income = mean(Income)` and a horizontal line for the mean of `Student = No`- **this is our model intercept**\n",
"2. The vertical distance between this point and where it intersect the *blue* line is $\\beta_1$ - **mean difference between Yes and No when Income is at its mean**"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAwsAAAMMCAYAAAAcozsCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AAD54klEQVR4nOzdeXhU5fn/8fckmWSyh4QkhD0kEEJwQQGNIIsbO6htrbVVaRVr3Wq/irYuLGq1iv7cqq077rV1RUBRdlBk04pkAcKeEBLIQvbJTGZ+f0yJxJzsyWQy+byuy8thnuecuROYmXOfZ7lNTqfTiYiIiIiIyE/4dHYAIiIiIiLimZQsiIiIiIiIISULIiIiIiJiSMmCiIiIiIgYUrIgIiIiIiKGlCyIiIiIiIghJQsiIiIiImJIyYKIiIiIiBhSsiAiIiIiIoaULIiIiIiIiCElCyIiIiIiYkjJgoiIiIiIGFKyICIiIiIihpQsiIiIiIiIISULIiIiIiJiSMmCiIiIiIgYUrIgIiIiIiKGlCyIiIiIiIghJQsiIiIiImJIyYKIiIiIiBjqtslCfn4+S5cuZd68eUyZMoWePXtiMpkwmUzMnj27yeMPHDhQ27+5/w0cONDwXBMmTGj2OZojLS2NG2+8kcTERAIDA4mOjmbcuHG88MIL2O32FvyWRERERKQ78+vsADpLbGys218zKSmpw1/jlVde4eabb8ZqtdY+V1VVxYYNG9iwYQOLFy9m6dKlREVFtftr2+12jh49CkCvXr3w8+u2/7xEREREvIKu5oB+/fqRnJzMF1980exj+vTpww8//NBkv0ceeYR33nkHgGuvvbbRviNHjuS1115rdgw/tWLFCm644QYcDgexsbHce++9nHPOORQWFvLSSy/x4Ycf8s0333D55ZezZs0afHzad2Dp6NGj9OvXD4DDhw/Tt2/fdj2/iIiIiLhXt00W5s2bx6hRoxg1ahSxsbEcOHCA+Pj4Zh9vNpsZPnx4o31qampYu3YtAKGhoVx66aWN9g8ODm7ynA2x2+3ccsstOBwOwsLC+Oqrr0hISKhtnzx5MjfffDPPP/8869ev56233uKaa65p1WuJtLeMjAyGDRtW57n09HSSk5M7KSIRERGBbrxmYeHChUyfPr1DpyOtXLmSI0eOAPDzn/+coKCgDnutjz76iKysLAD+8pe/1EkUTlq0aBE9evSofSwiIiIi0phumyy4wxtvvFH7uKkpSG318ccf1z5uaIF2UFAQV1xxBQA7d+5kz549HRqTiIiIiHRtShY6SGlpae0F/IABAxg3blyHvt6GDRsA1yLqXr16Ndhv/PjxtY83btzYoTGJiIiISNemZKGDvP/++1RUVABwzTXXNGvb08zMTEaNGkVoaCgWi4W+ffsya9Ys3njjDWw2W4PHlZWVkZ2dDcDQoUMbfY1T2zMyMprzo4iIiIhIN9VtFzh3tFOnIDV3IXFeXh55eXm1f87JySEnJ4clS5bw6KOP8v777xsu+MzOzsbpdAI0uQPRyd2KwLVjUUucTEgakpub26LziYiIiIhnU7LQAQ4dOsS6desAOO+880hMTGy0v4+PDxdeeCFTp07ljDPOICoqitLSUr799lteeOEFMjIySE9PZ+LEiWzZsoX+/fvXOb60tLT2cUhISKOvFRwcXPu4rKysRT/XqYmGiIiIiHg/JQsd4K233qq909+cUYUPP/yQiIiIes+ff/753HTTTcyZM4fXX3+dvLw8br/9dj788MM6/aqqqmof+/v7N/paAQEBtY8rKyubjE1EREREui8lCx3gzTffBFwX5r/85S+b7G+UKJxkNpt5+eWX2bx5M5mZmXz00Ufk5OTQp0+f2j4Wi6X2cXV1daOvdWpl58DAwCZjO1VT05Zyc3MZPXp0i84pAhAeHl6vxkh4eHgnRSMiIiInKVloZ1u2bCEzMxOAmTNnNpoINJefnx/XXXcdc+fOBWDdunVcddVVte2hoaG1j5uaWlReXl77uKkpSz+liszSUXr37t2siugiIiLiXtoNqZ21ZmFzc5xa3TYnJ6dO26kX8U0tQj51dEBrEERERESkMUoW2pHNZuO9994DICYmhsmTJ7fbuU+ugTASEhJSe+F/clSjIae2G+2sJCIiIiJykpKFdrRs2TKOHz8OwFVXXYWfX/vN8kpPT6993Lt373rtY8eOBWDXrl0cPXq0wfOc3KUJYMyYMe0Wn4iIiIh4HyUL7ejUKUjXXnttu53Xbrfz6quv1v7ZqBr0pZdeWvt48eLFhuepqKjg3//+N+Ca1jRkyJB2i1FEREREvI+ShXZSWFjIsmXLADjttNM488wzm3XcmjVrKC4ubrDdZrNx/fXX104fmjFjhuFag8suu4yEhAQAHnnkEfbu3Vuvz9y5cykqKqp9LCIiIiLSmG67G9LGjRvJysqq/fPJ6UMAWVlZ9e7Oz549u9Hz/etf/6rdtrQlowqvv/46M2fOZObMmUyYMIGkpCTCwsIoKytj+/bttUXZwLUO4umnnzY8j9ls5plnnmHGjBmUlJQwZswY7rvvPkaPHk1RUREvvfQSH3zwAeCasnT11Vc3O0aRjnbw4EHOOOOMOs99//33DBgwoJMiEhEREQCTs7GVs15s9uzZvP76683u39Sv6dxzz2Xz5s34+vqSnZ1Nr1692jWO0047jX/96191dkUy8tJLL3HLLbc0WG9h9OjRLFu2jJ49ezYrvpbIzs6uHfU4fPiwtlqVZsvIyKj3bzs9PV2L8EVERDpZtx1ZaE979uxh8+bNAFx88cXNThQA7r77bs4880w2bdpEeno6x44do7CwkICAAGJjYxk5ciQ///nPueyyy/D19W3yfHPmzCE1NZVnnnmGVatWceTIEYKDg0lOTubXv/41119/fbsuvBYRERER79VtRxak/WlkQVpLIwsiIiKeSQucRURERETEkJIFERERERExpMnrIiIi0inKrXbyS62UVNqw2h0E+PkQFmgmJjSA4ABdooh4Ar0TRURExK1KK23sLygnK7+MvJIqqmyO2jaL2YfYMAuJMSHERwUTGmjuxEhFRMmCiIiIuE1ReTVbDxSSmVtKjcEeK1U2BwcLKsgurORoXBWjBkbSI9i/EyIVEdCaBREREXGT0kobWw8UknakxDBROFWN00nakRK2HiiktNLmpghF5KeULIiIiIhb7C8oJzO3tEXHZOaWsr+gvIMiEpGmKFkQERGRDldutZOVX9bkiMJP1TidZOWXUW61d1BkItIYJQsiIiLS4fJLreSVVLXq2LySKvJLre0ckYg0h5IFERER6XAllbY6ux61RJXNQYnWLYh0CiULIiIi0uGs9tYlCidV17TteBFpHW2dKiKdLjg4mD59+tR7TkS8R4Bf2+5P+vvq/qZIZ1CyICKdrn///mRnZ3d2GCLSgcICzVjMPq2aimQxuyo7i4j7KU0XERGRDhcTGkBsmKVVx8aGWYgJDWjniESkOZQsiIiISIcLDvAjMSYEX5OpRcf5mkwkxoQQHKDJECKdQcmCiIiIuEV8VDBD40JbdMzQuFDio7SGSaSzKE0XERERtwgNNDNqYCTgqszcWIE2X5OJoXGhjBoYSajWK4h0GiULIiIi4jY9gv1JHRRFr3ALWfll5JVU1Vn0bDH7EBtmITEmhPioYCUKIp1MyYKIdLpDhw5x3nnn1Xnu66+/pn///p0UkYh0pNBAM6f3jSAhOoT8UisllTaqaxz4+7p2PYoJDdAaBREPoXeiiHS68vJycnJy6j0nIt4tOMCPeCUFIh5NC5xFRERERMSQkgURERERETGkZEFERERERAwpWRAREREREUNKFkRERERExJCSBRERERERMaRkQUREREREDClZEBERERERQ0oWRERERETEkJIFERERERExpGRBREREREQMKVkQERERERFDShZERERERMSQX2cHICISFBREeHh4vedERESkcylZEJFON2DAAIqLizs7DBHPZS2DsjyoLIYaK/gGQGAEhMRCQEhnRyciXkzJgoiIiKeqKoHCvXBsF5QcBXvlj21+gRDWC6KTIDIBLGGdF6eI1ONwOPnouxz8fE3MOrNPZ4fTakoWREREPFFFARzcBHnp4Kyp326vhML9UHQIYnNgQCoERbk/ThGpZ2fOCeYvSWP7wSIigsyMGxxNj2D/zg6rVZQsiIh0EeVWO/mlVkoqbVjtDgL8fAgLNBMTGkBwgD7OvUpViStROPpD032dNT/2ix+nEQaRTlRUXs3jX+zinS2HcDpdzxVX2Hjiy108dOlpnRtcK+nbRUTEw5VW2thfUE5Wfhl5JVVU2Ry1bRazD7FhFhJjQoiPCiY00NyJkUq7KdzrGlFoibx0CO8DvUd0TEwi0qAah5N/bT3EohW7KK6w1Wt/e/Mhrh87iIE9gzshurZRsiAi4sGKyqvZeqCQzNxSak7epjpFlc3BwYIKsgsrORpXxaiBkV12qFv+x1rmWqNgNPWoMc4aOLYbogZr0bOIG20/WMT8JTvZmVNi2D4gKoj5M4Z1yUQBlCyIiAc4cuQIkyZNqvPcihUr6N27dydF5BlKK21sPVBI2hHjL6BT1Tidtf1SB0VphKErK8tzLWZujdJc1/FKFkQ63LFSK49+nsn727MN2y1mH269YDDXjY3HYvZ1c3TtR8mCiHS6EydOsHPnznrPdfdkYX9BOZm5pS06JjO3lF7hFk7vG9ExQUnHqyyuu+tRS9gqXceLSIex1Th4Y9NBnvpyN6VWu2GfaafFcc+0ZPpEBLo5uvanZEFExAOVW+1k5ZcZTj1qTI3TSVZ+GQnRIVr03FXVWNt4fHX7xCEi9Xy99zgLlqSxO6/MsH1wTAgLZ6ZwXmJPN0fWcfRNIiLigfJLreSVVLXq2LySKvJLrcQrWeiafAPaeLzWrIi0tyPFlfx1eQbLduQatocE+HH7RYO59ryBmH193Bxdx9I3iYiIByqptNXZ9aglqmwOSirr78YhXURghKvgWmumIpkDXceLSLuw2mt4ecN+/r46i0qb8aYDPzurL3dPSSIm1OLm6NxDyYKIiAey2luXKJxUXdO246UThcS6KjMX7m/5saFxruNFpM3WZOaz8NM0DhRUGLan9A7jgVkpnD0g0s2RuZeSBRERDxTg17ZhbH8vGwbvVgJCIDrJVZm5Jdunmnwheoh2QhJpo4MF5Ty4NJ2VGfmG7RFBZuZOSuLKUf3x9TG5OTr3U7IgIuKBwgLNWMw+rZqKZDG7KjtLFxaZALE5zavgfFLsMNdxItIqldU1/GNtFv9cv49qg9FdkwmuGt2fOy9J6lb1bJQsiIh4oJjQAGLDLBxsYPi7MbFhFmJC27hIVjqXJQwGpLoe56U3PsJg8nUlCgNSXceJSIs4nU4+33mUh5ZlkFNsvFborP4RPDBrOMP7hLs5us6nZEFExAMFB/iRGBNCdmFli7ZP9TWZSIzRtqleISgK4sdBeB9XZeaS3LqLns2BrjUK0UNcIwpKFERaLCu/lAVL0tmYddywvWdIAH+ZMpTLRvTBpxtMOTKibxMRL1dutZNfaqWk0obV7iDAzzVFJSY0QBeUHi4+KpijcVXNquB80tC4UOKjgjswKnErSxj0HgFRg12VmSuLXXUUfP1dux6FxGqNgkgrlFbZeGbVHl776gB2R/0bMr4+JmafN5A/XjSYMEv3ntapKwURL1VaaWN/QTlZ+WXklVTVmftuMfsQG2YhMSaE+KhgQjW/3SOFBpoZNdC1y0ZmbmmjIwy+JhND40IZNTBSf5/eKCBESYFIO3A6nXz83xweXp7JsVLjAojnJUSxYGYKQ2JD3RydZ1KyIOKFisqr2XqgsMELzCqbg4MFFWQXVnI0ropRAyO71WKtrqRHsD+pg6LoFW5R4ici0gZpR04w/5M0th0sMmyPC7dw37RhTD2tFyZT95xyZETJgoiXKa20sfVAYbOmrtQ4nbX9UgdF6ULTQ4UGmjm9bwQJ0SG1U8qqaxz4+2pKmYhIU4orqnnii928vfkgBjOO8Pf1Yc64eG6emEiQvz5Lf0q/EREvs7+gnMzc0hYdk5lbSq9wC6f3jeiYoKRdBAf4Ea+kQESkWWocTv697TCPfZ5JUYVxVfuJSdHMn5HCwJ5a69UQfeuIeJFyq52s/LIW7Z4DrhGGrPwyEqI7Zxcdf39/AgIC6j0nIiLSGt8eKmL+J2n8kHPCsL1/ZBDzZwzjwmRVPG+KkgURL5JfaiWvpKpVx+aVVJFfau2UO9cJCQlUVbUubhERkZOOlVp57PNM/rM927DdYvbh5gmJzBk3CIvZ183RdU1KFkS8SEmlrVUVf8G16Lmk0niYVkRExJPZaxy8sekgT365m1Kr3bDP1NN6ce+0YfSJCHRzdF2bkgURL2I1KE/fEtU1bTteRETE3TbtLWDBkjR25Rmv10uMCWHhzBTGJPZ0c2TeQcmCiBcJ8PNp0/H+vm07XkRExF1yT1Ty8PJMPv3+iGF7SIAft180mGvPG4hZ32+tpmRBxIuEBZqxmH1aNRXJYnZtwykiIuLJrPYaXtm4n7+vzqKiusawz+Uj+vDnKUOJCbO4OTrvo2RBxIvEhAYQG2bhYEFFi4+NDbMQExrQdEcREZFOsnZXPgs/TWf/8XLD9mFxYTwwK4WRAyPdHJn3UrIg4kWCA/xIjAkhu7CyRdun+ppMJMZ0zrapAPn5+VxxxRV1nvv3v/9NTExMp8QjIiKe5VBBBQ8sTWdlRp5he3igmTsnJXHV6P74+qj6cntSsiDiZeKjgjkaV9WsCs4nDY0LJT6q8wrSFBQUsG7dunrPKVkQEeneKqtr+Me6vfxz3V6qDTbxMJngylH9mTspichg1efpCEoWRLxMaKCZUf8bfs3MLW10hMHXZGJoXCijBkYSqvUKIiLiIZxOJyvSjvLg0gxyiisN+4zoH8EDM4dzWt9wN0fXvShZEPFCPYL9SR0URa9wC1n5ZeSVVNVZ9Gwx+xAbZiExJoT4qGAlCiIi4jGy8stY+GkaG/YcN2zvGeLP3ZOH8rOz+uKjKUcdrtvuI5Wfn8/SpUuZN28eU6ZMoWfPnphMJkwmE7Nnz27WORYvXlx7TFP/LV68uMnzVVRUsGjRIkaPHk1kZCQhISEkJydz5513cujQoWb/bGlpadx4440kJiYSGBhIdHQ048aN44UXXsBuNy5UIt4nNNDM6X0jmJTSi8nD47hgaAxjB/fkgqExTB4ex6SUXpzeN0KJgoiIeIQyq51Hlmcw+an1homCr4+J344ZyKo7JvCLkf2UKLhJtx1ZiI2N7ewQ6ti7dy/Tpk1j165ddZ7PzMwkMzOTl19+mXfeeYepU6c2ep5XXnmFm2++GavVWvtcVVUVGzZsYMOGDSxevJilS5cSFRXVIT+HeJ7gAD/iO2nhsoiISFOcTief/PcIDy/PIL/Uatjn3EGRLJw5nKReoW6OTnQFAfTr14/k5GS++OKLVp9jxYoV9O7du8H2vn37NthWVlbG9OnTaxOFOXPmcOWVVxIYGMiaNWt45JFHOHHiBL/4xS/YtGkTp59+eoMx3HDDDTgcDmJjY7n33ns555xzKCws5KWXXuLDDz/km2++4fLLL2fNmjX4+HTbgSURERHxAOlHSliwJI0tBwoN23uFWbh3WjLTT4/DZNJIQmfotsnCvHnzGDVqFKNGjSI2NpYDBw4QHx/f6vMNGTKEgQMHturYxx9/nMzMTAAee+wx5s6dW9uWmprKxIkTGTduHBUVFdx+++2sXr263jnsdju33HILDoeDsLAwvvrqKxISEmrbJ0+ezM0338zzzz/P+vXreeutt7jmmmtaFa+IiIhIW5yosPHEl7t465uDOAz24TD7mphz/iBunpjYadt6i0u3vbW8cOFCpk+f3unTkWw2G08//TQAycnJ3HHHHfX6pKamct111wGwZs0atm/fXq/PRx99RFZWFgB/+ctf6iQKJy1atIgePXrUPhYRERFxJ4fDyb+2HGLiE2t5Y5NxojAhKZoVt4/jrslDlSh4gG6bLHiKtWvXUlxcDMC1117b4NSgUxddf/jhh/XaP/74Y8O+pwoKCqotfLVz50727NnTqphFREREWuq/h4u57Pmv+POHP1BYXl2vvV9kIC9fM5LXZo9iUHRIJ0QoRpQsdLINGzbUPh4/fnyD/UaOHElwsKto1saNGxs8T1JSEr169WrwPKe+htF5RERERNrT8TIrd73/PZc+9xXfZ5+o1x7g58P/XTyEL/80nouGxWptgofR2E47mT17NhkZGRQVFREWFkZiYiIXXXQRf/jDH+jTp0+Dx2VkZNQ+Hjp0aIP9/Pz8SEhIYMeOHXWOAdcC6ezs7CbP8dP2n55HREREpL3Yaxy89c1BnvhyN6VVxlu3T07pxb3TkukXGeTm6KS5lCy0k3Xr1tU+LigooKCggM2bN/PEE0/w1FNP8fvf/97wuMOHDwMQHBxMREREo6/Rr18/duzYwbFjx7BarQQEBACQnZ2N839VehvbdenkOX762s11MiFpSG5ubovOJyIiIt5p874C5i9JI/NoqWF7QnQwC2amcP7gaDdHJi2lZKGNBg0axOWXX05qamrthfi+ffv44IMPeP/996mqquLGG2/EZDJxww031Du+tNT1JgoJaXpu3slpSOAaTTiZLJw8R3PO89NztMSpiYaIiIjITx09UcXDyzNY8v0Rw/Zgf1/+eNFgZp8Xj7+fZsN3BUoW2uCyyy7j2muvrTe3btSoUfzyl79k6dKlXH755dhsNv70pz8xc+bMeusJqqqqAPD392/y9U4mBwCVlZX1ztGc8zR0DhEREZHWqrY7eGXjfp5dvYeK6hrDPpeN6MOfpwwlNszi5uikLZQstEF4eHij7dOnT2f+/Pncd999VFRU8Morr3DvvffW6WOxuN4w1dX1dwX4qVOrMgcGBtY7R3PO09A5mqOpaUu5ubmMHj26RecUAfDx8amXdKtooIhI17Bu9zEWLklj3/Fyw/bkuDAWzkxhdHykmyOT9qBkoYPNmTOH+++/H6fTybp16+olC6GhrrLlzZkSVF7+45vw1OlGJ8/RnPM0dI7maGo9hEhrJSUl4XA4OjsMERFpgcOFFTy4NJ0v0vMM28MsfsydlMSvRvfHz1c3gLoqJQsdLCYmhp49e3Ls2DFycnLqtfft25fNmzdTXl5OcXFxo4ucT97Zj46OrjOd6NSL+KYWIZ86OqA1CCIiItJSVbYa/rF2L/9ctxervf6NHpMJrhzVjzsvSSIqJMDgDNKVKM1zg5M7FRkZNmxY7ePMzMwG+9ntdvbu3Qu4Kj2fKiQkpPbCv7Fz/LT9p+cRERERaYjT6WRF2lEu+n/reHrVHsNE4Yx+EXx80xgeufx0JQpeQslCB8vPz6egoACA3r1712sfO3Zs7eNTt1/9qW3bttVOIRozZkyD59m1axdHjx5t8DynvobReURERER+au+xMq59bSu/f3M72UX1N0iJCvbnsZ+fzkd/OI8z+kW4P0DpMEoWOtiLL75YO7JgVKF5woQJtQulX3/99QZHIRYvXlz7+LLLLqvXfumllxr2PVVFRQX//ve/AdeIxpAhQ5rzI4iIiEg3VWa188hnGUx+aj3rdx+r1+7rY2L2eQNZfecErhjZDx8fVV/2NkoWWunAgQN89913jfZZunQpDz74IODasei3v/1tvT7+/v7cdtttgKui8uOPP16vz6ZNm3jllVcAV8IxatSoen0uu+wyEhISAHjkkUdqpyydau7cuRQVFdU+FhERETHidDr55L85XPjEWl5Ytw9bTf2bmefER7LstrEsmJlCeKC5E6IUd+i2C5w3btxIVlZW7Z+PHz9e+zgrK6ve3fnZs2fX+fOBAweYOHEiqampzJgxgzPPPJOYmBicTif79u3j/fff5/33368dKXj88cfp06ePYSxz587lvffeY/fu3dx1111kZWVx5ZVXEhgYyJo1a3j44Yex2+0EBgby1FNPGZ7DbDbzzDPPMGPGDEpKShgzZgz33Xcfo0ePpqioiJdeeokPPvgAcE1Zuvrqq1v4GxPpOIWFhdx44411nvvnP/9JZKS22RMRcbeM3BLmL0ljy/5Cw/bYsADunTaMGafH1dv2WryPydnY6lsvNnv2bF5//fVm9//pr2nt2rVMnDixyeOCgoJ48sknDas3nyorK4upU6eyZ88ew/awsDDefvttpk+f3uh5XnrpJW655ZYG6y2MHj2aZcuW0bNnzyZjb6ns7OzahdaHDx/WVqvSbBkZGXUW+wOkp6drEb6IiBudqLTx5Je7eWPTARwGV4dmXxPXjR3ErRckEhzQbe83dzv6m26ls88+m7feeotNmzaxbds2cnNzOX78OHa7nR49epCSksKFF17I9ddfT0xMTJPnS0xM5LvvvuO5557jP//5D1lZWVRXV9OvXz+mTp3KH//4RwYMGNDkeebMmUNqairPPPMMq1at4siRIwQHB5OcnMyvf/1rrr/+evz89NcuIiIiLg6Hk/e3Z/Po55kUlBvfbBw3JJr5M4aREN2yGk3S9XXbkQVpfxpZkNbSyIKISOf4/nAx85ak8f3hYsP2vj0CmTd9GBcPi9WUo25Kt5hFREREupmCMiuLVuzivW2HMbptHODnw00TEvn9+EFYzL7uD1A8hpIFERERkW7CXuPg7c2HeOKLXZRU2Q37TEqJ5b5pw+gXGeTm6MQTKVkQERER6Qa27C9k3ic7yTxaatg+KDqYBTNSGDck2s2RiSdTsiAiIiLixfJKqnh4eQaf/PeIYXuwvy+3XTiY346Jx99PJbikLiULIiIiIl6o2u7gta/288yqPZRX1xj2mXVmb/4yJZle4RY3RyddhZIFERERES+zfvcxFnyaxr5j5YbtQ3uFsnBmCucMinJzZNLVKFkQERER8RKHCyt4aFk6K9LyDNvDLH7ccUkSvz6nP36+mnIkTVOyICIiItLFVdlqeGHdPp5fm4XV7qjXbjLBFWf3Y+7kJHqGBHRChNJVKVkQERER6aKcTidfpufxwNJ0sosqDfuc0TechbOGc2a/CPcGJ15ByYKIiIhIF7TvWBkLP01n3e5jhu2Rwf7cPTmJX5zdDx8fVV+W1lGyICIiItKFlFvtPLs6i1c27sNWU7/8so8JrkkdyJ8uGkJ4kLkTIhRvomRBRMTDlVvt5JdaKam0YbU7CPDzISzQTExoAMEB+hgX6S6cTief7sjl4WUZHC2pMuwzemAkC2amMKx3mJujE2+lbxkR6XTJyck4nfXvjnV3pZU29heUk5VfRl5JFVW2HxctWsw+xIZZSIwJIT4qmNBA3T0U8WaZR0uY/0kam/cXGrbHhgVwz9RkZp7RG5NJU46k/ShZEPEAunMsP1VUXs3WA4Vk5pZSY5BIVdkcHCyoILuwkqNxVYwaGEmPYP9OiFREOtKJShtPfrmbN785SI2j/meB2dfE78bGc+sFgwnR94XnsJZBWR5UFkONFXwDIDACQmIhIKSzo2sR/asS6US6cyxGSittbD1QSNqRkib71jidtf1SB0Xp34mIl3A4nLz/bTaPfpZJQXm1YZ/zB/dk/owUEmO61sWnV6sqgcK9cGwXlBwF+yk7VPkFQlgviE6CyASwdI2pYkoWRDqJ7hxLQ/YXlJOZW9qiYzJzS+kVbuH0vhEdE5SIuM2O7GLmfZLGfw8XG7b3iQhk3oxhXDIsVlOOPElFARzcBHnp4Kyp326vhML9UHQIYnNgQCoEeX4FbSULIp1Ad46lIeVWO1n5ZYYJZGNqnE6y8stIiA7R1DWRLqqwvJpFKzL519bDGH0EBPj5cOP4BP4wIQGL2df9AUrDqkpcicLRH5ru66z5sV/8OI8fYdA3ikgn0J1jaUh+qZW8BnY5aUpeSRX5pVbilSyIdCk1DifvbD7I41/s5kSlzbDPJcNiuX/6MPpFBrk5OmmWwr2uEYWWyEuH8D7Qe0THxNRO9I0i4ma6c1xfSUkJCxYsqPPcggULCAvz7LstHaGk0lZn7UpLVNkclDRwoSEinmnrgULmf5JGeq7xSHN8z2DmzxjGhKQYN0cmzWYtc61RMJp61BhnDRzbDVGDPXrRs3ddcYh0AbpzXF9OTg5PPvlknefmzJnTLZMFq711icJJ1TVtO15E3CO/pIpHPsvko+9yDNuD/H259YLB/G7sQAL8NOXIo5XluRYzt0Zprut4JQsicpLuHEtjAvx82nS8v2/bjheRjlVtd7D46/08vXIP5dXGd6JnntGbe6Ym0yvc4ubopFUqi+vuetQStkrX8R5MyYKIm+nOsTQmLNCMxezTqoTSYnbV5xARz7RhzzEWLElj77Fyw/ak2FAWzkrh3EGev0OOnKLG2sbjjbfG9RRKFqTb8JTCZ7pzLI2JCQ0gNszCwYKKFh8bG2YhJjSgA6ISkbbILqrgr8sy+Gyn8VSVUIsfd1w8hN+cOwA/fcZ3Pb5t/Nz19ext0ZUsiNfztMJnunMsjQkO8CMxJoTswsoWLYL3NZlIjPG+xe8iXVmVrYYX1+/j+bVZDX7mXzGyL3dNHkrPECX6XVZghKvgWmumIpkDXcd7MH2riFfzxMJnunMsTYmPCuZoXFWz6nCcNDQulPio4A6MSkSay+l0siojnweWpnOo0Piz/vS+4SycmcKI/j3cHJ20u5BYV2Xmwv0tPzY0znW8B1OyIF7LUwuf6c6xNCU00MyogZEADSa6J/maTAyNC2XUwEgV7BPxAPuPl/PAp2ms2XXMsL1HkJm7Jw/lipH98PFR9WWvEBAC0Umuyswt2T7V5AvRQzx6JyRQsiBezJMLn+nOsTSlR7A/qYOi6BVu8ZgpdCLSsIpqO39fncXLG/YbbkThY4LfnDuA/7t4CBFBnj1HXVohMgFic5pXwfmk2GGu4zyckgXxSp5e+Ex3jqU5QgPNnN43goTokNrF+dU1Dvx9O2dxvojU53Q6Wbojl4eXZ5B7wriGzqiBPVg4czjDene/2jHdhiUMBqS6HuelNz7CYPJ1JQoDUl3HeTh9y4hX6gqFz3TnWJorOMDP6wrxiXiDXUdLmb9kJ9/sKzRsjwkN4J6pycw6szcmk6Yceb2gKIgfB+F9XJWZS3LrLno2B7rWKEQPcY0odIFEAZQsiJfqKoXPdOdYRKTrKamy8dSXe3h90wFqHPVHhv18TFw3Np5bLxxMiD7DuxdLGPQeAVGDXZWZK4tddRR8/V27HoXEevwahZ/Sv2DxSl2t8JnuHIuIeD6Hw8kH32bz6OeZHC8zLqQ1NrEnC2amkBjTtS4IpZ0FhHS5pKAhujoRr+TJhc88pTiciIg03w/ZJ5i3ZCffHSo2bO8TEcj905OZlNJLU47Eq+jKRLySJxY+87TicOJdlISKdIyi8moWfbGLd7ccwmgvCn8/H24cn8AfxicQ6O/r/gBFOpi+QcQreVrhM08sDifeQUmoSMeocTh5Z8shHl+xixMNrGO7KDmWedOH0T8qyM3RibiPkgXxSp5U+MxTi8N5ksGDB5Oenl7vOWmcklCRjrHtQCHzPkkjPdf4czu+ZzDzZgxjYlKMmyMTcT8lC+K1PKXwmScXh/MUfn5+JCcnd3YYXYqSUJH2l19Sxd8+y+TD73IM2wPNvtx6YSLXjY0nwE9TjqR7ULIgXssTCp95enE46bqUhIq0H1uNg9e/PsBTK/dQZrUb9pl+ehz3TksmLjzQzdGJdC5dhYhX6+zCZ12hOJx0PUpCRdrPV1nHmb8kjaz8MsP2IbEhLJiZwnkJPd0cmYhn0LeFeL3OLHzWVYrDSdeiJFSk7XKKK/nrsnSW/3DUsD00wI8/XTyEq1MHYO7A7bRFPJ2+LaTb6IzCZ12tOJx0DUpCRVqvylbDyxv28fc1WQ2+j35xdl/umjyU6HbeGU+kK1KyINKBPLk4nCcpKyvj5ZdfrvPc9ddfT0iId1S/bG9KQkVaZ1VGHgs/TedQofG22qf1CWfhrBTO6t/DzZGJeC4lCyIdyBOLw3miw4cP86c//anOc5MmTdIOSQ1QEirSMgeOl/PA0nRWZ+YbtvcIMjN30lB+Oaofvj6qvixyKiULIh3I04rDiXdQEirSPBXVdp5bk8VL6/cbjqj5mODX5wzgjkuGEBGkGiQiRpQsiHQgTyoOJ95DSahI45xOJ8t/OMpDy9LJPWG8GcDZA3qwcGYKw/uEuzk6ka5FVyIiHcxTisOJ91ASKtKwPXmlzF+Sxtd7Cwzbo0MD+MuUoVw2og8mk6YciTRF3xgiHcwTisOJ91ESKlJXSZWNp1fu4fWvD2B31P+c9fMx8dsxA7ntwsGEWvT5KtJcShZE3KCzi8OJ9+mySai1DMryoLIYaqzgGwCBERASCwHa/UpazuFw8tF3OTzyWSbHy6yGfcYkRrFgRgqDY0PdHJ1I16dkQcRNOrM4nHinLpWEVpVA4V44tgtKjoK98sc2v0AI6wXRSRCZAJawzotTupSdOSeY98lOvj1UbNjeO9zC/dOHMXl4L005EmklXZmIuFlnFIcT79UlktCKAji4CfLSwVlTv91eCYX7oegQxObAgFQIinJ/nNJlFJVX8/gXu3hnyyGMBtX8/Xz4/bhB3DQhkUB/X/cHKOJFdMUiIuIFPDYJrSpxJQpHf2i6r7Pmx37x4zTCIPXUOJy8u+UQj3+xi+IK40rkFyXHcP/0YQzQ+hyRduGB3ywiIl6ou87VL9zrGlFoibx0CO8DvUd0TEzSJW0/WMi8T9IaXNQ/ICqI+TOGccHQWDdHJuLdlCyIiHSk7jxX31rm+rmNph41xlkDx3ZD1GDvTqSkWfJLq3j0s1188G22YXug2ZdbLkjkurHxWMyaciTS3pQsiIh0lO4+V78sz5UgtUZprut4JQvdlq3GwetfH+DplXsotdoN+0w7PY57pybTOyLQzdGJdB9KFkREOoLm6rumXJ06ktIStkrX8dItfZ11nPlL0tiTX2bYPjgmhIUzUzgvsaebIxPpfpQsiIh0BM3Vd63NaNPx1e0Th3QZR4or+euyDJb9kGvYHhrgx+0XD+Ga1AGYfX3cHJ1I96RkQUSkvWmuvotvQBuP92+fOMTjWe01vLxhP39fnUWlzfh987Oz+nL3lCRiQi1ujk6ke1OyICKdLj4+no8//rjec12W5uq7BEa4FnG3ZiqSOdB1vHi9NZn5LPw0jQMFFYbtw/uEsXDmcM4e0MPNkYkIKFkQEQ9gsViYNWtWZ4fRfjRX3yUk1rXbU+H+lh8bGuc6XrzWwYJyHvg0nVWZ+YbtEUFm5k5K4spR/fH1UfVlkc6iZEFEpL1prr5LQIhrW9iiQy2bkmXyhegh3jG6IvVUVtfw/NosXli3j+oaR712kwmuGt2fOy9JokewpqKJdDYlCyIi7U1z9X8UmeDaFrY5u0KdFDvMdZx4FafTyWc7j/LQ0nSOnKgy7HNW/wgemDWc4X3C3RydiDREyYKISHvTXP0fWcJc9SOg4XoTJ5l8XYnCgFTv2T5WANiTV8qCT9P4KqvAsL1nSAB/mTKUy0b0wUdTjkQ8ipIFEZH2prn6dQVFuepHhPdx7fZUkls3kTIHun7u6CHeWcm6GyutsvH0yj0s/voAdoezXruvj4nZ5w3kjxcNJsxi7oQIRaQpShZEpNNVVVWxYsWKOs9NmjQJi6WLbpGoufr1WcJc9SOiBrt2e6osdq3N8PV3jaSExHrnz91NOZ1OPvouh0c+y+RYqfEantRBUSyYmUJSr1A3RyciLaFkQUQ63f79+7n00kvrPJeenk5ycnLnBNQeNFffWECIkgIvtzPnBAuWpLHtYJFhe1y4hXunJTPttDhMJk05EvF0ShZERDqC5upLN1NcUc3jX+zinc2HMJhxhL+vD9efH8/s8wZSXl3DjuwTWO0OAvx8CAs0ExMaQHCALktEPE23fVfm5+ezZcsWtmzZwtatW9m6dSsFBa6FV9deey2LFy9u8hwnp06sXLmSLVu2sGfPHkpLSwkNDSUpKYlJkybx+9//nri4uEbPM2HCBNatW9esuJ1Og0/gn0hLS+PZZ59l5cqV5OTkEBISQnJyMr/+9a+57rrr8PPrtn/tDSq32skvtVJSadOXl7QfzdWXbqDG4eS9rYdZtCKTogqbYZ8JSdHcefEQHMDGrOPklVRRZftx21SL2YfYMAuJMSHERwUTGqj1CyKeotteBcXGtm0B4Y4dOxg7diylpaX12oqKivjmm2/45ptv+H//7//x8ssvc8UVV7Tp9ZrrlVde4eabb8Zq/XGOaFVVFRs2bGDDhg0sXryYpUuXEhUV5ZZ4PF1ppY39BeVk5Zfpy0s6hubqixf79lAR8z9J44ecE4bt/SODmDd9GGf1j2DbwSIyc0upMbjpVWVzcLCgguzCSo7GVTFqYKRqLIh4iG6bLJyqX79+JCcn88UXXzT7mJKSktpEYcyYMUyfPp2RI0cSFRXFsWPH+PDDD3n55ZcpLS3lqquuIjQ0lClTpjR6zpEjR/Laa6+1+udYsWIFN9xwAw6Hg9jYWO69917OOeccCgsLeemll/jwww/55ptvuPzyy1mzZg0+Pj6tfi1vUFRezdYDhfryEvfQXH3xIsdKrTz6eSbvb882bLeYfbh5QiJzxg3CZnewaV8BaUdKmjxvjdNZ2y91UJRu0oh4gG6bLMybN49Ro0YxatQoYmNjOXDgAPHx8c0+3sfHhyuuuIL58+czbNiweu2XXHIJU6ZM4bLLLqOmpoZbb72VPXv2NLqYKzg4mOHDh7fq57Hb7dxyyy04HA7CwsL46quvSEj4caHk5MmTufnmm3n++edZv349b731Ftdcc02rXssblFba2HqgUF9eIiItYKtx8Oamgzz55W5KrXbDPlOG9+Leacn07REEwO68UjJz64/CNyYzt5Re4RZO7xvR1pBFpI267a3lhQsXMn369FZPRzrvvPN47733DBOFk2bNmsXll18OwN69e/nvf//bqtdqjo8++oisrCwA/vKXv9RJFE5atGgRPXr0qH3cne0vKG/Vl9f+gvIOiqh7Kbfa2X+8nO8PF7NlfyGZuU0nbSLSuTbtLWD6Mxt5YGm6YaKQEB3MW9edwz9+c3ZtolButZOVX2Y4etuYGqeTrPwyyhtISETEfbrtyIK7TJw4kQ8++ABwJQwjRozokNf5+OOPax/Pnj3bsE9QUBBXXHEFL7zwAjt37mTPnj0MHjy4Q+LxZG358tp1tJTIYH8Kyqq1ELoVGlojkneosJMjE5GG5J6o5K/LMli6I9ewPSTAjz9eOJhrzxuIv1/de5D5pVbySqpa9bp5JVXkl1qJ12erSKfSO7CDnbrQuCPXCGzYsAGApKQkevXq1WC/8ePH88ILLwCwcePGbpkstObLq9peQ1GFjcOFFYQHmskprqT4f7t+aCF08zS1RuSnShrYVUVE3MNqr+GVjft5dlUWlTbjrX8vH9GHP08ZSkyYcQHFkkpbnY0jWqLK5qCkUp8DIp1NyUIHO3VL1KFDhzbaNzMzk1GjRpGZmYnNZqNnz56cffbZ/OxnP+NXv/oVZrPxRWhZWRnZ2dnNeo1T2zMyMpr7Y3iVln55VdlqyCmu5HipFSdQXGnDYvYFbP9r10LoprRkjchJPxwpZtgwm5IvkU6wZlc+D3yazv7jxlMvh8WF8cCsFEYOjGz0PFZ76xKFk6pr2na8iLSdkoUO9P3337Ns2TIAUlJSGl3fAJCXl0deXl7tn3NycsjJyWHJkiU8+uijvP/++4YVbbOzs2vrL/Tt27fR1+jXr1/t48OHDzf7Zzn5Oo3JzTUeovY0Lfnyqra7EoVjpT+OENnsDsx+9UeJtBC6Ya1ZI7I/v4L9BeVa4CjiRocKKnhgaTorM/IM28MDzdw5KYmrRvfH16fp6ssBBp+VLeHv222XVop4DCULHcRqtXL99ddTU+Maun344Ycb7Ovj48OFF17I1KlTOeOMM4iKiqK0tJRvv/2WF154gYyMDNLT05k4cSJbtmyhf//+dY4/tdZDSEjjWzMGBwfXPi4rK2vRz3RqotGVteTLq6jCxvFTEgUAs58PNUblSf9Hu3jU1eo1IrgWOCZEh2g9iEgHq6yu4R/r9vLPdXupNrihYjLBlaP6M3dSEpEtGDkNCzRjMfu0aiqSxexaEyYinUvfwB3klltuYdu2bYCrIvTMmTMb7Pvhhx8SERFR7/nzzz+fm266iTlz5vD666+Tl5fH7bffzocfflinX1XVj/Pv/f0b/xAPCAiofVxZWdlIT+/V3C8vW42DwvJqTr3EDbX4ERrgx9FG1jyc3MVDF7kuWuAo4rmcTicr0o7y4NIMcoqNvxNG9I/ggZnDOa1veIvPHxMaQGyYhYMFFS0+NjbMQkxoQNMdRaRD6Ru4AzzyyCO8/PLLAJx99tk899xzjfY3ShROMpvNvPzyy2zevJnMzEw++ugjcnJy6NOnT20fi+XHhWXV1dWNvtapC64DAwMb7ftTTU1bys3NZfTo0S06Z2do7pdXudVeb9u+QdEh+PqYahc3N0QXuT/SAkcRz5SVX8bCT9PYsOe4YXvPEH/unjyUn53VF59mTDkyEhzgR2JMCNmFlS0aXfQ1mUiM0Q0XEU+gd2E7e+GFF7jnnnsA185En332WZ2pP63h5+fHddddx9y5cwHXoumrrrqqtj00NLT2cVNTi8rLf1ys1tSUpZ9qaj1EV9HcLy+r3YH9lOlGfj4mkmJDKapoPCEDXeSeSgscRTxLmdXOM6v28OrG/XU+407y9TFxbepAbr94MGGWtk8Dio8K5mhcVYs2OBgaF0p8VNu+O0WkfShZaEfvvvsuN910EwADBgxg5cqVREdHt8u5T10cnZOTU6ft1Iv4phYhnzo64C1rEFqjOV9ep36JmoBzB0URHmgmo5kFxHSR69KcNSLhPXsx68a/1HsOtMBRpL04nU4++e8RHl6eQf5P1mKdlDooigUzU0jqFWrY3hqhgWZG/W/XpKa2TvY1mRgaF8qogZHaJELEQyhZaCdLlizhmmuuweFwEBcXx6pVq9r1TryzkQ/XkJAQ+vXrx+HDh8nMzGz0PKe2G+2s1JWUW+3kl1opqbS1uEBac768/P437O7nY+LcQVEM6x3GvmPlhnfijOgi16U5a0QsQcGMv3x2/ee1wFGkXaQfKWHBkjS2HDAugBgXbuHeaclMOy0Ok6l1U44a0yPYn9RBUfQKt9QrygiqVyPiyZQstINVq1ZxxRVXYLfbiYqK4ssvvyQhIaFdXyM9Pb32ce/eveu1jx07lnfffZddu3Zx9OjRBguznVr3YcyYMe0ao7s0VAUYWvaF09SXV48gMz36R5AYE0p4oJl9x8op+8kahoboIvdHWuAo0nlOVNh44stdvPXNQYzuc5h9TVx//iBumZjY4esDQgPNnN43goTokNobPdU1Dvx9m3+jR0TcT+/KNvr666+ZNWsWVquVsLAwVqxYQUpKSru+ht1u59VXX63987hx4+r1ufTSS3n33XcBWLx4MX/+85/r9amoqODf//434JrWNGTIkHaN0x2aqgLc0gJpjX15BQf4UlRuY9/xMjJyS5o9ogC6yD2VFjiKuJ/D4eTf2w7z2IpdFJYbr7OakBTNvOnDGBTdsvVrbRUc4KfNH0S6EL1b2+C///0v06ZNo7y8nODgYJYvX87ZZ5/donOsWbOGESNGNLgjks1mY86cObXTh2bMmGG41uCyyy4jISGBvXv38sgjj/CLX/yi3ujG3LlzKSoqqn3c1bSkCnBLC6Q19OW1I7uYvBNWXeS2kRY4irjPfw8XM/+TnXyffcKwvV9kIPOnp3BhckyHTDkSEe/Sba9mNm7cSFZWVu2fjx//ceu4rKwsFi9eXKf/7Nmz6/x57969TJo0ieLiYgAeeughwsPD2blzZ4OvGRMTQ0xMTJ3nXn/9dWbOnMnMmTOZMGECSUlJhIWFUVZWxvbt22uLsp08/umnnzY8t9ls5plnnmHGjBmUlJQwZswY7rvvPkaPHk1RUREvvfQSH3zwAeCasnT11Vc3+vvxRK2pAtzWAmm6yG0fWuAo0vGOl1l57PNM/r3NeKMLi9mHmyYkcsO4QVjMvm6OTkS6KpOzsZWzXmz27Nm8/vrrze7/01/T4sWL+e1vf9ui15w/fz4LFixoVRynnXYa//rXv+rsimTkpZde4pZbbmmw3sLo0aNZtmwZPXv2bHbczZWdnV076nH48OF2XeBdbrWzIu1oq+a9D4gKYlJKr1bf6W9q6tNJp17kNjb1qTtraL2J3W6nNP8QUSEBDIgMom9EEGeeloyfX7e9nyHSbPYaB299c5AnvtxNaZXxuqopw3tx77Rk+vYIcnN0ItLV6Zu4k919992ceeaZbNq0ifT0dI4dO0ZhYSEBAQHExsYycuRIfv7zn3PZZZfh69v0naA5c+aQmprKM888w6pVqzhy5AjBwcEkJyfz61//muuvv75LXoB1ZhVg7eLRfhpaI5K9bw+Xz55Sp296enqX37FLpKNt3lfA/CVpZB41HnVNiA5mwcwUzh/cPtt4i0j3021HFqT9deTIwveHi1mdmd/q4y8YGsMZ/SLaHMep27VqF4/2k5GRUW/UTMmCSMOOnqji4eUZLPn+iGF7sL8vt180hGvPG4h/M2qdiIg0RFc30iV4ShVg7eIhIp2p2u7glY37eXb1Hiqqawz7XDaiD3+eMpTYMIuboxMRb6SrHukSmlMFuDEqkCYiXd263cdYuCSNfcfLDduT48JYODOF0fGRbo5MRBp1YCM47DBoQmdH0ipKFqRLaE4V4IaoQJqIdGWHCyt4cGk6X6TnGbaHWfyYOymJX43uj59ujIh4jhM58OX9sPMDiOgPN28Bc2BnR9ViShakS1AVYBHpbqpsNfxz3V7+sXav4VRMkwmuHNWPOy9JIipEn3EiHsNuhW+eh3WLwPa/kcDiQ/DV0zChftFcT6dkQboEVQEWke7C6XTyRXoeDy5NJ7uo0rDPmf0ieGBWSqtryIhIB9mzEj6/Gwqy6rdtfBLOvMo1ytCF6ApKugwVSBMRb7f3WBkLP01n/e5jhu1Rwf7cPWUoPz+rLz4+qr4s4jGKDsDn98CuZcbtlgi44D4I6+POqNqFkgXpMlQFWES8VZnVzrOr9/Dqxv3Yaup/tvn6mLgmdQC3XzSEcH2miXiO6gr46inY+BTUWA06mODsa+GCeRAc5ebg2oeSBelSVCBNRLyJ0+lkyfdHeHh5BnklRhcacE58JAtnpTC0V5iboxORBjmdkLnUNZpw4pBxnz4jYeoi6HOWe2NrZ0oWpMtpqAqwCqSJSFeSkVvC/CVpbNlfaNgeGxbAPVOTmXlGb0wmTTkS8RjH98Bnd8He1cbtQT3h4oVwxlXg0/V3KNMVlXRZKpAmIl3RiUobT365mzc2HcBhMJvS7Gvi+vMHccvERN34EPEk1lJY9xh88w9w2Oq3m3xh9A2uHY8CI9weXkfRp5CIiIgbOBxO3t+ezaOfZ1JQXm3YZ/yQaObPGMag6BA3RyciDXI64Yf34Yv7oOyocZ8BY2HqYxCb4t7Y3EDJgoiISAf7/nAx85ak8f3hYsP2fpGBzJuewkXJMZpyJOJJju6E5XPh0NfG7aG9YdJDkHK5q/iJF1KyICIi0kEKyqwsWrGL97YdxmgDtwA/H26akMjvxw/CYvZ1f4AiYqyyCNY8DFtfBmf9ooj4mOG8W+D8OyHAu0cClSyISKfr06cPf/rTn+o9J9JV2WscvL35EE98sYuSKrthn0kpsdw3bRj9IoPcGlu51V67OYTV7iDAT5tDiNRyOOC7N2HVQqgoMO6TeBFMfhR6Jro3tk5icjpbUA5XpBHZ2dn069cPgMOHD9O3b99OjkhExP227C9k3ic7yTxaatg+KDqYBTNSGDck2q1xlVba2F9Qrm2nRRqSvR2W3wlHvjVujxgAk/8GSVO8dsqREd1CEBERaQd5JVU8sjyDj/97xLA92N+X2y4czG/HxOPv597tFIvKq9l6oLDBgpZVNgcHCyrILqzkaFwVowZG0iPY360xinSa8uOwcoFrRMGInwXG/h+MuQ3MgW4NzRMoWRAREWmDaruD177azzOr9lBeXWPY59Ize/OXqcnEhlncHJ1rRGHrgULSjpQ02bfG6aztlzooSiMM4t1q7LDtVVjzEFSdMO6TPAMu+Sv0GODe2DyIkgUREZFWWr/7GAs+TWPfsXLD9qG9Qlk4M4VzBkW5ObIf7S8oJzPXeEpUQzJzS+kVbuH0vhEdE5RIZzvwlWuXo/w04/aowTDlUUi80L1xeSAlCyIiIi10uLCCh5alsyItz7A9zOLHHZck8etz+uPn23kVXMutdrLyywynHjWmxukkK7+MhOgQLXoW71JyBL6cBz/8x7jdPwTG3w3n3Ah+mooHShZERESarcpWwwvr9vH82iys9vrbKZpMcMXZ/Zg7OYmeIQGdEGFd+aVW8kqqWnVsXkkV+aVW4pUsiDewV8M3z7sqMNuMRwI57Qq4+AEIi3NvbB5OnwAi0ukyMjIYNmxYnefS09NJTk7upIhE6nI6nXyZnscDS9PJLqo07HNG33AWzhrOmf0i3BtcI0oqbXV2PWqJKpuDkkpbO0ck0gmyVsJnd0NBlnF77HCY8hgMHOPeuLoIJQsiIiKN2HesjIWfprNu9zHD9shgf+6enMQvzu6Hj49nbadoNPrREtU1bTtepFMVHYAV90LmUuN2SzhMvA9G/g58dUncEP1mREREDJRb7fx9TRYvb9iHrab+nH8fE1yTOpA/XTSE8CDP3DUooI1btPp34noLkVazVcJXT8PGJ8FuNA3PBGddDRfOh+Cebg+vq1GyICIicgqn08mnO3J5eFkGRxuY7z86PpKFM1NIjgtzc3QtExZoxmL2adVUJIvZVdlZpMtwOmHXcvj8z1B8yLhPn7Nh6iLX/6VZlCyIiIj8T+bREuZ/ksbm/YWG7bFhAdwzNZmZZ/TG1AUquMaEBhAbZuFgQUWLj40NsxAT2vmLtEWa5fge17qEvauM24N6wkUL4Mxfg49GzFpCyYKIiHR7JyptPPnlbt785iA1jvpTjsy+Jn43Np5bLxhMSBfaHSg4wI/EmBCyCytbtH2qr8lEYoy2TZUuwFoG6xfBpufAYbAg3+QDo+bAxL9AYA/3x+cF9CkgIiLdlsPh5P1vs3n0s0wKyqsN+5w/uCfzZ6SQGBPi5ujaR3xUMEfjqppVwfmkoXGhxEcFd2BUIm3kdMLOD+CL+6A017jPgDGuXY56DXdvbF5GyYKIiHRLO7KLmfdJGv89XGzY3icikHkzhnHJsNguMeWoIaGBZkYNjARclZkbG2HwNZkYGhfKqIGRhGq9gniqozvhs7vg4FfG7aFxcMlDMPxnruIn0iZKFkREpFspLK9m0YpM/rX1MEbXzQF+Ptw4PoE/TEjAYvZ1f4AdoEewP6mDougVbiErv4y8kqo6i54tZh9iwywkxoQQHxWsREE8U2UxrHkYtr4EToNF+z5mSL0Jxs2FgFC3h+etlCyIiEi3YK9x8M6WQzzxxW5ONFBs7JJhsdw/fRj9IoPcHF3HCw00c3rfCBKiQ8gvtVJSaaO6xoG/r2vXo5jQAK1REM/kcMB/34aVC6DiuHGfhAtcU456DnZraN2BPhVERMTrbT1QyLxP0sjINZ63P6hnMPNnpjB+SLSbI3O/4AA/4pUUSFeRsx2Wz3X930hEf5j0CAydpilHHUSfFiIi4rXyS6p45LNMPvoux7A9yN+X2y4czO/GxOPfxgJmItKOyo/DqoXw7ZuAwXxBPwuM/ROM+SOYA90eXneiZEFERLxOtd3B4q/38/TKPZRX1xj2mXlGb+6ZmkyvcIuboxORBtXYYftrsPpBqDph3GfodJj0V+gx0K2hdVdKFkRExKts2HOMBUvS2Hus3LA9KTaUhbNSOHdQlJsjE5FGHfzaNeUob6dxe1QiTHkUEi9yb1zdnJIFERHxCtlFFfx1WQaf7Txq2B5q8eOOi4fwm3MH4OerKUciHqMkF76cBz/827jdHAzj74JzbwI/f/fGJkoWRKTzxcbG8otf/KLecyLNUWWr4cX1+3h+bVad7UBPdcXIvtw1eSg9QwLcHJ2INMheDZv/Aeseg+oy4z7Dfw6XPAhhvd0bm9RSsiAinS4yMpJ//7uBO0oiDXA6nazMyOfBpekcKqww7HN633AWzkxhRP8ebo5ORBqVtQo+uxsK9hi3x6TA1Mdg4Fj3xiX1KFkQEZEuZ//xchZ+msbaXccM2yOD/blrUhJXjOyHj4+2UxTxGMWHYMU9kPGpcXtAOFxwL4y8Dnx1meoJ9LcgIiJdRkW1nb+vzuLlDfuprqk/5cjHBFefO4D/uziJ8CBVIRbxGLZK+OoZ2Pj/wF5l3GfEb+DCBRDi/fVOuhIlCyLS8axlUJYHlcVQYwXfAAiMgJBYCAjp7OikC3A6nSzdkcvDyzPIPWF8oTFqYA8WzhzOsN5hbo5ORBrkdMKuz+DzP0PxQeM+vUfA1Meh70j3xibNomRBRDpOVQkU7oVju6DkKNgrf2zzC4SwXhCdBJEJYNEFnhjbdbSU+Ut28s2+QsP2mNAA7pmazKwze2NSBVcRz3E8Cz6/G7JWGrcHRcGF82HE1eCjHco8lZIFEekYFQVwcBPkpYPToCiWvRIK90PRIYjNgQGpri8Okf8pqbLx1Jd7eH3TAWoc9Su4+vmYuG5sPLdeOJiQAH2diXgMaxlseBy+/js4bPXbTT4w6nqYeA8EavMBT6dPVxFpf1UlrkTh6A9N93XWsGvrapJTZtZ5OiMjg6SkpA4KUDyZw+Hkg2+zefTzTI6XVRv2OX9wT+bPSCExRtPYRDyG0wk7P4Av7ofSI8Z9+qfC1EXQ6zT3xiatpmRBRNpf4V7XiEIzORwOnE5nveek+/kh+wTzluzku0PFhu19IgK5f/owJqXEasqRiCfJS4Pld8HBjcbtIb3gkofgtJ+D3rtdipIFEWlf1jLXGgWjqUciDSgsr2bRil38a+shnPVnHOHv58ON4xP4w/gEAv193R+giBirLIa1j8CWl4w/9338XJWXx98FAaFuD0/aTsmCiLSvsjzXYmaRZqhxOHlnyyEeX7GLE5UGc5uBi5JjmTd9GP2jgtwcnYg0yOGA79+BL+dDxXHjPoMmwpTHIHqIe2OTdqVkQUTaV2Vx3V2PRBqw7UAh8z5JIz23xLA9vmcw82YMY2JSjJsjE5FG5XwLy+dCzjbj9vD+MPlhGDpdU468gJIFEWlfNdbOjkA8XH5JFX/7LJMPv8sxbA80+3LrhYlcNzaeAD9NORLxGOUFsGohfPsGYDBf0DcAxt4OY24Hf40EegslCyLSvnwDOjsC8VC2Ggevf32Ap1buocxqN+wz44ze3DN1KHHhgW6OTkQa5KiBba/C6oegqti4T9I0mPRXiIx3a2jS8ZQsiLRCudVOfqmVkkobVruDAD8fwgLNxIQGENzd93sPjHAVXNNUJDnFxj3HWfBpGln5ZYbtSbGhLJiZQmqCam2IeJSDm+CzuQ1vhR2ZAFMehcEXuzcucZtuflUj0jKllTb2F5STlV9GXkkVVbYft/e0mH2IDbOQGBNCfFQwoYHmToy0E4XEuiozF+7v7EjEA+QUV/LXZeks/8F40XtogB//d8kQrj53AH6+quAq4jFKj8KX82DHe8bt5iAYNxdSbwY/jSifyttuKHa9iEU6SVF5NVsPFJKZW0qNwd6OVTYHBwsqyC6s5GhcFaMGRtIj2L8TIu1kASEQneSqzKztU7utKlsNL63fx3Nrs+ok1af6xdl9uWvyUKJDdaEh4jHs1bD5n7DuUag2Hglk+M/g4gchvI97Y/Nw3npDUcmCSDOUVtrYeqCQtCPGu7acqsbprO2XOiiqS30gtJvIBIjNaV4FZ/E6qzLyWPhpOocKKwzbT+sTzsJZKZzVv4ebIxORRu1dA5/dBcd3G7fHDHNthRp/vnvj6gK8+YaikgWRZthfUE5mbmmLjsnMLaVXuIXT+0Z0TFCezBIGA1Jdj/PSGx9hMPlCzyT3xCUd6sDxch5Yms7qzHzD9h5BZuZOGsovR/XD10fbKYp4jOJDsOJeyFhi3B4QBhPvhVHXg68uHX/K228o6m9cpAnlVjtZ+WWGdwoaU+N0kpVfRkJ0SJeco9hmQVEQP841TH1sN5Tk1l30bA6E0DhXsZ58451xpGuoqLbz3JosXlq/n+qa+lOOfEzw63MGcMclQ4gI6hp30kS6BVsVfP0sbHii4U0pzvwNXDQfQlTvpCHefkOxG17BiLRMfqmVvJKqVh2bV1JFfqmV+E5OFjptsZUlDHqPgKjBrsrOlcVQUw2+/q5dk0JiXWscTmR0XAzSYZxOJ8t/OMpDy9LJPWH8Hhk5oAcLZ6WQ0jvczdGJSIOcTtj9OXz+Zyg6YNwn7kyY+jj0G+XOyLqc7nBD0bOjE/EAJZW2BhdoNqXK5qCk0tbOETWfxyy2Cghx/SdeY3deKfM/SWPTvgLD9ujQAO6ZOpRLz+yDSRVcRTxHwV5XkrDnC+P2wEi4cB6cdQ34qChiU7zhhmJTPDs6EQ9gtbcuUTjJaFqGO3SlxVZRUVGMHz++3nPieUqqbDy9cg+Lvz5AjaP+vys/HxO/HTOQ2y4cTKjF8+fiinQb1eWw/nHY9HfXCO9PmXxg5O9caxOCIt0fXxfVlW8oNpeSBZEmBPi1be93/07YO76rLbaKiYlh7dq1bn9daT6Hw8mH3+Xwt88yOV5mNewzJjGKBTNSGBwb6uboRKRBTiekfQhf3A8lOcZ9+p0LUx+DuDPcG5sX6Ko3FFtCyYJIE8ICzVjMPq26c2Axu9YGuJu3L7YS99qZc4J5n+zk20PFhu29wy3cP30Yk4f30pQjEU+Sl+7aCvXABuP2kFhXvYTTrwC9d1ulK95QbCklCyJNiAkNIDbMwsEC4z3jGxMbZiHGzQWnusNiK3GPovJqFn2xi3e3HMLon5O/nw+/HzeImyYkEuivuc0iHqPqBKz9G2x+wXjrah8/OOdGGH+3ayMKabWueEOxpXRFINKE4AA/EmNCyC6sbNEFuK/JRGKM+y+8u8Niq47QaTtGeaAah5N3txzi8S92UVxhPJ/2ouQY7p8+jAFRwW6OTkQa5HDAjn/Bl/Og/Jhxn/jxMHURRKu+TXvoajcUW6N7fQOKtFJ8VDBH46qatQbgpKFxocR3woVUd1hs1Z48ZscoD7H9YCHzPklr8N/6wKgg5s9IYeJQ7bku4lGOfAfL50L2VuP2sL4w+WFInqkpR+2oq91QbA3Pj1DEA4QGmhk10LU7REO7C53kazIxNC6UUQMjO+XisjsstmovXWnHqI6WX1rF3z7L5MNvjRdABpp9ueWCRK4/P54AP005EvEYFYWw6gHYvhgw+G7yDYAxt8HY/wP/IHdH1y10pRuKraFkQaSZegT7kzooil7hFo++C90VF1vt3buXlJSUOs+lpaWRkJDQYa/Z1XaM6ii2Ggevf32Ap1buocxqXEl72ulx3Ds1md4RgW6OTkQa5KiB7a/Bqgehqti4z5AprtGEyEFuDa276Uo3FFtDyYJIC4QGmjm9bwQJ0SG189uraxz4+3rO/PauuNiquroaq9Va77mOpB2j4Kus4yxYksae/DLD9sExISycmcJ5iT3dHJmINOrQZlh+Bxz9wbg9chBMfhSGXOLeuLqxrnJDsTW6bbKQn5/Pli1b2LJlC1u3bmXr1q0UFLgqkV577bUsXry4Ref7/PPPefHFF9myZQvHjh0jOjqa0aNHc8MNNzB58uRmnaOiooLnnnuO//znP2RlZVFdXU2/fv2YNm0at912G/3792/WedLS0nj22WdZuXIlOTk5hISEkJyczK9//Wuuu+46/Py67V97uwkO8PPYRcDdYbFVW3X3HaNyiit5eFkGy37INWwPDfDj9ouHcE3qAMxdYFs/kW6jNA9Wzofv3zVuNwfBuDsh9Rbw8/7Pck/TFW4otkbXi7idxMbGtst5nE4nN954Iy+++GKd53Nycvjoo4/46KOPuOGGG/jnP//Z6P7je/fuZdq0aezatavO85mZmWRmZvLyyy/zzjvvMHXq1EbjeeWVV7j55pvr3KWtqqpiw4YNbNiwgcWLF7N06VJVx/Vi3WGxVVud3DHKVuOg3GrHandgdzjx8zER4OdDcIBfgxfJXXnHqCpbDS9v2Mdza/ZSaTPYThH42Vl9uXtKEjGhFjdHJyINqrG5tkFd+zeobmBENOUyuOQhCO/r3tikHk++odgaumUE9OvXj0suad1Q3X333VebKIwYMYJ3332XLVu28O677zJixAgAXnzxRe6///4Gz1FWVsb06dNrE4U5c+awatUqvv76a/76178SEhLCiRMn+MUvfsGOHTsaPM+KFSu44YYbsFqtxMbG8swzz7B582Y+++wzLr/8cgC++eYbLr/8chyO7rOItTuKjwpmaFzLquh2pcVWbVVQZuVgQQVZ+WVk5Zex/3g5hwsr2H+8vPa5vJIqqu31L6i76o5RqzPzmPTUeh7/YrdhojC8Txgf/OE8nrjiDCUKIp5k31r4xxj44l7jRCF6KFz7KfxisRIF6RDek/a00Lx58xg1ahSjRo0iNjaWAwcOEB8f36JzZGVl8dhjjwEwcuRI1q9fT2CgawHgqFGjmDlzJuPHj2fbtm08+uij/Pa3vzVcsPn444+TmZkJwGOPPcbcuXNr21JTU5k4cSLjxo2joqKC22+/ndWrV9c7h91u55ZbbsHhcBAWFsZXX31V57UmT57MzTffzPPPP8/69et56623uOaaa1r080rX4e2LrdqitNJGbnEVB46XG+0bgt3h5ESljZJKG2WhAfSJCMRirrv7T1faMepgQTkPfJrOqsx8w/aIIDNzJyVx5aj++Pr8ZPTTWgZleVBZDDVW164qgRGuqq8BIR0eu0i3VnzYlSCkf2LcHhAGE/4Co+eAr/d/dkvn6bbJwsKFC9t8jieffBK73bV7yLPPPlubKJwUFBTEs88+S2pqKna7naeeeopnn322Th+bzcbTTz8NQHJyMnfccUe910lNTeW6667jhRdeYM2aNWzfvp2zzz67Tp+PPvqIrKwsAP7yl78YJiWLFi3i3XffpaioiEWLFilZ8HLevNiqtUorbaTnllBprzFMFE7lBI6Vuqbz9esRiP8p24V2xo5RLVVRbef5NXt5cf0+w+TGZIJfn9OfOy5Oqr8dbFUJFO6FY7ug5CjYK39s8wuEsF6ugk6RCar+KtLebFWw6VlY/0Td996pzrgKLloAoe0zpVqkMd02WWgrp9PJJ5+4sv2hQ4dy7rnnGvY799xzSUpKYteuXXz88cc888wzddYurF27luLiYsC1sNrHx/giZPbs2bzwwgsAfPjhh/WShY8//rhOXyNBQUFcccUVvPDCC+zcuZM9e/YwePDg5vy40kV562Kr1jq5A1JMWAAhAX4NbhV6quOlVkIC/IgNcyULnbVjVHM5nU4+23mUh5amc+SEcSXvs/pH8MCs4QzvE16/saIADm6CvHRwGqxrsFdC4X4oOgSxOTAgFYK0BkqkXexeAZ/dDUX7jdvjzoCpj0O/0e6NS7q17nOV0M72799PTo6reNH48eMb7Tt+/Hh27dpFdnZ2velOGzZsqNOvISNHjiQ4OJjy8nI2btxYr/3keZKSkujVq1ejsZxMOjZu3KhkoZvwtsVWrXFyB6TCimp697CQEB3M99knmjzOCRSWVxMZ7I/Z18ejd4zak1fKgk/T+CqrwLC9Z0gAf54ylMtH9MHnp1OOwDWicHBTw9sxnspZ82O/+HEaYRBpi4K98PlfYM8K4/bAHnDhPDjrWvBRUURxr+599dAGGRkZtY+HDh3aaN9T2zMyMuokC809j5+fHwkJCezYsaPOMeBaIJ2dnd2qWES6i5M7IAEUldtI6hVG2pES7I6md4wqt9opt9qJCg7wyB2jSqtsPL1yD4u/PmD48/j6mPjteQO57aLBhFkaGRUp3OsaUWiJvHQI7wO9R7QwahGhuhw2/D/4+hmoMaotY4KRv4ML7oOgSLeHJwJKFlrt8OHDtY/79m1894F+/foZHnfqn4ODg4mIiGjyPDt27ODYsWNYrVYCAlx3N7Ozs3H+bwFrW2JpysmEpCG5ucZ7tot4gpJKW+2ajbySKpLjwjh3UBRfZR1vcv2C3eGk2u7wuB2jnE4nH32Xw8PLMzleZjXsc15CFAtmpjAktondsaxlrjUKRlOPGg2iBo7thqjBWvQs0lxOJ6R/DCvug5IGvlv7joapi6D3me6MTKQeJQutVFr64/ZlISGNf0EGB/94cVFWVrdS6snzNHUOo/OcTBbaK5amnJpoiHQ1VvuPi3ztDif7j5czrLdr6sw3+woaHWHw8zFxer8Ij9oxamfOCRYsSWPbwSLD9rhwC/dNG8bU03o1WuOlVlmeazFza5Tmuo5XsiDStPxM+Gwu7F9v3B4cAxc/AKf/EhpYxyjiTkoWWqmq6seFg/7+/o30pPaiHqCysu7OBifP09Q5GjtPe8Ui4s0C/Op+6ZZZ7ew7Vk5yXBi9IwLZlVfK3vyyOoueQy1+DIoOISk2lDP6htffNagTFFdU8/gXu3hn8yGM8ht/Xx9uGDeImyYmEOTfgo/4yuKGd15piq3SdbyINKyqBNY9Cpv/CQ6DzRVMvnDuH2D8XWAx2HxApJMoWWgli+XHokXV1UbzDH90ajXln26vevI8TZ2jsfO0VyxNaWraUm5uLqNHa4cG8UxhgWYsZp8628eWWe1k5JYQExbAyAE9GNEvglKrHZvdgdnPh9AAP3x9TJRX2/Hr5O1SaxxO/rX1EI+v2EVRhXFRuIlJ0cyfkcLAnq2YKlVjPI2p+cc3/Rkm0i05HLDjPfhyHpQb1zshfhxMeQxikt0bm0gzKFlopdDQH+f/NjWdp7y8vPbxT6cJnTxPc6YENXSe9oqlKU2thxDxZDGhAcSGWThYUFHnebvDyZHiKo4UVxERZMZi9sXs50ONw8nRkiqKK2wMiAoiuhN3QNp+sIj5S3ayM6fEsL1/ZBDzZwzjwuQ27Lnu28afz7fzR11EPE7u97B8LhzebNwe1hcm/RWGzXIVPxHxQEoWWunUC+emFv6eekf+p/P++/bty+bNmykvL6e4uLjRRc4nzxMdHV1nOlF7xSLSWcLDwxk+fHi959pTcIAfiTEhZBdWNljRurjCBtS9a+9rMnXaDkjHSq08+nkm7283fl9bzD7cPCGROeMG1asy3WKBEa6Ca62ZimQOdB0vIi4VhbD6Qdj2GhhtoeDrD+fdBuf/H/h7zqYJIkY6PVmoqqpi+/btHD16lIqKCmbNmkVYmOfv1z1s2LDax5mZmY32PbU9ObnuEOOwYcP44IMPavs1VNzNbrezd+9ew3OEhITQr18/Dh8+3KZYRDpL7969+eGHZuzt30bxUcEcjasi7YjxHXojnbEDkq3GwZubDvLkl7spbaBw3JThvbhv+jD6RLRsOmGDQmJdlZkLGygG1ZjQONfxIt2dowa+fR1WPQCVxpsPMGQyTHoYohLcG5tIK3VasnD48GHuu+8+3nvvPWy2H+/k/fDDD3UuxF955RVeeOEFwsPD+eKLL5q3q4cbxMfH07t3b44cOcK6desa7bt+vWvHgz59+jBw4MA6bWPHjq19vG7dugaThW3bttVOIRozZky99rFjx/Luu++ya9cujh492mBhtlNjNTqPiDcLDTQzaqBrr/LM3NIGRxjANaIwNC7U7Tsgfb33OAuWpLE7z3hKYWJMCAtmpDB2cM/2feGAEIhOclVmbsn2qSZfiB6inZBEDm+B5Xe6ph4Z6REPk/8GSZPdG5dIG3XKir0tW7YwYsQI3nrrLaqrq3E6nbV1An5q5syZ7Nixg9WrV/PFF1+4OdKGmUwmZs2aBbju1n/zzTeG/b755pvau/mzZs2ql+xMmDChdrrF66+/3uDvYfHixbWPL7vssnrtl156qWHfU1VUVPDvf/8bcI1oDBkyxLCfiDfrEexP6qAoJgyNZkBUEBZz3Y9Bi9mHAVFBTBgaTeqgKLftgJR7opJb3vmWq17abJgohAT4cd+0ZD774/ntnyicFJkAscOa7neq2GGu40S6q7J8+OgP8MrFxomCX6CrqNpN3yhRkC7J7cnCiRMnmDVrFoWFhfTq1Yvnn3++0ekH0dHRTJkyBYBly5a5K8xmuf322/Hzcw3O3HrrrfW2Iq2srOTWW28FXBWYb7/99nrn8Pf357bbbgNcFZUff/zxen02bdrEK6+8AsD48eMZNWpUvT6XXXYZCQmuL+xHHnmkdsrSqebOnUtRUVHtY/kfaxkU7IXs7XDwa9f/C/a6nhevFBpo5vS+EUxK6cXk4XFcMDSGsYN7csHQGCYPj2NSSi9O7xvhlhEFq72G59ZkccHj61i6w7iw4eUj+rD6jvFcf/4gzB25K5MlDAakQq/TXCMGjTH5uvoNSHUdJ9Ld1Nhg0/Pw7Nnw/TvGfYZdCrdshXFzwWwx7iPi4dw+DenZZ58lLy+Pnj17smnTJvr379/kMRdffDGffPIJW7Zsabc4Nm7cSFZWVu2fjx8/Xvs4Kyur3t352bNn1zvHkCFDuPPOO/nb3/7Gtm3bGDNmDHfffTcJCQns3buXRx99lO+++w5wXZwPHjzYMJa5c+fy3nvvsXv3bu666y6ysrK48sorCQwMZM2aNTz88MPY7XYCAwN56qmnDM9hNpt55plnmDFjBiUlJYwZM4b77ruP0aNHU1RUxEsvvVS7NmLs2LFcffXVLfhteamqEijc66paW3K07sJOv0DX/O3oJNddU10MeaXgAD/iO2Hh8klrMvNZ+GkaB36yQ9NJw+LCeGBWCiP/N3XKLYKiXNs4hvdxVWYuya373jAHutYoRA/Re0O6r/3rYfldcCzDuL1nEkx9DAZNcGtYIh3B5Gxo3ksHOeecc9i2bRt//etf+fOf/1z7vI+PDyaTqd6aBXDNs584cSJRUVEcO3asXeKYPXs2r7/+erP7N/RrcjgczJkzh1dffbXBY6+77jpefPFFfBqpxJiVlcXUqVPZs2ePYXtYWBhvv/0206dPbzTOl156iVtuuaXBegujR49m2bJl9OzZ/tMYsrOza3dYOnz4sGdvtVpRAAc3QV564/OzTb6uaRYDUl0XUSLt4FBBBQ8sTWNlhvGe6+GBZu6clMRVo/vj69OJ67SsZa7KzJXFrjoKvv6uXY9CYrVGQbqnE9nwxX2Q9pFxu38oTPwLjL4BfD2j2rtIW7n9ltrJi+Fx48Y1+5iT24mWlDR/BxN38fHx4ZVXXuFnP/sZL774Ilu3buX48eP07NmTUaNG8fvf/752GlVjEhMT+e6773juuef4z3/+Q1ZWFtXV1fTr14+pU6fyxz/+kQEDBjR5njlz5pCamsozzzzDqlWrOHLkCMHBwSQnJ/PrX/+a66+/vnbqVLdVVeJKFI42Y/cdZ82P/eLH6S5qBzl48CBnnHFGnee+//77Zv2b70oqq2v4x9os/rl+H9V2R712kwmuHNWfuZOSiPSAatEEhCgpEAGwW+HrZ2HDE2AzHgnkjF/BRQshVDuDiXdx+8hCYGAg1dXVfPvtt3UuDhobWfjqq684//zzCQ0N5cSJE+4MV1qgy4wsHPkOdn/Z8h1fhlwMvUd0XFzdWEZGRr33fXp6utds7+t0OlmRdpQHl2aQU2xcx2BE/wgemDmc0/q2b30JEWmj3V/A53dD4T7j9l6nwdTHob/xboYiXZ3bbzFHR0eTk5PD4cOH691JbMj27dsBiIuL68jQpDuwlrnWKLQkUQBX/2O7IWqw7rRKi2Tll7JgSTobs44btvcM8efuyUP52Vl98enMKUciUlfhPvj8Htj9mXG7JQIuvB/O/i34tLEooogHc3uyMHr0aD766CM+++yzJuffA9TU1PDiiy9iMpnq1CQQaZWyPNdi5tYozXUdr2RBmqG0ysazq7N4deN+7I76A7i+PiauTR3I7RcPJsyiuc0iHqO6AjY+CV89DTVWgw4mOHs2XHA/BGstm3g/tycLv/rVr/jwww959dVXuf766xkxouFpHQ6HgxtvvJH09HRMJhO/+c1v3BipeKXK4ro7u7SErdJ1vEgjnE4nn/z3CA8vzyC/1OhCA1IHRbFgZgpJvULdHJ2INMjphIwlsOJeOHHYuE/fUTB1kaakSrfi9mThZz/7Geeddx5ff/01F154IQ8++CC/+MUvattNJhN5eXl88cUXPPnkk3z//feYTCYmT57MhAkT3B2ueBvDu0QtOd54lykRgLQjJ1iwJI2tB4oM2+PCLdw7LZlpp8V5TDV6EcE1PfWzu2DfWuP24Gi4+AE4/UpoZGdDEW/UKdvifPzxx4wbN47MzExuu+02brvtttovzrPOOqvOtp9Op5PTTjuNt99+uzNCFW/jG9DG4z1ghxrxOMUV1fy/L3fz1jcHMZhxhNnXxJzzB3HzxESCO7Gug4j8RFUJrHsUNv8THPb67SZfOOdGmHA3WLT5gHRPnfKt1bNnT7Zt28bdd9/NK6+8QlVVVW2b1frjnV+z2cxvf/tbnnjiCYKDgzsjVPE2gRGugmutmYpkDnQdL/I/NQ4n/952mEUrdlFYbjzqNCEpmnnThzEoWmtdRDyG0wk7/g1f3u9ai2Zk4PmuKUcx3rErm0hrddotrqCgIJ599lkWLFjAihUr2LZtG/n5+dTU1BAVFcWIESOYMmUKvXv37qwQxRuFxLoqMxfub/mxoXGu40WA7w4VMX9JGjuyjbdz7hcZyPzpKVyYHKMpRyKeJHeHa8rRoU3G7WF94JKHIOUyV/ETkW6u08fDo6KiuOqqq7jqqqs6OxTpDgJCIDoJig61vM5C9BDthCQcL7Py6GeZ/Gd7tmG7xezDTRMSuWHcICxmbaco4jEqCmHNX2Hbq+CsXxQRX39IvQXOv0Of9SKn6PRkQcTtIhMgNqd5FZxPih3mOk66LXuNgze/Ocj/+3I3pVUGc5uBKcN7ce+0ZPr2CHJzdCLSIEcNfPcmrFwIlYXGfRIvhimPQpQ+50V+SsmCdD+WMBiQ6nqcl974CIPJ15UoDEh1HSfd0jf7CliwJI3Mo6WG7QnRwSyYmcL5g6PdHJmINOrwVlh+J+T+17i9x0CY/DcYMllTjkQa4PZk4bvvvmPkyJH4+/uTlZVFnz59Gu2fk5NDQkICdrudHTt2MGzYMDdFKl4tKArix0F4H1dl5pLcuouezYGuNQrRQ1wjCkoUuqXcE5U8vDyTT78/Ytge7O/L7RcN4drzBuLvp+0URTxGWb5rJOG/bxm3+wW6phuddyuYLe6NTaSLcXuy8N577+F0Opk+fXqTiQJAnz59mDlzJu+//z7/+te/eOCBB9wQpXQLljBXYZ2owa7dMCqLXXUUfP1dux6FxGreajdltdfw6sYDPLt6DxXVxiNPl43ow1+mDCUmTBcaIh6jxg5bX4Y1D4PVePMBkmfCpL9CRH/3xibSRbk9WVi7di0mk4kpU6Y0+5hp06bx/vvvs3LlSiUL0v4CQpQUSK11u4+xcEka+46XG7Ynx4XxwKwURg2MdHNkItKo/Rtcuxzlpxu39xwCUx6DhInujUuki3N7snD4sKuEekumEyUlJQGQnW28+4iIdG3BwcH1RhrdXVvlcGEFDyxN58t04z3Xwyx+zJ2UxFXnDMDXR3ObRTzGiRxXvYSdHxi3+4fAhD/D6N+DnwprirSU25OFgoICACyW5g/dBwS4qu7m5+d3SEwi0rHKrXbyS62UVNqw2h0E+PkQFmgmJjSA4AA/+vfv32k3A6psNfxj7V7+uW4vVnv97RRNJrhyVD/uvCSJqJA2VgAXaUJT7xU5hd0Km56D9Y+DzXgkkNN/CRc/AKG93BubiBdx+ydPjx49yM/P59ChQ5x55pnNOubkRURYmBaZinQlpZU29heUk5VfRl5JFVW2Hy/GLWYfYsMsJMaEEB8VTGig2a2xOZ1OVqTl8dCydLKLjCt6n9kvggdmpXB63wi3xibdjye/VzzSnpWuKUeFe43bY09zVV8+ufOdiLSa25OFYcOGkZ+fz5IlS5g5c2azjvnoo4+AH6cjiYjnKyqvZuuBQjJzS6lxOuu1V9kcHCyoILuwkqNxVYwaGEmPYPdMEdh7rIwFS9LYsOe4YXtUsD93Tx7Kz8/ui4+mHEkH8+T3iscp3A8r7oFdy43bLRFwwX0w8nfgo6KIIu3B7cnC1KlTWbNmDW+88QbXXnst559/fqP9169fz5tvvonJZGL69OluilJE2qK00sbWA4WkHSlpsm+N01nbL3VQVIfeNS2z2nl21R5e/Wo/tpr6F2W+PiauSR3A7RcNIVx3b8UNPPW94nGqK+Crp2DjU1BjNehggrOvhQvmQXCUm4MT8W5u3xj897//PT179qSmpoapU6fy7LPPUlVVVa9fVVUVzzzzDNOmTaOmpoYePXrwhz/8wd3hikgr7C8oJzPXuIBZQzJzS9lf0MC84zZyOp188t8cLnh8LS+s32eYKJwTH8my28Yyf0aKEgVxG097r3gcpxMyPoXnzoF1jxonCn1GwpzVMONpJQoiHcDtIwshISG88847TJ06lYqKCm6//XbuueceRo4cSVxcHCaTiSNHjrBt2zYqKipwOp2YzWbeffddrVkQ6QLKrXay8ssMp1M0psbpJCu/jITokHZdyJmRW8L8JWls2V9o2B4bFsC904Yx43TX54+Iu3jae8XjHNvtWpewb41xe1BPuHghnHEV+KgookhH6ZRPmYsuuogVK1bwm9/8htzcXMrLy1m/fn2dPs7/fXj26dOHN998kwkTJnRCpCLSUvmlVvJK6o8WNqYoP5dnbv8lJsBi9sXXx8TXX39N//6tL5p0osLGkyt388amAzgMrsXMviauGzuIWy9I9O4LLvFYrXmvnJRXUkV+qZV4b/y3ay2FdY/BN8+Dw16/3eQLo29wbYcaGOH28ES6m077lJk4cSJ79+7ljTfeYNmyZXz33XccP+5abNizZ0/OOussZsyYwW9+85varVNFxPOVVNrq7OTSHNVVFZw4Xre+QXl566ZZOBxO/rP9MI9+vovC8mrDPuOGRLNgxjAGRasYn3Se1rxXTqqyOSiptLVzRJ3M6YQf/gNf3A9lR437DBgLUx+D2BT3xibSjXXqLQmLxcINN9zADTfc0JlhiEg7MqpV4C7/PVzM/E928n32CcP2vj0CmTd9GBcPi9WUI+l0bX2vVNd03nut3R39AZbfBYe+Nm4P7Q2THoKUy13FT0TEbbxw/FJEOlOAn/vnDheUWXns8128t+2wYXuAnw83TUjk9+MHYTFrO0XxDG19r/j7esE8/coiWPMwbH0ZnAbJj48ZzrsFzr8TAjQSKNIZlCyISLsKCzRjMfu0enpFS9hrHLy9+RBPfLGLkiqDuc3ApJRY7ps2jH6RQR0ej0hLtOW9YjG7Kjt3WQ4HfPcmrFoIFQXGfRIvgsmPQs9E98YmInV4RLJQUlJCaWkpNTU1TfZty4JHEel4MaEBxIZZOFhQ0aGvs3lfAfOXpJF51HjbyUHRwSyYkcK4IdEdGodIa7XlvRIbZiEmtIuu58veDsvvhCPfGrdHDIDJf4OkKZpyJOIBOi1Z+PLLL3n++efZsGEDRUVFzTrGZDJhtxvfPRTxVOVWO/mlVkoqbVjtDgL8XHcEY0IDvHIXnuAAPxJjQsgurGzxlpDNkVdSxcPLM/jkv0eMX9/fl9suHMxvx8Tj3wlTokSaq7XvFV+TicSYLrhtatkx10jCd28at/tZYOz/wZjbwBzo3thEpEGd8klz22238dxzzwE/bpEq4m1KK23sLygnK7+MvJKqOlMNLGYfYsMsJMaEEB8V7HWVWOOjgjkaV9WsqrTNVW138NpX+3lm1R7Kq41HIS89szd/mZpMbJil3V5XpCO15r0yNC6U+KjgDoyqndXYYdsrsPqvYDXefIDkGXDJX6HHAPfGJiJNcnuy8M477/D3v/8dcO2GdOmll3L22WcTGRmJj4qqiJcoKq9m64FCMnNLDe8YVtkcHCyoILuwkqNxVYwaGEmPYP9OiLRjhAaaGTUwEqDB38FJrrukjV/4rN99jAWfprHvmPF2qkN7hbJwZgrnDFL1VulaWvpeGRoXyqiBkV3nBsOBr2D5XMhPM26PGgxTHoXEC90bl4g0m9uThRdeeAGAfv36sXr1ahISEtwdgkiHKq20sfVAYbPuFNY4nbX9UgdFdZ0LgGboEexP6qAoeoVbmhxdqT5mXJjqcGEFDy1LZ0VanmF7mMWPOy5J4tfn9MfPG3aGkW6pJe+VLjMSWXIEvpznqptgxD8Ext8N59wIft5zo0TEG7k9WdixYwcmk4n58+crURCvtL+gnMxc40W3DcnMLaVXuIXT+0Z0TFCdJDTQzOl9I0iIDqldt1Fd48Dft+66jYzS3HrHvvH1AT7cf8BwL3qTCX45sh9zJyURFdJFF3mKnKK57xWPZ692VV5e9xjYGiiseNoVcPEDEBbn3thEpFXc/sljs7kqTo4YMcLdLy3S4cqtdrLyy1q8sLfG6SQrv4yE6C64aLEZggP8iG/hz/X6Nwfxj+pX7/kz+oazcNZwzuwX0U7RiXiO1rxXPEbWSvjsbijIMm6PHQ5TF8GA89wbl4i0ids/kQYOHEhGRgZlZWXufmmRDpdfaiWvxHhKTVPySqrIL7V23QuFDhYZ7M/dk5P4xdn98PHRdooiHqPoAKy4FzKXGrdbwmHifTDyd+CrzzeRrsbtk3wvv/xyAFatWuXulxbpcCWVtlYXI6uyOSiptLVzRJ6v3GrnxQ37Gmz3McHs8way5o4J/HJUfyUKIp7CVglr/wbPndNAomCCs66BW7+Fc25QoiDSRbn9nXvHHXfw5ptv8tRTT3HllVcydOhQd4cg0mGM5te3RHVNx1c99hROp5NPd+Ty8LIMDu0/bNhndHwkC2emkBwX5uboxOtZy6AsDyqLocYKvgEQGAEhsRAQ0tnReTanEzKXwYq/QPEh4z59znZNOepztntjE5F25/ZkITw8nM8//5yZM2cyZswYHnzwQX71q1/Ro0cPd4ci0u4C2lgEzL+b7OiTkVvCgiVpbN5fCICPnz+mgKDadh+TiQWXncmcKedgUgVXaU9VJVC4F47tgpKjYK/8sc0vEMJ6QXQSRCaARUlqPcf3uNYl7G1gdkBQT7hoAZz5a9B26CJeweR0c1W0QYMGAVBRUUF+fj4mkwmTyUTPnj0JCgpq9FiTycTevXvdEaa0QnZ2Nv36uRakHj58mL59+3ZyRO2vqWrM+4+X8/nO3FZNRbKYfZg8PI74nl2o2FILnai08eSXu3lj0wEcBp88Zl8Tvxsbz60XDCZEazekvVUUwMFNkJcOTuPCfgCYfCF2GAxIhSDV7gBcIzHrF8Gm58BhMF3S5AOjb4AJf3GN0IiI13D7t/GBAwfq/NnpdOJ0OsnPz2/yWN1hlM7S3GrMfSMCiQ2zcLCgosWvERtmISbUO7cBdTicvL89m0c/z6SgvNqwz/mDe7JgZgoJ0ZoCIh2gqsSVKBz9oem+zpof+8WP694jDE4n7PwAvrgPDLY4BmDAGJjyGPQa7t7YRMQt3J4sXHvtte5+SZE2aUk15nMTIhkQFUx2YWWLtk91VTH2zm1Td2QXc/8naXx/uNiwvU9EIPNmDOOSYbG6ISAdp3Cva0ShJfLSIbwP9O6mW30f3Qmf3QUHvzJuD42DSx6C4T9zFT8REa/k9iuT1157zd0vKdJqLa3GvHlfIeOG9CQhJpjdec3fHnhoXCjxUd41/aigzMqiFbt4b9thjPKmAD8fbhyfwB8mJGAx+7o/QOk+rGWuNQqNTT0y4qyBY7shanD3WvRcWQxrHoatL4HTYEqljxlSb4JxcyEg1O3hiYh7ed9tTJF21NJqzHaHk+0Hihk7pCdmX58GRyNO8jWZGBoXyqiBkYQGmtsj5E5nr3HwzpZDPL5iFyVVdsM+Fw+LZd70YfSLbHydkki7KMtzLWZujdJc1/HdIVlwOOC/b8PKBVBx3LhPwgWuKUc9B7s1NBHpPEoWRBrQ2mrMJ6ps7M0vY3R8JL3CLU2uc4iPCvaaRGHrgULmfZJGRq7xSMygnsHMn5nC+CHRbo5MurXK4rq7HrWErdJ1vLfL2Q7L57r+bySiP0x6BIZO05QjkW5GyYJIA9pSjflAQTnJcWGc3jeChOiQ2h2Uqmsc+PvW3UHJG+SVVPHI8gw+/u8Rw/Ygf19uu3AwvxsTj7/B9rJHjhxh0qRJdZ5bsWIFvXv37pB4pZupsbbxeONF+V6h/DisWgjfvgkY3Bjxs8DYP8GYP4I50O3hiUjn6/QrlaKiIr7//nuOHz9OZWUlTe3kes0117gpMunu2lqN+cT/qjEHB/gR7yVJwU9V2x0s/no/T6/cQ3m18XzwmWf05p6pyfQKtzR4nhMnTrBz5856zylZkHbh28Zdxnz92ycOT1Jjh+2vweoHoeqEcZ+h02HSw9BjgHtjExGP0mlXMGvXrmX+/Pls3Lix2ceYTCYlC+I2qsbcuA17jrFgSRp7j5Ubtg/tFcqCmSmcO0j71EsnC4xwFVxrzVQkc6D31Q04+LVrylHeTuP2qESY8igkXuTeuETEI3VKsvCPf/yDW2+9tbbGgognUjVmY9lFFTy0NIPP04wXjIZa/Pi/i4dw9bkD8PPS34F0MSGxrsrMhftbfmxonOt4b1CSC1/Ogx/+bdxuDobxd8G5N4GfF46miEiruD1ZyMjI4LbbbsPpdHLaaafxwAMPYDabmTZtGiaTiaysLIqKiti2bRsvvvgi3377LWPHjuWFF15ossKzSHsKCzRjMfu0uhpzmJcsWj6pylbDi+v38fzarAZ/J1eM7Mtdk4fSM8Q7i8tJFxUQAtFJUHSoZdunmnwhekjX3wnJXg2b/wnrHoXqBrZ0Hv5zuORBCNPUPxGpy+3JwrPPPktNTQ3R0dFs2LCB0NBQ0tLSatvj4+OJj4/nrLPOYs6cOfz5z39m0aJF3HrrraxcudLd4Uo3FhMaoGrMuKqsr8zI58Gl6RwqNP5dnN43nIUzUxjRv4eboxNppsgEiM1pXgXnk2KHuY7ryvauhs/uhuO7jdtjUmDqYzBwrHvjEpEuw+3Jwrp16zCZTNx2222EhjZezMVkMvHoo4+yfft21qxZw6uvvsrvfvc7N0Uq3V1wgB+JMSHduhrz/uPlLPw0jbW7jhm2Rwb7c9ekJK4Y2Q8fH22nKB7MEgYDUl2P89IbH2Ew+boShQGpruO6ouJDsOIeyPjUuD0gHC64F0ZeB75d/7NKRDqO2z8hsrOzATjrrLNqnzOdsmezzWbDbK47feOGG25g9erVvPXWW0oWxK3io4I5GlfVrArOJ3lDNeaKajt/X53Fyxv2Gy7U9jHB1ecO4P8uTiI8yLumW4kXC4qC+HEQ3sdVmbkkt+6iZ3Oga41C9BDXiEJXTBRslfDVM7DxyYYXdI+4Gi6cDyGqdyIiTXN7slBV5dq3/tQtEYODf7ywKioqIiYmps4xiYmJAKSnp7shQpEfhQaaGTUwEqBbVGN2Op0s3ZHLw8szyD1hXGNi1MAeLJw5nGG9u+CFlIglDHqPgKjBrsrMlcWuOgq+/q5dj0Jiu+YaBacTdn0Gn/8Zig8a9+k9AqY+AX3Pdm9sItKluT1ZiIyMJD8/n/LyH7dbjI6Orh1d2L17d71k4fhxV9n54uJit8UpclKPYH9SB0V5fTXmXUdLWbAkjU37CgzbY0IDuGdqMrPO7F1nNLClyq322iJ1VruDAD8f8otavi5EpE0CQrpmUmDkeBZ8fjdkNbCuLyjKNZIw4mrw0Q5lItIybk8Whg4dSn5+Pnv27OG8884DICgoiMGDB7Nnzx6WLFnC2LF1F1otWbIEcCUVIp0hNNDstdWYS6psPPXlHl7fdIAaR/2REz8fE9eNjefWCwcT0oafsbTSxv6CcsOEq+iI8ZoIEWmEtQw2PA5f/x0ctvrtJh/XmoQL7oVAbT4gIq3j9qubsWPHsm7dOtavX8+1115b+/zll1/O3/72N5555hmGDh3KL3/5SyoqKnj99dd58cUXMZlMXHDBBe4OV6QOb6rG7HA4+eDbbB79PJPjZdWGfc4f3JP5M1JIjGnbHdii8mq2HihscCpXtV31VkSazemEnR/AF/dD6RHjPv1TYeoi6HWae2MTEa9jcrq5KtrmzZtJTU0lMjKS7OxsLBYLAAUFBSQlJVFUVFTvGKfTSWBgINu2bSM5Odmd4UoLZGdn069fPwAOHz5M3759OzkiacgP2SeYt2Qn3x0qNmzvExHI/dOHMSkltk1TjsA1orBpX0Gji8TzDu3l0eun1nlu67c7GDlCFzoideSlwfK74OBG4/aQXnDJQ3Daz6GN710REeiEkYVzzjmH1157DbvdTlFREXFxcQBERUWxYsUKrrjiCvbvr1tlMyYmhjfeeEOJgkgbFZZXs2jFLv619RBGtwn8/Xy4cXwCfxifQKC/b7u85v6CcjJzS1t8XHZxBSPbJQIRL1BZDGsfgS0vGW/76uPnqrw8/i4IaHxbchGRluiU+RSnTj861dlnn01mZiarV68mLS0Nu93O4MGDmTRpkqo3i7RBjcPJO1sO8fiKXZyoNJjbDFyUHMu86cPoH9V+77Vyq52s/LIW1ak46WBhBeVWe5ddCyLSLhwO+P4d+HI+VBw37jNoIkx5zLXlq4hIO/O4b2Gz2cykSZOYNGlSZ4ci4hW2HShk3idppOcaTwOK7xnMvBnDmJgUY9jeFvmlVvJKjLdgPZWPrx++Zv86z52ocpBfavWaNSIiLZbzLSyfCznbjNvD+8Pkh2HodE05EpEOo29hES+VX1LF3z7L5MPvcgzbA82+3HphIteNjSfAr32mHP1USaWtzq5HDYnuM4BFy34wPF6k2ykvgFUL4ds3AINROd8AGHs7jLkd/DXqLiIdS8mCiJex1Th4/esDPLVyD2VWu2Gf6afHcc/UZHpHBHZoLFZ704lCY4yqR4t4LUcNbHsVVj8EVcXGfZKmwaS/QmS8W0MTke6rw5KF9evXd8h5x40b1yHnFfEGG/ccZ8GnaWTllxm2D4kNYcHMFM5L6OmWeAL82lYAyt9XBaSkmzi4CT6bC0frj7ABEJkAUx6FwRe7Ny4R6fY6LFmYMGFCm7dc/CmTyYTdbnynVKQ7yymu5K/L0ln+w1HD9tAAP/7vkiFcfe4A/Nx4AR4WaMZi9mnWVKSfsphdBe9EvFrpUfhyHux4z7jdHAzj57p2OvILcG9sIiJ08DQkN5dwEOl2qmw1vLR+H8+tzWrwgvwXZ/flrslDiQ51/4VGTGgAsWEWDhZUtPjY2DALMZ0Qs4hb2Kth8z9h3aNQbTwSyPCfwcUPQngf98YmInKKDksW1qxZ01GnFhFgVUYeCz9N51Ch8YX4aX3CWTgrhbP693BzZD8KDvAjMSaE7MLKFm2f6msykRgTom1TxTvtXQ2f3Q3Hdxu3xwxzbYUaf7574xIRMdBh38Tjx4/vqFOLdGv7j5fzwKdprNl1zLC9R5CZuZOG8stR/fD16fztFOOjgjkaV9VoBefSogJef+iPtX8ODvBj+vv/ASI6PkARdyk+BCvuhYwlxu0B4TDxHhh1PfgqURYRz6DVg21wcl1GS/5bu3ZtnXMsXry42ccuXry4yZgqKipYtGgRo0ePJjIykpCQEJKTk7nzzjs5dOhQx/wixC0qqu0sWpHJpCfXGyYKPia4+twBrLlzAled098jEgWA0EAzowZGktI7DN8G1jFVlBaz74ettf/9sG0T1oqGkwuRLsVWBesWwd9HN5wojPgN3Lodzr1RiYKIeBR9IrmRj48PgwcP7rDz7927l2nTprFr1646z2dmZpKZmcnLL7/MO++8w9SpUzssBml/TqeTZT/k8tdlGeSeMC5wNnJADxbMTGF4n3A3R9c8PYL9SR0URa9wC1n5ZeSVVNVZY+Hv5xmJjUi7cjph9+fw+Z+h6IBxn7gzYdoT0HekOyMTEWk2JQtt8Nprr1FeXt5on/T0dH75y18CcOGFF9KnT8ML1VasWEHv3r0bbO/bt2+DbWVlZUyfPr02UZgzZw5XXnklgYGBrFmzhkceeYQTJ07wi1/8gk2bNnH66ac3Grd4ht15pcz/JI1N+woM26NDA7hn6lAuPbNPu+8+1t5CA82c3jeChOgQ8kutlFTaqK5x4O/rQ35waWeHJ9K+Cva6koQ9Xxi3B0bCRfNhxNXg0zFFEUVE2kOnJgulpaWsXLmS77//nuPHj1NZWdnoDkomk4lXXnnFjRE2Lj6+6aI4b775Zu3ja665ptG+Q4YMYeDAga2K5fHHHyczMxOAxx57jLlz59a2paamMnHiRMaNG0dFRQW33347q1evbtXriHuUVNl46ss9vL7pADWO+u8JPx8Tvx0zkNsuHEyopWttLxoc4Ef8TxYuZ5SpCq14iepyWP84bPo71FTXbzf5wMjrXGsTgiLdH5+ISAt1SrLgcDh48MEHeeKJJ5q8M3+S0+n0uGShKQ6Hg7fffhuAkJAQLr/88g55HZvNxtNPPw1AcnIyd9xxR70+qampXHfddbzwwgusWbOG7du3c/bZZ3dIPF2KtQzK8qCyGGqs4BsAgREQEgsBIW4Px+Fw8uF3OfztswyOlxlcaABjEqNYMCOFwbGhbo5ORBrkdELaR/DFfVCSY9yn37kwdRHEaWRXRLqOTkkWZs+ezdtvv43T6cTX15eoqCjy8/MxmUz07duXoqIiyspc+06bTCZ69uxJUFDXu/O4atUqcnJcXxo///nPO+xnWLt2LcXFxQBce+21+PgYr1ufPXs2L7zwAgAffvhh904WqkqgcC8c2wUlR8Fe+WObXyCE9YLoJFfVVEuYW0L6IfsE85bs5LtDxYbtvcMt3D99GJOH9/L4KUci3Up+BiyfCwc2GLeHxLrqJZx+Bei9KyJdjNuThRUrVvDWW29hMpmYPXs2TzzxBDk5ObVz6A8ePAjA7t27+cc//sHf//53evTowccff8zQoUPdHW6bvPHGG7WPm5qC1BYbNvz4BdXYlrUjR44kODiY8vJyNm7c2GHxeLyKAji4CfLSwVlTv91eCYX7oegQxObAgFQIiuqwcIrKq1n0xS7e3XIIo1l4/n4+/H7cIG6akEigv+Y2i3iMqhOw9m+w+QXjzxIfPzj3DzDuLrfddBARaW9uTxZee+01AFJSUnj11VcBOHLkSL1+Q4YM4cknn+TCCy/ksssuY+rUqXz33XeEh3vmbi8/VVZWxkcffQRA//79mTBhQpPHzJ49m4yMDIqKiggLCyMxMZGLLrqIP/zhD40ujM7IyKh93FhC5efnR0JCAjt27KhzTLdSVeJKFI7+0HRfZ82P/eLHtfuXfY3DybtbDvH4F7sorrAZ9rkoOYb7pw9jQFRwu762iLSBwwE7/gVfzoNy43onDJrgKqwWneTW0ERE2pvbk4VvvvkGk8nEzTff3Kz+06dP59prr+W1117jmWee4f777+/gCNvHBx98ULse4+qrr27WtJF169bVPi4oKKCgoIDNmzfzxBNP8NRTT/H73//e8LjDhw8DEBwcTERERKOv0a9fP3bs2MGxY8ewWq0EBAQ08yeC7OzsRttzc3Obfa5OU7jXNaLQEnnpEN4Heo9otzC2Hyxk3idpDRYqGxAVxPwZw7hgaGy7vaaItIMj/3VNOcreYtwe3g8mPQzJMzTlSES8gtuThfz8fMA1cnCSr++PUyuMLmB//vOf8+qrr/LRRx91mWShJVOQBg0axOWXX05qair9+vUDYN++fXzwwQe8//77VFVVceONN2IymbjhhhvqHV9a6tp2MiSk6QW5wcE/3qEuKytrUbJwMrYuy1rmWqNgNF2gMc4aOLYboga3edFzfmkVf/sskw+/NV4AGWj25ZYLErlubDwWs6YciXiMikJY9QBsXwwYzBf0DYAxf4SxfwL/rrfGTrych23mIV1Lp22dGhn545ZxoaE/7uqSn59f76I0JiYGgAMHDrgltrbKzs6urdR87rnn1kmMfuqyyy7j2muvrTfyMGrUKH75y1+ydOlSLr/8cmw2G3/605+YOXMmvXr1qtO3qspVqMvf37/J2E5NDiorKxvp6YXK8lyLmVujNNd1fCs/VG01Dl7/+gBPrdxDmdVu2Gfa6XHcOzWZ3hGBzTpnudVeW6/AancQ4OdDWKCZmNAAggNUQkWkXThqXAnC6gehssi4T9JU12hCZNPbaYu4lQdu5iFdj9uvKGJjYzl06BCFhYV1nvP398dms7Fjx456ycKhQ4eAHy+KPd1bb72Fw+GqTnvttdc22repNRjTp09n/vz53HfffVRUVPDKK69w77331uljsVgAqK423mrzVFartfZxYGDzLkpPOjndqSG5ubmMHj26Red0q8riuh+ULWGrdB3fCl9nHWf+kjT25JcZtg+OCWHhzBTOS+zZrPOVVtrYX1BuWAnZYvYhNsxCYkwI8VHBhAZ2rRoMIh7l0GZYficc3WHcHjkIJj8KQy5xb1wizeFhm3lI12W8x2YHOu200wBXZeOT/Pz8GDHCNR/85ALoU53c7nPAgAFuiLDtThZiCwgIqK3e3BZz5sypHXk4dV3DSSdHZk5uN9uYU+taNGfa0qn69u3b6H9xcXEtOp/b1Vib7tPo8U0nY6fKKa7kpre3c9XLmw0ThdAAP+6fPozlfzy/2YlCUXk1m/YVsDbzGAcLKuokCgBVNgcHCypYm3mMTfsKKCpvWcwiApTmwUc3wquXGCcK5iC4cB7c9I0SBfFMp27m0dTU25ObeRzc5DpO5CfcnixMmDABp9PJypUr6zz/m9/8BqfTyUcffcQ111zDsmXL+M9//sOMGTNYsWIFJpOJWbNmuTvcFtu2bVttIjR9+nR69OjR5nPGxMTQs6frYvJk3YZT9e3bF3AlAifrLTTk5OhAdHR0i9YreAXfNv68vk1P8wKostXw99V7uPCJtSz/wXja08/O6suqO8dz3dh4zL7NexuWVtrYeqCQtCMl1DRS6Rygxukk7UgJWw8UUlppvNOSiPxEjQ02PQfPng3fv2vcJ+VyuGUrnH8H+HWzz1DpOlq7mUfh3o6JR7o0tycLl112GQCff/45eXl5tc///ve/56yzzsLpdPL2228zc+ZMrrzySpYvXw64th+9++673R1ui526sLmpKUgt4Wzk4nDYsGG1jzMzMxvsZ7fb2bvX9UGQnJzcbrF1GYERrjmarWEOdB3fhNWZeUx6aj2Pf7G73l1/gOF9wvjgD+fxxBVnEBP6/9u77/A2y3v/428tS7LkHduZJM4ekLJCMSsJKQUChQKFcrqAwyhtD+vXEgplr5ZV4FAKTWkL7SkdpJQWCLMkAUqABFJW4oATZzhx7MROIg9J1vr98WDFjh/Zli3Llv15XZcvFN1Dt8xj+/nqHl9XUkOoqm+moqYxqTYVNY1U1fcsS/pAslqtWCyWDl+JkguK9IuNy+HRY+Cl66DV5OeseAac9yyc/TvIG5v24Yn0WF8P8wh2v0pBhpe071koKytj48aNRCIRcnP3baax2+288sorXH755fz1r38lFDI+DbVYLJxyyik88sgjKfmUvj+FQiH+/Oc/A8Yn9yeffHJK+q2rq6O+vh6A0aNHdyo/5phj4o9XrFjBkUceadrP6tWr48uQjj766JSMLaN4S43NXA1VybfNGWW0T2BzfTO3PruWf1XUmZbnZzu4+sRpnDvnAGzW5I9TbA6Gqaxr6nZGYX+RWIzKuiYmFXsH9abnadOmxff5iKTVnq3w8vWw9hnzcmcuzL8O5lwENu0BkgwwgId5yNA0IHcPEyZMMH2+oKCAP/zhD/zyl7/ks88+IxwOM3ny5A4nJw1mL7zwAjt3Ggl6vvGNb2C3p+bbu3jx4vjMglmG5nnz5pGXl8fevXt54oknWLRokWleh8cffzz+uG2GZ1hxeo1TH3ZvSe4TF4sNiqea/vL0t0b45fJKfrViI62Rzje7Fgt844gD+NGXp1Hg6dkyJjN1jUFqfb3b4F/rC1DXGKRsEAcLImkXCsDKh+CNn0OoxbzOwd+EL90M3pK0Dk2kTwboMA8ZugblPH9OTg6HHnooRxxxRMYECpBcbgUwjoJds2ZNl3Wee+45brvtNsA49eiCCy7oVCcrK4vLL78cMLI533vvvZ3qrFy5kt/85jeAEXDMmTOn2/ENSYWToHRm9/XaK51ptGsnFoux9KMaFty3nIdeqzQNFA49IJ9n/+cY7jjjoD4FCgA+f8h0WVNPBEJRfNq3ILLPpy/BL4+E1243DxRGfQEufAW++ksFCpJ50nyYhwx9g/Kjxj179hAKhRgxYkSPMh8PBrt37+a5554D4MADD+TQQw/tts2mTZuYP38+5eXlfOUrX+Hggw+mpKSEWCzGxo0bWbJkCUuWLInPKtx7772MGTPGtK+rr76av/zlL3z66acsWrSIyspKzj33XNxuN8uWLePOO+8kHA7jdrt54IEHUva+M44r1zgeDhIfJ9fGYjMChfHlHc6f/qy2kZuf/YR/V9abNhvhdXLtydM545AxWHux5MhMMNy3JTpmwYzIsFO/AV68Fj57ybzcXQALboJDvwNWJUWUDJWmwzxk+EhbsBCJRFi3bh2BQIADDjggnmitTTAY5Kc//Sm/+c1v2L59O2B8kn7SSSdx6623MmvWrHQNtVf+8pe/xHMY9GRWob2VK1eycuXKhOXZ2dncf//9ptmb2+Tk5PD888+zcOFCPvvsMxYvXszixYs71MnNzeWPf/wjBx98cFLjG3Kyi6DsOMgbY2zm8tV0nLJ1uI09CsVTOySqaQyEePDVz3j8rU2Eo533DtisFs4/agJXfGkKua7Urm122vs2CZjVwxOXRIak1mZjudFb/5vgU1MLHH4BHH8DZGfObLaIqbbDPHqzFKmHh3nI8GKJdXXMTgrEYjFuvfVWHnjgAXy+fef3HnHEETzwwAN88YtfJBQKceKJJ8ZzCLQfksViweVy8c9//pMFCxb051D75Oijj+att97CZrOxZcsW043I+2tsbOSf//wnK1euZPXq1dTU1LBr1y7C4TAFBQXMmjWLBQsWcNFFF3UKrhJpbm7m4Ycf5qmnnqKyspLW1lbGjRvHwoULueKKK/o1V0V1dXU8od7WrVvjR7oOasEmYzOXf49xE2HLMn5RekvjexRisRh/X7ONO5dWsKvJfHr3qElF3HzaLKaW5piW91XVrmZe/LimV0uRXA4rJx04irIRnn4YmcggFovB2n/ASz8BX7V5nXFfhIX3GEuPRIaCYBNUPNe7wzwKJ8L0U7TBWTro92Dhoosuiida2/+l8vPzefvtt/n1r3/NfffdB0BhYSFTpkwhHA6zdu1a/H4jMi4pKWH9+vXdZjyWgZORwUI3Pt62l5v/+QmrN+82LR+V5+L6U2ay8KCR/bpkrjkY5qVPdrC5PsFGzC6ML8rmxFkjB/VpSA0NDVx66aUdnnv00Uczas+SDDJ1FfDCIqjqnMgSAE8JfPk2mP114yQCkaFk+xr49JXkD/OYegKMPqT/xiUZqV/vHlasWMFvf/vb+OzAKaecwoQJE9i0aRPPP/88e/fu5YEHHuAvf/kLDoeDhx9+mAsvvDB+0+X3+7nxxhu577772LlzJ48//jhXXHFFfw5ZBIA9La3c+/J6nnxnCyYrjsiyWbnkuIl8f/4ksrP6/ybc47QzucRLdYM/qeNTbRYLk0sG97GpALW1tTz11FMdnrvlllsULEjyAj5YcRe88yhEw53LrXb44qUw95oOe5FEhpTCSVC6zcjM3FMmh3mIQD8HC20zCiUlJbz22msdEoFVVFRw/PHH8+tf/5poNMrVV1/NRRdd1KG92+3mnnvu4eOPP+all17i+eefV7Ag/SoSjfHnVVu496X17G4xP0FowfQSbjh1JhPSvKynrMjDjlEBPtnu677y56aPyqGsSMuPZBiIRuHDv8ArN0Kzeb4TyubCyXdDyfT0jk0k3VJwmIdIm34NFlauXInFYuGqq67qlDF4+vTpXHXVVVxzzTVYLBa+/e1vJ+znvPPO46WXXuKTTz7pz+HKcNNhv0KQ9+os3PRmMx/Xmu9LGF+UzY2nzmTBjMTJ2fpTjtvBnAnGJ+0VNY1dzjDYLBamj8phzoRCctxKJCVDXM0HsPRq2PqOeXnuWDjxDph5upYcyfDRy8M8RPbXr8FC26lG5eXlpuXtn588eXLCfqZMmQIY65pF+izgg4YNsHM9+HawsznEXZ+OZMl28yUvLoeVH8ybzMXHTcTlGNjjFAs8WZRPLGJknovKuiZqfYEOm55dDiuluS4ml3gpK/IoUJChraUBXrsNVv8OMAmebVlw9BVwzFWQpRk2GYZcucYehKIp3R7mIZJIvwYLzc3NWCyWhOuO8/Pz44+dzsTnArtcLgBaW5UoRPqopR42r4TatYQiEX6/ZQQPbCilMWweBJwys5DrTjuYMfnuNA80sRy3g9lj85lU7KWuMYjPH6I1EiXLZiXX7aAkxzno9yiI9Ek0Au8/Af+6Ffzmhw8w9SQ48U4o0hpsEZxeBQXSa2m5o0h0SkymJFyTISLgMwKFHR/xVr2HmyvG8GmTy7TqZE+AW2Zs5+hZMXCFgMETLLTxOO2UKSiQ4Wbru7D0R8bSIzMFZXDSz2DaSekdl4jIEKU7DRk+GjZQs/lT7qg4gOd25JtW8doiXDm5lvMO2IXDirExLG+MjpITGWiNtfDqzfDBk+bldjcc9yMo/x9wmH8IICIiyVOwIMNCsNnHb1ZU8dDHU/BHzLMZnzm6gR9P3UGJs91xi7GIsTGsaIqmcEUGQiQE7/4alv8UgglOApv5Vfjy7ZA/Lq1DExEZDtISLPzyl780zUBcV7fveLtbb701Yfv29USStWx9Hbc+8x+qdpvvi5mV4+fWGds4rCBBwrPGGmNjmIIFkfSqeh2WLoKd68zLR0yDhXfDxHlpHZaIyHCSlmDhkUceSVjWtm/hlltuScdQZBjZUt/Crc+t5dV1tabl+Y4wP5qyg/8a24Ctq+0zIb9xgoSIpMfeanj5evjk7+blWTkw/1o44hKw6cQvEZH+1O/BQiyJbLMiqeBvjfDI8koefX0jreFop3ILMc4d28CiKTsoyOoiUU17EZ3EJdLvwkF46yF44z4IJZjp+8J/wZdugZyByXciIjLc9GuwsGzZsv7sXqSDWCzGS5/s4Lbn1rFtj9+0ziF5zdw6YzsH5ZmXJ2TLSsEIRSShT1+GF6+Bho3m5SNnw8J74YAvpndcIiLDXL8GC3Pnzu3P7kXiKusaufmfa3mzcpdp+YhsGz+eso0zS+uwJntir8NtJK8RkdRr2AgvXgefvmBe7i6A42+Aw84H68AmRRQRGY50GpJktMZAiIdeq+S3b1YRjnZe8mazWjivfAJXHjea3E0vQm+SgOeMMrJcikjqtLbAmz+Hf/8vRIImFSxw+AVGoJBtnthTRET6n4IFyUixWIxn/rONO5dWsLPR7EYDyicWcfNps5g2Msd4onga7N5iHIfaUxYbFE/VSUgAwSbjVCj/HuPmzuY0Zly8pZ2+P83BcDy7dDAcxWlXdmn5XCwGa/9hbGDeu9W8ztgjYOE9MPrgtA5NREQ6019tyUjVu/0sWvIhoUjn2YRReS5+csoMTjloVMcs4YWToHQb7Pio5y9UOtNoN5wFfNCwAXauB98OCLfb72F3Q+5IIxArnEQTbjbuaqayrolaX4BAaN8Gc5fDSmmui8klXsqKPOS4951iM2PGDB2GMBzsXA9Lr4aqFeblnhI44VaY/XWwmudDERGR9FKwIBlpXGE2Fx4zkUdXbIg/l2WzctGxZfxg/mTzT69duTC+3Hhcu7brGQaLzQgUxpcb7YarlnrYvDLx9yvsh4Yq2L2F1qKt1OcfwupNYfYGQp2qBkJRNte3UN3gZ8eoAHMmFFLg0cbxYSHggxV3wTuPQjTcudxigy9eCvOuAVde+scnIiIJKViQjHXZ8ZP5+5pqan1B5k0r5qavzKJshKfrRtlFUHYc5I0xMjP7ajp+Uu5wG3sUiqcaMwrDOVAI+IxAoQczMcFQK9Xr3iVc0sys0iN5d7vFdA8JQCQW45PtRibe8olFHWYYZIiJxeDDv8IrNxhL2MyUHQcn3w0lM9I7NhER6REFC5KxPE47d55xELEYLJhR0nHJUVdcuTD6ECia0m4NfqtxPGqCNfhxSazbz3gNG4wZhR7Y0xJiV2OAWPN/KMwbS0nueLbvCXTZpqKmkZF5LmaPzU/BYGXQqfnQWHK09W3z8twxcOIdMPOr0NOfXRERSTsFC5K5gk0sKGkybty3bEj+xt3p7fkNfhLr9ofEbESwyXivPdgM3hqJ0tDcShQgGiFSW8HYAw5g+56u20ViMSrrmphU7NWm56GkpQGW3QGrfwuxzkkRsWXBUZfDsf8PsrqZCRQRkQGnv9CSedJ9457Eun1Ktxn7HLKL+v66A6mp1vje9kBzMExTcN869KZdWykc10B+dj57WjrvXWiv1hegrjFImYKFzBeNwPu/h3/dCv4EZxRPORFO+ikUDfNDA0REMoj+QktmSfeNexLr9olF9tUrOy6zZxj8ezoGYV0IhqMd9ieEgy1YA3txOYqAroOFQCiKzx/C5/Nx8803dyi7+eabyc3N4O/hcLJ1FSz9EdT8x7y8oAxO+hlMOymtwxIRkb5TsCCZYyBu3JNYtx9Xu9bYQD36kN695mBgmiQrQVWzjcyRELYepspujUTZtq2G+++/v8PzF198sYKFwa6pDl69Gf7zR/NyuxuO+yGUXwYOV1qHJiIiqaFgQTJHum/ck1i330EsYpy0VDQlczc925w9r2oWFNgcRExyYJjJsuk8/YwTCcGqx2DZnRD0mdeZeTp8+Q7IH5fesYmISEopWJDMMBA37kms2++kscZon6nBgjvf+FS4B0uRnHYrduu+o1LtzmyirjwCe7r/f+VyGJmdA019HbCkTdXrsHQR7FxnXj5iGiy8GybOS+uwRESkfyhYkMwwEDfuSazb7yTkN9pnKm+psVG8oarbqh6nHa/Tzh6/sT/BO2IcDZZC9rR0v5SpNNdFSY6TLTv7PGLpb3u3wcvXwydPm5dn5cC8H8MXvws25c4QERkqFCxIZhiIG/ck1u2bt2/tW/uB5PQaJ0rt3tLtbE6WzUqhJwufP0TMasNWOp3q5u73K9gsFiaX6NjUQS8chJW/gNfvhVCLeZ3Z58IJt0DOyPSOTURE+p3+SktmGIgb9yTW7Zu3z+pb+4FWOMk4UaoHG8rzsx2MyHERLpnFbtdY6rZ3//9r+qgcyop0zv6g9tkr8MIiaNhoXj7yIFh4LxxwZHrHJSIiaaNgQTJDMjfu7gJwZIPVCtGo8Wlob27ck1i334nDbbTPZK5c4+hZSHxU7eecjizGzZhNTf4hfLIp3OEo1f3ZLBamj8phzoRCctxarjIo7d4EL14L65eal7vyYcENcNgFYLWlc2QiIpJmChYkM3R34251QE6pkVMhGjaOWQ0HjSAjfxx4i5N/zSTW7XeSM8pon+myi4yjZ/PGGBvFfTUd/x843MZ7LZ5KVuEkinBzuKWZyroman0BAqF9GXxdDiuluS4ml3gpK/IoUBiMWlvg3w/Amw8kmM2zwGHnwfE3gifDEw+KiEiPKFiQzNDVjbszx8gI698Dm9+C+s8g2LivPG8ctOyGkbOSy+qcxLr9Diw2KJ6auSch7c+Vaxw9WzTF2Cju32Ms67JlGUGctzT+Xr3A7LH5TCr2UtcYxOcP0RqJkmUzTj0qyXFqj8JgFIvBumfhpetg71bzOmMOh1Puzez8ISIikjT91ZbMkOjG3ZkDRZNhx8ew6XVjVqEDK9idxg2Qb3vyWZ2TWLcfVzrTaDfUOL09DoA8TjtlCgoyw85PjX0JG5eZl3uK4Uu3wBf+y1jaJyIiw4r+mkvm2P/G3eowZhR2fPz5jY7JOnlvMbgLjce9yeqcxLp9LDYjUBhf3vuM0SLpEmyEFXfD2780CbIxrucjLjGOQ830/TciItJrChYkc+x/455TaiyJ2fQ6nQMFqxEo5I01ZhbaSzarcxLr9pNa5iQyEGIx+OgpePkGaEqQu2TCsXDy3UbwKyIiw5qCBcks7W/cQ0H49MWOn4paHcZSmewiY0Zh/0ABepfVOYl1+yKD1o6PjOzLW94yL88ZDSfeDrPOBEv3uTJERGToU7Agmaftxn3neiBmfJofixjLJhwuyPJ2f1Rqb7M6J7FuX2TQ8O+G1+6A1b+BWLRzudUBR10Gx/5Q17eIiHSgYEEyV7AJ7C7IHZ18295mdRbJJNEorPkD/OsWaKk3rzP5BDjpZzBicnrHJiIiGUHBgmSugcjqLP1iypQprF27ttNz0gfV78HSH8H2983L88fDyXfB1JO05EhERBJSsCCZK5mszqbte5HVWfqF3W5nxowZAz2MoaFpJ/zrZljzf+bldpex3Oioy4zN+SIiIl1QsCCZq7uszl1xuHUcpKRfsKndBvnPM4ynaoN8JAyrHoNld0Jwr3mdGV+BL98BBeP79loiIjJsKFiQzNVVVufu5Iwy2oukQ8AHDRuMTfm+HR0DXLvbuI6Lp/X+6N1NbxqnHNV9Yl4+Yqqx5GjS8b0bv4iIDFsKFiRzJcrq3B2LzciJoFNfJB1a6mHzysRJ/cJ+I+DdvSX5DOO+7Ua+hI+XmJdneWHuNfDFS8GuZXciIpI8BQuS2fbP6twTpTONdiL9LeAzAoWeXJ/JZBgPt8LbD8OKeyDUbF5n9tfhS7dA7qjkxy0iIvI5BQuSmdrWfrc2Q8EE4xz5uk+MJR2JNi5bbEagML5cWZYHmaamJh577LEOz1100UV4vRk++9OwwZhRSEZ3GcYrX4UXroH6SvPy0gNh4T0w/qjkXldERMSEggXJLGZrv505UDQJRh0Ku6uMwMHu2pe92eE29igUT+39mnDpV1u3buWqq67q8NyJJ56Y2SckBZuM6zSZJXKQOMP47k3w0k+g4jnzdq48OP4GOOwCsOlXu4iIpIb+okjmSLT2O9gIOz6BnFIYeRBEI2ABnLnGmu1UnTYjkoymWiOg7Y32GcZDfnjzAfj3AxAOmFS2wKHfgQU3gmdEHwYsIiLSmYIFyQzdrf2OhmBvtfHlLjBmE7KLoHg6OD3pHasIGMej9uZYXzAChJbdUPcsvHQd7NliXm/MYcaSozGH9XqYIiIiXVGwIJkhmbXf/t3GV2OtETQkWvst0p/6kmG8pR5euDpx9uXsEfClm+Hgb4LV2vvXERER6YaCBRn8Ur32WyQdepNhPByELW9B9SqIRTuXW6xwxCUw71olFRQRkbRQsCCDX6rWfoukUzIZxmMxqFsLG5dBa5N5nfFHw8l3w8gDUzpMERGRrihYkMGvr2u//XtSORqRnulphvGmOqh8BfZuNS/PGQVfvh0OPAssltSPU0REpAsKFmTw68vab4BIa2rGIZKM7jKMhwKw+Q3Y9j4Q61xudUD5D+C4qzUzJiIiA0bBggx+vVn73aF9giRtIv3NLMN4LAY7PoSq5cbMl5my4+CUn8OIKWkZpoiISCIKFmTwS2bt9/4cbm0ElYHjyjUyhoNxmtfeaqh82dhLY8ZTDF++DWafqyVHIiIyKChYkMGvp2u/zeSMMtqLDJTsIiidBR88CRVLSbjk6JBvwrzrjOSCIiIig4SCBRn8ulv7nYjFBsVTtd5bBk4kDKt/C8tuh8Be8zoT58OJP4XSGekdm4iISA8oWJDMYLb2uzulM412IgNh81uw9Gqo/di8vGgynHwXTP5SesclIiKSBAULkhn2X/vd1QyDxWYECuPLjXZDWHMwTF1jEJ8/RDAcxWm3kut2UJLjxOPUj/eA8NXAKzfAR0+Zlzs8MHcRHPl9sGvzvYiIDG66m5DMkV1knBKTN8bIzOyr6bjp2eE29igUTzVmFIZwoNDoD1FV30xlXRO1vgCB0L5svy6HldJcF5NLvJQVechxOwZwpMNIuBXeeQRW3J04sdpBZ8MJt0Lu6PSOTUREpJcULEhmceXC6EOgaIqRmdm/x8ijYMsyTj3ylg75PQq7m1tZtamBippGIrHOm2UDoSib61uobvCzY1SAORMKKfAM7k+wy8rKeOaZZzo9lzEq/wUvXAP1n5mXlx5oZF+ecHR6xyUiItJHChYkMzm9Qz4oMNPoD7FqUwOfbPd1WzcSi8XrlU8sGtQzDC6Xi9NPP32gh5G83Zvhpeug4jnzcmceHH89HP7fYNOvWxERyTz66yWSQarqm6moaUyqTUVNIyPzXMwem98/gxqOQn749//Cmz+HcMC8ziHfhgU3gbc4vWMTERFJIQULIhmiORimsq7JdOlRVyKxGJV1TUwq9mrTc1/FYrB+Kbz4Y9izxbzO6ENh4b0w9rD0jk1ERKQf6M5BJEPUNQap9SX4FLsbtb4AdY1ByhQs9N6uSnjxGqh81bw8uwi+dDMc/C2wWtM6NBERkf6iOweRDOHzhzqcepSMQCiKzx9K8YiGiWATvH4PrHwYoibfQ4sV5lwE868Dd0H6xyciItKPFCyIZIhguHeBQpvWSN/a96dAIMBLL73U4bkTTzwRl8s1QCPCWHL08d/g5Rugcbt5nQOOgoV3w8iD0js2ERGRNNFceR9ZLJYefc2bN6/bvl588UXOPPNMxo4di9PpZOzYsZx55pm8+OKLPR5PS0sL99xzD0cccQSFhYV4vV5mzJjBj370I7ZsSbDGWjKC0963H9cs2+D9ca+qquKrX/1qh6+qqqqBG1DtJ/D4qfC3C80DBe9IOPMxuGCpAgURERnSNLMwCMRiMS699FIWL17c4flt27bx97//nb///e9ccsklPProo1gsloT9bNiwgVNOOYX169d3eL6iooKKigoee+wxnnzySRYuXNgv70P6V67bgcth7dVSJJfDyOws3fDvgeU/hXd/bZ4l3Go3Mi/PXQTOnLQPT0REJN0ULKTI9773Pb7//e8nLPd4PAnLrr/++nigcMghh7Bo0SImTZrEhg0buPvuu1mzZg2LFy+muLiY22+/3bSPpqYmTj311HigcPHFF3PuuefidrtZtmwZP/3pT9m7dy9nn302K1euZPbs2X14tzIQSnKclOa62FzfknTb0lwXJTnOfhjVEBGNwgdPwis3Qcsu8zoT5xuJ1YqnpndsIiIiA0jBQoqUlJRw4IEHJt2usrKSu+++G4DDDz+c119/HbfbDcCcOXM47bTTmDt3LqtXr+auu+7iggsuYNKkSZ36uffee6moqADg7rvv5uqrr46XlZeXM3/+fI477jhaWlq48soree2113rzNmUAeZx2Jpd4qW7wJ3V8qs1iYXKJjk1NaNv7sPRq2LbavDzvADjpTph+KnQxsyciIjIUDd5FzMPE/fffTzgcBuChhx6KBwptsrOzeeihhwAIh8M88MADnfoIhUI8+OCDAMyYMYMf/vCHneqUl5dz4YUXArBs2TLee++9VL4NSZOyIg/TRyW3/GX6qBzKihLPbA1bzfXwz8vh18ebBwo2J8z9MfzgHZjxFQUKIiIyLClYGECxWIx//OMfAEyfPp0jjzzStN6RRx7JtGnTAHjmmWeI7fep8vLly9mzZw8A5513HtYEZ7yff/758cdPP/10H0cvAyHH7WDOhEJmjc7F1s3Nq81iYdboXOZMKCRH+xX2iUaMPQkPHQrvPwGYzNJMO8UIEuZfC1nZaR+iiIjIYKF1CQOoqqqKbdu2ATB37twu686dO5f169dTXV3Npk2bKCsri5e98cYbHeolcvjhh+PxeGhububNN9/s4+hloBR4siifWMTIPBeVdU3U+gIdNj27HFZKc11MLvFSVuRRoNDe5pXwwtWw4yPz8sJJcPJdMOWE9I5LRERkkFKwkCJPPfUUf/rTn9iyZQt2u52RI0dy1FFHcf755zN//nzTNuvWrYs/nj59epf9ty9ft25dh2Chp/3Y7XYmTZrEhx9+2KGNZJ4ct4PZY/OZVOylrjGIzx+iNRIly2acelSS49QehfYad8ArN8KHfzEvd3hg7tXGSUd2bQQXERFpo7uJFFm7dm2Hf1dWVlJZWcnvf/97vvrVr/L444+Tl5fXoc7WrVvjj8eOHdtl/+PGjTNt1/7fHo+H/Pz8bvv58MMP2blzJ8FgEKez5zdG1dXVXZbX1NT0uC9JDY/TTpmCgsTCrfDOo7DiLmhtMq9z4Flwwm2QNya9YxMREckAusvoo+zsbE477TQWLFjA9OnT8Xq97Ny5kxUrVvDoo49SX1/PM888w+mnn84rr7yCw7FvSUhjY2P8sdfr7fJ12h+92tTU8aanrZ/u+jDrJ5lgoX3AIjLobXgNXrgGdn1qXl4y0zgKtezY9I5LREQkgyhY6KNt27aZfpp/wgkncNlll3HyySezZs0aVqxYwSOPPMLll18erxMIBOKPs7Kyunyd9jf1fr+/Q1lbP9310V0/IkPCni3w0k9g3T/Ny515MP86mHMR2PQrUEREpCv6S9lHXS37KS0tZcmSJcyYMYPW1lYeeuihDsGCy+WKP25tbe3ydYLBYPzx/sertvXTXR/d9dOd/Zc/7a+mpoYjjjgiqT5FUiYUgLf+F974OYQTBMIHfwu+dDN4i9M6NBERkUylYKGfTZw4kRNOOIHnn3+eyspKtm/fzujRowHIydl3Xv7+S4v219zcHH+8/3Kjtn6666O7frrT3b4KkQERi8GnL8KLP4bdm8zrjDoYFt4L4+akc2QiIiIZT3kW0mDmzJnxx21HpULHm+/uNg+3/1R//70Dbf00NzfH8y10109xcXFS+xVEBqX6DfDkOfCnc80DBXchfOVBuPg1BQoiIiK9oGAhDfZPotamfRBRUVHRZR/ty2fMmNGrfsLhMBs2bDDtQySjtDbDq7fAL4+Ez17uXG6xwpyL4bL34LDzwWpL+xBFRESGAi1DSoP2x6q2LUECKCsrY/To0Wzfvp0VK1Z02cfrr78OwJgxY5gwYUKHsmOOOSb+eMWKFQkzQa9evTq+DOnoo49O6j2I9Kdx48Zx//33d3quk1gMPnkaXr4BfNs6lwOMOxIW3gOjZvfDSEVERIYXBQv9bOPGjbzyyiuAsX9hzJh9Z7lbLBZOP/10HnnkESoqKnj77bdNb/Tffvvt+IzB6aefjsVi6VA+b9488vLy2Lt3L0888QSLFi3qVAfg8ccfjz8+44wzUvH2RFLC6/Vy5ZVXdl2pdi28sAg2vWFe7i018iXMPgdMrn8RERFJnpYh9cGzzz5LOBxOWF5bW8vXvvY1QqEQAD/4wQ861bnyyiux242Y7bLLLut0nKnf7+eyyy4DjAzMZjdUWVlZ8VOW1q1bx7333tupzsqVK/nNb34DwNy5c5kzR+u3JUME9sKL18Kjx5gHClY7lP8P/M9q+MLXFSiIiIikkCWWaEG9dGvChAmEQiHOOussysvLmTBhAm63m127drF8+fJ4UjYwlgq9+uqrppuKr732Wn72s58BcMghh3DNNdcwadIkNmzYwF133cWaNWvi9e68807TsTQ2NnL44Yfz6adGAqpLLrmEc889F7fbzbJly7jzzjtpamrC7Xbz1ltvcfDBB6f8+1FdXR1fOrJ161adniR9E43CB3+CV2+C5p3mdSbOMxKrFU9L69BERESGCwULfTBhwgQ2b97cbb2zzjqLxx57LGFOhmg0ysUXX8xvf/vbhH1ceOGFLF68GKs18WRQZWUlCxcu5LPPPjMtz83N5Y9//COnnnpqt2PuDQULkjLb18DSq6F6lXl53jg48Q6YcZpmEkRERPqRgoU+WLFiBStWrGDlypVs3LiRXbt24fP58Hq9jBs3jqOOOorzzjuP8vLyHvW3dOlSFi9ezKpVq9i1axcjRoxgzpw5fPe73+Xkk0/uUR/Nzc08/PDDPPXUU1RWVtLa2sq4ceNYuHAhV1xxBePHj+/LW+5S+2DhtddeY+TIkUn3UVpaSmFhoWnZ+vXriUajvRpbUVERJSUlpmUbNmzoUUI7M3l5eR02rbe3efNmWlpaetWvx+PhgAMOMC3bsmVLh3wZycjOzk54DWzfvp29e/f2qt+srCwmTZpkWlZXVxefYeuWfy+8/TB88ncArBaYNqLdSUY2Jxx9BRxzFQ1NAWpra3s1Xkh8IpjP5+twxHGypkyZEl9a2F5TU1O3iQ27UlZW1iGRY5tAIEBVVVWv+x03bpxpzpVwOJzwg4eeGDNmDLm5uaZl69at63W/+h1hGLa/I/ZjtVqZNs18ZrGhoUG/I9DviPaGy++IlJ94GRNJka1bt8aAPn2dffbZCfu3WCy97nfu3LkJ+3U6nb3u98ADD0zYb15eXq/7HTNmTMJ+x4wZ0+t+8/LyEvZ74IEH9rpfp9OZsN+5c+f2ul8LxGI35RpfT54bi9VvjPd79tln9+laS+Sqq67qU79r16417ff+++/vU7/PPPOMab/PPPNMn/q9//77Tftdu3Ztn/q96qqrEn6P+9KvfkcYX/odYXxZLJaE/ep3hEG/I/YZLr8jUk2nIYnI4FY4EU66C6Z+eaBHIiIiMuwoWBCRwcsCfP9tsCvbuIiIyEDQ0akiMohZFCiIiIgMIG1wlpTRBueOtHnR0GHz4sbX4c37wLe9Q50Nu6N85U8dc4w8++yzTJkyRZsXP6fNiwb9jjAM2d8RSdIG5330O8Kg3xGp3+CsYEFSZigdndocDFPXGMTnDxEMR3HareS6HZTkOPE4tXovaXu2wgtXw/oXTIvXNdiY+dDuDs+tfe8tZhzas5PEREREpH/orkeknUZ/iKr6Zirrmqj1BQiE9n0C4XJYKc11MbnES1mRhxy3YwBHmiFCAVj5ELx+L4QD5nVKD4Ixs4DFHZ/f/h+YOQtc5p88iYiISP9TsCDyud3Nraza1EBFTSMRkwm3QCjK5voWqhv87BgVYM6EQgo8WQMw0gyx/kV48RrYvcm83FsKk78MeWNgs8lSgfpKaNgAow/p12GKiIhIYgoWRDBmFFZtauCT7b5u60ZisXi98olFmmHYX/0GePFa+Owl83K7C8rmwqgvgKWLMxZiEdj5KRRNAWfn9bIiIiLS/xQsiABV9c1U1DQm1aaippGReS5mj81PWGdY7X1obYY37oO3HoKI2UYvC4w+GCYcBw53z/psrIGmWgULIiIiA2SI3a2IJK85GKayrsl06VFXIrEYlXVNTCr2drrxH1Z7H2IxWPsMvPQT8CU4ISR3DEw+AXKSPCEr5Af/nr6OUERERHpJwYIMe3WNQWp9CTbfdqPWF6CuMUhZu2Ah3XsfBnT2oq7COOWo6nXzcm8pHPJtsNjAYunda5jOUoiIiEg6KFiQzBVsMpao+PdAJAg2J7jzjRvUJJat+PyhDp/8JyMQiuLzh+L/TufehwGdvQjsheV3wbu/gmi4c7nVDl+8FOZeA7s+g89e7v1r2bSJXEREZKAoWJDME/AZp+TsXA++HRBul8zL7obckVA8DQon9ejYzWC4d4FCm9bIvvb9tfdhfwN2clM0Ch/+BV65EZrrzOuUzYWT74aS6ca/3fnG/5ew37x+Vxxuo72IiIgMCAULklla6mHzSqhda5yWs7+wHxqqYPcWKN0G48shu6jLLp32Lk7k6YEsm9G+P/Y+mBmwk5u2/wdeWARb3zEvzx0LJ94BM0/vuOTIW2oEcA29yCCaM8poLyIiIgNCwYJkjoDPCBR2fNR93VhkX72y47qcYch1O3A5rL1aiuRyGPsDIPV7HxJJ1+xFXEsDvHYbrP4dYBII2bLg6CvgmKsgy9O53Ok1Znp2bzEP8BKx2KB4qk5CEhERGUAKFiRzNGwwZhSSUbvWSPrVRWKvkhwnpbkuNte3JD2k0lwXJTlOILV7HxJJ1+wFANEIvP8E/OtW8O82rzP1JDjxTiia1HVfhZOMmZ4Egd6Yojyu+trRHZ+b+UWjnYiIiAwYBQuSGYJNxh6FZD6Zhh4l9vI47Uwu8VLd4E/qJtxmsTC5ZN/Ndyr3PiSSrtkLtr4LS38ENR+YlxeUwcl3wdQTe/birlxjSRiYLiHL9br4+fdPMf5hsUHpTKN+D/aciIiISP9RsCCZoanW2MzcGz1I7FVW5GHHqECP9gG0mT4qh7KifctuUrX3oSv9PnvRWAuv3gwfPGlebnfDcT+C8v8Bhyu5AWQXGUvC8sYYAZyvpuOmZ4fb2KNQPLXHm9NFRESkfylYkMzg39O703SgR4m9ctwO5kwoBEh4wlAbm8XC9FE5zJlQ2GHDcKr2PnSl32YvIiF4dzEs/xkEEwRMM78KX74d8sf1fgCuXGNJWNGUdsfethr7Hnpx7K2I7CdFR0qLiLRRsCCZIRLsY/vuE3sVeLIon1jEyDxXr3IXpGrvQ1f6ZfZi4wrjlKOdFeaNiqcbS44mzuvTa3fg9OrGRSSVUnyktIhIGwULkhls3d9Id92+ZzkGctwOZo/NZ1KxN54VuTUSJcvWfVbkVO196EpKZy/2VsPL18MnfzdvkJUD834MX/wu2FKc1E1EUqcfjpQWEWmjYEEyQ5oTe3mc9p5tBN5PKvY+dCUlsxfhILz1ELxxH4QS9POFb8CXboYc5TgQGdT66UhpEZE2fVvTIJIubYm9eiONib3a9j7MGp2LrX1iMhM2i4VZo3M77X3oStvsRXd9m73W5BIvns3/gl8eaeRNMAsURs6G/34ZzngkrYHCunXrsFgsHb7WrVuXttcXyVi9PVK6YUP/jEdEhhzNLEhmyKDEXn3d+9Cd3sxeHJKzm5nLroMNL5tXcBfAghvh0PPAaktqPCIyQPrxSGkRkTYKFiRzdJPYy1TpzAFJ7NWXvQ896bunJzc5o0FO3PNHJr79Wyymm8QtcNj5NB9zHXURD75tjQTDUZz2vo9TRPpZPx8pLSICChYkk3ST2KuDQZLYq7d7H7rT7eyF3cIhza9zaMV9ZDVtM+9k7BE0L7iTDY4pVFY1UevzpXQGRET6WT8fKS0iAgoWJNMosVdcotmLHF8l49+9BXf1m+YNPSVwwq3snnwGqzbvoaJmp+nsRCAUZXN9C9UNfnaMCjBnQiEFnp6dKiUiaZCGI6VFRBQsSOZRYq8O4rMXAR+suAfeeRSi4c4VLTb44qUw7xoaY9ms2ljfo30PkVgsXq98YpFmGEQGizQdKS0iw5uCBclcSuxliMXgw7/CKzcYwZOZCcfCwnugZAYAVdV7qKhpTOplKmoaGZnnYvbY/D4OWERSIs1HSovI8KRgQSST1XwIS6+GrW+bl+eOgS/fDrPOgM+PW20Ohqmsa0oqcRwYMwyVdU1MKu5ZAjkR6WdtR0o3VCXfNo1HSotIZtNffJFM1NIAy+6A1b+FmEk2Z1sWHHUZHPtDyOqY8K2uMUitL9Crl631BahrDPbLpm0RSVIGHSktIplLf/FFMkk0Au//Hv51K/gbzOtM+TKc9DMoMj8y1ucPdTj1KBmBUBSfP9SrtiLSDzLoSGkRyUwKFkQyxdZVsPRHUPMf8/KCCXDSXTDtpC67CYZ7Fyi0aY30rb2IpFAGHiktIplFwYLIYNdUB6/eDP/5o3m53Q3H/j846nJwuLrtzmm39mk4Wba+tReRFNOR0iLSjxQsiAxWkTCs+jUsuxOCCY44nXEanHgH5B/Q425z3Q5cDmuvliK5HEZmZ5EBFWxqd2xy0DhCdBgem9yBjpQWkX6iYEFkMKp6A15YBHVrzctHTIWT74ZJ85PuuiTHSWmui831LUm3Lc11UZLTx7PdRXor4IOGDbBzPfh2dPz03O42TgYqnja8Pz3XkdIikmIKFkQGk73b4OXr4ZOnzcuzcmDeNXDEd8Heu4RKHqedySVeqhv8SR2farNYmFyiY1NlgLTUw+aVidflh/3GEaK7txgbfseXG8tzRESkT/RXX2QwCAdh5cPw+j0QSvCJ/+xz4YRbIGdkn1+urMjDjlGBHmVwbjN9VA5lRZ7uK/ZCaWkpZ599dqfnRABjRmHzyp6d+BOL7KtXdtzwnWEQEUkRBQsiA+2zV40lRw0bzMtHHgQL74UDjkzZS+a4HcyZUAgYmZm7mmGwWSxMH5XDnAmF5PTTfoXCwkL++te/9kvfMgQ0bDBmFJJRu9bY8Dv6kP4Zk4jIMKFgQWSgNFTBS9fB+qXm5a58WHADHHYBWG0pf/kCTxblE4sYmeeisq6JWl+gw6Znl8NKaa6LySVeyoo8/RYoiHQp2GTsUUgm6RgY9Xd+amz41Rp+EZFeU7Agkm6tLfDm/fDvB42TXDqxwGHnw/E3gKd/11znuB3MHpvPpGIvdY1BfP4QrZEoWTbj1KOSHKf2KMjAaqo1NjP3RmON0V7BgohIr+kuQCRdYjFY96wxm7B3q3mdsXOMU47GHJrWoXmcdsoUFMhg5N/T8dSjZIT8RnsREek13R2IpMPO9ca+hI3Lzcs9xfClm+EL3wCrkp6JxJnOviXTvjU14xARGaYULIj0p4APXr8b3n4EouHO5RYbHHEJzPuxkThJRDqy9TGvh613RwyLiIhBH2GK9IdYDD74C/zicHjrIfNAYcKxcOmbcPLPhn2gsH79eqxWa4ev9evXD/SwZDBw5xsJ13rD4R72P1siIn2lmQWRVKv50FhytGWleXnOaDjxdph1Jlgs6R3bIBWNRontd3xrNBpNUFuGFW+pkZm5oSr5tjmjjPYiItJrChZEUqWlAZbdAat/CzGTG12rA466DI79oU5nEekppxeKpxmZmZM5PtVig+Kp+lkTEekjBQsifRWNwJo/wKu3gL/BvM7kE+Ckn8GIyekdm8hQUDgJSrf1LINzm9KZRjsREekTBQsifVG9Gpb+CLavMS/PHw8n3wVTT9KSI5HecuXC+HLjce3armcYLDYjUBhfbrQTEZE+UbAg0htNO+HVm+E//2debnfDsf8PjrocHK60Dk1kSMougrLjIG+MkZnZV9Mx/4LDbexRKJ5qzCgoUBARSQkFCyLJiIRh1WOw7E4I7jWvM+M0OPEOyD8gvWMTGepcuTD6ECiaYmRm9u8x8ijYsoxTj7yl2qMgIpJiChZEemrTm7B0EdR9Yl4+Yqqx5GjS8ekdl8hw4/QqKBARSRMFCyLd2bsNXrkBPv6beXmWF+ZeA1+8FOxKACUiIiJDh4IFkUTCQXj7l7DiHgg1m9eZ/XX40i2QOyq9YxMRERFJAwULImY+exVevAbqK83LSw+ChXfD+KPSOy4RERGRNFKwINLe7k3w4nWw/nnzclceHH8DHHYB2PTjIyIiIkOb7nZEAEJ+ePMBePN+iARNKljg0O/AghvBMyLdo0ufYFO7U2aCYHPqlBkREZFhTMGCDG+xGFQ8Z8wm7N1iXmfMYbDwHuO/Q1XABw0bYOd68O3oeH693Q25I6F4ms6vFxERGWYULMjwteszeOEa2PAv8/LsEXDCLfCFb4DVmt6xpVNLPWxemTgzbtgPDVWwewuUbjMy42YXpX+cIiIiknYKFmT4CTbCirvh7UcgGupcbrHBERfDvGuNJThDWcBnBAo7Puq+biyyr17ZcSmdYSgqKmLu3LmdnhMREZGBpWBBho9YDD5aAi9fD007zOuMP8Y45ah0VnrHNlAaNhgzCsmoXQt5Y4xMuilSUlLC8uXLU9afiIiIpIaCBRkednwMS6+GLW+Zl+eMgi/fDgeeBRZLesc2UIJNxh4Fs6VHXYlFYOenUDQlIzc9NwfD1DUG8flDBMNRnHYruW4HJTlOPE79ShQREWlPfxllaPPvhmV3wqrHIBbtXG51wFH/A8f+KCNvfPukqdbYzNwbjTVG+wz6njX6Q1TVN1NZ10StL0AgtO96cDmslOa6mFzipazIQ47bMYAjFRERGTwULMjQFI3Cf/4PXr3Z2MBrZtICOPluGDE5rUMbNPx7Op56lIyQ32ifIXY3t7JqUwMVNY1EYrFO5YFQlM31LVQ3+NkxKsCcCYUUeLIGYKQiIiKDi4IFGXqq34MXroZt75mX5x8AJ/0Mpi0cPkuOzJjmk0imfWtqxtHPGv0hVm1q4JPtvm7rRmKxeL3yiUWaYRARkWFvCJ8HmR7vv/8+d955JyeffDLjxo3D6XTi9XqZOnUq559/Pm+88Ua3fTz++ONYLJYefT3++OPd9tfS0sI999zDEUccQWFhIV6vlxkzZvCjH/2ILVsS5BIYCpp3wT/+Bx473jxQsLtg7o/hB+/C9FOGd6AARsK1PrXPjE/eq+qbqahpTKpNRU0jVfXN/TQiERGRzKGZhT6YO3cur7/+eqfnW1tb+eyzz/jss8944okn+Pa3v81jjz1GVlb/31xt2LCBU045hfXr13d4vqKigoqKCh577DGefPJJFi5c2O9jSZtIGFb/FpbdDoG95nWmnwon3gEFE9I6tEHNnW8kXOvNUiSHO6XHym7YsIFZszqeQPXJJ58wadKkPvXbHAxTWddkuvSoK5FYjMq6JiYVe7XpWUREhjX9FeyDbdu2ATB69GjOPvtsjj32WA444AAikQgrV67kvvvuY9u2bfzhD38gHA7z5JNPdtvnSy+9xOjRoxOWjx07NmFZU1MTp556ajxQuPjiizn33HNxu90sW7aMn/70p+zdu5ezzz6blStXMnv27CTf8SC0+S3jlKPaj83LiybDyXfB5C+ld1yZwFtqZGZuqEq+bc4oo32KtLa2EgwGOz3XV3WNQWp9gV61rfUFqGsMUqZgQUREhjH9FeyD6dOnc+edd3LWWWdhs9k6lB155JF8+9vf5uijj+bTTz/lT3/6E9/73vc49thju+xz6tSpTJgwoVfjuffee6moqADg7rvv5uqrr46XlZeXM3/+fI477jhaWlq48soree2113r1OoOCrwZeuQE+esq83OGBedfAF78H9sxYLpN2Ti8UTzMyMydzfKrFBsVTM+IkJJ8/1OHUo2QEQlF8fpOkfSIiIsOI9iz0wXPPPcc555zTKVBoM2LECO677774v5csWdJvYwmFQjz44IMAzJgxgx/+8Ied6pSXl3PhhRcCsGzZMt57L8EG4MEuGoXfn5Y4UDjobLhsNRx9hQKF7hROgtKZybUpnWm0ywDBcO8ChTatkb61FxERyXQKFvrZvHnz4o83bNjQb6+zfPly9uzZA8B5552H1Wr+v/b888+PP3766af7bTz9ymqFudd0fr70QDh/KZz1GOQmXsol7bhyYXw5jDzImDHoisVm1BtfbrTLAE57337FZdn0K1JERIY3LUPqZ+3XXSe6gU+F9qcuzZ07N2G9ww8/HI/HQ3NzM2+++Wa/jaffHXiWsal587/BlQfzr4fD/xtsuqSTll0EZcdB3hgjM7OvpuOmZ4fb2KNQPNWYUciQQAEg1+3A5bD2aimSy2FkdhYRERnOdGfVz1asWBF/PH369G7rn3/++axbt47du3eTm5vL5MmT+dKXvsT3vvc9xowZk7DdunXrevQ6drudSZMm8eGHH3Zok3EsFiOh2ru/guNvBG/xQI8os7lyYfQhUDTFyMzs32PkUbBlGaceeUszYo/C/kpynJTmuthc35J029JcFyU5fTxeVkREJMMpWOhH0WiUn/3sZ/F/n3POOd22aR9c1NfXU19fzzvvvMN9993HAw88wHe/+13Tdlu3bgXA4/GQn5/f5WuMGzeODz/8kJ07dxIMBnE6e3ZDVF1d3WV5TU1Nj/pJmZEHwmkPpfc1hzqnNyODgkQ8TjuTS7xUN/iTOj7VZrEwuUTHpoqIiOgvYT+6//77effddwE444wzOPzwwxPWnThxImeeeSbl5eWMGzcOgI0bN/K3v/2NJUuWEAgEuPTSS7FYLFxyySWd2jc2GkmnvN7ub/Q8Hk/8cVNTU4+DhbZxiWSSsiIPO0YFepTBuc30UTmUFXm6rygiIjLEKVjoJytWrODHP/4xACUlJTzyyCMJ655xxhmcd955WPbLKDxnzhy+/vWv89xzz3HmmWcSCoW46qqrOO200xg5cmSHuoGAcZZ8TxK/tQ8O/P5eJOQSySA5bgdzJhQCRmbmrmYYbBYL00flMGdCITnaryAiIqLTkPrDJ598whlnnEE4HMbpdPLXv/6V0tLECazy8vI6BQrtnXrqqdx0000AtLS08Jvf/KZTHZfLBfQskVX75Fdut7vb+m22bt3a5VfbLIrIYFPgyaJ8YhHzphczvigbl6Pjrz6Xw8r4omzmTS+mfGIRBR4duSsiIgKaWUi5qqoqvvzlL7N7925sNht/+tOfujydqKcuvvhibrjhBmKxGCtWrOAnP/lJh/KcnBzAWFbUnebm5vjjnixbatNV9miRwS7H7WD22HwmFXupawzi84dojUTJshmnHpXkOLVHQUREZD/6y5hC27dv50tf+hLbt2/HYrHw29/+ljPOOCMlfZeUlDBixAh27tzJtm3bOpWPHTuWd955h+bmZvbs2dPlJue2zdDFxcU93q8gMlR4nHbKFBSIiIj0iJYhpciuXbs44YQT2LhxIwAPPfQQ3/nOd1L6GrEu1lrPnLkvC29FRUXCeuFwOJ4cbsaMGakbnIiIiIgMOQoWUmDv3r2ceOKJrF27FoCf/exn/OAHP0jpa9TV1VFfXw/A6NGdsxMfc8wx8cftj1/d3+rVq+PLkI4++uiUjlFEREREhhYFC33U0tLCKaecwvvvvw/AT37yE6655pqUv87ixYvjMwtmeyDmzZtHXl4eAE888UTCWYjHH388/jhVS6RE+iovL48DDzyww1fb9SwiIiIDR8FCH7S2tnLGGWfw73//G4ArrriC22+/Pak+Nm3axJo1a7qs89xzz3HbbbcBxqlHF1xwQac6WVlZXH755YCRzfnee+/tVGflypXxk5Tmzp3LnDlzkhqrSH8ZPXo0H330UYcvsxk0ERERSS/t8uuD//qv/+Lll18G4Pjjj+fCCy/k448/Tlg/KyuLqVOndnhu06ZNzJ8/n/Lycr7yla9w8MEHU1JSQiwWY+PGjSxZsoQlS5bEZwruvfdexowZY9r/1VdfzV/+8hc+/fRTFi1aRGVlJeeeey5ut5tly5Zx5513Eg6HcbvdPPDAA6n5JoiIiIjIkGWJdbVrVrrUVW4EM+PHj2fTpk0dnlu+fDnz58/vtm12djb333+/afbm9iorK1m4cCGfffaZaXlubi5//OMfOfXUU3s87p6qrq6OZ3neunWrjloVERERyXCaWRhghx12GP/3f//HypUrWb16NTU1NezatYtwOExBQQGzZs1iwYIFXHTRRZSUlHTb3+TJk1mzZg0PP/wwTz31FJWVlbS2tjJu3DgWLlzIFVdcwfjx49PwzkREREQk02lmQVJGMwsiIiIiQ4tmFiRjNQfD8Uy8wXAUp12ZeEVERERSSXdUknEa/SGq6puprGui1hcgEIrGy1wOK6W5LiaXeCkr8pDjdgzgSKWnNm/ezBe+8IUOz33wwQdaMiciIjLAFCxIRtnd3MqqTQ1U1DQSMVlBFwhF2VzfQnWDnx2jAsyZUEiBJ2sARirJaGlpYe/evZ2eExERkYGlPAuSMRr9IVZtauCT7T7TQKG9SCzGJ9t9rNrUQKM/lKYRioiIiAwtChYkY1TVN1NR05hUm4qaRqrqm/tpRCIiIiJDm4IFyQjNwTCVdU3dzijsLxKLUVnXRHMw3E8jExERERm6FCxIRqhrDFLrC/Sqba0vQF1jMMUjEhERERn6FCxIRvD5Qx1OPUpGIBTFp30LIiIiIklTsCAZIRjuXaDQpjXSt/YiIiIiw5GCBckITnvfLtUsmy51ERERkWTpDkoyQq7bgcvRu8vV5TAyO4uIiIhIchQsSEYoyXFSmuvqVdvSXBclOc4Uj0hERERk6FOwIBnB47QzucSLzWJJqp3NYmFyiRePU8nKRURERJKlOyjJGGVFHnaMCvDJdl+P20wflUNZkacfRyVtmoNh6hqD+PwhguEoTrux/Kskx6lgTUREJEPpL7hkjBy3gzkTCgEjM3NXCdpsFgvTR+UwZ0IhOdqv0K8a/SGq6puprGui1hfocMSty2GlNNfF5BIvZUUe/b8QERHJMAoWJKMUeLIon1jEyDyXbk4Hgd3Nraza1JAweAuEomyub6G6wc+OUQHmTCikwJM1ACMVERGR3lCwIBknx+1g9th8JhV748teWiNRsmzDZNlLsAmaasG/ByJBsDnBnQ/eUnB60zaMRn+IVZsaerQsLBKLxeuVTyzqFMR5PB7GjBnT6TkREREZWEP4jkqGOo/TTtlQDgr2F/BBwwbYuR58OyDs31dmd0PuSCieBoWTwJXb78Opqm+moqYxqTYVNY2MzHMxe2x+h+cPOOAAqqurUzg6ERERSYVhdKclksFa6mHzSqhdC7FI5/KwHxqqYPcWKN0G48shu6jfhtMcDFNZ19TlvhEzkViMyromJhXrhCoREZFMoKNTRQa7gM8IFHZ8ZB4otBeLGPU2rzTa9ZO6xiC1vkCv2tb6AtQ1BlM8IhEREekPChZEBruGDcaMQjJq1xrt+onPH+qwsTwZgVAUnz+U4hGJiIhIf1CwIDKYBZuMPQrdzSjsLxaBnZ8a7ftjWOHeBQptWiN9ay8iIiLpoWBBZDBrqjU2M/dGY43Rvh847X371ZFl068eERGRTKC/2CKDmX9Px1OPkhHyG+37Qa7bgcvRu18fLodxxG17W7ZsYezYsR2+tmzZkoqhioiISB/oOBKRwSzSx43AkdbUjGM/JTlOSnNdbK5vSbptaa6Lkhxnh+eam5vZtm1bp+dERERkYGlmQWQwszm7r9Nl+/7Jluxx2plc4sVmsSQ3HIuFySU6NlVERCRTKFgQGczc+UbCtd5wuI32/aSsyMP0UTlJtZk+KoeyImVmFhERyRQKFkQGM2+pkZm5N3JGGe37SY7bwZwJhcwandvtDIPNYmHW6FzmTCgkZ7/9CiIiIjJ4aS2AyGDm9ELxNCMzczLHp1psUDzVaN+PCjxZlE8sYmSei8q6Jmp9gQ75F1wOK6W5LiaXeCkr8ihQEBERyTAKFkQGu8JJULrNyMzcU6UzjXZpkON2MHtsPpOKvdQ1BvH5Q7RGomTZjFOPSnKc2qMgIiKSofQXXGSwc+XC+HLjce3armcYLDYjUBhfbrRLI4/TTpmCgswXbDLyc/j3GKdx2ZzG3hdvab/PVImIyOCjv+wimSC7CMqOg7wxRmZmX03H/AsOt7FHoXiqMaOQ5kBBhoCADxo2GBnDfTs6Xl92t7F3pniari8RkWFGwYJIpnDlwuhDoGhKu09+W43jUfXJr/RFSz1sXpl45irsh4YqY+9M6TZj5iq7KP3jFBGRtFOwIJJpnF4FBZI6AZ8RKPRkT0wssq9e2XGaYRARGQYULIikWHMwHN/oGwxHcdq10VcGsYYNxoxCMmrXGkviRh/SP2MSEZFBQ3cuIinS6A9RVd+sI0QlcwSbjD0KyRzLC0b9nZ8aS+I0yyUiMqQpWBBJgd3Nraza1EBFTSORWKxTeSAUZXN9C9UNfnaMCjBnQiEFnqwBGKlIO021xmbm3misMdorWBARGdKUwVmkjxr9IVZtauCT7T7TQKG9SCzGJ9t9rNrUQKM/lKYRiiTg39Px1KNkhPxGexERGdI0syDSR1X1zVTUNCbVpqKmkZF5LmaPze+fQWWY7Oxs8vLyOj0n/SwS7GP71tSMQ0REBi0FCyJ90BwMU1nX1O2Mwv4isRg1ewNMKQnjztKP4fjx49mzZ89AD2P4sTn72F5L6UREhjrdpYj0QV1jkFpfoMf17VYLpbkuxnqijGAHkerNYIsoS64MDHe+kXCtN0uRHG6jvYiIDGkKFkT6wOcPdTj1qCtep53ZxRYKApsIb1nH3l3V5OZY8Oa6jArKkivp5i01rrmGquTb5owy2ouIyJCmYEGkD4LhngcKhxXH8NS+Q0PVf4hFjaMqI5526/KVJVfSzek1gtPdW5I7PtVig+KpmgUTERkGdBqSSB847d3/CNmtFmYXW/DUvkvDhvfjgQKAzWrp3KAtS+7mlUZ2XZH+VDgJSmcm16Z0ptFORESGPAULIn2Q63bgcnT9Y1Sa66IgUM3uqv8A+zZC262WroON2rVGdl2R/uTKNWaxRh5kzBh0xWIz6o0v1zI5EZFhQsuQRPqgJMdJaa6LzfUtCeuM9UQJb1nXYUYBjKVJHmcXP4LDKEvu9u3bOfHEEzs899JLLzF69OgBGtEwk10EZcdB3hjjmvPVdNz07HAbexSKp2o/jYjIMKNgQaQPPE47k0u8VDf4TY9Pzc92UBBroGlXdYfnrUChJ4ssWzeTe8MkS+7evXv5+OOPOz2nYCGNXLkw+hAjOG2qNRKuRVqN41F1UpeIyLClYEGkj8qKPOwYFeCT7Z33F7gdNqyBvYSDHWceRuQ4yc92dN+5suRKujm9CgpERCROwYJIH+W4HcyZUAgYmZnbzzBYrZYOWW6tGIHC6Hw3Tns368PbKEuuiIiIDBAFCyIpUODJonxiESPzXFTWNVHrCxAIRYlGY2DLwm614HXaKfRkkZ/t6HmgAMqSKyIiIgNGwYJIiuS4Hcwem8+kYi91jUF8/hAWC5TESikdU0y2NdT9HoX9KUuuiIiIDCAFCyIp5nHaKWt/ylHQDg0HDI4sucGmdptXg2BzavOqiIiIJKRgQaS/DYYsuQGfkbNh53rw7eh4LKbdDbkjjTHqWEwRERFpR8GCSDoUToLSbUZm5p5KVZbclnojG3TtWvNgJew3Zj12bzHGOL7cOHdfREREhj0FCyLp0JYlFxLftLex2IxAIRVZcgM+I1DoSZASi+yrV3acZhhEREREwYJI2gxEltyGDUZwkozatcYYRx/S99cXERGRjKZgQSSd0pklN9hk7FFIZp8EGPV3fmqMUZueRUREhjUFCyIDIR1Zcptqjc3MvdFYY7RXsCAiIjKsJXnou4hkDP+ejsuckhHyG+1FRERkWFOwIDJURYJ9bN+amnGIiIhIxtIyJJGhyubsY/us1IyjB7KysnA6nZ2eExERkYGlYEFkqHLnGwnXerMUyeE22qfJpEmTCAQCaXs9ERER6RkFCyJ90BwMU9cYxOcPEQxHcdqt5LodlOQ48TgH+MfLW2pkZm6oSr5tziijvYiIiAxrChZEeqHRH6KqvpnKuiZqfQECoWi8zOWwUprrYnKJl7IiDzlux8AM0umF4mlGZuZkjk+12IxcDzoJSUREZNhTsCCSpN3Nraza1EBFTSORWKxTeSAUZXN9C9UNfnaMCjBnQiEFngFaf184CUq39SyDc5vSmUY7ERERGfYULIgkodEfYtWmBj7Z7uu2biQWi9crn1g0MDMMrlwYX248rl3b9QyDxWYECuPLU5M9WkRERDKegoUhasuWLfzv//4vzz//PFu2bMHpdDJ58mTOOeccvv/975OdnT3QQxw0ktl3UFXfTEVNY1L9V9Q0MjLPxeyx+SkcdRKyi6DsOMgbY2Rm9tV03PTscBt7FIqnGjMKChRERETkc5ZYzGQdhWS0559/nm9+85vs3bvXtHzatGksXbqUiRMnpvR1q6urGTduHABbt25l7NixKe0/1Vpaw9Ts8bN1t5/te/zU+vblJTDbd9DSGubdqgbqGoNEozH8oQh7WkI9eq3xRdmcdOBIsrMGOD4PNhmZmUN+iMWM41GdHnAXQJZnwIZVV1fHOeec0+G5v/71r5SUlAzQiERERAQ0szDkfPDBB5xzzjm0tLTg9Xq59tprmT9/Pn6/nz//+c/8+te/Zv369ZxyyimsWrUKr3eIb2INNkFgL7Q2g3+3cZMcDRO12rBa3eREnYwNR8l3WSjKyqW6yYovEIrvO9ixJ0CgLMJBxXZijTsY27KDUdEg2LKIevJoKChkW7OVWl+AcLRz3G23WijNdTEmO0p01waINhnJ0mxO42hSd4ExpqY643l3oXHT7m+AxlpobQKbA1z5xgyBwwWhVrDZwVuS/CbktvpNtUaG5tZG4zXCQeP0o/b9tQUW/j0dx7x/vRSor69nxYoVnZ5TsCAiIjKwFCwMMVdeeSUtLS3Y7XZefvllysvL42XHH388U6ZMYdGiRVRUVPDzn/+cG2+8cQBH248CPtizBYKNsGcr7FwHLbuguZ5o8y5aW/YSchbgLDkIT+EMIrYC8vfuIT/vAHblj+HDnVHy3HYOG2kjf89adm+pxB2oo37bTtpiArszm4IRYykuncHu0WP5cGeMpmA4PgSv087sYgsFgU2EN62jOdqA1/1543AQwgHj5rtgIniLwWKFXeth+wewfY0RMIT8EPQZN+pjDoOyY6FoCkQjUPsx5I/r+dKhgA8aNsDO9eDb0XEpkt1tHLNaeqARDPiqu65XPE1LlkRERIYBLUMaQlatWsURRxwBwHe/+10effTRTnWi0SgHHngg69ato6CggNraWhyO1Gy8HTTLkFrqYdsaiEZhx4ew9R3jprapjujuzQRbQ8ZNvcVClttL2FVI8IC5NBVMp7LiIwpGTcI/6gicWXYKd61i76YPsEQjlOa5aAqGaQyEO7ycxWqjoOxgmkuP4L2dFpqCYbxOO4cVx/DUvsvuqv8Qi0Y4oDCbMfluCLXA3mpo2glEwTsSDv2WEdx88JQRMLhyjEChtcWYWYiEgM+XDc08HaZ8GewuqFtnBAzjy42Zh66+J5tXdr3J2ZkDRVNh7ybYux3sXWSAbr8ZuqvX7aF169Yxc+bMDs+tXbuWGTNm9LlvERER6T3rQA9AUueZZ56JP77gggtM61itVr7zne8AsHv3bpYvX56GkaVRwAdb3oVoyAgUql43bryb6og2VBEOhwmGo8SAWCxGsKURe6ABx8bXyG5Yx4Qps9i58QOm+tcwnlq2rFtDOBwiinFkqtth6/SSsWiEhg3v46l9l9nFFlx2K7OLLXhq36Vhw/vEosbNud1qMWYU9lYby3uIGjfk448yZhM+fAqaaozAJuQ3bvDDfoi0GgEDGI8/WgKfvmTMTBRNgroKIxAIJDihKeAzynd8lDhQsDqMvnZ8CJ/8A/ZsNsaaSCxi9NfV64qIiEjGU7AwhLzxxhsAeDweDjvssIT15s6dG3/85ptv9vu40qphg7E3wb8HNr0OWdkQCsCezUSiUSLRGOFotEOTVn8TWQQIbXidnFgTYw+YQKzqDaj/jKyCkfGEa82txoyCy2H2YxNjd9V/KAhUM3VkDgWBanZX/QcwJu7sVgvZWTZjaVHTzn3NiiYby482Loft74P182CkpWFfnXAQYlHj0/zPX4t1/zSWCVkskFNqzBg0bEj8Pald2/X3Lad03/eMmDFGf0PXbaDr1xUREZGMp2BhCFm3bh0AkydPxm5PvB1l+vTpndoMCcEm4wbanQ+1n0A0DI5saN5JNBohEo0RjcXYfx9yLBYj1tqCxxomumMto0eOIurbQaTmY0aUjsbfGiUajWHBQiQaw241/7GJRSNEaiuYnBMiXLsuPqMAxv4Fty1qzBbQFqxYoKAMdm8C33ZjvLHY55/otx9kzJhRsLab1Yi0GsFFsNlYBhSLGMeiBpvMvyfdZXDOLtr3PQNjjC31xut0JdHrioiIyJCgDc5DRCAQYNeuXQDd7hUoKCjA4/HQ3NzM1q1be/wa1dXVXZbX1NT0uK9+0VQLrQEjQKj/zNiMGzNuetsChUQbdMKtAbKcYYINlXinzKHZ4SFUU0HuuMPJyimkNbQXl8OG3WYhHLEkHEIo2Ex+6w727t0ef84KFOc4sYebO95U544yThXaUgVNO4w9CNGwsfTIYut4gx8Jgy1mzELEPg82tv8HyuZCwXjjVKXGGuN70P6koqZaY5NyV9wFxuvWf9bx+WCTcVKSu7Dr9mavKyIiIkOCgoUhorFxX6KwnhyH2hYsNDX1/BPhts3Lg5Z/D1itxhr6YCM4c41P6SOtxGLGh/aJbvOj0SiWaARbqw9rYA8Wh4eIfxPWYBN2VzaR4B4AXHYbWTYrewPm+RUsVhuW5p1YQoH4cyNynOS6HdAcMPZStHG27U3YZew/yPIa5ZHw50FB+9mA6OdBQrt34G8wPv3PGW0kVmtbfrX/96T9aUZmHNn7vmcdvikhYwmXu+vmhPydX1dERESGBC1DGiICgX03p1lZWd3WdzqNk278/m5uJDNJJGgEC5HPN+ZaLBAzltXEgGgMLBYL1oQTA1EsFguxcCsWu7GhOBYNYrU5iMZi2K0W3Fk2RnidlOQ4TX94rFYbhANYLcYPV0mOk9H5brJs+9/8A1a7ccpRfLmSxYhoiJEwrNn/6UgrEN23RGn/ZUORLjYp7xt04nrdLV/qMA4REREZajSzMES4XK7449bW7m/cgkHj5tDt7u5j4326W7JUU1MTP7p1QNicxnGpts+P/IzFwGJc4hYwbvixYLdaaY1ETTqwEovFsNiziIWNGQCL1Uk00oLVYsHrtONx2smyWRlb4MbrtNPQ3EpTMBxPyBaNRrA4XGRn2RnhdZKf7cBp//xG3rLfSUrRsHHKkbXdxmWL5fPRJlgwtf/TtizAui/gsO0XKNq6OP40Po5o4nr7jzmR/V9XREREhgQFC0NETk5O/HFPlhY1NzcDPVuy1GbA8ib0lDvfuPH15Bs5AyIh47+2LCyRABaLETA4bBZCkY733VarlZjVRsSeS9SVTyzUjM2dR9TpJRzYhstmodCTZcwQAE67jdJcGwWeLJqDxnGskWgMZ64TV/5IxpYU4oju92m9w2UcUdq2FCnoM5YPZY/Yt1/B6jCyM3f6pN7aeWmSu9DYmGx3GEuBHG7je7D/98Tu7nopUqgFckcb36v2S5GsDmPM3TF7XRERERkStAxpiHC5XIwYMQLofiPy7t2748HCoN+HkAxvKWS5jOU9RVM+3yhshewibFYLNotxmpHVYsFpt3ZY0WPPctEasxMtnExT2IY91Ix71HR8rdDa2MDoPDf52Z2T12XZrBRkZzEy18WYfDcj8vNwFI7HkT+68/iyvB03AftqjE3EBWVGYrZwwBi73d15+Y/N/vmyqnYzIqMPNgKGcNDYr5Azyvge7P89yR3Z9ffNv3vf96w9p9cYc3fMXldERESGBAULQ0hbttvKykrC4XDCehUVFZ3aDAlOLxRPMzbbls4yboBDLeApxmq14fh8ViAcjeGwW+MBg8ViwZKVTXPUjnXkTLbvqMGaOxLbqANpqKthYnE2Ywuz9y0nSsRig+KpkF1ojGP/JTy2rM+zHbf92MVgdxUUTDA+2bd+HhDYnXTcnGAx2rY7ihVbFow+FJweY5Nz22vvfyJR2/eku+VELfX7vmdgjDG7qPvlRYleV0RERIYEBQtDyDHHHAMYS4zee++9hPVWrFgRf3z00Uf3+7jSqnCScRSoOx8mHAetLcZSmvzx2G1WHDYr0ViMcCSGw2YlO8tOtjeXsMWFY9JxNFq8VG/ZhG3icThHTeMARyNlIzymmZs7KZ1pvH7bOEpndq7jLgRv8b5/11caswUT5xk3/20BQXa740rtzv2WIFlgxmlGEBCLQWNtx9c2+56YjaW9xtp93zMsxhi7OzJ1//csIiIiQ46ChSHkq1/9avzx7373O9M60WiU3//+9wDk5+czf/78dAwtfVy5cMARxnr7kbOh7DgINIK3BGthGVkOB1k2YyNzKBrD5vJi84zAOfNEXOO+gHX3Jg4+/EgiE47FUjiRMdMOIdvZzSZhiw1GHgTjy43XbxvH+HLj+faf6tudkDf282U7VmMJ0ea3YPQXYPbZ4B1lHGPqcH++H8FtfLof+Xyfgy0LDvoaTD3R2OdQvwFKpnd8bbPvidlY2ouGjL5GzoZZp0P++M9nOJJ4z31gtVqNGZ52X9YEye9EREQkfSyxWCxRnirJQMcddxxvvPEGdrud119/nfLy8g7l99xzD4sWLQLgpptu4uabb07Za1dXV8f3QGzdunVgN0QHfLBni7EnYM8W2FkBLTuhuZ5o8y4igUairkIipQcSLJpFq6uQYEsztsJxhPLKCDu8jMx14cUPDRuMLMW+mo4bhR1uY71+8VTj03Wzm+aAz7x9OGgcV+rK/3zPQrExexD0wfYPoWaNsTQo5Dc2HdudMOZQmHCssbcgFjH2GuSPS/zaPR1L+/dSOssIZHzVvX/PIiIiMmQoWBhi1qxZw9FHH43f78fr9XLdddcxf/58/H4/f/7zn1m8eDEAU6dOZfXq1R1OUeqrQRUstAk2QWAvtDYbN9ehFmPZj8VGNCubkM1DayRGK3ZanSOIZXnIczvwOO2d+2mqNfZDRFqNT/jd+caNdU/W6ydq7y4wAoKmOuN5dwE4PBBoMJYGhZqNfQSufGOmweGCUNA4ctVb0ru9Aj19L319zyIiIpLxFCwMQc8++yzf+ta38Pl8puVTp07l+eefZ/LkySl93UEZLIiIiIhIr2lR8BD0la98hQ8//JCrrrqKqVOnkp2dTX5+Pocffjh33XUXa9asSXmgICIiIiJDj2YWJGU0syAiIiIytGhmQURERERETNm7ryIi0r8aGhq49NJLOzz36KOPUljYg1wPIiIi0m8ULIjIgKutreWpp57q8Nwtt9yiYEFERGSAaRmSiIiIiIiYUrAgIiIiIiKmFCyIiIiIiIgpBQsiIiIiImJKwYKIiIiIiJhSsCAiIiIiIqYULIiIiIiIiCkFCyIiIiIiYkrBgoiIiIiImFKwICIiIiIiphQsiIiIiIiIKQULIiIiIiJiyj7QA5ChIxwOxx/X1NQM4Egk0+zYscP0uZycnAEYjYiISGYbOXIkdntqbvMtsVgslpKeZNhbtWoVRxxxxEAPQ0RERGRY27p1K2PHjk1JX1qGJCIiIiIipjSzICkTCAT46KOPACguLk7Z9JdIIjU1NfHZrHfffZdRo0YN8IhkuNK1KIOFrkWB1C5D0t2cpIzL5WLOnDkDPQwZpkaNGpWyKVeRvtC1KIOFrkVJBS1DEhERERERUwoWRERERETElIIFERERERExpWBBRERERERMKVgQERERERFTChZERERERMSUggURERERETGlpGwiIiIiImJKMwsiIiIiImJKwYKIiIiIiJhSsCAiIiIiIqYULIiIiIiIiCkFCyIiIiIiYkrBgoiIiIiImFKwICIiIiIiphQsiIiIiIiIKQULIiIiIiJiSsGCiIiIiIiYUrAgIoOCxWLp0de8efO67evFF1/kzDPPZOzYsTidTsaOHcuZZ57Jiy++2P9vRAa1uro6nnvuOW688UZOPvlkRowYEb+2zj///KT7S8W11tLSwj333MMRRxxBYWEhXq+XGTNm8KMf/YgtW7YkPSbJDKm4Fh9//PEe/+58/PHHu+1P16KYiomIDAJAj77mzp2bsI9oNBq75JJLumx/ySWXxKLRaPremAwqXV0b5513Xo/7SdW1VllZGZs2bVrCPvLy8mLPP/98H9+1DEapuBZ/97vf9fh35+9+97su+9K1KInYUxNyiIikxve+9z2+//3vJyz3eDwJy66//noWL14MwCGHHMKiRYuYNGkSGzZs4O6772bNmjUsXryY4uJibr/99pSPXTLLuHHjmDFjBi+//HLSbVNxrTU1NXHqqaeyfv16AC6++GLOPfdc3G43y5Yt46c//Sl79+7l7LPPZuXKlcyePbv3b1YGtb5ci21eeuklRo8enbB87NixCct0LUqXBjpaERGJxfZ9ynbTTTf1qv1nn30Ws9vtMSB2+OGHx1paWjqUNzc3xw4//PAYELPb7bHKysoUjFoyzY033hh79tlnYzt27IjFYrFYVVVV0p/mpupau+mmm+Kvfffdd3cqf+utt+KvM3/+/OTeqAx6qbgW288sVFVV9XosuhalK9qzICJDwv333084HAbgoYcewu12dyjPzs7moYceAiAcDvPAAw+ke4gyCNxyyy2ceuqplJaW9rqPVFxroVCIBx98EIAZM2bwwx/+sFOd8vJyLrzwQgCWLVvGe++91+sxy+CTimsxFXQtSncULIhIxovFYvzjH/8AYPr06Rx55JGm9Y488kimTZsGwDPPPEMsFkvbGGVoSNW1tnz5cvbs2QPAeeedh9Vq/ue4/UbXp59+uo+jF+lM16J0R8GCiGS8qqoqtm3bBsDcuXO7rNtWXl1dzaZNm/p7aDLEpOpae+ONNzrVM3P44YfH9+m8+eabvRmySJd0LUp3FCyIyKDy1FNPMW3aNNxuNzk5OUyZMoXzzjuPZcuWJWyzbt26+OPp06d32X/78vbtRHoiVddaT/ux2+1MmjTJtA+R9s4//3xKS0vJyspixIgRHHnkkVx//fXx4DYRXYvSHQULIjKorF27lk8//ZRAIEBTUxOVlZX8/ve/5/jjj+eMM85g7969ndps3bo1/rirEz/AOHXErJ1IT6TqWmv7t8fjIT8/v0f97Ny5k2AwmMxwZRhZsWIFdXV1hEIh6uvreeedd7jjjjuYPHkyv/rVrxK207Uo3dHRqSIyKGRnZ3PaaaexYMECpk+fjtfrZefOnaxYsYJHH32U+vp6nnnmGU4//XReeeUVHA5HvG1jY2P8sdfr7fJ12h+92tTUlPo3IkNaqq61tn6668OsH6fT2aOxyvAwceJEzjzzTMrLy+M38xs3buRvf/sbS5YsIRAIcOmll2KxWLjkkks6tde1KN1RsCAig8K2bdtMP9U64YQTuOyyyzj55JNZs2YNK1as4JFHHuHyyy+P1wkEAvHHWVlZXb5O+z9ufr+/7wOXYSVV11pbP9310V0/MrydccYZnHfeeVgslg7Pz5kzh69//es899xznHnmmYRCIa666ipOO+00Ro4c2aGurkXpjpYhicig0NX0d2lpKUuWLIn/MWs7lrKNy+WKP25tbe3yddpPne9/5KVId1J1rbX1010f3fUjw1teXl6nQKG9U089lZtuugmAlpYWfvOb33Sqo2tRuqNgQUQywsSJEznhhBMAqKysZPv27fGynJyc+OPulhY1NzfHH/dk2l2kvVRda2399GQpnK5Z6YuLL744HlCsWLGiU7muRemOggURyRgzZ86MP25/wkf7jabV1dVd9tF+o2n7DagiPZGqa62tn+bm5vgZ9931U1xcrDXikrSSkhJGjBgBYHoykq5F6Y6CBRHJGImSqLUPIioqKrrso335jBkzUjMwGTZSda31tJ9wOMyGDRtM+xDpqa4SUOpalO4oWBCRjLF27dr449GjR8cfl5WVxf9tNs3e3uuvvw7AmDFjmDBhQuoHKUNaqq61Y445Jv64q35Wr14dX/px9NFH92bIMszV1dVRX18PdPy92UbXonRHwYKIZISNGzfyyiuvAMb+hTFjxsTLLBYLp59+OmB8Mvb222+b9vH222/HPzk7/fTTu9wYKGImVdfavHnzyMvLA+CJJ55I+Mnv448/Hn98xhln9HX4MgwtXrw4fn2ZZWjWtSjdUbAgIgPu2WefJRwOJyyvra3la1/7GqFQCIAf/OAHnepceeWV2O3GadCXXXZZp2P9/H4/l112GWBkIr3yyitTNHoZblJxrWVlZcWP/123bh333ntvpzorV66Mn14zd+5c5syZk8q3IRlu06ZNrFmzpss6zz33HLfddhtgnHp0wQUXdKqja1G6Y4l1tZBNRCQNJkyYQCgU4qyzzqK8vJwJEybgdrvZtWsXy5cvjydlA2PK/NVXXzXdXHfttdfys5/9DIBDDjmEa665hkmTJrFhwwbuuuuu+B/Wa6+9ljvvvDN9b1AGjTfffJPKysr4v3ft2sXVV18NGEsrLrroog71zz//fNN+UnGtNTY2cvjhh/Ppp58CcMkll3DuuefidrtZtmwZd955J01NTbjdbt566y0OPvjgvrx1GWT6ei0uX76c+fPnU15ezle+8hUOPvhgSkpKiMVibNy4kSVLlrBkyZL4TMEvfvEL0w9aQNeidCMmIjLAxo8fHwO6/TrrrLNiu3fvTthPJBKJ/fd//3eXfVx44YWxSCSSvjcng8p5553Xo2ut7SuRVF1rn332WWzKlCkJ+8jNzY09++yzqf42yCDQ12tx2bJlPWqXnZ0d+9WvftXteHQtSiKaWRCRAbdixQpWrFjBypUr2bhxI7t27cLn8+H1ehk3bhxHHXUU5513HuXl5T3qb+nSpSxevJhVq1axa9cuRowYwZw5c/jud7/LySef3M/vRgaz888/nyeeeKLH9bv7E5mKa625uZmHH36Yp556isrKSlpbWxk3bhwLFy7kiiuuYPz48T0er2SOvl6LjY2N/POf/2TlypWsXr2ampoadu3aRTgcpqCggFmzZrFgwQIuuugiSkpKevQauhbFjIIFERERERExpQ3OIiIiIiJiSsGCiIiIiIiYUrAgIiIiIiKmFCyIiIiIiIgpBQsiIiIiImJKwYKIiIiIiJhSsCAiIiIiIqYULIiIiIiIiCkFCyIiIiIiYkrBgoiIiIiImFKwICIiIiIiphQsiIiIiIiIKQULIiIiIiJiSsGCiIiIiIiYUrAgIiIiIiKmFCyIiIiIiIgpBQsiIiIiImJKwYKIiKTU8uXLsVgsWCwWbr755oEejoiI9IGCBRERERERMaVgQURERERETClYEBERERERUwoWRERERETElIIFERFJm/abn5cvXw7AX//6VxYsWEBxcTFut5tp06axaNEiGhoaetTn0qVL+da3vsXEiRPxeDzk5eUxa9Yszj33XP72t7/h9/tN20WjUf7v//6PhQsXMnLkSLKysiguLmb+/Pn88pe/pLW1NeFr3nzzzfH3AeDz+bj55ps56KCD8Hq9lJaWsnDhQt56660O7erq6rj++uuZNWsWHo+HoqIiTj/9dNasWdOj97p+/Xouv/xyZs2aRV5eHm63m4kTJ3LBBRfw/vvv96gPEZGkxERERFJo2bJlMSAGxG666aaEZa+++mrsG9/4Rvzf+39Nnjw5VlNTk/B1du3aFVuwYEHC9m1fv/vd7zq1ra+vjx199NFdtpsxY0Zs06ZNpq990003xett2bIlNnXqVNM+bDZb7K9//WssFovFPvjgg9iYMWNM6zmdzti//vWvLr+vt956a8xutyccr8Viid14441d/88REUmSZhZERGRA3HjjjTz55JN89atf5emnn+a9995j6dKlnHLKKQBUVlZy1VVXmbZtaWlh/vz5/Otf/wLgsMMO41e/+hX//ve/Wb16NX//+9+56qqrGD16dKe2kUiEU089lX//+98AzJ07l6eeeorVq1fzz3/+k69+9asArFu3jgULFtDU1NTl+zj77LOprq7m2muvZcWKFaxatYr777+f3NxcIpEIF154IVVVVZx66qn4/X7uuOMO3nzzTd555x1uueUWsrKyCAaDXHDBBQlnM2688UZuvPFGwuEwRx11FI899hgrV65k9erV/PGPf6S8vJxYLMatt97KQw891KPvv4hIjwx0tCIiIkNLT2cWgNjtt9/eqX00Go19+ctfjgExu90eq6ur61TnyiuvjPfxgx/8IBaNRk3HEgwGYzt27Ojw3C9+8Yt42+985zumba+77rp4nUWLFnUqbz+z4HQ6Y2+//XanOs8//3y8TnFxcWzEiBGxysrKTvUefvjheL2nn366U/m7774bs1qtMSB2/fXXm77PSCQS+9a3vhUDYjk5ObHdu3eb1hMRSZZmFkREZEAcdthhXHfddZ2et1gs/L//9/8ACIfDrFy5skP57t27Wbx4MQCHHnooDz74YHzvwP6ysrIoLS3t8NzDDz8MwIgRI/jFL35h2vbWW29l+vTpAPz6178mGAwmfB9XXnklX/ziFzs9v3DhQsaPHw/Azp07uf3225k0aVKnehdccAEulwuAN954o1P5XXfdRTQa5bDDDuPWW281HYPVauWhhx7C6XTS2NjIkiVLEo5XRCQZChZERGRAfOMb30h4k3/YYYfFH2/cuLFD2bJly2hpaQHg8ssvx2az9fg1t2/fzrp16wA455xzyMnJMa1ns9m44IILACM46Wrz8LnnnpuwbPbs2YARAJ1zzjmmddxuN1OmTAE6v9dQKMQLL7wAwNe+9rWE3y+A/Px8DjroIIBOAZaISG8pWBARkQHR9sm9mcLCwvjjxsbGDmXtTw467rjjknrNjz/+OP7YbDagvfbl7dvtb+rUqQnL8vPzAWMWo6CgoNt6+7/XtWvXxgOja6+9Nn4CU6Kv1atXA7Bjx44u35uISE8pWBARkQGRnZ2dsMxq3ffnKRKJdCjbtWtX/PGoUaOSes32x7HuvzxpfyNHjjRtt7+evI+u6rSvt/97raur67JdIm0BhohIX9kHegAiIiIDoaslPQCxWCxNI0msffBwzz33cNJJJ/Woncfj6a8hicgwo2BBREQyyogRI+KPa2pqKCsr63Hb9subuluqU1tba9ounYqKiuKPQ6EQBx544ICMQ0SGLy1DEhGRjHLooYfGH7/++utJtW1/s/3OO+90Wffdd981bZdOs2bNIisrC4CXX355QMYgIsObggUREcko8+fPjy+zeeihhzqt8+/K6NGjmTFjBgBPPfVUpw3FbSKRCI8//jgABQUFHQKUdMrOzmbBggUALF++vEMAIyKSDgoWREQko+Tn5/Pd734XgPfee48rr7wy4f6CUCjUaZPwD37wA8DIfXDZZZeZtr3llltYu3YtABdffDFOpzOVbyEpP/nJT+L7K84991w2bNiQsG4kEuHJJ5+kuro6XcMTkSFOwYKIiGSc2267LZ5T4Be/+AVz5szh17/+NW+//Tbvv/8+//znP1m0aBFlZWUsXbq0Q9tLL72U8vJyAJ544gmOP/54lixZwvvvv8/zzz/PWWedxW233QbApEmTuOGGG9L75vZz9NFHc+ONNwJQVVXFwQcfzJVXXsnSpUtZs2YNb7/9Nn/+85+54oorOOCAA/jmN7/Jnj17BnTMIjJ0aIOziIhknOzsbF577TXOOussXn/9dd577z0uueSSHrW12Ww899xznHbaafz73/9m+fLlLF++vFO9GTNm8MILL+D1elM8+uTdfPPN5Ofn8+Mf/5impiYefPBBHnzwQdO6WVlZ8YzQIiJ9pZkFERHJSCNGjGDFihU8/fTTfO1rX2Ps2LE4nU4KCgo48MAD+eY3v8k//vEPvvGNb3RqW1hYyOuvv84f/vAHTjrpJEpLS3E4HBQVFTFv3jx+8Ytf8J///Ifx48cPwDszd+WVV7JhwwZuuOEGjjzySEaMGIHdbsfj8TB16lTOOussHn30UbZt28bkyZMHergiMkRYYoPhIGkRERERERl0NLMgIiIiIiKmFCyIiIiIiIgpBQsiIiIiImJKwYKIiIiIiJhSsCAiIiIiIqYULIiIiIiIiCkFCyIiIiIiYkrBgoiIiIiImFKwICIiIiIiphQsiIiIiIiIKQULIiIiIiJiSsGCiIiIiIiYUrAgIiIiIiKmFCyIiIiIiIgpBQsiIiIiImJKwYKIiIiIiJhSsCAiIiIiIqYULIiIiIiIiCkFCyIiIiIiYkrBgoiIiIiImFKwICIiIiIiphQsiIiIiIiIKQULIiIiIiJiSsGCiIiIiIiYUrAgIiIiIiKm/j9w0tg6i3k2OAAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {
"image/png": {
"height": 390,
"width": 389
}
},
"output_type": "display_data"
}
],
"source": [
"# Create grid\n",
"grid = sns.FacetGrid(data=df_models.to_pandas(), hue=\"Student\", height=4)\n",
"\n",
"# Plot data\n",
"grid.map(sns.scatterplot, \"Income\", \"Balance\",alpha=.5)\n",
"\n",
"# Plot our predictions student + income\n",
"grid.map(sns.lineplot, \"Income\", \"balance_pred_si\")\n",
"\n",
"# Plot Income mean\n",
"grid.map(plt.axvline, x=df_models['Income'].mean(), color=\"black\", ls='--');\n",
"\n",
"# Plot mean for Student = 0\n",
"grid.map(plt.axhline, y=student_no, color=\"black\", ls='--');\n",
"\n",
"# Aesthetics\n",
"grid.set(ylabel='Balance');\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You'll also notice that **centering does not change model predictions**. It only changes how we *interpret* the parameter estimates from our model"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAANhCAYAAABjAus5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AADqrElEQVR4nOzdeXiU5b3/8c8zM5ksEyBAAqJJhITFqMcjkEBQFlG0Cli3omgqoCxulNIqWouiVsCNuhYXFhUsiLv2iCvIKltY/KGWLQFMwmKSkgiZkExm5vn9kWZMyDYJk2HJ+3Vduc4wz/18nzv0XGT85L6/t2GapikAAAAAAAA0a5YTPQEAAAAAAACceIREAAAAAAAAICQCAAAAAAAAIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhEQAAAAAAAAQIREAAAAAAAAk2U70BHD6cLvdOnjwoCTpjDPOkM3G/3sBAAAAAHCqYCURAubgwYOKi4tTXFycLywCAAAAAACnBkIiAAAAAAAAEBIBAAAAAACAkAgAAAAAAAAiJAIAAAAAAIAIiQAAAAAAACBCIgAAAAAAAIiQCAAAAAAAACIkAgAAAAAAgAiJAAAAAAAAIEIiAAAAAAAAiJAIAAAAAAAAIiQCAAAAAACACIkAAAAAAAAgQiIAAAAAAACIkAgAAAAAAAAiJAIAAAAAAIAIiQAAAAAAACBCIgAAAAAAAIiQCAAAAAAAACIkAgAAAAAAgAiJAAAAAAAAIEIiAAAAAAAAiJAIAAAAAAAAIiQCAAAAAACACIkAAAAAAAAgQiIAAAAAAACIkAgAAAAAADRTZR6vJKnA6VJOQbEKnK4q7zc3thM9AQAAAAAAgGBye7wqcXu1aEOWFqzP0p58p+9ap2iH0nrHa3iveIXZLLJZm8/6mubznR4jNzdXn376qaZMmaKrrrpK0dHRMgxDhmFo1KhRjaq5YcMG3X333UpKSlLLli0VGRmpxMREDRkyRM8++6zy8vLqvL+4uFjPPPOMevXqpTZt2igyMlJJSUm67777lJWV5fc8fvzxR915553q3LmzwsPDFRMTo/79++u1116T2+1u1PcGAAAAAMDpwOM1tWpXvnpPW6Kpi7dVCYgkaU++U1MXb1PvaUu0ale+PF7zBM00+AzTNJvPd1uJYRi1Xhs5cqTefPNNv2uVlpZq/Pjxmjt3rur66/zoo4907bXX1ngtMzNTQ4YM0Y4dO2q83qpVKy1cuFCDBw+ucy5z587VPffco9LS0hqvp6am6tNPP1Xbtm3rrNMYOTk5iouLkyRlZ2crNjY24M8AAAAAAKCx3B6vVu3K15j5G/0Kf6wWQ3NHJqtv5+hmsaLo9P8O/RAXF6crrriiUfe6XC5dd911mjNnjkzTVL9+/TR79mytXr1a69at0zvvvKO//vWv6tKlS601ioqKNHToUF9ANHbsWC1dulRr1qzRtGnTFBkZqV9++UXDhg3T1q1ba63z5Zdfaty4cSotLVX79u314osvav369fr88891/fXXS5LWrVun66+/Xl5v89xfCQAAAABovkrcXo1fuNnv1UEer6l7FmxWqbt5/Dd0s+1JNGXKFKWkpCglJUXt27fX3r171alTpwbXmTp1qj7//HNJ0owZM3TvvfdWud67d2/deOONmjZtmsrKymqsMWPGDG3fvl2S9PTTT2vSpEm+a3369NHAgQPVv39/FRcXa+LEifrmm2+q1XC73Ro/fry8Xq9atmypb7/9VomJib7rV155pe655x69/PLLWrlypf75z39qxIgRDf5+AQAAAAA4FZV5ynsQOV2eBt3ndHm0KD1LI/p0VMhpvpro9P7u6vDYY49p6NChat++faNr7N69W08++aQkadSoUdUComOFhIRUe6+srEwvvPCCJCkpKanGGn369NHo0aMlScuWLdOmTZuqjfnoo4+UkZEhSXrwwQerBEQVnnnmGbVu3dr3GgAAAACA5iLEatGC9f73+61swbqs0z4gkppxSBQIs2bNUllZmQzD0JQpUxpVY/ny5SosLJRU3gvJYqn5f5LKzbQ//PDDatc//vjjGsdWFhERoRtvvFGS9MMPP2jXrl2NmjMAAAAAAKeaAqerWpNqf+3Od6qw2BXgGZ18CImOw3vvvSdJSk5O9m1V83q9ysnJ0Z49e3T06NF6a6xatcr3esCAAbWOS05OlsPhkCStXr261jrdunXTGWecUWudys+oqQ4AAAAAAKcjp+v4Tvtu6Da1U1Gz7Ul0vPLy8rR7925J5dvBDh8+rClTpmj+/PkqKCiQJNlsNl100UW6//77NWTIkBrrbNu2zff6nHPOqfV5NptNiYmJ2rp1a5V7pPLG1zk5OfXWOPb6sXXqU/GM2hw4cKBB9QAAAAAACBaH/fgiEIfdGqCZnLwIiRrp3//+t+91eHi4evTooczMzCpj3G63Vq5cqZUrV+pPf/qTnn322Wp1srOzJUkOh0NRUVF1PjMuLk5bt25VXl6eSktLFRoaKqk8vDHN8s7s9R07X3FEfeVn+6vyvQAAAAAAnEpaO+zqFO1o1JazhGiHoiLsTTCrkwvbzRrp0KFDvtfPP/+8MjMzddFFF2nFihUqLi7WoUOHtGDBAnXo0EGS9Nxzz+nVV1+tVufIkSOSpMjIyHqfWbHdTCpfPXRsDX/q1FYDAAAAAIDTWZnHq7Te8Y26Ny01XmUeb4BndPJhJVEjOZ2/Jo+lpaXq2bOnli5dqrCwMEnlq4tuueUWpaSkqHv37nI6nZoyZYpGjhyp8PBw370lJSWSJLu9/kSyYuWQpCr9jipq+FOnthr+qG/l0YEDB9SrV68G1QQAAAAAIBhCrBYN7xWv577e2aD+Qg67VcNT4jndDLWrCIMqTJs2rdp7ktSlSxfdddddksr7GC1ZsqTGOi5X/V3SS0tLfa8rB02Vn1tfndpq+CM2NrbOr4pVUwAAAAAAnIzCbBb945YesloMv8ZbLYZmpvVQqK15xCfN47tsAi1atPC9ttvtGjhwYK1jf/Ob3/hep6en11jHn61flVcvVd5WVnku9dWprQYAAAAAAKc7m9Wi/l1jNGdEcr2NqB12q+aOTFa/LjGyNYNVRBIhUaNVbuLcvn37Ord5VR6bm5tb5VpFo2mn06nCwsI6n1mx3SsmJqbKtrHKzarrO4Gs8pYxGlEDAAAAAJobq8VQvy7RWj95kB4emqRO0Y4q1xOiHXp4aJI2TB6kvp2j/V51dDqgJ1EjdenSRSEhISorK5PHU/dexsrXbbaqf+XnnnuuPvjgA0nS9u3blZqaWmMNt9vtOz0tKSmpyrXIyEjFxcUpOztb27dvr3Mula8fWwcAAAAAgObAZrUo0mrRiD4dNbpvggqLXXK6PHLYrYqKsKvM420WPYiO1fy+4wAJCQlRnz59JEk///xzlW1cx6oIdyTprLPOqnKtb9++vtcrVqyotcbGjRt9z7j44ourXa+os2PHDh08eLDWOpWfUVMdAAAAAACai4ogKCrCrrOiwn3H3DfHgEgiJDouN9xwg6TylUKffPJJreM+/PBD3+t+/fpVuXbJJZeoVatWkqR58+bJNM0aa7z55pu+19ddd12169dee22NYysrLi7Wu+++K6l8BVPXrl1rnTMAAAAAAGheCImOw+2336527dpJkv7617/q559/rjZm+fLleuuttyRJ559/frXVO3a7XRMmTJAkbdu2TTNmzKhWY+3atZo7d64kacCAAUpJSak25rrrrlNiYqIk6YknnqiyeqnCpEmTVFBQ4HsNAAAAAABQwTBrW7pymlu9erUyMjJ8f87Pz/cFJxdffLHGjBlTZfyoUaNqrPPOO+/o5ptvlmmaiouL01/+8hf16tVLJSUl+vzzz/Xcc8/p6NGjstlsWr58eY1bvI4cOaLk5GTt3LlTkjRu3DgNHz5c4eHhWrZsmaZPn66ioiKFh4drzZo1uvDCC2ucy2effaarr75aXq9X7du310MPPaRevXqpoKBAs2fP9vU+6tu3r5YvXy6rte5O7g2Vk5Pja4adnZ1dpaE2AAAAAAA4uTXbkGjUqFGaN2+e3+Pr+muaOXOm/vznP8vlctV4PTIyUv/85z91zTXX1FojIyNDgwcP1q5du2q83rJlSy1YsEBDhw6tc56zZ8/W+PHja51Lr169tHjxYkVHR9dZpzEIiQAAAAAAOHWx3SwA7rnnHm3evFl33XWXOnfurPDwcEVGRuqCCy7Q/fffr507d9YZEElS586dtWXLFj311FNKTk5WVFSUIiIi1K1bN/3pT3/S1q1b6w2IJGns2LHatGmTxo4dq4SEBIWFhalt27bq27evXnnlFX377bdNEhABAAAAAIBTW7NdSYTAYyURAAAAAACnLlYSAQAAAAAAgJAIAAAAAAAAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAECERAAAAAAAABAhEQAAAAAAAERIBAAAAAAAABESAQAAAAAAQIREAAAAAAAAECERAAAAAAAAREgEAAAAAAAAERIBAAAAAABAhEQAAAAAAAAQIREAAAAAAABESAQAAAAAAAAREgEAAAAAAEDNOCTKzc3Vp59+qilTpuiqq65SdHS0DMOQYRgaNWrUcdUuLi5WQkKCr17Hjh39vu+ZZ55Rr1691KZNG0VGRiopKUn33XefsrKy/H7+jz/+qDvvvFOdO3dWeHi4YmJi1L9/f7322mtyu92N/K4AAAAAAMDpzHaiJ3CitG/fvslqT5kyRXv27GnQPZmZmRoyZIh27NhR5f3t27dr+/btmjNnjhYuXKjBgwfXWWfu3Lm65557VFpa6nuvpKREq1at0qpVq/Tmm2/q008/Vdu2bRs0PwAAAAAAcHprtiuJKouLi9MVV1wRkFpbtmzR888/r7CwMLVo0cKve4qKijR06FBfQDR27FgtXbpUa9as0bRp0xQZGalffvlFw4YN09atW2ut8+WXX2rcuHEqLS1V+/bt9eKLL2r9+vX6/PPPdf3110uS1q1bp+uvv15er/f4v1kAAAAAAHDaaLYriaZMmaKUlBSlpKSoffv22rt3rzp16nRcNT0ej8aOHSuPx6NHHnlEc+fO1ZEjR+q9b8aMGdq+fbsk6emnn9akSZN81/r06aOBAweqf//+Ki4u1sSJE/XNN99Uq+F2uzV+/Hh5vV61bNlS3377rRITE33Xr7zySt1zzz16+eWXtXLlSv3zn//UiBEjjuv7BQAAAAAAp49mu5Loscce09ChQwO67eyFF17Qpk2b1K1bNz3wwAN+3VNWVqYXXnhBkpSUlKR777232pg+ffpo9OjRkqRly5Zp06ZN1cZ89NFHysjIkCQ9+OCDVQKiCs8884xat27tew0AAAAAAFCh2YZEgfbTTz9pypQpkqRXXnlFdrvdr/uWL1+uwsJCSdLIkSNlsdT8P0nlZtoffvhhtesff/xxjWMri4iI0I033ihJ+uGHH7Rr1y6/5ggAAAAAAE5/hEQBcvfdd8vpdOrWW2/VwIED/b5v1apVvtcDBgyodVxycrIcDockafXq1bXW6datm84444xa61R+Rk11AAAAAABA80RIFACLFi3SZ599ptatW2vGjBkNunfbtm2+1+ecc06t42w2m28LWeV7pPLG1zk5OfXWOPb6sXUAAAAAAEDz1WwbVwdKQUGBJk6cKEl68skn1a5duwbdn52dLUlyOByKioqqc2xcXJy2bt2qvLw8lZaWKjQ0VJKUk5Mj0zQlSbGxsfXWOPbZ/qoIompz4MCBBtUDAAAAAAAnD0Ki4zRp0iT9/PPP6tOnj8aOHdvg+ytOP4uMjKx3bMV2M6l89VBFSFT5BLX66hxboyEqB0wAAAAAAOD0wnaz47By5Uq9/vrrstlsevXVV2UYRoNrlJSUSJJfja4rQiFJOnr0aLUa/tSprQYAAAAAAGjeWEnUSKWlpRo3bpxM09Qf//hHXXDBBY2qExYWJklyuVx+PbNCeHh4tRr+1Kmthj/q25524MAB9erVq0E1AQAAAADAyYGQqJGmTZumHTt2KC4uTo8++mij67Ro0UKSf1u/nE6n73XlbWUVNfypU1sNf9TX7wgAAAAAAJy6CIka6amnnpIkDRo0SJ9++mmNYyoCGafTqUWLFkmS2rVrp0svvdQ3JjY2VuvXr5fT6VRhYWGdzasrVvLExMRU2TZWObypr7l05dVA9BgCAAAAAAAVCIkaqWJb1xtvvKE33nijzrH5+fm6+eabJUkDBgyoEhKde+65+uCDDyRJ27dvV2pqao013G63MjMzJUlJSUlVrkVGRiouLk7Z2dnavn17nXOpfP3YOgAAAAAAoPmicfUJ1rdvX9/rFStW1Dpu48aNvpVJF198ca11duzYoYMHD9Zap/IzaqoDAAAAAACaJ0KiRjJNs96vs88+W5J09tln+95bvnx5lTqXXHKJWrVqJUmaN2+eTNOs8Xlvvvmm7/V1111X7fq1115b49jKiouL9e6770oqX8HUtWtXP79bAAAAAABwuiMkOsHsdrsmTJggSdq2bZtmzJhRbczatWs1d+5cSeXb1VJSUqqNue6665SYmChJeuKJJ3xb0yqbNGmSCgoKfK8BAAAAAAAqNNueRKtXr1ZGRobvz/n5+b7XGRkZ1VbjjBo1qsnmMmnSJL3zzjvauXOn7r//fmVkZGj48OEKDw/XsmXLNH36dLndboWHh+v555+vsUZISIhefPFFXX311Tp8+LAuvvhiPfTQQ+rVq5cKCgo0e/ZsX++jvn376tZbb22y7wcAAAAAAJx6DLO2/U2nuVGjRmnevHl+j2/MX1PHjh31008/6eyzz9bevXvrHJuRkaHBgwdr165dNV5v2bKlFixYoKFDh9ZZZ/bs2Ro/fryvsfaxevXqpcWLFys6Otqv76EhcnJyfCemZWdnVzl1DQAAAAAAnNzYbnaS6Ny5s7Zs2aKnnnpKycnJioqKUkREhLp166Y//elP2rp1a70BkSSNHTtWmzZt0tixY5WQkKCwsDC1bdtWffv21SuvvKJvv/22SQIiAAAAAABwamu2K4kQeKwkAgAAAADg1MVKIgAAAAAAABASAQAAAAAAgJAIAAAAAAAAIiQCAAAAAACACIkAAAAAAAAgQiIAAAAAAACIkAgAAAAAAAAiJAIAAAAAAIAIiQAAAAAAACBCIgAAAAAAAIiQCAAAAAAAACIkAgAAAAAAgAiJAAAAAAAAIEIiAAAAAAAAiJAIAAAAAAAAIiQCAAAAAACACIkAAAAAAAAgQiIAAAAAAACIkAgAAAAAAAAiJAIAAAAAAIAIiQAAAAAAACBCIgAAAAAAAIiQCAAAAAAAACIkAgAAAAAAgAiJAAAAAAAAIEIiAAAAAAAAiJAIAAAAAAAAIiQCAAAAAACACIkAAAAAAAAgQiIAAAAAAACIkAgAAAAAAAA6yUKi0tJS/fzzz/J6vSd6KgAAAABwSijzlP/3U4HTpZyCYhU4XVXeBwB/2YLxkKKiIq1cuVKS1L9/f0VGRla5np+frzvuuEOffvqp3G63IiMjNXbsWE2fPl12uz0YUwQAAACAU4rH65Xba2rLT4X66Lt9em9jtrxm+bVO0Q6l9Y7X8F7xCrNZZLOeVOsDAJykDNM0zaZ+yLx583TbbbcpPj5eu3fvlsXy6z9QXq9XvXv31ubNm1V5KoZh6IYbbtC7777b1NNDgOTk5CguLk6SlJ2drdjY2BM8IwAAAOD0U+bxKsRq0X+KSnW4pEwOu03tWoYpp6BYC9dnaVF6tg79dzWRw27VP27pof5dY2S1GCd45gBOdkFZSfTll19Kkm644YYqAZEkvfPOO9q0aZMMw1CPHj00YMAArVixQps3b9YHH3ygL774QldeeWUwpgkAAAAAJy23x6sSt1eLNmRpwfos7cl3+q5VrBy6Y0CixvRL0Jh56dqcVSiny6Mx8zdq7shk9e0czYoiAHUKyr8QP/zwgwzDUJ8+fapde+uttyRJPXv21Lp16/T3v/9da9euVa9evSRJ8+fPD8YUAQAAAOCk5fGaWrUrX72nLdHUxduqBESStCffqamLt+miJ5Zqc1aBFo5NVY/4KN+99yzYrFI3PYoA1C0oIVFeXp4k6eyzz67yfllZmVasWCHDMHT33XfLZitf2BQSEqI777xTpmlq/fr1wZgiAAAAAJyU3B6vVu7M05j5G+V0eeoc63R5dMdbm/RtRr7mjExRG4fd9/6i9CyaWQOoU1BCokOHDkkqD38q27hxo44ePSpJuuqqq6pc69q1qyTp4MGDQZghAAAAAJycStxejV+4WR6vf+1kPV5TE97eIpvF0E3Jcb73F6zLUgjbzQDUISj/QoSHh0uScnNzq7y/YsUKSVJiYqLat29f4z0AAAAA0FyVecp7ENW3guhYTpdH723KVlpqvCr6Ve/Od6qw2NUEswRwughKSJSYmChJWr58eZX3P/roIxmGoQEDBlS7p2KLWrt27Zp8fgAAAABwMgqxWrRgfVaj7l2wLkuxrSPUv0uM772Ghk0AmpeghESXX365TNPUyy+/rM8//1xFRUV66aWXlJ6eLkm6+uqrq92zdetWSdKZZ54ZjCkCAAAAwEmnwOmq1qTaX7vznco7UqKEGIfvPYfdGqipATgN2YLxkD/+8Y969dVXdeTIEQ0dOrTKtaSkpBpDosWLF9d6IhoAAAAANAdOl/u47i8q9cgRWv6ffQnRDkVF2AMxLQCnqaCsJOrQoYP+7//+T2eccYZM0/R9JSQk6P3335dhGFXGZ2ZmatWqVZLKVyEBAAAAQHPksB/f7/UjQ61ylpYHTWmp8ZxuBqBOQVlJJEn9+vXTnj179O233+rgwYPq0KGD+vbt6zv2vrIDBw7o4YcflqQa+xUBAAAAQHPQ2mFXp2hHo7acJUQ7FNMiTLvznHLYrRqeEs/pZgDqFLSQSJLsdrsGDhxY77i+ffuqb9++QZgRAAAAAJy8yjxepfWO19TF2xp8b1pqvHIKivVtZr5mj0hWqI2ACEDd+FcCAAAAAE5SIVaLhveKb3DDaYfdqmE94/TexmzNHpGsfl1iZGMVEYB68K8EAAAAAJzEwmwW/eOWHrJajPoHS7JaDL14c3dZLYbG9U9U387Rft8LoHkL6nYzSfp//+//adWqVdq9e7eOHDkij8dT53jDMDR37twgzQ4AAAAATi42q0X9u8ZozohkjV+4WU5X7f8N5bBbNTOth/p1iZFpmqweAtAghmmaZjAetGPHDt1+++1at26d3/eYpinDMOoNknByyMnJUVxcnCQpOztbsbGxJ3hGAAAAwOnD7fGqxO3VO+lZ+ue6rCrNrBOiHUpLjdfwlHiF2iyEQwAaJSgrifbt26f+/fsrPz9fFZlUZGSkWrduLYuFf7wAAAAAoD42q0WRVotG9Omo0X0TVFjsktPlkcNuVVSEXWUeL6eXATguQQmJpk2bpry8PBmGoTFjxui+++5T165dg/FoAAAAADitVARBURF2RUVUfx8AGisoIdEXX3whwzA0YsQIzZo1KxiPBAAAAAAAQAMEJWrev3+/JGnEiBHBeBwAAAAAAAAaKCghUevWrSVJUVFRwXgcAAAAAAAAGigoIVFycrIkaefOncF4HAAAAAAAABooKCHRhAkTZJom/YgAAAAAAABOUkEJiS6//HLdf//9WrZsme666y6VlZUF47EAAAAAAADwU1BON5s/f77OPfdcXXTRRZo1a5b+7//+T7/73e90zjnnKCIiot77aXgNAAAAAADQtAzTNM2mfojFYpFhGI261zAMud3uAM8ITSEnJ0dxcXGSpOzsbMXGxp7gGQEAAAAAAH8FZSWRJAUhiwIAAAAAAEAjBSUk2rNnTzAeAwAAAABNoszjVYjVogKnS06XWw67Ta0ddt/7AHA6CEpIdPbZZwfjMQAAAAAQUG6PVyVurxZtyNKC9Vnak+/0XesU7VBa73gN7xWvMJtFNsIiAKe4oPQkQvNATyIAAACcTjxeUyt35mn8ws1yujy1jnPYrfrHLT3Uv2uMrJbG9WIFgJMBUTcAAAAAHMPt8WrlzjyNmb+xzoBIkpwuj8bM36hVu/Lk9niDNEMACLygNa6u4PF49PHHH2vJkiX64YcfdOjQIUlSmzZtdP7552vQoEG69tprZbVagz01AAAAAJAklbi9Gr9wszxe/zZeeLym7lmwWRsmD2LbGYBTVlBDoi+++ELjxo3Tvn37fO9V7HYzDENr1qzRrFmzFBsbq1mzZuk3v/lNMKcHAAAAACrzlPcgqm8F0bGcLo8WpWdpRJ+ONLMGcEoK2r9cb731loYOHap9+/bJNE2Zpqmzzz5bqamp6t27t6+5tWmays7O1pAhQ7RgwYJgTQ8AAAAAJEkhVosWrM9q1L0L1mUREAE4ZQXlX6+ffvpJ48aNk9frVUREhKZOnaqDBw9q9+7dWrNmjdauXavdu3fr4MGDmjZtmiIjI+X1ejV27FhlZTXuH2cAAAAAaIwCp6vKKWYNsTvfqcJiV4BnBADBEZSQ6IUXXlBpaakiIyO1atUq/fWvf1W7du2qjYuJidGDDz6oVatWKTIyUqWlpXrhhReCMUUAAAAAkCQ5Xe7jvL9h29QA4GQRlJDoq6++kmEYmjRpki688MJ6x//v//6v7rvvPpmmqS+//LLpJwgAAAAA/+WwH1/rVoedQ3gAnJqCEhJVbBkbNGiQ3/dcfvnlVe4FAAAAgGBo7bCrU7SjUfcmRDsUFWEP8IwAIDiCEhJ5POXLLRtyrH3FWK/X2yRzAgAAAICalHm8Susd36h701LjVebhv2EAnJqCEhKdddZZkqQ1a9b4fU/F2DPPPLNJ5gQAAAAANQmxWjS8V3yDt4057FYNT4nndDMAp6yg/Os1cOBAmaapJ598Uvv37693fE5Ojp588kkZhqFLL700CDMEAAAAgF+F2Sz6xy09ZLUYfo23WgzNTOuhUBsBEYBTV1D+BfvDH/4gi8WivLw89e7dW++9955vC1plHo9H7777rvr06aPc3FxZLBaNHz8+GFMEAAAAAB+b1aL+XWM0Z0RyvSuKHHar5o5MVr8uMbKxigjAKcwwTdMMxoOeeOIJTZ48WYZRnsRHRUWpe/fuat++vQzD0MGDB7VlyxYVFhaqYkrTp0/XX/7yl2BMDwGQk5OjuLg4SVJ2drZiY2NP8IwAAACA4+P2eFXi9uqd9Cz9c12W9uQ7fdcSoh1KS43X8JR4hdosBEQATnlBC4kk6eWXX9b999+v4uLi8ocbVZduVkwlIiJCzzzzjO66665gTQ0BQEgEAACA01WZx6sQq0WFxS45XR457FZFRdh97wPA6SCoIZEk5efn64033tCSJUv0ww8/6NChQ5KkNm3a6Pzzz9egQYN02223KTo6OpjTQgAQEgEAAAAAcOoKekh0ssjNzdWGDRu0YcMGpaenKz09Xf/5z38kSSNHjtSbb75Zb42SkhJ9+eWXWrJkiTZs2KBdu3bpyJEjatGihbp166bf/OY3uuOOO9ShQwe/5lRcXKyZM2fqvffeU0ZGhlwul+Li4jRkyBBNmDBB8fH+HcP5448/6qWXXtKSJUu0b98+RUZGKikpSWlpaRo9erRsNptfdRqKkAgAAAAnSsWKngKnS06XWw67Ta0drPQBgIZotiHRsVvdKvMnJNq6dav69u2rI0eO1DmuRYsWmjNnjm688cY6x2VmZmrIkCHasWNHjddbtWqlhQsXavDgwXXWmTt3ru655x6VlpbWeD01NVWffvqp2rZtW2edxiAkAgAAQLBV9AxatCFLC9ZX7RnUKdqhtN7xGt4rXmH0DAKAevGvpKS4uDhdccUVDbrn8OHDvoDo4osv1hNPPKGvv/5amzdv1pdffqk77rhDVqtVR44c0S233KLPP/+81lpFRUUaOnSoLyAaO3asli5dqjVr1mjatGmKjIzUL7/8omHDhmnr1q211vnyyy81btw4lZaWqn379nrxxRe1fv16ff7557r++uslSevWrdP1118vr9fboO8XAAAAONl4vKZW7cpX72lLNHXxtioBkSTtyXdq6uJt6j1tiVbtypfH2yx/Pw4Afmu2K4keeeQRpaSkKCUlRe3bt9fevXvVqVMnSf6tJFqzZo1eeOEFPfLIIzr33HNrHPPJJ5/ouuuuk2maSkxM1K5du2pcwfToo4/qsccekyQ9/fTTmjRpUpXra9euVf/+/eV2uzVw4EB988031Wq43W4lJSUpIyNDLVu21ObNm5WYmFhlzD333KOXX35ZkjRv3jyNGDGizu+xoVhJBAAAgGAo83hlSFq1K19j5m/0K/yxWgzNHZmsvp2jWVEEALUIaEiUkJBQXtQwlJmZWe39xji2VlNpaEjkr9/97nf64IMPJEmbN29W9+7dq1wvKytTu3btVFhYqKSkJP3www+yWKr/0Lrzzjv12muvSZI2btyonj17Vrn+3nvv+ba0PfHEE/rLX/5SrUZxcbFiY2NVUFCg888/X99//31AvscKhEQAAABoShVby7btP6yuZ7TQRU8sldPl8ft+h92qDZMHyRHaND06AeBUF9AIfe/evb6v2t5vzNepbODAgb7XNYVdy5cvV2FhoaTycKqmgEiSRo0a5Xv94YcfVrv+8ccf1zi2soiICF+Q9MMPP2jXrl31zB4AAAA4OVRsLeszfYk6RIXpvY3ZDQqIJMnp8mhRepbKPLReAICaBDRCHzlyZIPebw4qN5CuKQBatWqV7/WAAQNqrZOcnCyHwyGn06nVq1fXWqdbt24644wzaq0zYMAA34qk1atXq0uXLvV/EwAAAMAJ5PZ4fVvL+nWOVmzrCC1Yn9WoWgvWZWl038bvdACA01lAQ6I33nijQe83BytWrPC9Puecc6pd37ZtW53XK9hsNiUmJmrr1q1V7pHKG1/n5OTUW+PY68fWAQAAAE5GJW6vxi/cLI/XVGK7SOUeLqnWpNpfu/OdKix2KSrCHuBZAsCpj824Tej//b//p8WLF0uSzjvvvBobXGdnZ0uSHA6HoqKi6qwXFxenrVu3Ki8vT6WlpQoNDZVU3guoorVUfX2AKnoGVX62vyqCqNocOHCgQfUAAACA+pR5yo+3r9haFmG3qqjUfVw1nS6PoiICMTsAOL0EJSTKyipfCnrWWWfJarX6dY/H49G+ffskSfHx8U02t6ZSWlqqMWPGyOMp/2E2ffr0GscdOXJEkhQZGVlvTYfD4XtdVFTkC4kqavhT59gaDVE5YAIAAACCIcRqqbK1rNjlUeRxNp522P37bxIAaG6CcvZjx44dlZCQoB07dvh9z969e333nYrGjx+vjRs3SirvyfTb3/62xnElJSWSJLu9/uWuFaGQJB09erRaDX/q1FYDAAAAOBkVOF1VtpZl5hapXcswdYp21HFX7RKiHWw1A4BaBG27WcV2qGDddyI98cQTmjNnjiSpZ8+emjlzZq1jw8LCJEkul6veupWbYIeHh1er4U+d2mr4o77taQcOHFCvXr0aVBMAAACoi9NVdWvZyl15yikoVlrveE1d3PAem2mp8SrzeBViDcrvywHglHLS9iSqCIdqOxL+ZPXaa6/pr3/9q6Tyk8Y+//zzKlu8jtWiRQtJ/m39cjp//Q1K5W1lFTX8qVNbDX/U1+8IAAAACDSHvep/snhNaeH6LN0xIFHPfb3T16vIv1pWDU+JJyACgFqctP86VjRBrhyAnOzefvtt3X333ZKks88+W0uWLFFMTEyd91QEL06nU4WFhXWOrVjJExMTU2XbWOXwpr7m0pVXA9FjCAAAACe71g57ta1li9Kz5fGaeuHm7rJaDL/qWC2GZqb1UKjtpP1PIAA44YL6L6Rh1P8PeFlZmbZv365p06ZJKl+Ncyr417/+pREjRsjr9apDhw5aunSpXytvKp94tn379lrHud1uZWZmSpKSkpKqXIuMjPQFPnXVOPb6sXUAAACAk02Zx6u03lUPsjnkdGnMvHT17Ryt127tWW8jaofdqrkjk9WvS4xsrCICgFo1yb+QVqu1ypdUvn3s/PPPr3bt2K+wsDCdd955+vrrr2UYhn73u981xRQDaunSpbrxxhvldrvVtm1bff3110pMTPTr3r59+/per1ixotZxGzdu9G0Vu/jii2uts2PHDh08eLDWOpWfUVMdAAAA4GQSYrVoeK/4akHQ5qxC3TJ7nXrEt9aaBy/Tw0OTqq04Soh26OGhSdoweZD6do72e9URADRXTRISmaZZ5au29+v7GjZsmCZOnNgUUwyYNWvW6JprrlFpaalatmypL7/8Uuedd57f919yySVq1aqVJGnevHm1Nup+8803fa+vu+66atevvfbaGsdWVlxcrHfffVdS+Qqmrl27+j1PAAAA4EQJs1n0j1t6VAt5NmcVatCzK/Tq8kz95rwztOy+S5Q++TItu+8SbX74cn1z3yUa0aejHKE2VhABgB+apHH1I488UuXPjz32mAzD0J133ql27drVep9hGAoLC1OHDh100UUX+b0a50T57rvvNGTIEDmdTjkcDn322Wfq2bNng2rY7XZNmDBBjz/+uLZt26YZM2Zo0qRJVcasXbtWc+fOlSQNGDBAKSkp1epcd911SkxMVGZmpp544gkNGzas2t/fpEmTVFBQ4HsNAAAAnApsVov6d43RnBHJGr9wc5Vm1YecLr2yIlOvrcxU/y4xOqdDC92UEqeo8BBJokk1ADSAYQbhjHmLxSLDMPT9999X6cFzIq1evVoZGRm+P+fn5/uCk4svvlhjxoypMn7UqFFV/pyZmamLLrpIubm5kqTnnntOgwYNqvOZ7dq1qzEkO3LkiJKTk7Vz505J0rhx4zR8+HCFh4dr2bJlmj59uoqKihQeHq41a9bowgsvrLH+Z599pquvvlper1ft27fXQw89pF69eqmgoECzZ8/WBx98IKl8a9ry5ct9WwEDJScnx9cbKTs7m9PQAAAAEFBuj1clbq/eSc/SP9dlaU/+ryf3JkQ7lJYar+Ep8Qq1WVg5BACNEJSQaN68eZLKV7u0bNmyqR/nl1GjRvnm5Y9j/5refPNN3XbbbQ165iOPPKJHH320xmsZGRkaPHiwdu3aVeP1li1basGCBRo6dGidz5g9e7bGjx8vl8tV4/VevXpp8eLFio6ObtDc/UFIBAAAgGAo83gVYrWosNglp8sjh92qqAi7730AQOM0yXazY40cOTIYjzmlde7cWVu2bNHMmTP13nvvKSMjQy6XS3FxcRo8eLD++Mc/6uyzz663ztixY9WnTx+9+OKLWrp0qfbv3y+Hw6GkpCSlpaVpzJgxstmC8j87AAAA0CQqgqCoCLuiIqq/DwBonKCsJJKkrKwsSVL79u0VGhpa59iSkhLfNq74+Pg6x+LkwUoiAAAAAABOXUGJ2levXq2OHTvqf/7nf1RcXFzv+KNHj+r8889XQkKCNmzYEIQZAgAAAAAANG9BCYneeecdSeXHtLdu3bre8a1bt9YNN9wgr9erRYsWNfX0AAAAAAAAmr2ghERr166VYRi6/PLL/b7niiuukFS+CgkAAAAAAABNKyghUXZ2tiSpW7duft/TuXNnSdK+ffuaZE4AAAAAAAD4VVBCol9++UWSZLVa/b6nYux//vOfJpkTAAAAAAAAfhWUkCg6OlqStHv3br/vqRjrTw8jAAAAAAAAHJ+ghEQXXnihpF8bWPujomH1+eef3xRTAgAAAAAAQCVBCYmuueYamaapDz/8UO+9916949999119+OGHMgxD1157bdNPEAAAAAAAoJkLSkg0atQodezYUaZp6pZbbtG9997ra2ZdWXZ2tv785z8rLS1NhmEoLi5OY8aMCcYUAQAAAAAAmjXDNE0zGA/67rvv1L9/fxUVFckwDElSfHy8OnToIMMwtH//fmVlZUmSTNNUZGSkVqxYoe7duwdjegiAnJwcxcXFSSoP/GJjY0/wjAAAAAAAgL+CspJIKu9LtG7dOl144YUyTVOmaeqnn37S+vXrtW7dOv3000++93v27KkNGzYQEAEAAAAAAASJLZgPO/fcc7V582Z99dVXWrx4sbZs2aL8/HxJ5Seg9ejRQ1dffbUuu+yyYE4LAAAAAACg2QvadjOc/thuBgAAAADAqSto280AAAAAAABw8iIkAgAAAAAAACERAAAAAAAAAty42mq1SpIMw5Db7a72fmMcWwsAAAAAAACBF9CQqLYe2PTGBgAAAAAAOLkFNCR65JFHGvQ+AAAAAAAATg6GyTIfBEhOTo7i4uIkSdnZ2YqNjT3BMwIAAAAAAP6icTUAAAAAAAAIiQAAAAAAAEBIBAAAAAAAAAW4cfX8+fMDWc5nxIgRTVIXAAAAAAAA5QLauNpiscgwjECVkyQZhiG32x3QmmgaNK4GAAAAAODUFdCVRJLEYWkAAAAAAACnnoCGRHv27Kn1WkFBge644w6lp6fr/PPP18iRI9WrVy+1b99epmkqNzdX6enpmjdvnr7//nv16tVLr732mqKiogI5RQAAAAAAANQgoNvNauNyuXTxxRdr8+bNeuyxxzR58uRat6WZpqnp06fr4YcfVnJyslavXi273d7UU0QAsN0MAAAAAIBTV1BON3vppZe0adMmDRs2TA899FCdfYsMw9DkyZN14403atOmTXrhhReCMUUAAAAAAIBmLSgh0cKFC2UYhkaNGuX3PbfddptM09SiRYuabmIAAAAAAACQFKSQKDMzU5LUvn17v+9p165dlXsBAAAAAADQdIISElW0Pdq1a5ff91SM5bQ0AAAAAACApheUkCgpKUmS9Pzzz8vr9dY73uv16rnnnqtyLwAAAAAAAJpOUEKiW2+9VaZpav369br22mt18ODBWsf+/PPPuv7667V+/XoZhqERI0YEY4oAAAAAAADNmmEGYT+X1+tV//79tWbNGhmGodDQUF1xxRVKSUlRu3btZBiGfv75Z6Wnp+urr75SaWmpTNNU3759tXz5clksQcmycJxycnIUFxcnScrOzlZsbOwJnhEAAAAAAPBXUEIiSSoqKtItt9yiTz/9tPzBhlHjuIrpXH311VqwYIEiIyODMT0EACERAAAAAACnrqAt0YmMjNS//vUvffLJJ7rqqqsUHh4u0zSrfIWHh+uqq67yjSMgAgAAAAAACI6grSQ6lsfjUWZmpgoKCmSaptq0aaPExERZrdYTMR0EACuJAAAAAAA4ddlO1IOtVqu6du16oh4PAAAAAACASugIDQAAAAAAgOCvJDp8+LDef/99rV27VgcPHlRxcbFef/11nX322b4x+/fvV2FhocLCwpSQkBDsKQIAAAAAADQ7QQ2JZs6cqcmTJ+vIkSOSyk8yMwxDTqezyrgVK1YoLS1NYWFhysnJUZs2bYI5TQAAAAAAgGYnaNvNHn30UU2YMEGHDx+W3W5Xz549ax170003qUOHDiotLdUHH3wQrCkCAAAAAAA0W0EJibZs2aLHH39ckvT73/9eBw8e1IYNG2qflMWiYcOGyTRNff3118GYIgAAAAAAQLMWlJDopZdekmma6tOnj+bPn69WrVrVe0+fPn0kSd9//31TTw8AAAAAAKDZC0pItGLFChmGofHjx/t9T8eOHSVJ+/bta6JZAQAAAAAAoEJQQqIDBw5Ikrp16+b3PaGhoZKk0tLSJpkTAAAAAAAAfhWUkMhut0uSysrK/L6nIliKiopqiikBAAAAAACgkqCERLGxsZKkH3/80e97vvrqK0lS586dm2ROAAAAAAAA+FVQQqJLL71UpmnqjTfe8Gv87t27NXfuXBmGocsvv7yJZwcAAAAAAICghETjx4+XzWbTt99+q0cffbTOsRs3btQVV1yhoqIihYaG6o477gjGFAEAAAAAAJq1oIREXbt21cMPPyzTNPX444+rd+/eevrpp33Xv/jiCz311FO67LLL1Lt3b+3Zs0eGYejJJ59Uhw4dgjFFAAAAAACAZs0wTdMM1sOmTJmi6dOny+v1yjCMGseYpinDMDRlyhQ98sgjwZoaAiAnJ0dxcXGSpOzsbF8vKgAAAAAAcPILykqiCn/729+0bt06XX/99QoPD5dpmlW+QkJCdNVVV2nVqlUERAAAAAAAAEEU1JVElbndbv373/9Wbm6uPB6P2rZtq/POO0/h4eEnYjoIAFYSAQAAAABw6rIF4yG33367JOmqq67SsGHDyh9ss+mCCy4IxuMBAAAAAABQj6CERPPmzZMk3XTTTcF4HAAAAAAAABooKD2JYmJiJEnt27cPxuMAAACAgCnzeCVJBU6XcgqKVeB0VXkfAIDTRVBWEp177rlasWKFfvrpJ1144YXBeCQAAABwXNwer0rcXi3akKUF67O0J9/pu9Yp2qG03vEa3iteYTaLbNagngcDAECTCMpPs9///vcyTdO37QwAAAA4mXm8plbtylfvaUs0dfG2KgGRJO3Jd2rq4m3qPW2JVu3Kl8d7Qs6CAQAgoIISEt1222267LLL9Mknn+ixxx7TCTpQDQAAAKiX2+PVyp15GjN/o5wuT51jnS6PxszfqFW78uRm+xkA4BRnmEFIbFauXKmjR4/qgQce0Pfff6+uXbvqpptu0gUXXKDWrVvLarXWeX///v2beooIgJycHMXFxUmSsrOzFRsbe4JnBAAA0HBFpW71nrak3oCoMofdqg2TB8kRGpRuDgAANImghEQWi0WGYTTqXsMw5Ha7AzwjNAVCIgAAcKor83g1b81eTV28rcH3Pjw0SSP6dFQI/YkAAKeooP0EM02z0V8AAABAMIRYLVqwPqtR9y5Yl0VABAA4pQVlPeyyZcuC8RgAAADguBQ4XdWaVPtrd75ThcUuRUXYAzwrAACCIygh0YABA4LxGAAAAOC4OF3H1+bA6fIoKiJAkwEAIMhYDwsAAAD8l8N+fL9DddjrPpAFAICTWZOuJPrss8/0+eef66effpLH49GZZ56pSy65RDfeeKNCQkKa8tEAAABAg7V22NUp2tGoLWcJ0Q62mgEATmlNEhLl5ubq+uuv19q1a6tde/311zVlyhT961//0nnnndcUjwcAAAAapczjVVrv+EadbpaWGq8yj5fm1QCAU1bAf4J5vV5de+21WrNmTa2nle3Zs0dXXHGFCgoKAv14AAAAoNFCrBYN7xXf4G1jDrtVw1PiCYgAAKe0gP8Ue//997Vu3ToZhqFOnTpp9uzZ+v7777Vt2za98847SklJkSQdPHhQzz77bKAfDwAAAByXMJtF/7ilh6wWw6/xVouhmWk9FGojIAIAnNoM0zTNQBb83e9+pw8//FDx8fHatGmT2rZtW+V6WVmZBg4cqDVr1qhLly7asWNHIB+PEygnJ0dxcXGSpOzsbMXGxp7gGQEAADSOx2tq5c48jV+4WU6Xp9ZxDrtVM9N6qF+XGL9DJQAATlYB/3XH5s2bZRiG/vznP1cLiCQpJCREjz32mCQpIyNDTmfDmwICAAAATclqMdSvS7TWTx6kh4cmqVO0o8r1hGiHHh6apA2TB6lv52gCIgDAaSHgjatzc3MlSb179651TGpqqu91Xl6eHA5HrWMBAACAE8FmtSjSatGIPh01um+CCotdcro8ctitioqw06QaAHDaCXhIVFxcLMMw1KJFi1rHVA6Fjh49GugpAAAAAAFTEQRFRdgVFVH9fQAAThcn/CdbgFsiAQAAAAAAoBFOeEgEAAAAAACAEy/g280qfPLJJ9q4cWNAxo0YMSJQ0wIAAAAAAEANDDPA+70sFosMI3CnOxiGIbfbHbB6aDo5OTmKi4uTJGVnZys2NvYEzwgAAJyOKhpGFzhdcrrccthtau2gkTQAAMerSX6KmqYZ0K+mkJubq08//VRTpkzRVVddpejoaBmGIcMwNGrUqAbX++KLL3T99dcrNjZWoaGhio2N1fXXX68vvvjC7xrFxcV65pln1KtXL7Vp00aRkZFKSkrSfffdp6ysLL/r/Pjjj7rzzjvVuXNnhYeHKyYmRv3799drr71G4AYAAE5Zbo9XRaVuzVuzVwNnLFf3x79W36eWqfvjX2vgjOWat2avikrdcnu8J3qqAACckgK+kmjevHmBLCdJGjlyZMBr1rXaaeTIkXrzzTf9qmOapu68807NmjWr1jHjxo3Tq6++WuczMzMzNWTIEO3YsaPG661atdLChQs1ePDgOuczd+5c3XPPPSotLa3xempqqj799FO1bdu2zjqNwUoiAADQVDxeUyt35mn8ws1yujy1jnPYrfrHLT3Uv2uMrJbArW4HAKA5CHhIdKqoHNjExcUpKSlJX331laSGhUSTJ0/W9OnTJUndu3fX/fffr8TERGVmZurpp5/Wli1bfOOmTp1aY42ioiKlpKRo+/btkqSxY8dq+PDhCg8P17Jly/TEE0+oqKhIERERWrt2rS644IIa63z55ZcaPHiwvF6v2rdvr8mTJ6t37946dOiQZs+erQ8//FCS1L9/fy1btkwWS2AXkhESAQCApuD2eLVqV77GzN8oj7f+j65Wi6G5I5PVt3O0bGw/AwDAb802JHrkkUeUkpKilJQUtW/fXnv37lWnTp0k+R8SZWRkKCkpSW63W8nJyVq5cqXCw8N914uLizVgwABt3LhRNptN27dvV2JiYrU6jz76qB577DFJ0tNPP61JkyZVub527Vr1799fbrdbAwcO1DfffFOthtvtVlJSkjIyMtSyZUtt3ry52rPuuecevfzyy5LKV3wFuiE4IREAAGgKRaVu9Z62pM4VRMdy2K3aMHmQHKFNdk4LAACnnWb7q5XHHntMQ4cOVfv27Rtd47nnnvP1+HnppZeqBESSFBERoZdeeklSeYjz/PPPV6tRVlamF154QZKUlJSke++9t9qYPn36aPTo0ZKkZcuWadOmTdXGfPTRR8rIyJAkPfjggzWGUc8884xat27tew0AAHCy83i9Wr0rT0fL/A+IJMnp8mhRepbK6E8EAIDfmm1IdLxM09Qnn3wiSTrnnHOUmppa47jU1FR169ZNkvTxxx9Xa8S9fPlyFRYWSipfwVTbFrDKzbQrto1V9vHHH9c4trKIiAjdeOONkqQffvhBu3btqnEcAADAiVIR6hQ4XcopKNbho25deX4Hrbx/oO6+JFFtHHa/ay1Yl8VpZwAANAA/NRtpz5492rdvnyRpwIABdY6tuJ6Tk6O9e/dWubZq1apq42qSnJwsh8MhSVq9enW16xV1unXrpjPOOKPeudRWBwAA4ERwe7w6WubRpr0Fen31Hv1jWYYe+ugH9ZxafnLZFz8c1B0DErXkzwPUIz7Kr5q7850qLHY17cQBADiNsEm7kbZt2+Z7fc4559Q5tvL1bdu2+XofNaSOzWZTYmKitm7dWuUeqbzxdU5OTqPm0hAVz6jNgQMHGlQPAABAkrxeUyVuryJDbUqIcahdy1BFhtrUrmWYcgqKtXB9ll5enqnnvt6pF27uroVjU3XL7HXanFVYb22ny6OoiKb/HgAAOB0QEjVSdna273V9DZormjkfe1/lPzscDkVFRdVbZ+vWrcrLy1NpaalCQ0MllYc3FdvYjmcu9al8LwAAQCBUrCB6Jz1bC9ZnaU++03etU7RDab3jdceARI3pl6Ax89J1x1ubNOvWnpozMkWDnl2hQ866Vwo57Nam/hYAADhtsN2skY4cOeJ7HRkZWefYim1iUvmqn5rq1FejrjqBmgsAAEAwebymVu3KV+r0pZq6eFuVgEiS9uQ7NXXxNl30xFJtzirQwrGp+t/YVprw9hbZLIZuSq77F1gJ0Q5FRfjfwwgAgOaOkKiRSkpKfK/t9ro/fFSs+JGko0eP1linvhp11QnUXOqTnZ1d59eGDRsaVA8AADRfbo9XK3fmacz8jfUebe90eXTHW5v0bUa+5oxMUWiIVe9tylZaarwsRu33paXGc7oZAAANwHazRgoLC/O9drnqXuZcWlrqex0eHl5jnfpq1FUnUHOpT31b2QAAAPxV4vZq/MLN8njN+gerfNXRhLe3aO2Dl+mm5DgtWJel0X0T1L9LjJbvzKs23mG3anhKPKebAQDQAPzUbKQWLVr4Xte3bcvp/HXp9LHbwSrq+LP1q7Y6gZoLAABAMJR5vFq0IaveFUTHcro8vhVEe//jVN6REiXEOKqNs1oMzUzroVAbH3UBAGgIfnI2UuVVNfWd+lW5QfSxzZ8r6jidThUWFvpVJyYmpsq2sUDNBQAAIBhCrBYtWJ/VqHsXrMtSbOsI9e8So6JSjxyhVRfGO+xWzR2ZrH5dYmRjFREAAA3CT85GOvfcc32vt2/fXufYyteTkpIaVcftdiszM7PGGpGRkb7A53jmAgAAEAwFTle1JtX+2p3/6wqiyFCrnKVuSeVNqh8emqQNkwepb+doWetqVgQAAGoU0J5E8+fPD2Q5nxEjRjRJ3ePRqVMnnXnmmdq/f79WrFhR59iVK1dKks466yx17NixyrW+ffv6Xq9YsUKpqak11ti4caNvq9jFF19c7Xrfvn319ttva8eOHTp48KDOOOOMGutUnmtNdQAAAJqa0+U+rvuLSj2KbR2hmBZhuntgZ024rIuiIuwq83jpQQQAwHEIaEg0atQoGUZgf2tjGMZJGRIZhqFrrrlGr7zyirZv365169bVGPCsW7fOt3rnmmuuqfb3c8kll6hVq1b65ZdfNG/ePN1///01/h2++eabvtfXXXddtevXXnut3n77bd/Yv/zlL9XGFBcX691335VUvoKpa9eu/n/DAAAAAeKwH99H0MhQq849s4XKPF5FR/66BZ+ACACA4xPwn6SmaQb862Q1ceJE2WzlH3L+8Ic/VDtS/ujRo/rDH/4gSbLZbJo4cWK1Gna7XRMmTJAkbdu2TTNmzKg2Zu3atZo7d64kacCAAUpJSak25rrrrlNiYqIk6YknnvBtTats0qRJKigo8L0GAAA4EVo77OoUXb3htD8Soh2KaRGmC+NaEwoBABBgAV1JtGfPnkCWa1KrV69WRkaG78/5+fm+1xkZGVVW7kjlq6SO1bVrV91333168skntXHjRl188cV64IEHlJiYqMzMTD311FPasmWLpPJQpkuXLjXOZdKkSXrnnXe0c+dO3X///crIyNDw4cMVHh6uZcuWafr06XK73QoPD9fzzz9fY42QkBC9+OKLuvrqq3X48GFdfPHFeuihh9SrVy8VFBRo9uzZ+uCDDySVb0279dZbG/C3BQAAEDhlHq/Sesdr6uJtDb43LTVeRaVuhXFyGQAAAWeYJ/NSnSY0atQozZs3z+/xtf01eb1ejR07Vq+//nqt944ePVqzZs2SxVL7h5mMjAwNHjxYu3btqvF6y5YttWDBAg0dOrTOec6ePVvjx4+Xy+Wq8XqvXr20ePFiRUdH11mnMXJycnwNtLOzs6ucugYAAFBZUalbvactkdPl8fseh92q9ZMHKSLEKguNqQEACDh+BXOcLBaL5s6dq8WLF+uaa67RmWeeKbvdrjPPPFPXXHONPvvsM82ZM6fOgEiSOnfurC1btuipp55ScnKyoqKiFBERoW7duulPf/qTtm7dWm9AJEljx47Vpk2bNHbsWCUkJCgsLExt27ZV37599corr+jbb79tkoAIAACgIcJsFv3jlh5+n0JmtRiamdZDoTYLAREAAE2k2a4kQuCxkggAADSEx2tq5c48jV+4uc4VRQ67VTPTeqhflxiOtgcAoAkFtCeRPw4fPqz3339fa9eu1cGDB1VcXKzXX39dZ599tm/M/v37VVhYqLCwMCUkJAR7igAAAAgCq8VQvy7RWj95kN5Jz9I/12VpT77Tdz0h2qG01HgNT4lXqM1CQAQAQBMLakg0c+ZMTZ48WUeOHJFU3ufHMAw5nc4q41asWKG0tDSFhYUpJydHbdq0CeY0AQAAECQ2q0WRVotG9Omo0X0TVFjsktPlkcNuVVSEXWUeL6eYAQAQJEH7ifvoo49qwoQJOnz4sOx2u3r27Fnr2JtuukkdOnRQaWmp70QuAAAAnL4qgqCoCLvOigpXVIS9yvsAAKDpBeWn7pYtW/T4449Lkn7/+9/r4MGD2rBhQ+2Tslg0bNgwmaapr7/+OhhTBAAAAAAAaNaCEhK99NJLMk1Tffr00fz589WqVat67+nTp48k6fvvv2/q6QEAAAAAADR7QQmJVqxYIcMwNH78eL/v6dixoyRp3759TTQrAAAAAAAAVAhKSHTgwAFJUrdu3fy+JzQ0VJJUWlraJHMCAAAAAADAr4ISEtnt5Y0Hy8rK/L6nIliKiopqiikBAAAAAACgkqCERLGxsZKkH3/80e97vvrqK0lS586dm2ROAAAAAAAA+FVQQqJLL71UpmnqjTfe8Gv87t27NXfuXBmGocsvv7yJZwcAAAAAAICghETjx4+XzWbTt99+q0cffbTOsRs3btQVV1yhoqIihYaG6o477gjGFAEAAAAAAJq1oIREXbt21cMPPyzTNPX444+rd+/eevrpp33Xv/jiCz311FO67LLL1Lt3b+3Zs0eGYejJJ59Uhw4dgjFFAAAAAACAZs0wTdMM1sOmTJmi6dOny+v1yjCMGseYpinDMDRlyhQ98sgjwZoaAiAnJ0dxcXGSpOzsbF8vKgAAAAAAcPILykqiCn/729+0bt06XX/99QoPD5dpmlW+QkJCdNVVV2nVqlUERAAAAAAAAEEU1JVElbndbv373/9Wbm6uPB6P2rZtq/POO0/h4eEnYjoIAFYSAQAAAABw6rKdsAfbbLrgggtO1OMBAAAAAABQSVC3mwEAAAAAAODkREgEAAAAAACAwG43u/322wNZTpJkGIbmzp0b8LoAAACnszKPVyFWiwqcLjldbjnsNrV22H3vAwAAHCugjastFkutR9s3hmmaMgxDHo8nYDXRdGhcDQDAief2eFXi9mrRhiwtWJ+lPflO37VO0Q6l9Y7X8F7xCrNZZCMsAgAAlQQ0JOrYsWOdIVFxcbHy8vJ8f7bb7WrTpo1M01RBQYFcLlf5pAxD0dHRioiIkCTt2bMnUFNEEyIkAgDgxPJ4Ta3cmafxCzfL6ar9l2wOu1X/uKWH+neNkdUSuF/wAQCAU1tAf320d+9e7dmzp8avDz74QA6HQzabTXfddZfS09PldDq1f/9+HThwQE6nUxs3btRdd90lq9Uqh8OhDz74gIAIAACgHm6PV2Uer1bsyNWY+RvrDIgkyenyaMz8jVq1K09ujzdIswQAACe7gK4kqs2BAwfUvXt3/fLLL/rss880cODAOsevWLFCV155pVq1aqUtW7aoQ4cOTT1FBAAriQAACD6P11SB06XQEItSpy+tNyCqzGG3asPkQXKEBrRNJQAAOEUFZSP6jBkzlJubq4kTJ9YbEEnSgAEDNHHiROXm5uqZZ54JwgwBAABOPWVur6wWQy3CbHonPbtBAZFUvqJoUXqWylhNBAAAFKSQ6NNPP5VhGBoyZIjf91SMXbx4cVNNCwAA4JTk9nhVVOrWvLV79cAHWxUaYtWC9VmNqrVgXRannQEAAElSUNYW5+TkSJLCwsL8vqdibMW9AAAAKN9etmpXvq859ei+nZR7uKTKKWYNsTvfqcJil6Ii7AGeKQAAONUE5ddGDodDkpSenu73PRs2bJAk3wlnAAAAzZ3b49XKnXlVmlNH2K0qKnUfV92GblMDAACnp6CERMnJyTJNU9OnT1deXl6943Nzc/XEE0/IMAylpKQEYYYAAAAnvxK3V+MXbpbH++u5I8UujyKPs/G0w2493qkBAIDTQFBCovHjx0uS9u/fr969e+vjjz+W11u9QaLX69Unn3yiPn36aN++fZKkCRMmBGOKAAAAJ7Uyj1eLNmRVW/WTmVukdi3D1Cna0ai6CdEOtpoBAABJQepJNHjwYE2YMEEvvviifvrpJ91www1q3bq1unfvrnbt2skwDP3888/67rvvdOjQIZlm+W/HJkyYoCuvvDIYUwQAADiphVgtNTanXrkrTzkFxUrrHa+pi7c1uG5aarzKPF6aVwMAgOCERJL0/PPPKy4uTo888oiKi4t16NAhffPNN1XGVIRD4eHhevzxx/XnP/85WNMDAAA4qRU4XTU2p/aa0sL1WbpjQKKe+3png/oLOexWDU+JJyACAACSgrTdrMK9996r3bt366mnntLll1+u9u3by263y263q3379rr88sv11FNPac+ePQREAAAAlThdtTenXpSeLY/X1As3d5fVYvhVz2oxNDOth0JtBEQAAKCcYVYs3wGOU05OjuLi4iRJ2dnZio2NPcEzAgDg9FHgdKn741/Xer1HfJQWjk3V6ox8/fHtLXWuKHLYrZqZ1kP9usT4HSoBAIDTH786AgAAOAW0dtjrbE69OatQt8xepx7xrbXmwcv08NCkauMToh16eGiSNkwepL6dowmIAABAFawkQsCwkggAgKZT5vFq3pq99TanbuOw66bkOKWlxiu2dYTyjpSopMyryFCbWjvsNKkGAAC1CnpIdOjQIb3xxhtasmSJfvjhBx06dEiS1KZNG51//vkaNGiQbrvtNrVp0yaY00IAEBIBANC0ikrd6j1tiV/NqS2G1L9LjM7p0EJ/GtRVVoshQ5KVgAgAANQiqCHRa6+9pvvuu0/FxcWSfj3NzDcZo3zJc0REhP7+979r3LhxwZoaAoCQCACApuX2eLVqV77GzN8oj7f+j3BWi6G5I5N1cedoVg8BAIB62YL1oCeffFKTJ0/2BUOtWrVS9+7ddcYZZ8g0Tf3888/asmWLfvnlFzmdTt11110qLCzU/fffH6wpAgAAnNRsVov6d43RnBHJGr9wM82pAQBAQAVlJdEPP/yg7t27y+PxqEOHDnrmmWc0bNgwhYSEVBnndrv13nvvadKkSdq/f79sNpu2bNmi8847r6mniABgJREAAMHh9nhV4vbqnfQs/XNdlvbkO33XEqIdSkuN1/CUeIXaLLKxgggAAPgpKCHRnXfeqVmzZikmJkbp6emKj4+vc3x2drZSUlKUl5encePG6ZVXXmnqKSIACIkAAAiuiibUhcUuOV0eOexWRUXQnBoAADROUD49fPPNNzIMQw8++GC9AZEkxcXF6YEHHpBpmlq6dGkQZggAAHDqqQiCoiLsOisqXFER9irvAwAANERQPkHs27dPknTRRRf5fc/FF18sSdq/f3+TzAkAAAAAAAC/CkpIZLVaJZX3HPJXxViLhd+EAQAAAAAANLWgJDAVW8wasnWsYqw/29MAAAAAAABwfIISEl1++eUyTVMzZszQ999/X+/4rVu36plnnpFhGLriiiuCMEMAAAAAAIDmLSgh0cSJExUaGqqioiL17dtXzzzzjPLz86uNy8/P19NPP63+/furqKhIoaGhmjhxYjCmCAAAAAAA0KwZpmmawXjQ/Pnzddttt/36YMNQx44d1b59exmGoYMHD2rv3r0yTVOmacowDL355pu69dZbgzE9BEBOTo7i4uIkSdnZ2YqNjT3BMwIAAAAAAP6yBetBI0aMUNu2bXXnnXdq3759Mk1Tu3fv1p49eyRJlbOqM888U7NmzdLgwYODNT0AAAAAAIBmLWghkSQNGTJEe/bs0UcffaQlS5bohx9+0KFDhyRJbdq00fnnn69Bgwbpuuuuk80W1KkBAAAAAAA0a0HbbobTH9vNAADNgdvjlc1q0VGXW6Vur6wWQy3CQlTm8SrEGpR2jwAAAE2CTzIAAAB+8Hi9crnLA6LcIyU68EuJXG6vWoSF6MAvR/VdVqGKSt1ye7wneqoAAACNwp4uAACAerg9Xh0t8+id9GwtWJ+lPflO37VO0Q6l9Y7XsOQ4lbm92nHgsC6Mby2rxTiBMwYAAGg4VhIBAADUweM1tSffqTe/3asDv5To7DYRqpz/7Ml3auribbroiaXalFWg885qpf+XXcCKIgAAcMoJeE+ihISEQJaTYRjKzMwMaE00DXoSAQBON2Vur0JsFuUeLlFRqVuRoTa1axmmnIJiLVyfpUXp2TrkdPnGWy2GZt3aUz3iW8tus8gRyqJtAABw6gh4SGSxWGQYhgJV1jAMeTyegNRC0yIkAgCcLtwer0rcXi3akFXn9jKP19SYeenanFXou+6wW7X2wcu04+fDujCuNc2sAQDAKaPJfr0VHh6ulJQUGQb78QEAwKnD4zW1ale+xi/cLKer+i+qKraXPff1Tr1wc3ctHJuqW2av8wVFTpdH723K1uD/6UBABAAATilNtpJIks4880zdcsstuvXWW3X++ecH8jE4CbGSCABwqnN7vFq1K19j5m+Ux1v/R6SK7WXd41tr0LMrfFvPEqId+ua+S1RUUqbIsJCmnjYAAEBABPzXW2+99ZauuOIKWSwW7du3TzNmzND//u//qkePHnruued08ODBQD8SAADguLg9XpW6PTpa5tH4hZv9Coik8lVHE97eIpvF0E3Jcb73d+c7lXekRO7A/i4OAACgSQU8JEpLS9Pnn3+unJwcX0Bkmqa+++473XfffYqLi9OVV16pBQsW6OjRo4F+PAAAQINUbC/7T5FL76Rn17jFrC4V28vSUuOrnHpWVOpRKNvNAADAKaTJPrm0b99ef/7zn7V582Z9//33uu+++3TmmWfK4/Hoq6++0ogRI9S+fXuNGjVKS5YsCVijawAAAH+5PV6t3Jmnt9b9pDOjwrVgfVaj6ixYl6XY1hHq3yXG915kqE3hdk43AwAAp46g/HrrvPPO09NPP62srCx9/fXXuvXWW+VwOFRUVKS33npLv/nNbxQXF6cHHnhA33//fTCmBAAAmrFjt5d1inYo93BJlVPMGqJie1lCjENSeU+imBahcnu8gZw2AABAkwrqGmjDMHTZZZdp3rx5+vnnnzV//nwNGjRIFotF+/fv14wZM5SamhrMKQEAgGampu1lEXarikrdx1W3qNQjR2j5yqG01Hi53F7Z2G4GAABOISfsk0t4eLh+//vf61//+peeffZZhYWFyTRNtp0BAIAmU9v2smKXR5Ghx7c1LDLUKmepWw67VTelxIt8CAAAnGpO2MeX1atX64477lCHDh00ceJElZSUSJLatWt3oqYEAABOcyVub43byzJzi9SuZZg6RTsaVbd8e1mY9v6nWP+4pYdCbRZZLaREAADg1BLUTy87d+7Uww8/rISEBA0YMEBz5sxRYWGhwsLCdPPNN+uzzz7T7t27gzklAADQTJR5vFq0IavG7WUrd+Upp6BYab3jG1U7LTVe+wqKNaLP2erfNUYhLCMCAACnoCY/ciM/P1+LFi3SW2+9pY0bN0qSTNOUYRi65JJLdOutt+p3v/udIiMjm3oqAACgGQuxWmrdXuY1pYXrs3THgEQ99/VOOV0ev+s67FbdmBynUJtF7VuGyWoxAj53AACAYGiSkKi0tFT/+te/9NZbb+nLL7+U2+329RpKSkrSrbfeqt///veKjY1tiscDAABUU+B01bi9rOK9RenZGtMvQS/c3F13vLVJHm/9fRKtFkMz03ooLMTK6iEAAHDKC3hINHbsWL3//vs6fPiwLxhq166dhg8frltvvVU9e/YM9CMBAADq5XTVvL1s6uJtkqRDTpfGzEvXwrGpeu3Wnvrj21vqXFHksFs1M62H+nWJYfUQAAA4LRhmgI8Ts/y3SWN4eLh++9vfasSIEfrNb37jex+nr5ycHMXFxUmSsrOzWSkGADipFDhd6v74174/331Jou4YkKiLnlhaJQzqER+lOSNTZLUYen9Ttv65Lsu32kgqb1Kdlhqv4SnxCrVZOOYeAACcNpokJDKMwP02zTAMud3u+gfihCMkAgCcKGUer0KsFhU4XXK63HLYbWrtsPverzBwxnJf4NPGYdeSPw/Q5qyCatvL2jjsuik5Tmmp8YptHaG8IyUqKvUoMtSqmBZhKnN7FWIjHAIAAKeXJltJFCiGYcjj8b95JE4cQiIAQLC5PV6VuMtPLVuwvuqKn07RDqX1jtfwXvEK+2+g8+aavb7tZVL5qqGFY1O1OiO/xu1lFkPq3yVGCTEOtY6w66r/OUOdoiPZXgYAAE5LAQ+JbrvttkCWkyS98cYbAa+JwCMkAgAEk8drauXOPI1fuLne3kH/uKWH+neNUanbo5SpS9heBgAAUIOAh0RovgiJAADB4vF4tTvfqU+3HlBRqVuZuUVauStPtR1IZrUYmjsyWX07R2vd7v9o5BvpbC8DAAA4BiERAoaQCAAQDBV9hnIPl6io1K3IUJvatQxTTkGxFq7P0qL0bB1yuqrd57BbtWHyIIWHWLWilhVIbC8DAADNGSERAoaQCADQlPzpPzQsOU4er6kx89K1OauwWo2HhyZpRJ+OMiSVuL16Jz2L7WUAAAD/RUiEgCEkAgA0lYb0H3rh5u7q2zlat8xeVy0oSoh26Jv7LvH9uWJVUmGxS06XRw67VVER1U9FAwAAaA749AMAAE5qbo9XK3fmacz8jXUGRJLkdHl0x1ub9G1GvuaMTFEbh73K9d35ThUW/7oVrSIIioqw66yocEVF2Ku8DwAA0JzwCQgAAJzUPKapDXv+o36do+VPayCP19SEt7fIZjF0U3Jctev1BU0AAADNFSFRgLhcLs2dO1dXXnmlOnTooNDQUEVGRqpbt266/fbbtW7dOr/qfPHFF7r++usVGxur0NBQxcbG6vrrr9cXX3zh91yKi4v1zDPPqFevXmrTpo0iIyOVlJSk++67T1lZWY39FgEACJoyj1eSVOB06edfSnTbxZ305u29tPL+gbr7ksRqK4SO5XR59N6mbKWlxlcLlhx2a1NNGwAA4JRGT6IAyM7O1pAhQ/T999/XOe5Pf/qT/v73v8swqv8a1DRN3XnnnZo1a1at948bN06vvvpqjfdXyMzM1JAhQ7Rjx44ar7dq1UoLFy7U4MGD65xrY9CTCABwvALRnLpCRf+hUa9v0PKdeVXeAwAAQHWsJDpObre7SkB0wQUX6M0339TatWv11VdfacqUKXI4HJKk5557TjNmzKixzkMPPeQLiLp37663335bGzZs0Ntvv63u3btLkmbNmqWHH3641rkUFRVp6NChvoBo7NixWrp0qdasWaNp06YpMjJSv/zyi4YNG6atW7cG7O8AAIBA8HhNrdqVr97Tlmjq4m1VAiJJ2pPv1NTF23TRE0u1OatAC8emqkd8VK31duc7lXekRAkxDt97aanxvlVKAAAAqIqVRMfpgw8+0O9+9ztJUp8+fbRq1SpZrVWXsW/atEl9+vRRWVmZWrdurdzcXNlsNt/1jIwMJSUlye12Kzk5WStXrlR4eLjvenFxsQYMGKCNGzfKZrNp+/btSkxMrDaXRx99VI899pgk6emnn9akSZOqXF+7dq369+8vt9utgQMH6ptvvgnY34PESiIAQON4vF55TWn1rnyNmb9RHm/9H02sFkOzbu2p7vGtNejZFTrkdNU4btl9l+jDzTl66ZsMOexWbZg8SI5QW41jAQAAmjtWEh2nb7/91vf6wQcfrBYQSVLPnj01dOhQSVJBQYG2b99e5fpzzz0nt9stSXrppZeqBESSFBERoZdeeklS+cql559/vtozysrK9MILL0iSkpKSdO+991Yb06dPH40ePVqStGzZMm3atMnfbxMAgCbh9njl9pgqKfNo/MLNfgVEUv3NqStEhlrlLHXLajE0M62HQm189AEAAKgNn5SOk8v1628uExISah1XeeVPaWmp77Vpmvrkk08kSeecc45SU1NrvD81NVXdunWTJH388cc6dgHY8uXLVVhYKEkaOXKkLJaa/6cdNWqU7/WHH35Y63wBAGhqHq+plbvy9R+nS++kZzf41LG6mlNL5f2HYlqEaV/hUc0dmax+XWJk42h7AACAWvFJ6Th17drV93r37t21jsvMzJQkGYahLl26+N7fs2eP9u3bJ0kaMGBAnc+quJ6Tk6O9e/dWubZq1apq42qSnJzs65G0evXqOp8HAEBTcXu8WrkzT/9c95POjArXgvWNO31zwbosxbaOUP8uMdWupaXG65dil5698UL17Rwta01JEgAAAHwCuil/5cqVgSzn079//yapGwg333yzHn74YR0+fFhPPfWUBg8eXG3L2ZYtW7R48WJJ0vDhw9WyZUvftW3btvlen3POOXU+q/L1bdu2qVOnTg2uY7PZlJiYqK1bt1a5xx85OTl1Xj9w4ECD6gEAmq8St1fjF27W8F7xyj1cUq1Jtb8qN6euOMFMKj/mfnhKvMJCLLLWsroWAAAAVQU0JLrkkkvqPJ69MQzD8PXrORnFxMTozTffVFpamr799lulpKRo4sSJ6tq1q4qKivTtt9/q73//u1wuly688EI9++yzVe7Pzs72va6v0XNFU+hj76v8Z4fDoaioqHrrbN26VXl5eSotLVVoaKg/32qV5wMA0FhlnvIj7p0ujyLsVhWVHt/P+aJST5Vm1JX7DxEQAQAA+C/gx3s0x8PSrrvuOm3cuFHPPvusXn/9dY0cObLK9fbt2+uxxx7TuHHjfFu9Khw5csT3OjIyss7nVL63qKioxjr11aipjr8hEQAAjVXm8SrEatGRkjK1CAvxbS8rdnkUeZynjVU0p5bKVxDNTOuhfl1i2F4GAADQQAENiZYtW1brNZfLpYceekjp6emKiYnRjTfeqF69eql9+/YyTVO5ublKT0/Xu+++q9zcXPXq1UtTp05VSEhIIKfYJMrKyrRw4UL93//9X40h2c8//6y3335bXbt21ZAhQ6pcKykp8b222+11PqdymHP06NEa69RXo746dTl29dKxDhw4oF69evldDwBw+nN7vCpxl68cWrA+S5ee0053XZLo216WmVukdi3D1Cna0agtZxXNqYtdHj08NEnDU+L/u4KIgAgAAKChAhoS1dYw2TRNDRkyRBs3btTo0aP1/PPPV1tRI0m33nqrnnzySU2cOFFz5szRs88+q88++yyQUww4p9OpwYMHa+XKlbJarbr//vt12223KSEhQSUlJVq/fr3+9re/afXq1br66qv13HPP6Y9//KPv/rCwMN/ryiel1aTyqWjh4eFVrlXUqa9GfXXqUt92OAAAKni8XkmGVu3K1/iFm30nl0XYf131I0krd+Upp6BYab3jNXVxw3rlSeXNqUvdHj15wwW+1UoAAABonKB8kpo7d66++OILDRo0SLNnz64xIKoQERGhWbNm6fLLL9eXX36pWbNmBWOKjfbII4/4GnbPnTtXTz31lM455xzZ7Xa1bNlSl19+uZYtW6aBAwfKNE39+c9/1tatW333t2jRwvf62C1kx3I6f/0N67Hbyirq1FejvjoAABwvt8crrymt2JGrMfM3VjnavtjlUYT9199ReU1p4fosDUuOk8NuralcrSqaU4fayu8jIAIAADg+Qfk09eabb8owDN19991+33PPPffINE3NmzevCWd2fEzT1BtvvCFJ6tq1a7VeRBVsNpsef/xxSZLX6/XdI1VdnVPf6WGVt3sd20S6oo7T6VRhYaFfdWJiYuhHBAAIKI/X1E//KVaxy6M/vL1FHm/VbdiZuUWKaRGqTtG//sJoUXq2PF5TL9zc3e9tYpWbUwMAACAwgvLJavv27ZKk+Ph4v++pCEEq7j0Z/fzzzzp06JAkqXv37nWO7dmzp+915e/p3HPPrfH9mlS+npSUVOWav3XcbrcyMzNrrAEAwPFwe7xauTNPYSEWvbcxu8oKogqVt5dVOOR0acy8dPXtHK3Xbu1Z74oih92quSOT1a9LjGysHgIAAAiYoHyyqmiqXF/j48oqxlbun3Oysdl+XS7vdtd9fG9ZWVmN93Xq1ElnnnmmJGnFihV11qjY1nbWWWepY8eOVa717dvX97quOhs3bvRtN7v44ovrfB4AAA1R4vZqUXqWzmod4Tu97Fi1bS/bnFWoW2avU4/41lrz4GV6eGhSldVGUnmT6oeHJmnD5EHq2zma5tQAAAABFpSQqHPnzpKkV1991e97KsYmJiY2yZwCoU2bNmrZsqUkae3atXUGRZWDm06dOvleG4aha665RlL5CqB169bVeP+6det8K4SuueYaGUbVD8aXXHKJWrVqJUmaN29ejaesSeVb/ypcd911tc4XAICGKPOUn2AW2zpCuYdL6jyprGJ72YvHbC/bnFWoQc+u0KvLM/Wb887QsvsuUfrky3z/95v7LtGtqR3lCLWxgggAAKAJBOUT1rBhw2Sapr788kvdfffdVY59P1ZpaanGjx+vL774QoZhaPjw4cGYYqNYLBbfkfb79+/XtGnTahxXUFCgBx54wPfnoUOHVrk+ceJE3+qiP/zhD9WOpT969Kj+8Ic/SCpfhTRx4sRqz7Db7ZowYYIkadu2bZoxY0a1MWvXrtXcuXMllZ9El5KS4s+3CQBAvUKsFi1Yn6UIu1VFpXWvrq3YXnZx52jNOmZ72SGnS6+syFT/p5dp1Osb9MryTH36//brl6Nl8nhN2elBBAAA0GQMs7YlJwFUUlKi7t27a8eOHTIMQ+3bt9eNN96olJQUtWvXToZh6Oeff1Z6erree+89HTx4UKZp6pxzztGWLVtO6ubK27dvV8+ePVVcXCxJuvrqqzVy5EglJCSopKRE69at0/PPP6+srPJl95dddpmWLFlSrc6DDz6oJ598UlJ5f6MHHnhAiYmJyszM1FNPPaUtW7b4xk2fPr3GuRw5ckTJycnauXOnJGncuHEaPny4wsPDtWzZMk2fPl1FRUUKDw/XmjVrdOGFFwb07yInJ8fXSyo7O7tKU24AwOmtwOlS98e/1ui+nXRH/wT1mr603nt6xEdpzsgUWS2G3t+UrX+uy6qyAikh2qG01Pj/nmBmYfUQAABAEwtKSCRJBw4c0JAhQ/Tdd9+VP9iouY9AxXS6d++uTz/9VB06dAjG9I7LkiVLdPPNNys/P7/OcZdeeqnef/99tW7duto1r9ersWPH6vXXX6/1/tGjR2vWrFmyWGr/kJyRkaHBgwdr165dNV5v2bKlFixYUG01UyAQEgFA85VTUKy+Ty3TJV1j9ObtvTRwxvI6t5xVaOOw66bkOKWlxiu2dYTyi0pV6vbKYbcqKsKuMo+Xo+0BAACCJGghkSR5PB69/PLLevXVV7Vt27YaxyQlJemuu+7SXXfdJau17tNNTib/+c9/NHfuXH3++ef68ccfVVhYKJvNpjPOOEMpKSm65ZZb9Nvf/rbWcKzCZ599plmzZik9PV35+fmKjo5WSkqK7rjjDl111VV+zcXpdGrmzJl67733lJGRIZfLpbi4OA0ePFh//OMfdfbZZwfiW66GkAgAmq+KlUQWQ1p5/0B98cNBTV1c88/6mlgMqX+XGN15SYJSOraRtY5fiAAAAKBpBDUkquzAgQP6/vvvVVBQINM01aZNG/3P//zPKbFyCDUjJAKA5q1i9dDdlyTqjgGJuuiJpXK6PH7f77BbtWHyIDlCbfUPBgAAQMCdsE9hHTp0IBACAOAkV7Hdq8DpktPllsNuU2tH9W1gZR6v0nrHa+ribVqUnq0x/RL0ws3ddcdbm+Tx1v/7KKvF0My0HgqlMTUAAMAJc8JWEuH0w0oiADh9uD1elbjLj7VfsL5qQ+lO0Q6l9Y7X8F7xCqvUULqo1K3e05bI6fKoR3yUFo5N1eqMfP3x7S11rihy2K2amdZD/brEyGqpe1s2AAAAmk7QQyKv16vly5dr7dq1OnjwoIqLizV16tQqq4pcLpfcbresVutJfbIZqiIkAoDTg8drauXOPI1fuLnecOcft/RQ/67l4Y7b49WqXfkaM3+jPF6T08sAAABOMUENiRYvXqwJEyZo7969Vd7//vvvde655/r+/Morr2j8+PGKjIzU/v375XA4gjVFHAdCIgA49R0b9NTHajE0d2Sy+naOls1qqRYwHXt6Wd6REhWVehQZalVMizBOLwMAADiJBO1T2Zw5c/Tb3/5We/bskWmaatu2rWrLp0aPHq2oqCgVFRXpo48+CtYUAQBo1jze8i1m4xdu9isgKr/H1D0LNqvU7ZVUHhr16xKt9ZMH6eGhSWoVHqJXVmSq/9PLNOr1DXo3PUeHnKVqGR4iDwERAADASSUojaszMjJ0zz33SJIuvfRS/eMf/9A555wjSy3H29rtdt1www2aM2eOvvrqK/3+978PxjQBAGiWKvoPebym3tuY3aATySTJ6fJoUXqWRvTpqBBr+baxSKtFI/p01Oi+CSosdsnp8shhtyoqonrTawAAAJwcgvIJ7fnnn1dZWZnOO+88ffbZZzrnnHPqvadfv36SpO+++66JZwcAQPPl8ZpatStf9777nVqFh2jB+qxG1VmwLqta8FPx56gIu86KCldUhL3K+wAAADi5BOVT2tKlS2UYhiZOnCi73e7XPYmJiZKkrKzGfVgFAAB183i9+uk/Tn2bma8BXWOUe7ikSmPphtid71RhsSvAMwQAAEAwBWW7WXZ2tiTpwgsv9PueimbVxcXFTTElAACarTK3VyE2i3456pZhSOP6JahdyzDlHDq+n7lOl0dREQGaJAAAAIIuKCGRYRiSVGuj6prk5eVJklq2bNkkcwIAoLmp6D20aEOWFqyvehz9pN90000pccdV32G3Hu8UAQAAcAIFZbvZmWeeKUnauXOn3/esWLFCktSxY8emmBIAAM1KRe+h3tOWaOribdW2laXvOaToyFB1inY0qn5CtMPXcwgAAACnpqCERP3795dpmlq4cKFf4/Pz8/Xaa6/JMAxdeumlTTw7AABOb26PVyt35mnM/I21nly2cleecgqKldY7vlHPSEuNV5nHezzTBAAAwAkWlJBo3LhxkqTPPvtMb7zxRp1jc3JyNHjwYOXn58tqtfruBQAADefxlm8xG79wszze2rd9e01p4fosDUuOa/C2MYfdquEp8ZxaBgAAcIoLyqe5lJQU3XnnnTJNU2PGjNGwYcP07rvv+q5v3bpV77zzjkaPHq1u3bpp06ZNMgxD9957rzp37hyMKQIAcNrxeE0dLSvvQVTbCqLKFqVny+M19cLN3WW1GH49w2oxNDOth0JtBEQAAACnOsNsSDfp4+DxeHT77bfrrbfe8jWyrknFdEaNGqW5c+fWORYnl5ycHMXFlTc9zc7OVmxs7AmeEQA0Xx6vV7lHStWhVbge+GCr3tuYrToWEvn0iI/SwrGpWp2Rrz++vaXOcMlht2pmWg/16xLjd6gEAACAk1fQQqIKH3zwgZ544glt3ry5xuvnnnuuHnroIQ0fPjyY00IAEBIBwInncntlt1l0yOnSkZIytQgLURuHXTkFxVq4PkuL0rN1yOmqs0aP+CjNGZkiq8XQ+5uy9c91VU9CS4h2KC01XsNT4hVqs8jGNjMAAIDTQtBDogr79+/Xxo0blZubK4/Ho7Zt26p79+5KTEw8EdNBABASAcCJU9fx9p2iHUrrHa9hyXHyeE2NmZeuzVmFddZr47DrpuQ4TRjUReEhVuUdKVFRqUeRoVbFtAhTmcdLDyIAAIDTTFBCor/97W+SpN69e+s3v/lNUz8OJwghEQCcGB6vqZU78zR+4eZ6t4e9cHN39e0crVtmr6s3KJKk9MmX6et//6yM3CK1CAvR1f/bQZ3aOmQlIAIAADjtBOUT3qOPPqrHHntMpaWlwXgcAADNhj/H21dwujy6461N+jYjX3NGpqiNw17n+IRoh2JahOmrH3/WO+nZ6h4fpU7RkQREAAAAp6mgfMpr27atJCk+Pj4YjwMA4LTn8Xrl8fh3vH3V+0xNeHuLbBZDNyXH1Tk2LTVeB345qv5do7Vh8iD17RxNg2oAAIDTWFBCoopj7A8ePBiMxwEAcFpze7w6WuZVkcvj9/H2lTldHr23KVtpqfGqLfNx2K0anhKvDq3CdWtqRzlCbTSoBgAAOM0F5dPeTTfdJNM09e677wbjcQAAnLY8XlOrduXr3ne/U6vwEC1Yn9WoOgvWZSm2dYT6d4mpds1qMfSPW3rIZjXk8ZoKsREOAQAANAdB+dR3991363//9381f/58zZs3LxiPBADgtFO5/1Bs6wjlHi6pcopZQ+zOdyrvSIkSYhxV3nfYrZo7Mln9u8bIahhsLwMAAGhGbMF4yMGDBzVnzhyNHj1at99+uxYsWKBbbrlFF1xwgVq3bi2r1Vrn/fQyAgA0ZxXHzVfuPxRht6qo1H1cdYtKPXKEln8USIh2KC01XsNT4mW3Wf4bDhEQAQAANCdBCYk6duwowyj/oGmappYuXaqlS5f6da9hGHK7j+9DMAAApyL3fxtTv7MhS0MuOFOfbt3v6z9U7PIoMvT4foxHRYRo1EUdNaLP2YppEaaiUrfCQiyyWtheBgAA0BwF7VOgaZoyTbPKa3+/AABobip6D/WetkSrduXrjFZhVfoPZeYWqV3LMHWKdtRRpXYJ0Q61jrBr+c48zV29R1tzChUeYiUgAgAAaMaCspLojTfeCMZjAAA4Lbg9Xv24/7C+zczX7X076X/OaqXCYpd++s+v/YdW7spTTkGx0nrHa+ribQ1+RsXx9r8Uu/SHS7so1LfFDAAAAM2VYbJUBwGSk5OjuLg4SVJ2drZiY2NP8IwA4NTkcntlt1mUX1SqohK3IsNsio4MVU5BsRauz9Ki9Gwdcrp09yWJumNAoi56YqlvG5o/HHarNkweJEeozdfvCAAAAAjKSiIAAFC/ih5EizZkacH6rConl3WKdiitd7zuGJCoMf0SNGZeuhalZ2tMvwS9cHN33fHWJnm89f/ex2oxNDOth+z/PdaegAgAAAAVWEmEgGElEQA0jtvjlWEYWrEzV39YuKXOVUEOu1Uv3NxdfTtH65bZ6yRJC8emanVGvv74dv33zkzroX5dYthaBgAAgGqCHhJ5vV4tX75ca9eu1cGDB1VcXKypU6eqQ4cOvjEul0tut1tWq1WhoaHBnB6OAyERADScx2uqzOPV6oz8Bq0GmnVrT3WPb61Bz65Qx7YRmjMyRVaLofc3Zeuf66quQqo43v6mlHiF2iysHgIAAECNghoSLV68WBMmTNDevXurvP/999/r3HPP9f35lVde0fjx4xUZGan9+/fL4WjcyS0ILkIiAPCf2+OVJP30n2JFtwhtVF+htQ9epleWZ+qVFZlq47DrpuQ4paXGK7Z1hPKOlKio1KPIUKtiWoTpaJlHoVaLLKwgAgAAQC2C9qvEOXPm6Le//a327Nkj0zTVtm3bWo+3Hz16tKKiolRUVKSPPvooWFMEACAoPF5ThiEdLfMo3G7VexuzGxQQSZLT5dF7m7KVlhoviyEdcrr0yopM9X96mUa9vkGvLM/Ux1v2qbC4TG6PVyEWg4AIAAAAdQpKSJSRkaF77rlHknTppZfq3//+t3Jzc2sdb7fbdcMNN8g0TX311VfBmCIAAEFR5vbKNE0dLfPq24x8nRkVrgXrsxpVa8G6LMW2jlD/LjG+97ymtHxnnt5Jz1b3+CglxETKZrXIxhYzAAAA1CMonxiff/55lZWV6bzzztNnn32mc845p957+vXrJ0n67rvvmnh2AAA0PbfHq6JSt77LLlSp26vIUJsy85zKPVxSpX9QQ+zOdyrvSKkSYn7dlp0Q7dDDQ5O0YfIg9e0cTYNqAAAA+M0WjIcsXbpUhmFo4sSJstvtft2TmJgoScrKatxvVwEAOFl4vKZW7crXhLc36/OJ/fV9zi9KiHGopMyjolL3cdV2eby694quGtGno1pFhKh1hF1lHi/NqQEAANBgQfkEmZ2dLUm68MIL/b6noll1cXFxU0wJAICgcHu8WrkzT2Pmb1TPs9sotnWE/n3gsIpK3Sp2eRQZeny/rwm1WbQ64z8yZaplWHktAiIAAAA0RlA+RRpG+VL3hhyklpeXJ0lq2bJlk8wJAIBgKHF7NX7hZnm8phLbRSr3cIn2FR4t326WW6R2LcPUKbpxp3gmRDsUHRmqDq3CFN/GIauFcAgAAACNF5RPk2eeeaYkaefOnX7fs2LFCklSx44dm2JKAAA0uTKPV4s2ZPlOLouwW1VU6vaFQ9kFxcopKFZa7/hG1U9LjZfL7dW5HVrSewgAAADHLSghUf/+/WWaphYuXOjX+Pz8fL322msyDEOXXnppE88OAICmEWK1VDm5rGJ72cpdecopKNbNveK1cH2WhiXHyWG3Nqi2w27V8JR42W2cXAYAAIDACMqnynHjxkmSPvvsM73xxht1js3JydHgwYOVn58vq9XquxcAgFNNgdNV5eSyihVEZ7d1+MKhf323Tx6vqRdu7u73aiCrxdDMtB4KtREOAQAAIHCC8ukyJSVFd955p0zT1JgxY/5/e/cdHlWV/3H8MyWTMgECJKiQBAgdbEBoUlXUxbKsKIoiwgrIWrCsZe11ERUVXfUnolhQir1SFOlIDaCg0ssmAV0SKZIJyWRmzu8PNncTMpn0AMn79Tx5GOae873nzhyGud+cosGDB+vDDz+0jm/YsEEffPCBRo4cqTZt2mjt2rWy2Wy666671LJly+poIgAAlc7jLbxzWf4IoqHdEjVzTZr8AaPHBp6uG6emqFfLWL0+rHOJI4rcLoemDE9W71ZxjCACAABApbKZsqwmXQF+v1833HCD3nvvPWsh62DymzNixAhNmTIlZFmcWNLT05WQkCDp6I528fHxx7lFAHB8HfB41fHJeYWeu7lfC43p20LnjJ+vNqfW0fTR3bVse6beWrZLr1zbSQ67TR+vTdP7K1MLjUJKinVraPdEDemSqHCmmAEAAKAKVFuSKN8nn3yi8ePHa926dUGPt2/fXg899JCGDBlSnc1CJSBJBKC28QcCctjt8vr88voCMpLqRIQpzx+wtqE/97lFhZI9Ddwufff3vlqXekBj3lurs+Lr6c3hXeSw2/T1j3vk8QZ08RmnKr5+lDIO58iT61edCKcaRofL6wvIxRQzAAAAVJFqTxLl27t3r1JSUrRv3z75/X41bNhQHTt2VIsWLY5Hc1AJSBIBqC3yfAGFOe064PHK4/UpyuVUA7dLef6AjuT5teM/WWp1ah2FO+x6d8Vu/XPWpkL1OyXGWCOIbp+xXuFhDl2dnKCh3ROt5JA/IEWHOxQdEaZcn19hdrvs7GAGAACAKnTckkSoeUgSAajpfP6AcnxHt7WftqrwdLDmsW4N7Zaoq7skKCLMoSNevw7n5KlelEvdxn0nj9dfKFanxBhrBFH+9LJ//+5Rn1ZxSopzK75+lNo3rqOzE+rLabcxvQwAAABVrlqSRFOnTpUk/eUvf1HdunVLVScrK0uffvqpJOn666+vsrah8pAkAlCT+QNGS7Zm6Nbp64okfApyuxx66ZqO6tc6Tn5jJCMt3/G7Rk1NkT9Q+L/cBm5XkRFEWbl+1YsMs0YmhZEcAgAAQDWpliSR3W6XzWbTxo0b1b59+1LV2bFjh1q1aiW73S6fz1dyBRx3JIkA1FQ+f0BLt2UGTfQE47DbNHlYZ/VsGas8X0BR4c6QCSa7TerTKk5tT6ujq7skqGkDN1PLAAAAUO1O+F9PMhsOAHC85fgCunX6ulIliKSjo45um7Fe3v+uXbTlP3+od6tYrXqwvx6+tJ2ax7oLlW/W0K3erWM19rxWSqgfRYIIAAAAx4XzeDegOPmjh5zOE7aJAIBaIM9/dA2iUFPMgvF4/fpobZqu7BSv+lEuOR12RTvsur5HM43slaSD2V55vH65XQ7FRDG1DAAAAMffCfttdMuWLZKkBg0aHOeWAABqszCHXdNWpZar7rSVqaoX5dJp9SKVlZNnxZOkmCiXmsREKibKVeh5AAAA4HipkmE6S5YsCfr8mjVrlJmZGbJubm6uduzYoeeee042m01nn312FbQQAIDSOeDxFtrFrCx2ZnqUcThHkWEO+Zg+DQAAgBNclSSJ+vXrJ5ut8HoKxhjdcMMNpY5hjJHNZtOYMWMqu3kAAJSax1uxzROycv1y2u2KCGOkEAAAAE5sVfaN1Rhj/QR7rqSf+Ph4vfrqq/rLX/5SVU0EAKBEblfFfp8SHe5QmMOuyArGAQAAAKpalXxjXbhwofXYGKPzzjtPNptNU6ZMUfPmzYutZ7PZFBERodNOO83aSh0AgOOpvtul5rHuck05S4p1K65OhCTJ5w/IybpDAAAAOIFVSZKob9++QZ/v2rWr2rdvXxWnBACgSuT5AxraLVH/nLWpzHWHdk/UoWyvIl1OuZwkiAAAAHBiq5ZvrLt27dLOnTvVunXr6jgdAACVJsxh15CuiXK7HGWq53Y5NLhzgiJcDjGACAAAACeDavna2rRpUzVt2lROJ+sxAABOPhFOu165tpMcdlvJhSU57Db965qOCnPaZbfZ5LCTJQIAAMCJj2+tAACUwOmwq0/rOL15fXKJI4rcLocmD+usvq3j5HLYFcYwIgAAAJwkqnVoj8/n06xZs7R06VLt3LlThw8flt/vD1nHZrNp/vz51dRCAACCc9ht6t0qVqse7K8P1qTq/ZWphRazTop1a2j3RF2VnKCIMIdVBwAAADhZ2EzBPeqr0LJlyzRs2DClpqZaz4U6tc1mkzFGNputxEQSTgzp6enWrnRpaWmKj48/zi0CgKqR5w8ozGHXwWyvPLk+Rbmcqu92Kc8fkN0mppcBAADgpFQtI4k2b96sP/3pTzpy5IiMMXK5XGrVqpUaNGggO1+kAQAnmfwpZDFRLsVEuYo8DwAAAJyMqiVJ9NRTTyk7O1sOh0OPP/64brvtNkVHR1fHqQEAtVD+SJ8DHq88Xp/cBUb6kMgBAAAAgquWJNGCBQtks9l0++2364EHHqiOUwIAaiGfP6AcX0AzV6dq2qrCawY1j3VraLdEDemaqAinXU6SRQAAAEAh1bImUUREhPLy8rRkyRL17Nmzqk+H44Q1iQAcT/6A0ZKtGbp1+jp5vMWvZed2OfTKtZ3Up3UcC0sDAAAABVTLr1Hj4uIkSZGRkdVxOgBALePzB7Rka4ZGTU0JmSCSJI/Xr1FTU7R0W4Z8/kA1tRAAAAA48VVLkqhXr16SpJ9++qk6TgcAqEX8gaNTzG6dvk7+QOkGx/oDRrdMW6dcH0kiAAAAIF+1JIn+/ve/y+Fw6KWXXpLP56uOUwIAagF/wOhI3tE1iEoaQXQsj9evmWtSlcdoIgAAAEBSNSWJunTpohdeeEE//PCDBg0apMzMzOo4LQCgBvP5A/ppzyFFhzs1bVVquWJMW5nKbmcAAADAf1XL7mZPPPGEJKlbt276+uuv1bRpU11wwQVq27atoqKiSqz/yCOPVHUTAQAnmRxfQHN/+lWn1YsotItZWezM9OhgtlcxUa5Kbh0AAABw8qmW3c3sdrtstv/tIGOMKfT3kvj9ZZtCgOOD3c0AVJc8f0DvLt+tQ0fydHnHJjrv+cXljvX9feepSQwbKwAAAADVNsbeGGP9HPv3kn4AACgozGHXtFWpyvb6FR1esUGxbpejkloFAAAAnNyqZbpZIMCioACAynPA49WuTI927MtSo7oRah7rLteUs6RYN1PNAAAAgP9itU4AwEnH4z26U+aSbRlKP5Ctod0SyxVnaPdEdjcDAAAA/oskEQDgpON2HR0IGzDS9FWpGpycUOZpY26XQ0O6JLK7GQAAAPBffDMGAJx06rtdah7rliTNXJMmf8DopWs6ymEv3aYIDrtNrw7tpHAn/w0CAAAA+ar92/HChQt1/fXXq1WrVqpTp46cTqd++eWXQmWWLl2q//u//9P7779f3c0DAJwE8vwBa4rZfo9Xo95do14tY/X6sM4ljihyuxyaMjxZvVvFyckoIgAAAMBiM9W0fVh2draGDx+uTz/9VJKsXctsNps2btyo9u3bW2WXL1+uXr16yWazafPmzWrVqlV1NBEVlJ6eroSEBElSWlqa4uPjj3OLANRkWbk+dRv3nTxevySpU2KM3hzeRQ67TR+vTdP7K1MLLWadFOvW0O6JGtIlUeFOOwkiAAAA4BjV9g356quv1qeffipjjLp06aK777672LLnnHOOzjjjDEnSJ598Ul1NrLDMzEw9++yz6tmzp0499VSFh4ercePG6tatm+655x6tWLGixBhz587VoEGDFB8fr/DwcMXHx2vQoEGaO3duqduRnZ2tCRMmqGvXrmrQoIGio6PVrl073X333UpNTa3IJQLACSPCadcr13ayppitSz2o/i8s1qRFO3RRh1O18O5+WvPg+dafC+7up6u7JCoijAQRAAAAEEy1jCT67LPPdMUVV8hms+n111/XqFGjJEl2uz3oSCJJevzxx/X444/roosu0pw5c6q6iRX20Ucf6aabbtLvv/9ebJmBAwfq888/D3rMGKO//e1vmjx5crH1b7zxRk2aNEk2W/FrbuzYsUOXXHKJtmzZEvR4vXr1NH36dF188cXFxigvRhIBqG7+gNGSrRm6dfo6a0SRJNltUp9WcUqKc8sd7lSeP6CLzzhNHRrXK/W6RQAAAEBtUy2/Sn333XclSdddd52VICpJ586dJUmbNm2qsnZVlqlTp2rIkCH6/fff1ahRIz366KOaN2+e1q5dq1mzZulf//qXLrjgAoWFhRUb46GHHrISRB07dtSMGTO0evVqzZgxQx07dpQkTZ48WQ8//HCxMbKysnTppZdaCaLRo0dr/vz5Wr58ucaNG6fo6GgdOnRIgwcP1oYNGyrxFQCA48Nht6l3q1iterC/Hr60nbWYdcBIi7ZmaNGWDMVEhWnsea3U/rS6JIgAAACAEKplJFGTJk3022+/6auvvio0giXUSKK1a9eqS5cuioyMlMfjOTbkCWPTpk3q2LGjcnNz1bt3b3311VeqV69e0LJer1cul6vI89u3b1e7du3k8/mUnJysJUuWKDIy0jqenZ2tvn37KiUlRU6nU5s3b1aLFi2KxHnsscf0+OOPS5KeffZZ3XPPPYWOr1ixQn369JHP59O5556rBQsWVOTSi2AkEYDjKc8fUJjDroPZXnm8frldDsVEuaznAQAAAIRWLd+a86dgNWnSpMx1A4FAZTenUo0dO1a5ubmKjY3Vp59+WmyCSFLQBJEkTZw4UT6fT5L08ssvF0oQSVJUVJRefvllSZLP59OLL75YJEZeXp5eeuklSVK7du101113FSnTo0cPjRw5UtLRXebWrl1b8gUCwEkiPxEUE+VSk5hIxUS5Cj0PAAAAILRq+eZcp04dSdIff/xR6jo7duyQJDVs2LBK2lQZNm/erPnz50uSbr31VsXGxpY5hjFGX3zxhSSpbdu26t69e9By3bt3V5s2bSRJn3/+uY4dALZo0SIdPHhQkjR8+HDZ7cHf2hEjRliP83eaAwAAAAAAqJYkUf4W9qtXry51nfxdzc4666wqaVNl+Oijj6zHgwcPth4fOHBA27ZtC7mIdb5du3Zpz549kqS+ffuGLJt/PD09Xbt37y50bOnSpUXKBZOcnCy3++iaHcuWLSuxfQAAAAAAoHaoliTRxRdfLGOM/u///k85OTkllp87d64++eQT2Ww2XXrppdXQwvJZuXKlpKM7hrVr107Tpk3TWWedpQYNGqh169aKjY1VUlKSHn/8cWVlZQWNUXBh7rZt24Y8X8Hjxy7oXdo4TqfTWs+orIuCp6enh/z59ddfyxQPAAAAAACcOKolSXTrrbcqJiZGu3fv1qBBg4odYZOTk6Pnn39egwYNUiAQ0Kmnnqq//vWv1dHEcvnll18kSc2aNdPYsWN13XXXFdk1bNeuXXrsscfUo0cP7d27t0iMtLQ063FJCz3nLwp9bL2Cf3e73YqJiSlVnIyMDOXm5oYse2y9UD9du3YtdSwAAAAAAHBiqZYkUUxMjN5//33Z7XZ98803SkxMLLTL2ZNPPqkBAwaoUaNGuvfee5WTk6OwsDBNmzZNERER1dHEctm/f7+ko2sTvfrqq4qJidGkSZO0b98+5eTkaM2aNRowYIAk6aefftLgwYOLLMR9+PBh63F0dHTI8+VPE5NUZGRSfpySYpQUBwAAAAAA1E7O6jrRxRdfrNmzZ2vYsGHat2+f5s6dK5vNJkn68MMPJclajDk2NlYzZsxQv379qqt55eLxeCRJubm5cjgcmjNnTqGFp5OTk/X111/r0ksv1Zw5c7R8+XJ9+umnuvLKK60yBaffFbf7Wb7w8HDr8ZEjRwody49TUoyS4oRy7OilY/3666+MJgIAAAAA4CRVbUkiSbrgggu0c+dOvf322/riiy+UkpJi7cgVFRWljh076s9//rP+9re/WTuincgiIiKsRNHgwYOD7kxmt9s1YcIEzZkzR5I0Y8aMQkmigiOlvF5vyPMVnBoWGRlZpC2liVFSnFBKmg4HAAAAAABOXtWaJJKOJoNuueUW3XLLLZIkn88nv99faHTLyaJOnTpWkih/WlkwHTp0UJMmTbRnzx6tWbOmSIx8JU39yj+XVHRaWX6c0kwfCxUHAAAAAADUTtWyJlEoTqfzpEwQSYUXki7totP79u0r9HzBeunp6SFjFJzuVfDcBeN4PB5rdFZJceLi4k7a1x4AAAAAAFSu454kOpl16NDBeuz3+0OWzT/udBYevNW+fXvr8ebNm0PGKHi8Xbt25Yrj8/m0Y8eOoDEAAAAAAEDtVSVJojlz5qhTp07q1KmTpk+fXqa606ZNs+p+9913VdG8StOnTx/rcX7ipTg7d+6UJDVp0qTQ882bN1fjxo0lSYsXLw4ZY8mSJVaMZs2aFTrWq1cv63GoOCkpKdZ0s549e4Y8HwAAAAAAqD0qPUlkjNGdd96pH3/8UQ0bNtS1115bpvrXXnutGjZsqB9++EF33XVXZTevUv35z39WWFiYJOnTTz8tttzixYv1+++/S5J69+5d6JjNZtPAgQMlHR0BtHLlyqAxVq5caY0QGjhwoLUzXL5+/fqpXr16kqR3333X2inuWO+88471+PLLLy+2zQAAAAAAoHap9CTRggULtHXrVtntdr344otlrm+z2fTSSy/J4XDop59+0qJFiyq7iZWmYcOGGjVqlCRp3rx5mjlzZpEyhw8f1h133GH9fcyYMUXK3HHHHdY0tLFjxxbZlv7IkSMaO3aspKPT1QrGy+dyuXTbbbdJkjZt2qTnnnuuSJkVK1ZoypQpkqS+ffuqS5cupbhKAAAAAABQG1R6kuiTTz6RdHS7+4Jr9pRF+/btddFFFxWKd6J6/PHHlZiYKEkaNmyYxo4dq4ULF2rt2rV655131LVrV/3www+SpJtuuiloYqZ169a6++67JR2dDtazZ0998MEHSklJ0QcffKCePXsqJSVFknTPPfeoVatWQdtyzz33qHXr1pKke++9V2PGjNHChQu1cuVKjR8/XhdeeKF8Pp8iIyPLlcADAAAAAAA1l80UNy+pnJKTk7V+/Xq98soruummm8odZ9KkSbr55pvVuXPnItvGn2g2bdqkP//5z9q+fXuxZW644QZNmjTJmp52rEAgoNGjR+utt94qNsbIkSM1efJk2e3F5/a2b9+uiy++WNu2bQt6vG7dupo2bZouvfTSYmOUV3p6urXrWlpaWok7vgEAAAAAgBNHpY8k+ve//y1JatOmTYXi5I+I2b17d0WbVOXatWunH374QRMmTFC3bt3UoEEDuVwuxcfH6+qrr9aCBQs0ZcqUYhNEkmS32zVlyhTNmjVLAwcOVOPGjeVyudS4cWMNHDhQs2fP1ptvvhkyQSRJLVu21Pr16/XMM88oOTlZMTExioqKUps2bXTnnXdqw4YNVZIgAgAAAAAAJ7dKH0nkcrnk9/u1du1anX322eWO88MPP6hTp04KCwtTbm5u5TUQVYaRREDN4A8E5LDblZ3rU7bXJ4fdrvpul/L8AYU5qmRTTAAAAAAngEr/tl+3bl1J0sGDBysUJ79+nTp1KtgiAEBp5PkCkqQD2XnalelRVq5PsXUi5PH69MaSnfpgTaqycn3y+QPHuaUAAAAAqoKzsgM2atRIBw4c0C+//KJ+/fqVO86mTZuseACAquPzB5TjC2jm6lRNW5WqXZke61jzWLeGdkvUVV0S5A8Y3Tg1RaN7J6lP6zg57Lbj2GoAAAAAla3SRxJ17dpVxhh9+eWXFYrzxRdfyGazsU07AFQhf8Bo6bZMdRv3nf45a1OhBJEk7cr06J+zNumc8fO1LvWA3hrRRa8u3K6l2zIYUQQAAADUMJWeJBowYIAkad68eVqyZEm5YixZskTffvttoXgAgMrl8we0ZGuGRk1NkcfrD1nW4/VrzHtr9f32TE2+PlkPfbZRuT6SRAAAAEBNUulJoiuuuEJJSUkyxuiqq67Sli1bylR/69atuuqqq2Sz2dSsWTNdeeWVld1EAICkHF9At05fJ3+gdPsX+ANGt81YL6fdpsvOaqKZa1KVx2giAAAAoMao9CSR0+nU888/L5vNpoyMDCUnJ2vixInKysoKWS8rK0svvviikpOTtW/fPknS888/L6ez0pdNAoBaL89/dA2ikkYQHcvj9eujtWka2j1RM1alstsZAAAAUIPYjDGl+xVyGY0fP14PPvigbLajC5u63W717t1bnTp10imnnCK32y2Px6P//Oc/WrdunZYuXSqPx6P85jzxxBN66KGHqqJpqCLp6elKSEiQJKWlpSk+Pv44twhAKOc+t6jIGkSlkRTr1oK7+2nEW6v14pCzFRPlqoLWAQAAAKhuVTZM5/7771d8fLxuvvlmeTweZWVlae7cuZo7d27Q8vnJoaioKL3yyisaMWJEVTUNAGq9Ax5vuRJEkrQz06OMwzlKinPL4/UrJqqSGwcAAADguKjSeQLDhg3T1q1bdddddykuLk7GmGJ/YmNjdffdd2vr1q0kiACginm8vgrVz8r1yx3ulNvlqKQWAQAAADjeqnzBn9NOO00TJkzQhAkT9Msvv+jHH39UZmamDh8+rDp16ig2NlZnnXWW2rdvX9VNAQD8l9tVsY//6HCHIpwOppoBAAAANUi1rgrdvn17kkEAcAKo73apeay73GsSxdWJUMtT3MrzB1i8GgAAAKgh+GYPALVQnj+god0Sy1V3aPdE7TmQrV4t40gQAQAAADUI3+4BoBYKc9g1pGtimdcUcrscGtw5Qbm+gMKd/BcCAAAA1CR8wweAWirCadcr13aSw24rVXmH3aZ/XdNRYU67mjZ0y8koIgAAAKBG4Rs+ANRSToddfVrH6c3rk0scUeR2OfTm9cnq16aRwuy2UieWAAAAAJw8qnXhagDAicVht6l3q1iterC/PliTqvdXphZazDop1q2h3RM1pEuiXE77f5NDJIgAAACAmshmjDHHuxGoGdLT05WQkCBJSktLU3x8/HFuEYCyyN+p7GC2Vx6vX27X0S3u2cEMAAAAqB0YSQQAkCQrERQT5VJMVNHnAQAAANRsfPMHAAAAAAAASSIAAAAAAACQJAIAAAAAAIBIEgEAAAAAAEAkiQAAAAAAACCSRAAAAAAAABBJIgAAAAAAAIgkEQAAAAAAAESSCAAAAAAAACJJBAAAAAAAAJEkAgAAAAAAgEgSAQAAAAAAQCSJAAAAAAAAIJJEAAAAAAAAEEkiAAAAAAAAiCQRAAAAAAAARJIIAAAAAAAAIkkEAAAAAAAAkSQCAAAAAACASBIBAAAAAABAJIkAAAAAAAAgkkQAAAAAAAAQSSIAAAAAAACIJBEAAAAAAABEkggAAAAAAAAiSQQAAAAAAACRJAIAAAAAAIBIEgEAAAAAAEAkiQAAAAAAACCSRAAAAAAAABBJIgAAAAAAAIgkEQAAAAAAAESSCAAAAAAAACJJBKCWyvMHJEkHPF6lH8jWAY+30PMAAAAAUNs4j3cDAKA6+fwB5fgCmrk6VdNWpWpXpsc61jzWraHdEjWka6IinHY5HeTRAQAAANQeNmOMOd6NQM2Qnp6uhIQESVJaWpri4+OPc4uAwvwBoyVbM3Tr9HXyeP3FlnO7HHrl2k7q0zpODrutGlsIAAAAAMcPvyYHUCv4/AEt2ZqhUVNTQiaIJMnj9WvU1BQt3ZYhH9PPAAAAANQSJIkA1Hj+wNEpZrdOXyd/oHSDJ/0Bo1umrVOujyQRAAAAgNqBJBGAGsvnDygr16esXL9mrk4tcQTRsTxev2auSWUxawAAAAC1AkkiADWSP2C0dFum7vrwB9WLDNO0VanlijNtZarCWMAaAAAAQC3AnQ+AGqfg+kPx9aO074+cQruYlcXOTI8OZnsruYUAAAAAcOIhSQSgxim4/lCUy6GsXF+F4pV1mhoAAAAAnIxIEgGoUfL8gULrD2V7/YoOd1YoptvlqIymAQAAAMAJjSQRgBolzGEvtP7Qjn1ZalQ3Qs1j3eWKlxTrVkyUq7KaBwAAAAAnLJJEAGqUAx5vofWHlmzLUPqBbA3tlliueEO7J7K7GQAAAIBagSQRgBrF4y28/lDASNNXpWpwckKZp425XQ4N6ZLI7mYAAAAAagXufADUKG5X0fWHZq5Jkz9g9NI1HeWw20oVx2G36dWhnRTu5GMSAAAAQO3A3Q+AGqW+21Vk/aH9Hq9GvbtGvVrG6vVhnUscUeR2OTRleLJ6t4qTk1FEAAAAAGoJ7n4A1Ch5/kDQ9YfWpR7UtW+sVKfE+lp+//l6+NJ2RZJJSbFuPXxpO61+sL96tYwt9agjAAAAAKgJbMYYc7wbgZohPT1dCQkJkqS0tDTFx8cf5xahtsrK9anbuO/k8fqLHGvgdunq5AQN7Z6o+PpRyjico6xcv6LDHYqrE6E8f4A1iAAAAADUSiSJUGlIEqEq5CdtDni88nh9crucqu92hUzm+PwBLd2WqVFTU+QPBP+Is9ukPq3ilBTnVp2IMF121mlq3tAtBwkiAAAAALUUSSJUGpJEqEw+f0A5voBmrk7VtFWphba1bx7r1tBuiRrSNVERTnvQdYP8AaMlWzN06/R1QUcU5XO7HHp1aCf1bhXH9DIAAAAAtRpJIlQakkSoLIGA0e7fPfooJU2bfj2sJdsyFGxAkNvl0CvXdlKf1sETPPmJpg/WpOr9lYUTTUmxbg3tnqghXRIVXkyiCQAAAABqE5JEqDQkiVBR+VPIfs/K1aEjeYoOd6pR3QilH8jW9FWpmrkmTfs93kJ1HHabpgxPVq+WscUmevLjHsz2yuP1y+1yKCYq9JQ1AAAAAKhtSBKh0pAkQnmVZmrZ4OQE+QNGo95do3WpBwvVd7scWv1gf7nDndXccgAAAACoOfgVOoDjyh8w+nnvH3p1wTYdOpKn89o2Ur/WccqfPbYr06N/ztqkc8bP17rUA5o+urs6JcYUiuHx+jVzTary/IHqvwAAAAAAqCEYSYRKw0gilJU/ENCRvICiw53a90eOsnJ9IaeYOew2TR7WWR0T66v/C4sLTT1LinVrwd39jtOVAAAAAMDJj7kZAI6L0kwxG9O3hUb1TrKmmPkDRrfNWK8V95+vq5MT9NriHVadnZkeHcz2KibKdTwuBwAAAABOekw3A1Dt/AGjpdsy1W3cd/rnrE2FEkRS6ClmHq9fH61N09DuiTp2Q7NQW90DAAAAAEIjSQSgWvn8AS3ZmqFRU1NKTOp4vH6NeW+tvt+eqTeHd1ED99FRQtNWpiq+fpT6tIorVN7tclRZuwEAAACgpiNJVEXuvfde2Ww262fRokUl1pk7d64GDRqk+Ph4hYeHKz4+XoMGDdLcuXNLfd7s7GxNmDBBXbt2VYMGDRQdHa127drp7rvvVmpqagWuCKgcOb6Abp2+Tv5A6ZZDy59i5rTbdHXy0TWvdmZ6lHE4R0lxbqtcUqybqWYAAAAAUAEkiarAjz/+qIkTJ5a6vDFGY8aM0YABA/TZZ59pz5498nq92rNnjz777DMNGDBAY8aMUUlrjO/YsUOdOnXSvffeqzVr1ujAgQPyeDzavHmznn/+eZ155pmaPXt2RS8PKLc8/9E1iMo6LSzYFLOsXH+hLe+Hdk9kdzMAAAAAqACSRJUsEAho9OjR8vl8atSoUanqPPTQQ5o8ebIkqWPHjpoxY4ZWr16tGTNmqGPHjpKkyZMn6+GHHy42RlZWli699FJt2bJFkjR69GjNnz9fy5cv17hx4xQdHa1Dhw5p8ODB2rBhQwWvEig9r+9o4uZwTp7CHHZNW1W+EW3HTjGLDnfIk+uTdHSa2ZAuiQpz8JEGAAAAAOXFHVUl+9e//qU1a9aobdu2GjlyZInlt2/frmeffVaSlJycrO+//15DhgxRly5dNGTIEC1btkzJycmSpGeeeUY7duwIGue5557T5s2bJUnPPvusJk+erPPOO089evTQAw88oG+//VZOp1PZ2dm64447KudigRB8/oCycn2aumK3zn1ukV78bpv2/ZFTZJHq0io4xSwp1q24OhHameGRw27Tq0M7KdzJxxkAAAAAVAR3VZUoLS3NGu3z2muvyeUqeX2UiRMnyuc7Ohri5ZdfVmRkZKHjUVFRevnllyVJPp9PL774YpEYeXl5eumllyRJ7dq101133VWkTI8ePayk1cKFC7V27drSXxhQRv6A0ZJjdi+LcjmU9d+RP+WVP8VsaPdEpR/I1tp/79eU4cnq3SpOTkYRAQAAAECFcFdViW6++WZlZWVp+PDh6tevX4nljTH64osvJElt27ZV9+7dg5br3r272rRpI0n6/PPPi6xNtGjRIh08eFCSNHz4cNntwd/WESNGWI8//fTTEtsHlIfPH9DirRkafczuZdlev6ILrCFUHtHhDuX5AxrcOUG/HjqilQ/0V6+WsXLkL1QEAAAAACg3kkSV5MMPP9TXX3+tBg0aaMKECaWqs2vXLu3Zs0eS1Ldv35Bl84+np6dr9+7dhY4tXbq0SLlgkpOT5XYf3Q1q2bJlpWojUFY5voDGBtm9bMe+LDWqG6Hmse5iaoaWP8Xs4jNOU5TLobMT6ssd7mQEEQAAAABUkor9Wh+SpIMHD+r222+XdHTdoLi4uFLV27Rpk/W4bdu2IcsWPL5p0yY1b968zHGcTqdatGihDRs2FKpTWunp6SGP//rrr2WOiZrF6yt+97Il2zKUfiBbQ7sl6p+zyt7/hnZPVFauTx0a12PkEAAAAABUAZJEleDee+/Vb7/9pnPOOadUi1XnS0tLsx7Hx8eHLJuQkBC0XsG/u91uxcTElBhnw4YNysjIUG5ursLDw0vd3oJtAIJxOYvfvSxgpOmrUjWmbwtNnLc1aCKpOPm7l0WE2UkQAQAAAEAVYZ5GBS1btkxvvvmmnE6nJk2aJJut9Dewhw8fth5HR0eHLJs/TUw6ut19sDglxSgpDlBR+z3ekLuXzVyTJn/A6KVrOpY62VNw9zJHMettAQAAAAAqjpFEFeD1enXjjTfKGKM777xTZ5xxRpnq5+TkWI9L2gmt4IifI0eOBI1Tmt3UQsUpybEjmI7166+/qmvXrmWKiZolu4Tdy/Z7vBr17hpNH91drw/rrNtnrA85osjtcujVoZ3Uu1UcI4gAAAAAoIqRJKqAp556Sps2bVJiYqIeffTRMtePiIiwHnu93pBlc3NzrceRkZFB45QUo6Q4JSlpShwQVYrdy9alHtS1b6zUm8O7aPn95+vjtWl6f2VqoRFISbFuDe2eqCFdEv87gogEEQAAAABUNZJE5bR582aNHz9ekvTyyy8XmsZVWnXq1LEelzT1y+P53w30sdPK8uOUZvpYqDhARTVwu9Q81h1yypl0NFHU/4XFujo5QUO7J2pkryRlHM6V1x+Q2+VQTJRLef6Awti5DAAAAACqDUmicpo4caK8Xq+SkpKUnZ2tmTNnFinz008/WY8XLFig3377TZJ02WWXye12FxqZU9LOYQWneh27gHR8fLxWrVolj8ejgwcPhly8Oj9OXFxcmRatBkrD6wuUevey/R6vXlu8Q68v2aE+reL0t35JSm7awNrSngQRAAAAAFQvkkTllD9ta+fOnbrmmmtKLP/kk09aj3ft2iW326327dtbz23evDlk/YLH27VrV+hY+/bt9cknn1jlunfvHjSGz+fTjh07gsYAKoPLadeQroll2r0sYKQ1u/fr1SadrAQRAAAAAKD6cUd2HDVv3lyNGzeWJC1evDhk2SVLlkiSmjRpombNmhU61qtXL+txqDgpKSnWdLOePXuWp8lAiSKcdr18bacy7V72yrWd5HLycQQAAAAAxxN3ZeX0zjvvyBgT8qfgYtYLFy60ns9P8thsNg0cOFDS0RFAK1euDHqulStXWiOJBg4cKJut8M13v379VK9ePUnSu+++K2NMsW3Od/nll5frulF75PkDkqQDHq/SD2TrgMdb6PniOB129W0dpzeuT5bb5QhZ1u1y6M3rk9WndRzTywAAAADgOOOu7Di744475HQenfU3duzYItvSHzlyRGPHjpUkOZ1O3XHHHUViuFwu3XbbbZKkTZs26bnnnitSZsWKFZoyZYokqW/fvurSpUtlXgZqEJ8/oKxcn95dvlvnPrdIHZ+cp17PLFTHJ+fp3OcW6d3lu5WV65MvRLLIYbepT6tYrXqwvx6+tJ2axxZe2D0p1q2HL22n1Q/2V69WsexeBgAAAAAnANYkOs5at26tu+++W08//bRSUlLUs2dP/eMf/1CLFi20Y8cOPfPMM1q/fr0k6Z577lGrVq2Cxrnnnnv0wQcfaOvWrbr33nu1fft2DRkyRJGRkVq4cKGeeuop+Xw+RUZG6sUXX6zGK8TJJBAwSt2frY9S0rTp18P69++FdynblenRP2dt0sR5W/XKtZ3Up3VcsQkep8OuaIddw7o308heSTqQ7ZUn1yd3uFP1o1zy+gJMMQMAAACAE4jNFDc3CRX22GOP6fHHH5d0dLpZv379gpYLBAIaPXq03nrrrWJjjRw5UpMnT5bdXvxN9fbt23XxxRdr27ZtQY/XrVtX06ZN06WXXlr6iyiD9PR0a+e1tLS0Qru34cSWv93871m5OnQkT9HhTjWqG6H0A9mavipVM9ekaf9/p5vlc9htmjI8Wb1axrLgNAAAAADUAIwkOgHY7XZNmTJFV1xxhSZPnqw1a9YoMzNTsbGx6tKli8aMGaMBAwaUGKdly5Zav369Xn31VX300Ufavn27vF6vEhISdPHFF+v2229X06ZNq+GKcLLw+wPyGaON6Ye0atd+rdm1X0u2ZShgpOaxbg3tlqgxfVtoVO8kjXp3jdalHvxf3YDRLdPWafWD/UkSAQAAAEANwEgiVBpGEp1cfP6AnA67snLylOsLyGG3KSbKVWT0kNvl0EvXdFSvlrG69o2VhRJFkvTwpe10fY9mLDwNAAAAACc57uqAWsYfCMjrO5og2nc4R/sO58ofMIqJcunXQ0f068Ec/a1vC333977qlBgjj9evMe+t1ffbM/Xm8C5q4HYVijdtZSoJIgAAAACoAZhuBtQiPn9AR/L8+mBNmqatStWuzP8tTJ0/vWxwcoL8AaMdGVmaPrq7NXrothnrteL+83V1coJeW7zDqrcz06OD2V7FRLmCnRIAAAAAcJLg1/9ALeEPGC3ZlqnuT83XP2dtKpQgkv63c9k54+drbeoBndGknjbuOWSNHvJ4/fpobZqGdk/UsRuaebz+arwSAAAAAEBVIEkE1AI+f0BLtmZo9NSUEhM6BaeXtYyLVpjdpquTj641NW1lquLrR6lPq7hCddwuR5W1HQAAAABQPUgSATWcPxBQji+gW6evkz9QunXq/QGj22asl8Nu0+b//GGNHtqZ6VHG4RwlxbmtskmxbqaaAQAAAEANQJIIqKF8/oCycn064vVr5urUMk8Jy59eFl8/qtDooaxcv9zh/1vObGj3ROX5A5XadgAAAABA9SNJBNRA/oDR0m2ZuuvDHxQdEaZpq1LLFWfaylSdVi9Sh7K91uih6HCHPLk+SUenmQ3pksjuZgAAAABQA3BnB9QgPn9Aef6AFm/Zp1FTUxRfP0qZWblFFqkurfzpZb6AkTvcqaRYt+LqRGhnhkcOu02vDu2kcCcfIwAAAABQE3B3B9QQ/oDRv3/PVrbXr7Ez1ssfMIpy/W/UT3ll5foVEWaXJ9enod0TlX4gW2v/vV9Thierd6s4ORlFBAAAAAA1And3QA3g9we0MyNLcXVc2rT3D3Vp1kB2m5Tt9SvK5Sw5QAjR4U65w8O05+ARDe6coF8PHdHKB/qrV8tYOey2SroCAAAAAMDxVrG7RwDHXZ4/oDCHXTFRLv2R41NSI7feuaGr0g9ka8WO3xVXJ1zNY93lmnJ2dHpZuDIP5+iaromKcjl0dkJ91iACAAAAgBqIJBFwkvL5j25tP3N1qqatSi2UBGoe69bQbokanJygXJ9fQ7sl6p+zNpX5HEO7J8rr8+uPHJ96t4pj5BAAAAAA1GA2Y4w53o1AzZCenq6EhARJUlpamuLj449zi2ouf8BoydYM3Tp9Xcit7d0uh764tadOrRepbuO+C1k2WN1VD/ZXZJhdxoi1hwAAAACghuOuDzjJ+PwBLdmaoVFTU0pM+ni8fl3zxio57Ta9cm2nUo8Ecvy3fLjTLofdToIIAAAAAGoB7vyAk0yOL6Bbp6+TP1C6QYAZh3N1wztr1Kd1nN64vrPcLkfI8m6XQ1OGJ6tP6zjWHgIAAACAWoQ1iYCTSJ7/6BpEZZk2JknLd/yu2Rv36qIOp2n5/efr47Vpen9l4XWMkmLdGto9UUO6JMrltLP+EAAAAADUMiSJgJNImMOuaatSy1V34rxtuuysJvrihz26qMOpGtkrSZlZucrO9ckd7lTD6HBrpzQAAAAAQO1Dkgg4iRzweMu1lb0k7cz0KONwjjb9+of+8ckG9WkVp6Q4t+pEhOmys05TTGQYCSIAAAAAqMW4IwROIh6vr0L1s3L9coc7FTDSoq0Z+mBNmjomxqh5bLQcJIgAAAAAoFZjJBFwEnG7KvZPNjrcIU+ur9D6Q+GsPwQAAAAAEEki4KRS3+1S81h3uaacJcW6FVcnQref30qPXNaB9YcAAAAAAIVwhwicRPL8AQ3tlliuukO7Jyrb61OEyyE/CSIAAAAAwDG4SwSOszx/QNLRRanTD2TrgMdb6PmCwhx2DemaKLfLUaZzuF0Oa2pZuNPB+kMAAAAAgCKYbgYcJz5/QDm+gGauTtW0VamFppA1j3VraLdEDemaqAinXc4CSZ0Ip12vXNtJo6amyB8wJZ7HYbfp1aGd/rv2EMkhAAAAAEBwNmNMyXeZQCmkp6crISFBkpSWlqb4+Pjj3KITk88fkM1m0+Kt+zR2+np5vP5iy7pdDr1ybSf1aR1XaHFpf8BoydYM3Tp9XYn1Xx3aSb1bxbE4NQAAAAAgJJJEqDQkiUrmDxjl+QNatj1TY95bW+qRQFOGJ6tXy9hCI4ryRyJ9sCZV768sPBLp2N3LnEwvAwAAAACUgCQRKg1JotB8/oD+/Xu2YuuE65zx80OOADqW2+XQ6gf7yx1edIZo/i5lB7O98nj9crsciolysXsZAAAAAKBMuIMEqkmOL6BIl0MfpaSVKUEkSR6vXzPXpBa7mLUkxUS51CQmUjFRrkLPAwAAAABQGtxFAtUgzx/Qsm0ZahwTqWmrUssVY9rKVBI/AAAAAIAqwx0nUA3CHHbtyPBo3x85hdYOKoudmR4dzPZWcssAAAAAADiKJBFQDQ7n5Ck3z6+sXF+F4pR1mhoAAAAAAKVVdBVcABXiDwTksNuVnetTttcnh92u+m6XRvRsLpfDpgZul/Z7yjciyO1yVHJrAQAAAAA4ipFEQCXJ8x1dVPpAdp52ZXqUletTbJ0Iebw+vbFkp2Zv3CvZbFpwV191Sowpc/ykWLe1KDUAAAAAAJWNkURABfn8AeX4Apq5OlXTVqUWWnOoeaxbQ7sl6qouCfIHjG6cmqJRvZtr+ujuuvaNlVqXerDU5xnaPZFt7QEAAAAAVcZmjDHHuxGoGdLT05WQkCBJSktLU3x8/HFuUdXzB4yWbM3QrdPXhVwvyO1y6KVrOqpXy1hd9+Yq3dSvhTom1lf/FxaXauqZ2+XQ6gf7yx1OXhcAAAAAUDUYkgCUg88fUJ4/oMVbMzRqakqJC0p7vH6NeW+tvt+eqcnXJ+vRL36S027T1ckJJZ7LYbfp1aGdFO7knysAAAAAoOpw1wmUkT9glHE4Vz6/0c97DmnEOc3Ur3Wc7LaS6902Y72cdpsuO6uJPlqbpuu6J4as53Y5NGV4snq3ipOTaWYAAAAAgCrE3BWgDPyBgI7kBXRaTKQys3J1yZmnKTrcqUZ1I5R+IFvTV6Vq5pq0YqeQebx+fbQ2TUO7J2rEW6s1sleSXruuk56es6XQWkZJsW4N7Z6oIV0SFe60y1FSBgoAAAAAgAoiSQSUgs9/dOeykhaoHtO3hUb1TtKod9cUuyj1tJWpGtkrSfH1o/R7Vq66NW+ohXf3U8bhHHly/aoT4VTD6HDl+QIKY4oZAAAAAKCacAcKhODzB5Tt9clIWrotU93Gfad/ztpUKEEkSbsyPfrnrE06Z/x8rUs9oOmjuxe7zf3OTI8yDucoKc6tHF9A4U67MrNyFR3uVLNYt2KiwiSJBBEAAAAAoFpxFwoUwx8wWrnzd+XmBbSkHAtUvzm8ixq4XUHLZeX65Q53yu1yKNLlVGx0uCJdRwf2Oez8swQAAAAAVD/uRoEgfP6AftpzSF5/QA6HTbfNWC9/wJSqbsEFqovbvSw63KEIp0MxUcGTSAAAAAAAVDeSREAQASOdlRCjni1i9eGatBJHEB2r4ALVx645nRTrVlydCLU8xa28/651BAAAAADA8UaSCCjA5w8oK9enqSt26x+fbFB4mEPTVqWWK9a0lamKrx+lPq3iCj0/tHui9hzIVq+WcQpjW3sAAAAAwAmCO1Tgv/wBU2hx6uhwp/b9kVNkkerSKrhAdT63y6HBnROU+98FqwEAAAAAOFE4j3cDgBOBzx/Q0m2ZGjU1xVp7KMrlUFaur0Jx8xeoliSH3aZ/XdNRYU67mjZ0y3HsPDQAAAAAAI4jkkSo1fyBo2sC5fgCunX6ukKLU2d7/YoOr9g/kehwhzy5PrldDr1ybSf1aR0nYwwJIgAAAADACYckEWolfyCggJFyfQH5A0YfpRRdnHrHviw1qhuh5rHuck05y1+gultSA911YRu5nPb/JodIEAEAAAAATjwsioJax+cPSLJp6bYM3fXhD6oXGRZ0ceol2zKUfiBbQ7sllus8Q7snKs8f0HltT5E73Mki1QAAAACAExp3rahV/AEjX8Bo4ZZ9Gj11reLrRxW7OHXASNNXpWpwcoLcLkeZzuN2OTSkS6IcNpEcAgAAAACcFLh7Ra3h8we0O9OjXF9At89YL3/AlLg49cw1afIHjF66pmOp1xFy2G16dWgnhTvtstv5JwYAAAAAODlwB4taI8cXUKTLUWj9oZIWp97v8WrUu2vUq2WsXh/WucQRRW6XQ1OGJ6t3qzg5GUEEAAAAADiJcBeLWiHPH9CybRlqHBNZaP2hgotTF2dd6kFd+8ZKdUqsr+X3n6+HL21XpHxSrFsPX9pOqx/sr14tY9m9DAAAAABw0mF3M9QKYQ67dmR4iqw/VHBx6n/O2lRs/XWpB9X/hcW6OjlBQ7snamSvJGUczlFOXkDREU7Vj3Ipzx9g/SEAAAAAwEmLO1rUCgc8XuXk+YusP1SWxan3e7x6bfEO9Xl2oUa8tVpTlu3SKXXDVT/KJYkFqgEAAAAAJzfualEreLy+YtcfKuvi1AEjLd2eqe5JDWW3Ma0MAAAAAFAzkCRCreB2OYtdf4jFqQEAAAAAIEmEWqK+26W0A9nW+kPHYnFqAAAAAEBtZzPGmOPdCNQM6enpSkhIkCSlpaUpPj7+OLfof/L8Ab27fLf2e7wa07eFzhk/Xx6vv0i5Bm6XtTh1fP0oZRzOUVauX9HhDsXViWBxagAAAABAjUWSCJXmRE4SSVJWrk9/mrhYX47trXWpBzTmvbXyB4J3f7tN6tMqTklxbtWJCNNlZ52m5g3dcpAgAgAAAADUUNzxotaIcNr15F/O0I1TU0pcfyhgpEVbM/TBmjR1TIxR89hoEkQAAAAAgBqt6FZPQA3ldNjVp3WcJOmGd9bolWs7afn95+vjtWl6f2WqdmV6rLJJsW4N7Z6oIV0SFe60s/4QAAAAAKDGI0mEWsVht6l3q1h1ad5AX6xPl8cb0MVnnKqRvZKUcThHnly/6kQ41TA6XHm+gMKcjB4CAAAAANQOJIlQ6zgddkU77LqqS6LCHHYdzPYqMytX0eFOxdWJkD8QkCQSRAAAAACAWoUkEWqt/F3KYqJchZ532EkOAQAAAABqH+6GAQAAAAAAQJIIAAAAAAAAJIkAAAAAAAAgkkQAAAAAAAAQSSIAAAAAAACIJBEAAAAAAABEkggAAAAAAAAiSQQAAAAAAACRJAIAAAAAAIBIEgEAAAAAAEAkiQAAAAAAACCSRAAAAAAAABBJIgAAAAAAAIgkUYWtW7dOTz31lAYMGKCEhASFh4crOjparVu31ogRI7R06dIyxZs7d64GDRqk+Ph4hYeHKz4+XoMGDdLcuXNLHSM7O1sTJkxQ165d1aBBA0VHR6tdu3a6++67lZqaWtZLBAAAAAAAtYDNGGOOdyNOVn379tWSJUtKLDds2DC9+eabcrlcxZYxxuhvf/ubJk+eXGyZG2+8UZMmTZLNZiu2zI4dO3TJJZdoy5YtQY/Xq1dP06dP18UXX1xiu8sqPT1dCQkJkqS0tDTFx8dX+jkAAAAAAEDVYCRRBezZs0eS1LhxY91+++36+OOPtXr1aq1YsUIvvPCCmjRpIkl67733NGLEiJCxHnroIStB1LFjR82YMUOrV6/WjBkz1LFjR0nS5MmT9fDDDxcbIysrS5deeqmVIBo9erTmz5+v5cuXa9y4cYqOjtahQ4c0ePBgbdiwoaKXDwAAAAAAahBGElXApZdequuvv15XXHGFHA5HkeOZmZnq2bOntm7dKklasmSJevfuXaTc9u3b1a5dO/l8PiUnJ2vJkiWKjIy0jmdnZ6tv375KSUmR0+nU5s2b1aJFiyJxHnvsMT3++OOSpGeffVb33HNPoeMrVqxQnz595PP5dO6552rBggUVuv5jMZIIAAAAAICTFyOJKuDrr7/WVVddFTRBJEmxsbF6/vnnrb9//PHHQctNnDhRPp9PkvTyyy8XShBJUlRUlF5++WVJks/n04svvlgkRl5enl566SVJUrt27XTXXXcVKdOjRw+NHDlSkrRw4UKtXbu2hCsEAAAAAAC1BUmiKtavXz/r8Y4dO4ocN8boiy++kCS1bdtW3bt3Dxqne/fuatOmjSTp888/17EDwBYtWqSDBw9KkoYPHy67PfhbW3Da26efflraywAAAAAAADUcSaIq5vV6rcfBEje7du2y1jbq27dvyFj5x9PT07V79+5CxwruohYqTnJystxutyRp2bJloRsPAAAAAABqDZJEVWzx4sXW47Zt2xY5vmnTppDHCyp4vGC9ssRxOp3WekbHxgAAAAAAALWX83g3oCYLBAJ6+umnrb9fddVVRcqkpaVZj0ta6Dl/Uehj6xX8u9vtVkxMTIlxNmzYoIyMDOXm5io8PDxk+Xzp6ekhjxds06+//lqqmAAAAAAAoPxOPfVUOZ2Vk94hSVSFJk6cqNWrV0uSLr/8ciUnJxcpc/jwYetxdHR0yHj508Sko9vdB4tTUoxgcUqbJCqYpCpJ165dS10WAAAAAACUT2XuLs50syqyePFi3XfffZKkRo0a6bXXXgtaLicnx3rscrlCxiyYzDly5EjQOCXFKCkOAAAAAAConRhJVAV+/vlnXX755fL5fAoPD9eHH36oU045JWjZiIgI63HBRa6Dyc3NtR5HRkYGjVNSjJLihHLsFLdj5eTkaNmyZfrrX/8qSVq9erVOO+20UsdHzfbrr79aI8zoG8hHv0Bx6BsIhn6BYOgXKA59A8HUxH5x6qmnVloskkSVbNeuXbrwwgt14MABORwOzZgxI+RuY3Xq1LEeHzuF7Fgej8d6fOy0svw4JcUoKU4opRm+VjDpddppp1XakDfULPQNBEO/QHHoGwiGfoFg6BcoDn0DwdAvimK6WSXau3ev+vfvr71798pms+mtt97S5ZdfHrJOwQ5ZloWhj10fKD+Ox+PRwYMHSxUnLi6u1OsRAQAAAACAmo0kUSXJzMzUBRdcoJ07d0qSXn75ZV1//fUl1mvfvr31ePPmzSHLFjzerl27csXx+XzasWNH0BgAAAAAAKD2IklUCQ4dOqSLLrpIv/zyiyTp6aef1i233FKqus2bN1fjxo0lHV3sOpQlS5ZIkpo0aaJmzZoVOtarVy/rcag4KSkp1nSznj17lqqNAAAAAACg5iNJVEHZ2dm65JJLtG7dOknSgw8+qH/84x+lrm+z2TRw4EBJR0cArVy5Mmi5lStXWiOEBg4cKJvNVuh4v379VK9ePUnSu+++K2NM0DjvvPOO9bikqXAAAAAAAKD2IElUAV6vV5dffrm+//57SdLtt9+uf/7zn2WOc8cdd8jpPLqG+NixY4tsS3/kyBGNHTtWkuR0OnXHHXcUieFyuXTbbbdJkjZt2qTnnnuuSJkVK1ZoypQpkqS+ffuqS5cuZW4rAAAAAAComdjdrAKuueYaffvtt5Kk8847TyNHjtRPP/1UbHmXy6XWrVsXeb5169a6++679fTTTyslJUU9e/bUP/7xD7Vo0UI7duzQM888o/Xr10uS7rnnHrVq1Spo/HvuuUcffPCBtm7dqnvvvVfbt2/XkCFDFBkZqYULF+qpp56Sz+dTZGSkXnzxxYq/AAAAAAAAoMYgSVQBn376qfV4wYIFOvPMM0OWb9q0qXbv3h302Lhx47Rv3z699dZbWr9+vYYMGVKkzMiRI0OOVKpTp45mzZqliy++WNu2bdPkyZM1efLkQmXq1q2radOm6eyzzw7ZVgAAAAAAULvYTHGL16BEx64LVJJQSaJ8s2fP1uTJk7VmzRplZmYqNjZWXbp00ZgxYzRgwIBSncfj8ejVV1/VRx99pO3bt8vr9SohIUEXX3yxbr/9djVt2rRM7QYAAAAAADUfSSIAAAAAAACwcDUAAAAAAABIEgEAAAAAAEAkiQAAAAAAACCSRAAAAAAAABBJIgAAAAAAAIgkEQAAAAAAAESSCAAAAAAAACJJBAAAAAAAAJEkAgAAAAAAgEgSAQAAAAAAQCSJarV169bpqaee0oABA5SQkKDw8HBFR0erdevWGjFihJYuXVqmeHPnztWgQYMUHx+v8PBwxcfHa9CgQZo7d26pY2RnZ2vChAnq2rWrGjRooOjoaLVr10533323UlNTy3qJqGT33nuvbDab9bNo0aIS69AvaqbMzEw9++yz6tmzp0499VSFh4ercePG6tatm+655x6tWLGixBj0jZrF6/VqypQp+tOf/qTTTjvN+j+lTZs2uuGGG7Ry5cpSxaFfnBz27dunr7/+Wo888ogGDBig2NhY6/+GESNGlDneifS+//zzz/rb3/6mli1bKjIyUnFxcerTp49ef/11+Xy+Ml9bbVIZ/SInJ0dffPGFxo4dq27duqlBgwYKCwtTgwYN1KNHDz322GP69ddfS90m+sWJobI/MwrKzs5WUlKSFa9Zs2alrkffOL6qol+sXr1aN998s9q1a6e6desqOjpaLVq00CWXXKIXXnhBGRkZIevTLyQZ1Ep9+vQxkkr8GTZsmMnNzQ0ZKxAImBtvvDFknBtvvNEEAoGQcbZv327atGlTbIx69eqZWbNmVebLgDL44YcfjNPpLPSeLFy4sNjy9Iua68MPPzQNGzYM+d4OHDiw2Pr0jZonNTXVnHHGGSX+n3LnnXcW+77SL04uod6n4cOHlzrOifa+v/nmmyY8PLzYON27dzeZmZmlvr7apqL94scffzR16tQp8bOkTp065oMPPigxHv3ixFFZnxnB3HXXXYXiNW3atMQ69I0TQ2X2i5ycHDNq1Chjs9lCxv3ss8+KjUG/OIokUS3VokULI8k0btzY3H777ebjjz82q1evNitWrDAvvPCCadKkidWJr7nmmpCxHnjgAatsx44dzYwZM8zq1avNjBkzTMeOHa1jDz74YLExDh8+bNq2bWuVHT16tJk/f75Zvny5GTdunImOjjaSTFRUlPnxxx8r++VACfx+v+nSpYuRZBo1amS9T6GSRPSLmundd981drvd6guPPvqomTdvnlm7dq2ZNWuW+de//mUuuOACc+WVVxYbg75Rs+Tl5RVKEJ155pnmnXfeMStWrDDffvuteeSRR4zb7baOP/vss0Hj0C9OLgW/7CYkJJgLL7ywXF/sT6T3fe7cudbn2ymnnGL+9a9/mVWrVpk5c+aYQYMGWfH79Olj/H5/WV6uWqOi/WLp0qVW+Z49e5rx48ebefPmmXXr1plvvvnGjBkzxjgcDiPJOBwOM3v27GJj0S9OLJX1mXGsdevWGYfDYSIiIqwEY0lJIvrGiaOy+kVubq4ZMGCAVbd3797mjTfeMMuWLTMrV640H3zwgXnggQdMq1atik0S0S/+hyRRLXXJJZeYDz74wPh8vqDHMzIyTOvWra1OvGTJkqDltm3bZo0uSU5ONtnZ2YWOezwek5ycbCQZp9Nptm/fHjTOo48+GvIGYvny5dZ5zj333DJeLSpq4sSJRpJp27atuf/++0tMEtEvaqZffvnF+q1I7969zcGDB4stW9wIRPpGzfPxxx9b70WPHj2C/r+SkpJiwsLCjCRTv359k5eXV+g4/eLk88gjj5ivvvrK/Pbbb8YYY3bt2lXmL/Yn0vuel5dnWrZsaSSZunXrBj3XzTffbJ3n3XffLdU11jYV7Rfff/+9ueqqq8zPP/9cbJnPP//cGinQokWLYkeZ0S9OLJXxmXEsn89nOnfubCSZJ554wjRt2rRUSSL6xomjsvrFww8/bNV77rnnQpb1er1Bn6df/A9JIhTrq6++sjrwbbfdFrRMwU6+YsWKoGVWrFhhlbn11luLHPd6vSYmJsZIMu3atSs2ozpmzBgrTkpKSvkvDGWSmppqZc4XLlxY6AO0uCQR/aJmOv/8840kExsbazIyMsoVg75R89x5553W6/zll18WW+7yyy+3ym3cuLHQMfrFya88X+xPpPf9ww8/tI6PHz8+aAyPx2Pq169vJJnTTz+9VNdY21VGIiCYK664woq7bt26IsfpFye+yugbzz//vJFk2rRpY3Jzc0uVJKJvnNjK0y927Nhh/SJqxIgR5Tov/aIwFq5Gsfr162c93rFjR5Hjxhh98cUXkqS2bduqe/fuQeN0795dbdq0kSR9/vnnMsYUOr5o0SIdPHhQkjR8+HDZ7cG7ZcHFyz799NPSXgYq6Oabb1ZWVpaGDx9eqE8Uh35RM23evFnz58+XJN16662KjY0tcwz6Rs3k9Xqtx0lJScWWa9GihfU4NzfXeky/qJ1OtPf9888/D1q2oKioKF111VWSpJ9++knbtm0LWg5V79xzz7UeB/uOSr+o+f7973/rkUcekSS99tprcrlcpapH36h5Jk+erLy8PNlsNqtPlBX9ojCSRChWwS/+wf6h7Nq1S3v27JEk9e3bN2Ss/OPp6enavXt3oWMFd1ELFSc5OVlut1uStGzZstCNR6X48MMP9fXXX6tBgwaaMGFCqerQL2qmjz76yHo8ePBg6/GBAwe0bds2/f777yXGoG/UTK1bt7Ye79y5s9hy+TdyNptNrVq1sp6nX9ROJ9r7nh+nTZs2OvXUU0tsS3FxUD0KJpqDfUelX9R8N998szwej4YNG1YoaVgS+kbNk/8dNTk5Wc2bN5ckBQIBpaena9euXTpy5EiJMegXhZEkQrEWL15sPW7btm2R45s2bQp5vKCCxwvWK0scp9Np/Sb62BiofAcPHtTtt98uSXrmmWcUFxdXqnr0i5opf/vyevXqqV27dpo2bZrOOussNWjQQK1bt1ZsbKySkpL0+OOPKysrK2gM+kbNdM0116hu3bqSjn5W+P3+ImXWr1+vWbNmSZKGDBlilZfoF7XVifS+Z2VlKT09vcJtQfWprO+o9IuT08yZMzV79mzVr19fzz33XJnq0jdqloyMDOsXVD169NAff/yhO+64Q7GxsUpISFBSUpLq1q2rvn37Wt9DgqFfFEaSCEEFAgE9/fTT1t/zh8QVlJaWZj2Oj48PGS8hISFovYJ/d7vdiomJKVWcjIyMQr9FQuW799579dtvv+mcc87RyJEjS12PflEz/fLLL5KkZs2aaezYsbruuuu0YcOGQmV27dqlxx57TD169NDevXuLxKBv1ExxcXF65513FBkZqe+//15dunTR1KlTtXLlSn333Xd6/PHH1bdvX3m9Xp199tl64YUXCtWnX9ROJ9L7np6ebk1jq0hbUD1+/PFH62avQ4cOat++fZEy9Iua68CBA7rjjjskSU8//bQaNWpUpvr0jZol//upJEVGRqpTp0566aWXdODAAet5n8+nJUuW6NJLL9Xf//73oHHoF4WRJEJQEydO1OrVqyVJl19+uZKTk4uUOXz4sPU4Ojo6ZLz8YXmSiowyyI9TUoyS4qDyLFu2TG+++aacTqcmTZokm81W6rr0i5pp//79ko6uTfTqq68qJiZGkyZN0r59+5STk6M1a9ZowIABko7Orx48eLACgUChGPSNmuvyyy9XSkqKRo4cqR9++EHDhw9Xjx49dMEFF+ixxx5TVFSUXnjhBS1btqzI8Gv6Re10Ir3vldUWVL3c3FyNGjXKGrH41FNPBS1Hv6i57rnnHv3nP/9Rjx49NHr06DLXp2/ULPnfTyXpxRdf1I4dO3TOOedo8eLFys7O1v79+zVt2jSddtppko7e406aNKlIHPpFYSSJUMTixYt13333SZIaNWqk1157LWi5nJwc63FJi8WFh4dbj4+dF5ofpzQLzoWKg8rh9Xp14403yhijO++8U2eccUaZ6tMvaiaPxyPp6Bd0h8OhOXPmaMyYMYqLi1N4eLiSk5P19ddfW4mi5cuXF1nQj75Rc+Xl5Wn69On66quviiwsLEn/+c9/NGPGDC1atKjIMfpF7XQive+V1RZUvVtvvVUpKSmSji4u++c//zloOfpFzbRkyRK99dZb5folZj76Rs2S//1UOvodtXPnzpo/f7769OmjyMhI1a9fX9dee60WL15sJWYeeeQR/i8pAUkiFPLzzz/r8ssvl8/nU3h4uD788EOdcsopQctGRERYjwsuch1MwaF4kZGRQeOUFKOkOKgcTz31lDZt2qTExEQ9+uijZa5Pv6iZCr6vgwcPDroTkd1uL7TA+YwZM4qNQd+oOTwej/r3769x48bp999/17333qtNmzYpNzdXhw4d0rfffqtevXppzZo1uuyyy/TSSy8Vqk+/qJ1OpPe9stqCqjV+/Hi9+eabkqTOnTvr1VdfLbYs/aLmyc3NtX6Jefvtt+vMM88sVxz6Rs1S8L2QpHHjxhV5TpJatWqlm266SdLRaWLfffdd0Dj0i6NIEsGya9cuXXjhhTpw4IAcDodmzJgRcnX3OnXqWI9LGiZXMMt77PC7/DilGWoXKg4qbvPmzRo/frwk6eWXXy40FLK06Bc1U8H3NX+0UDAdOnRQkyZNJElr1qwpNgZ9o+Z49NFHtWTJEknSlClT9Mwzz6ht27ZyuVyqW7euLrjgAi1cuFDnnnuujDH6+9//Xmg9K/pF7XQive+V1RZUnddff10PPPCApKO7Bs2ZMyfkdxT6Rc0zbtw4bdmyRQkJCXrsscfKHYe+UbMUfC9cLlfIne4uuugi63Fx31HpF0c5j3cDcGLYu3ev+vfvr71798pms+mtt97S5ZdfHrJOwQW58ldyL07BBbkKLtSVH2fVqlXyeDw6ePBgyMXC8uPkT3FB5Zo4caK8Xq+SkpKUnZ2tmTNnFinz008/WY8XLFig3377TZJ02WWXye120y9qqISEBOu9Ls1ifHv27NG+ffsKPU/fqHmMMXr77bclSa1bt9bw4cODlnM6nXryySfVq1cvBQIBvf3225o4caIk+kVtdSK975XVFlSNGTNm6Oabb5YkNW3aVN99912JO67SL2qeZ555RpLUv39/ff3110HL5N94ezwe6ztso0aNdN5551ll6Bs1S8HX9JRTTgk5zatg2WDfUekX/8NIIigzM1MXXHCBtX3gyy+/rOuvv77EegV3k9i8eXPIsgWPt2vXrlxxfD6fduzYETQGKkf+0MedO3fqmmuuCfrzySefWOWffPJJ6/mMjAxJ9IuaqkOHDtbjYFucF5R/3Oks/HsI+kbN85///MdaNLJjx44hy3bu3Nl6XPB9o1/UTifS+x4dHW19Sa9IW1D5vvzyS11//fUKBAI67bTTNH/+/BJ/USHRL2qi/Ok7b7/9drHfUTMzMyUdvbfJf+6JJ54oFIe+UbO0atVKYWFhkkr//VQq/3fU2tIvSBLVcocOHdJFF11kbR/49NNP65ZbbilV3ebNm6tx48aSji52HUr+VIQmTZqoWbNmhY716tXLehwqTkpKivUbgp49e5aqjah+9IuaqU+fPtbj/P8ci5OfcM6fdpaPvlHzFPyS5fP5QpbNy8sLWo9+UTudaO97fpwtW7ZYoyaDKXgO+k/Vmj9/vq666ir5fD41bNhQ8+bNU4sWLUpVl36B4tA3apawsDD16NFD0tFfXBWcxnWsgt9fj/2OSr84hkGt5fF4TM+ePY0kI8k8+OCDZY5x0003WfVXrFgRtMyKFSusMjfffHOR47m5uaZevXpGkmnXrp0JBAJB44wZM8aKs3r16jK3FZXj0Ucftd6HhQsXBi1Dv6h5MjMzTVhYmJFkLrjggmLLLVq0yHo/Ro4cWeQ4faNm8fv9pm7dukaSady4scnLyyu27FdffWW9H2PHji10jH5x8tu1a5f1ug4fPrxUdU6k9/2DDz6wjo8fPz5oDI/HY+rXr28kmfbt25fqGmu78vQLY4z5/vvvjdvtNpJM3bp1TUpKSpnOS7848ZW3b4TStGlTI8k0bdq02DL0jRNbefrFSy+9ZNWZNm1aseVGjBhhlVu6dGmhY/SLwkgS1VK5ubnmwgsvtDrx7bffXq44W7ZsMU6n00gyycnJJjs7u9Dx7Oxsk5ycbCQZp9Nptm7dGjTOww8/bLXl2WefLXJ8+fLl1nn69u1brraicpQmSUS/qJkK3tDNmDGjyPE//vjDnH322SH/86Rv1DzXXHON9V489thjQcvs37/ftG/f3ir3zTffFDpOvzj5leeL/Yn0vnu9XtOiRQsrKbF9+/YiZW6++WbrPG+//XaprrG2K0+/WL9+vYmJiTGSjNvtNsuWLSvXuekXJ7bjlSQyhr5xIitPvzh8+LBp1KiR9d7/9ttvRcosXLjQOBwOI8mcfvrpQZNA9Iv/IUlUSw0aNMjqnOedd57ZsGGD2bhxY7E/W7ZsKTbWfffdZ8Xq2LGjmTlzplmzZo2ZOXOm6dixo3Xs/vvvLzbGH3/8YVq3bm2VvfHGG82CBQvMihUrzFNPPWWio6ONJBMZGWnWr19fBa8ISqs0SSJj6Bc10b59+0xiYqJ1w3brrbeaBQsWmJSUFPP222+btm3bWu/VTTfdVGwc+kbNsmnTJhMVFWW9F5dddpn5+OOPzbp168zy5cvNCy+8YPUbSeb8888PGod+cXJZunSpefvtt62fCRMmWK97z549Cx0L9SX4RHrfZ82aZex2u5FkTjnlFPPyyy+bVatWmblz55orrrjCit+rVy/j8/kq8OrVXBXtF9u3b7du9iSZiRMnhvx+unHjRvOf//wnaFvoFyeWyvrMCKW0SSL6xomjsvrFzJkzjc1mM5JMQkKCefXVV82aNWvM0qVLzQMPPGAiIyOt76/FJZ7pF/9DkqiWyu+cpf0J9WHr9/vNDTfcELL+yJEjjd/vD9mmbdu2mVatWhUbo27duuarr76q5FcCZVXaJBH9omb65ZdfTMuWLUO+rzfccIPxer3FxqBv1Dzz5s0zsbGxJf5fct5555n9+/cHjUG/OLkMHz68TN8jinOive+TJ082Lper2Dhdu3Y1GRkZZX69aouK9ou33367zN9RH3300WLbQ784cVTWZ0YopU0SGUPfOFFUZr945ZVXQr4X0dHR5vPPPw8Zg35xFEmiWqqs/wGX5sN21qxZZuDAgaZx48bG5XKZxo0bm4EDB5rZs2eXul1ZWVnmmWeeMcnJySYmJsZERUWZNm3amDvvvNPs3r27AleMylLaJFE++kXNk5WVZSZMmGC6detmGjRoYFwul4mPjzdXX321WbBgQanj0DdqlszMTPPMM8+Yfv36mbi4OBMWFmYiIyNN8+bNzVVXXWU+//zzYuf4F0S/ODlU9g3fifS+b9y40YwePdokJSWZiIgI07BhQ9OrVy/z2muvhVx3CydeksgY+sWJ4kRLEhlD3zgRVHa/+Omnn8xNN91kWrZsaSIjI010dLQ588wzzb333mv27t1bqjbRL4yxGWOMAAAAAAAAUKvZj3cDAAAAAAAAcPyRJAIAAAAAAABJIgAAAAAAAJAkAgAAAAAAgEgSAQAAAAAAQCSJAAAAAAAAIJJEAAAAAAAAEEkiAAAAAAAAiCQRAAAAAAAARJIIAAAAAAAAIkkEAAAAAAAAkSQCAAAAAACASBIBAAAAAABAJIkAAAAAAAAgkkQAAAAAAAAQSSIAAAAAAACIJBEAAEC5PPbYY7LZbLLZbMe7Kcfd7t27rdfinXfeqZJzvPPOO9Y5du/eXSXnOFmV9Nr069dPNptN/fr1q/a2FdSsWTPZbDaNGDHiuLYDAFA8kkQAgBpnxIgRZb6ZzL95adasWZW2DSgov9/l/7z33nulqjd69OhC9bjpLp2Cnw0Ff+x2u+rVq6cOHTpo1KhR+v777493UwEAOC5IEgEAgDJhBE3VKU2SKDc3Vx999FE1tKb2MMbojz/+0C+//KIpU6aoV69eGjVqlPx+//Fu2gnvRBmlBACoHM7j3QAAAIDaLiIiQjk5OZo/f7727t2rxo0bF1v2yy+/1KFDh6w6KJ9vvvnGep2NMcrIyNC8efP00ksv6ciRI5oyZYpiY2P19NNPH+eWVtyiRYuOdxMkiWmCAHASYCQRAADAcZacnKzGjRsrEAho+vTpIcvmjzYaOHBgdTStxmrdurVOP/10nX766TrjjDN03nnnafz48VqwYIHCwsIkSS+++KJ+//3349xSAACqD0kiAACA48zhcOjaa6+VFHrKWWZmpubOnStJGjZsWLW0rbbp3r27rrrqKklHp/YtWLDgOLcIAIDqQ5IIAIASLFq0yFqDJ3/axocffqjzzz9fcXFxioyMVJs2bXTvvfdq//79pYo5e/ZsXXfddUpKSpLb7bYWzR0yZIg++eQTHTlypNi6W7Zs0W233aYOHTqoXr16ioyMVFJSkv76179q3bp1VXYd+TsoPf7449ZzwRYBDjalxBijjz/+WFdccYUSEhIUERGh+vXrq2vXrnryySd18ODBYtudv9hw/qLiv/76q/7xj3+oQ4cOqlOnTqHrqYzz5UtPT9ctt9yipKQkRUREqHHjxvrzn/+s7777rsS65ZGf9NmwYYM2bNgQtMyMGTOUl5enuLg4XXTRRaWOvWzZMg0bNkzNmjVTRESEYmJi1LFjRz300EPKyMgosb7f79err76qbt26qW7duqpXr546deqk5557Trm5uaVuhyTNmzdP1113nZo3b67IyEjVrVtXZ511lu699179+uuvZYpVVbp37249/ve//209PnY9rkOHDunJJ59Ux44dFRMTU+zubhW95gMHDui+++5T27ZtFRkZqUaNGql///6lXpuqtOsGZWRk6IknnlDPnj3VqFEjhYeHKyEhQT179tQTTzyhLVu2WGXz/10uXrxYkrR48eIinwXHbgRQ2t3NvvrqK1155ZWKj49XeHi4GjZsqB49eujpp59WVlZWsfWO3eUtEAho8uTJOuecc1S/fn253W6deeaZGjdunLKzs0O2Ye3atRo5cqRat24tt9utiIgIJSQkqHPnzrrlllv05ZdfyhgTMgYAnJQMAAA1zPDhw40kI8ns2rWrVHWaNm1qJJmmTZsWObZw4UIr3nfffWeuvfZa6+/H/rRs2dL8+uuvxZ4nMzPTnH/++cXWz/95++23g9Z/4oknjNPpLLaezWYzjzzySNC6Fb2Ot99+u8R2B3vN9+3bZ3r27BmyzimnnGJWrlwZtN3572fTpk3NihUrTGxsbJH6CxcurLTzGWPMokWLTN26dYut//jjj5tHH33U+nt55fe7vn37GmOMOfPMM40kc/fddwct36VLFyPJ3HbbbcYYY51/+PDhQcv7/X5zyy23hHwt6tWrZ7799tti2/jHH3+EfD07d+5s1q1bV2LfzcrKMpdffnnItkRHR5uvvvoqaP2C/a+0/66PVdrPhtdee80q9/TTT1vPF3zPt27dapo1axby325Fr9kYY37++Wdz2mmnFVv/hhtuKPG16du3b6F+Fsz7779v3G53yLYW/Hws+FqWprwx/+vvxfXXI0eOlPh6NW7c2Kxfvz5o/YKvw08//WTOO++8YuN07drVZGVlBY3zwgsvGLvdXuL1HT58uNjXEwBOViSJAAA1TlUmic455xwjyfzlL38xn376qVm7dq2ZPXu2ueSSS6wyQ4YMCXoOj8djzjjjjEI316+//rr5/vvvTUpKivnss8/MnXfeaRo3bhz0Rvvhhx8u1I4333zTrFixwqSkpJhp06aZHj16WMf/9a9/Vfp1HDhwwGzcuNHcdNNNVpmNGzcW+fF6vVadrKws065dOyPJuFwuM2bMGPPFF1+YdevWmaVLl5px48aZhg0bGkmmfv36Zvfu3UXanf9+NmzY0DRu3NhER0ebBx980CxatMisXr3aTJkyxWzevLnSzrdr1y5Tp04dI8nY7Xbzt7/9zXz33XdmzZo1ZsqUKaZVq1ZGkklOTq70JNGECROsG2G/31+o7ObNm63zrVmzxhhTcpLonnvusco0b97cTJo0yaxevdosXLjQ3HnnnSYsLMx6rX744YegMS677LJCN9YzZswwKSkpZtasWWbw4MFGkpW8Ki5J5PP5zLnnnmuko4nMa665xnz00UcmJSXFrFixwrz00ksmMTHRaktKSkqRGNWZJCrYx6dOnWo9XzBJdOaZZ5qwsDAzduxYM2/ePJOSkmJmzJhhli9fXmnXfPDgQRMfH2+d8+qrrzazZ882KSkpZvr06VYfLPj6lydJ9O6771r1IyIizNixY83s2bPNunXrzJIlS8wrr7xiLrroIpOUlGTVSU9PNxs3brTakJycXOSzYMuWLYXOU1KS6KqrrrLacdZZZ5mpU6eaNWvWmG+++cb89a9/NTabzUgyDRo0MOnp6UXqF+wj55xzjrHb7Wb48OFm1qxZZu3ateazzz4r9Dl53333FYnx448/Wgmi5s2bm+eff97Mnz/frF+/3ixdutS89dZbZtiwYSY6OpokEYAaiSQRAKDGqcokkSTzz3/+s0iZQCBgLrzwQiPJOJ1Os2/fviJl7rjjDivGLbfcYgKBQNC25Obmmt9++63Qc6tXr7ZuXB566KGg9fx+v7nuuuuMJFOnTh1z4MCBKrmOsoygufXWW410dLRKfmLjWLt377ZGSlx33XVFjhd8P6Ojo4tNZlTW+QYNGmSdb/r06UWO//HHH+ass84q9FqW17FJor179xqHw2EkFRnd8+CDDxpJpm3bttZzoZJEGzZssPrM6aefXqQ/GGPMnDlzrDJdu3YtcvzLL7+0znHxxRebvLy8ImUef/zxQq9FsCTRc889ZySZsLAwM3v27KCvxf79+02HDh2MJNOrV68ix6srSbR7925rFJnNZjP//ve/rWMF+77dbg85Aqsyrvnvf/+7db6nnnqqyHGv12v9ey1vkmjPnj0mKirKSDKNGjUyGzduLPaa0tLSyhT7WKGSRF9//bV1Deeff77Jzc0tUmby5MlWmauuuqrI8WNHO7733ntFyuTk5JjTTz/dSjwf26fzk/Fut7vI53BBBw8eLJLIBYCagCQRAKDGqcokUefOnYtN7sydO9cq98UXXxQ6tn//futGrFOnTsbn85Xpmq644ooSz2/M0dE+4eHhRpJ54403Kv06jCl9kigjI8NEREQYSeall14KWfb//u//rBtqj8dT6FjB9/OJJ56o0vMVTNJceumlxdZftWpVlSSJjDHWTf/1119vPRcIBKypTePGjbOeD5UkKjgaZsWKFcW2YdSoUVa51atXFzo2YMAAI8mEh4ebPXv2BK3v9/utm+5gSSKv12sl5e68884Qr4Yxs2fPtuJs27at0LGqTBIFAgGzb98+8/777xcauXPsaLqCff+GG24o9jyVcc05OTmmfv36Rjo6aqm4hERaWpo1Iqw8SaL77rvPqvvZZ5+FbGswlZUkyu9rYWFhJjU1tdgY/fv3t5LYe/fuLXSsYB8ZNGhQsTEmTZpklfvxxx8LHRs9erSRZDp27Fji9QBATcTC1QAAlMG1115rLVp7rM6dO1uPd+7cWejYwoULrYVSb7vtNjkcjlKfMy8vT3PmzJEkXXnllcWeX5JiYmJ0xhlnSJJWrFhRbLnyXkdZfPPNN8rJyZEka7eo4vTp00fS0Wtdu3ZtseWGDh1apedbuHCh/H6/JOmvf/1rsfW7du2qDh06hDxHeeUvYP3pp5/K4/FIkpYuXardu3fLZrOFfA0Kyl9gu3379oUWYj7W6NGji9SRJJ/PZy1KfOGFF6px48ZB69vtdg0fPrzY+KtXr7YWZy7t+yKF7r+VoXnz5tYix3a7XY0aNdJ1112n9PR0SUcXr3799deLrR/qfaiMa167dq0OHDggSRo+fLjs9uBf2+Pj43XhhReGPEcos2bNknT09Rg4cGC541REwb52wQUXKCEhodiy+f3V5/MVWbC+oFDvT6jPuNNOO02S9Msvv2j16tUlth0AahqSRAAAlEHbtm2LPdagQQPr8eHDhwsdW79+vfW44E1hafzyyy9Wgun+++8PuqNYwZ+UlBRJ0m+//Vbp11EW+e2Qjt54hWrz6aefbpUtrt3R0dFKSkqq0vNt3LjRetylS5eQ19e1a9eQx8tr0KBBio6OVlZWlj7//HNJ0tSpUyUd7TtNmzYtMUZubq62bdsmSerWrVvIsh07dlRYWJgk6aeffrKe37Fjh9XvKvJaFHxfevToEfJ9iY6OtsqG6r9VJSwsTF26dNGrr76qpUuXqm7dusWWPfPMM4s9VhnXXB19MS8vz3rPe/fuHTIBXZV27txp9bWS+mvB4wX767HK+xl3zTXXKCwsTLm5uerZs6cuu+wyTZo0ST///DO7mQGoFUgSAQBqnPLc6OR/+S+pblRUVLHHCv6mP380Sr7MzEzrcf5vqktr3759ZSqfL9QWz+W9jrKo7HbHxMRU+fnyR25IUqNGjULWO+WUU8p1vpJERUVp0KBBkqT33ntPOTk5+vjjjyX9b5RRSQpeR0ntDAsLU8OGDSVJ+/fvDxqjIq9FVfTfyvDNN99o48aN2rhxo37++Wf9+9//1uHDh7V69WrdfPPNcjqdIevXr1+/2GMnS1/cv3+/9dlX1s+lylSw35V0LaeeemrQescq72dc27ZtNWPGDNWvX18+n09ff/21brrpJp1++ulq1KiRhg0bpqVLl4ZsIwCczEL/7wcAwEkoMjLSelzaG838aT1ut7tK2lQRBW9iJkyYoD/96U+lqne8ryW/3S6XK+QUsmPFx8cHfb6kKXqVcb6CIwVKShhW5aiCYcOGaerUqfruu+/0+uuv69ChQ4qIiNCVV15Z5lilSZoGu5bKei0K9t9FixZZCamSlJQYqajWrVurWbNm5a4fqj9WxjVXd188XqOIjnUitOOKK65Q//799cEHH+ibb77R0qVLlZGRoczMTL3//vt6//33NXz4cL311lvFTgMEgJMVSSIAQI1TcCrBb7/9pvbt24csn5ubq4MHDxapW5liY2Otx7/++quaN29e6roFbzDz8vIKTZU6keW32+v1qmHDhlU+UqEyzlfw/f/Pf/4Tcm2U8o4WKY3zzjtPTZo00Z49e3TfffdJkv785z+rXr16papfcJRLSdO2fD6fNSKj4PUf+1qEEuq1KNh/XS7XSdN/K6IyrvnY179169bFli1vX2zQoIHsdrsCgYD27t1brhiV4djP7FAKHq+qz2tJqlevnm688UbdeOONko5O+/3yyy/18ssva+/evXr33XfVsWNH3X777VXWBgA4Hkh9AwBqnIJrhaxbt67E8j/++KP1m/9Q64xURKdOnazHS5YsKVPdDh06yOVySZK+/fbbSm1XeZT2N/0dO3a0HldHuyvjfPmLfkvSmjVrQpYt6XhF2O12a+Hd/MW4SzvVTJLCw8PVqlUrSdKqVatCll2/fr3y8vIkqVAyo0WLFtaUnYq8FtXdD04EJ0tfDAsLs97zpUuXlmtEUmWM/ElKSrL6Wkn9teBi0tWZcGzfvr3uu+8+rVy50hql+eGHH1bb+QGgupAkAgDUOH369LHWE5kxY0aJNz7vv/++9fj888+vkjade+651o3Fyy+/XKa1fqKioqx2LVq06LjvuBMREWE9zs3NLbbcgAEDrAWRJ06cKJ/PV6XtqozznXvuudY0onfffbfYcikpKSEXza0Mw4YNU3h4uMLDw9WkSZNSTzPM179/f0lHR0CsXLmy2HJvvvlmkTqS5HQ61bdvX0lHEx35u3UdKxAIhHytevXqZY34mDRpkv7444/SX8RJqjKuuXPnztaIsPfee6/Yz7E9e/ZUKPl22WWXSZJ27dqlL774osz18z8PQn0WlKRgX5s3b57S0tKKLZvfXx0Oh/r161fuc5ZXQkKCNaqr4FpzAFBTkCQCANQ4p556qrV2y7p16/T0008XW3bBggWaNGmSJKlp06bWDVNli4mJ0ZgxYyQd3dr6jjvuKPamLy8vr8j0kQcffND6jf2QIUO0Y8eOYs/l9/s1ffp0ayvvylZwGleodjRp0sTaRv7HH3/UmDFjQiZu9u3bVyhhUVaVcb7TTjvN2gb8yy+/DDpSICsry5qCUpVOP/105eTkKCcnR+np6SUupHysm266yVov5cYbb9ShQ4eKlPn22281ZcoUSUd3yDp2F62bbrpJ0tEEwJgxY4ImN8ePH19oJ65jRURE6O6775Z0dKrQkCFDrDXAgjl8+LBeeeWVEq7uxFYZ1xweHm715x9++EETJkwoUs/n82n06NHyer3lbuutt95qJbDHjBkTMvkZ7DMl//Ng586dFVob6ZZbbpF09PPvhhtuCHpNb731lpUQu+KKK6pkCuvnn39uTT8OJi0tTZs3b5akMk0bBoCThgEAoAbau3evadSokZFkJJkLL7zQTJ061axcudKkpKSYzz//3IwcOdI4nU4jydjtdrNgwYKgsRYuXGjFWbhwYcjz5pd79NFHixzzeDzmjDPOsMp07tzZTJ482axYscKsXbvWfPHFF+aee+4xTZo0MW+//XaR+o8++qhVNzo62tx+++1m1qxZZt26dWbFihVmxowZ5rbbbjONGzc2kszGjRur5Dq2bdtW6HVdvHix2bp1q9m2bZvZtm2bycvLs8oePnzYnH766Vb59u3bmxdffNEsXbrUrF+/3ixcuNC88sor5i9/+YtxuVymc+fORc43fPhwI8k0bdo0ZJsr63y7du0yderUMZKMw+EwN998s1mwYIFJSUkxb731lmndurWRZJKTk63zlFfTpk2NJNO3b99y1c8///Dhw4Mev+eee6wySUlJ5vXXXzerV682ixYtMnfddZcJCwszkozL5TLr168PGuOyyy6zYnTr1s3MnDnTrF271syZM8dcffXVRpLp0qWLVSZY3/X5fOb888+3yiQmJpqnnnrKLFy40Kxfv94sWbLEvPHGG2bo0KHG7Xabhg0bFonx9ttvW/V37dpVrtcrvy+VN0bBf4MlqYxrPnjwoImPj7diXHPNNWbOnDlm7dq1ZsaMGdbrXvD1D3Zdffv2DdnPpk6datWPjIw0t912m5kzZ45Zv369Wbp0qXnttdfMgAEDTFJSUpG6b7zxhlX3jjvuMCkpKdZnwe7duwuVze/vxfXXwYMHW7HOPvts895775mUlBQzb948M3LkSGOz2Ywk06BBA5Oenl6kfmn7yK5du4rtr3379jVRUVFm8ODB5rXXXjOLFi0y69evNwsWLDDPPvusSUhIsOp+/vnnxZ4DAE5WJIkAADXW5s2bTbt27awv9MX9xMTEmK+//rrYOJWVXDHGmIyMDNOnT58S2xTsRtsYYyZOnGjCw8NLrO9yucy2bduq7DquuuqqYs997M3Z77//bv70pz+V2GZJ5txzzy1yrrIkiSrjfMYcfa3yE0XBfh599NEyJQyKU9VJIr/fb26++eaQr0G9evXMN998U+w5/vjjD9OzZ89i63fq1MmsW7euxL6bnZ1trr/++lK9L82bNy9S/2RLEhlT8Ws2xpiffvrJnHrqqcXW++tf/1ria1NSksgYY9555x0TGRkZso3B/g0ePnzYJCUllap8SUmiI0eOmMsvvzxkGxo3blxsQrOykkQlvVcOh8M89dRTxcYHgJMZ080AADVWmzZttGHDBr3//vu68sor1bRpU0VFRcnlcunUU0/V+eefrwkTJmj37t265JJLqqVNsbGxWrx4sT799FNdeeWVio+PV3h4uOrXr6/TTz9dQ4cO1RdffKFrr702aP077rhDO3bs0MMPP6zu3bsrNjZWTqdTbrdbrVu31hVXXKFJkyZpz549atmyZZVdx/vvv69nn31WXbt2Vb169UJuA92gQQPNmTNH8+fP11//+le1atVK0dHRcjqdatCggbp06aJbbrlFs2fP1rx58yrctso4X79+/fTzzz/rpptuUtOmTeVyuXTKKafokksu0dy5c/XYY49VuJ3VwW6369VXX9WSJUs0dOhQJSYmKjw8XHXr1tXZZ5+tBx54QNu2bdOFF15YbIw6depo0aJFevnll9WlSxdFR0erTp06OvvsszV+/Hh9//33hXZTK05kZKTeffddpaSk6KabblKHDh1Ur149OZ1OxcTE6Oyzz9bIkSP18ccfa9OmTZX5Mhw3lXHNHTp00M8//6x7771XrVq1Unh4uGJjY3Xuuedq+vTpeuuttyqlrcOHD9eOHTv04IMPqnPnzoqJiZHL5VJiYqJ69eqlcePGaeHChUXqRUdHa/ny5br99tvVrl07awHq8oiIiNCnn36qL7/8UoMGDVLjxo3lcrlUv359devWTePHj9eWLVt09tlnV+BKQ/vwww81bdo0jRgxQmeffbZOPfVUOZ1ORUdH6/TTT9fNN9+s9evX6/7776+yNgDA8WQzpgKThwEAAAAAAFAjMJIIAAAAAAAAJIkAAAAAAABAkggAAAAAAAAiSQQAAAAAAACRJAIAAAAAAIBIEgEAAAAAAEAkiQAAAAAAACCSRAAAAAAAABBJIgAAAAAAAIgkEQAAAAAAAESSCAAAAAAAACJJBAAAAAAAAJEkAgAAAAAAgEgSAQAAAAAAQCSJAAAAAAAAIJJEAAAAAAAAEEkiAAAAAAAAiCQRAAAAAAAARJIIAAAAAAAAIkkEAAAAAAAAkSQCAAAAAACASBIBAAAAAABAJIkAAAAAAAAgkkQAAAAAAACQ9P9s5slmzs3RjQAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {
"image/png": {
"height": 432,
"width": 580
}
},
"output_type": "display_data"
}
],
"source": [
"ax = sns.scatterplot(\n",
" x=si_results.fittedvalues, # predictions fro un-centered model\n",
" y=si_interp_results.fittedvalues, # predictions for centered model\n",
")\n",
"ax.set(xlabel='Uncentered Model Predictions', ylabel='Centered Model Predictions');\n",
"sns.despine();"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In notebook `03_models` we learned that we can use `.predict()` to generate predictions from our model by fixing one or more of our predictors at certain values.\n",
"\n",
"Let's do that now to get our predicted estimates of the average `Balance` for each level of `Student` when `Income` is fixed at it's mean of 46.03 - **this is what our parameter estimate for `Student` is**"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"# Create 1-row dataframes to pass into .predict()\n",
"student_no_x =pl.DataFrame({\n",
" 'Income': df['Income'].mean(),\n",
" 'Student': 'No'\n",
"})\n",
"\n",
"student_yes_x =pl.DataFrame({\n",
" 'Income': df['Income'].mean(),\n",
" 'Student': 'Yes'\n",
"})"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"# Generate predictions\n",
"student_no_prediction = si_interp_results.predict(student_no_x.to_pandas())\n",
"\n",
"student_yes_prediction = si_interp_results.predict(student_yes_x.to_pandas())"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Student (No): 463.237\n",
"Student (Yes): 864.684\n",
"Student (No prediction): 461.644\n",
"Student (Yes prediction): 866.277\n",
"Student (Yes prediction - No prediction): 404.633\n"
]
}
],
"source": [
"print(f\"Student (No): {student_no:.3f}\")\n",
"print(f\"Student (Yes): {student_yes:.3f}\")\n",
"\n",
"print(f\"Student (No prediction): {student_no_prediction[0]:.3f}\")\n",
"print(f\"Student (Yes prediction): {student_yes_prediction[0]:.3f}\")\n",
"\n",
"print(f\"Student (Yes prediction - No prediction): {student_yes_prediction[0] - student_no_prediction[0]:.3f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And we can verify that:\n",
"\n",
"- $\\beta_0$ = $\\hat{balance}_{\\text{student\\_no}}$ when $Income = Income_{mean}$\n",
"- $\\beta_1$ = $\\hat{balance}_{\\text{student\\_yes}}$ - $\\hat{balance}_{\\text{student\\_no}}$ when $Income = Income_{mean}$"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Intercept 461.644003\n",
"C(Student)[T.Yes] 404.633047\n",
"center(Income) 5.513813\n",
"dtype: float64"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"si_interp_results.params"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Summary\n",
"\n",
"When we **add** a categorical predictor to a model with a continuous predictor, we estimate different *intercepts* but the same *slope* for each level of the categorical variable. \n",
"\n",
"Intuitively, this is like accounting for differences in the means of each group when considering the continuous relationship between two predictors. \n",
"\n",
"Alternatively, we can think about it like accounting for the continuous relationship between another variable when considering the mean difference between groups.\n",
"\n",
"**Centering** our continuous predictor makes our estimates more interpretable. It also makes sure we compare levels of our categorical predictor along a **meaningful value** of our continuous predictor!\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Interactions (2-levels and Continuous Predictor)\n",
"\n",
"Our previous *multiple regression* tested whether students and non-students have a different `Balance` when accounting for the relationship between `Balance` and `Income`.\n",
"\n",
"However, we did not test whether **the relationship between `Balance` and `Income` was different for students and non-students**\n",
"\n",
"We can extend our previous model to test this by adding **an interaction term** to capture this relationship \n",
"Specifically we add `Student` x `Income` to our model to **estimate separate slopes** for students and non-students\n",
"\n",
"\n",
"$$\n",
"\\hat{Balance}_{i}= \\beta_0 + \\beta_1 Student + \\beta_2 Income + \\beta_3 Student \\times Income\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Challenge \n",
"\n",
"1. Estimate the model above and call it `six_model` and save the results to `six_results`.\n",
"2. Compare it to `si_results` from earlier using `anova_lm()`. Is the addition of the interaction term *worth it*?\n",
"3. Create 2 new columns in `df_models` called `balance_pred_six` and `resid_six` that include the `.fittedvalues` and `.resid` from this model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Your code here"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {
"image/png": {
"height": 540,
"width": 609
}
},
"output_type": "display_data"
}
],
"source": [
"# Create grid\n",
"grid = sns.FacetGrid(data=df_models.to_pandas(), hue=\"Student\", height=5.5, aspect=1);\n",
"\n",
"# Plot data\n",
"grid.map(sns.scatterplot, \"Income\", \"Balance\",alpha=.25);\n",
"\n",
"# Plot our predictions from student only model\n",
"grid.map(sns.lineplot, \"Income\", \"balance_pred_s\", ls='--', alpha=.5);\n",
"\n",
"# Plot our predictions from income only model\n",
"grid.map(sns.lineplot, \"Income\", \"balance_pred_i\", ls='-', color='black', lw=1.5, alpha=0.5);\n",
"\n",
"# Plot our predictions student + income\n",
"grid.map(sns.lineplot, \"Income\", \"balance_pred_si\", ls='-.', alpha=.5);\n",
"\n",
"# Plot our predictions student x income\n",
"grid.map(sns.lineplot, \"Income\", \"balance_pred_six\", lw=3);\n",
"\n",
"# Aesthetics\n",
"grid.set(ylabel='Balance');\n",
"grid.add_legend();"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's inspect the parameter estimates"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Balance R-squared: 0.325\n",
"Model: OLS Adj. R-squared: 0.297\n",
"No. Observations: 76 F-statistic: 11.57\n",
"Covariance Type: nonrobust Prob (F-statistic): 2.82e-06\n",
"============================================================================================\n",
" coef std err t P>|t| [0.025 0.975]\n",
"--------------------------------------------------------------------------------------------\n",
"Intercept 176.9471 108.096 1.637 0.106 -38.539 392.434\n",
"C(Student)[T.Yes] 470.4184 155.351 3.028 0.003 160.732 780.105\n",
"Income 6.1811 1.765 3.502 0.001 2.662 9.700\n",
"C(Student)[T.Yes]:Income -1.4298 2.584 -0.553 0.582 -6.580 3.721\n",
"============================================================================================\n",
"\n",
"Notes:\n",
"[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n"
]
}
],
"source": [
"print(six_results.summary(slim=True))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Wait we forgot to **center**! Let's do that now to make these estimates more interpretable:"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Balance R-squared: 0.325\n",
"Model: OLS Adj. R-squared: 0.297\n",
"No. Observations: 76 F-statistic: 11.57\n",
"Covariance Type: nonrobust Prob (F-statistic): 2.82e-06\n",
"====================================================================================================\n",
" coef std err t P>|t| [0.025 0.975]\n",
"----------------------------------------------------------------------------------------------------\n",
"Intercept 461.4512 70.721 6.525 0.000 320.472 602.430\n",
"C(Student)[T.Yes] 404.6055 100.014 4.045 0.000 205.231 603.980\n",
"center(Income) 6.1811 1.765 3.502 0.001 2.662 9.700\n",
"C(Student)[T.Yes]:center(Income) -1.4298 2.584 -0.553 0.582 -6.580 3.721\n",
"====================================================================================================\n",
"\n",
"Notes:\n",
"[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n"
]
}
],
"source": [
"six_model_cent = ols('Balance ~ C(Student) * center(Income)', data=df.to_pandas())\n",
"six_results_cent = six_model_cent.fit()\n",
"\n",
"print(six_results_cent.summary(slim=True))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's verify that:\n",
"\n",
"- $\\beta_0$ = $\\hat{balance}_{\\text{student\\_no}}$ when $Income = Income_{mean}$\n",
"- $\\beta_1$ = $\\hat{balance}_{\\text{student\\_yes}}$ - $\\hat{balance}_{\\text{student\\_no}}$ when $Income = Income_{mean}$\n",
"\n",
"just like we did before by generating a single **marginal prediction**"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Student (No): 463.237\n",
"Student (Yes): 864.684\n",
"Student (No prediction): 461.451\n",
"Student (Yes prediction): 866.057\n",
"Student (Yes prediction - No prediction): 404.606\n"
]
}
],
"source": [
"# Create 1-row dataframes to pass into .predict()\n",
"student_no_x =pl.DataFrame({\n",
" 'Income': df['Income'].mean(),\n",
" 'Student': 'No'\n",
"})\n",
"\n",
"student_yes_x =pl.DataFrame({\n",
" 'Income': df['Income'].mean(),\n",
" 'Student': 'Yes'\n",
"})\n",
"\n",
"# Generate predictions\n",
"student_no_prediction = six_results.predict(student_no_x.to_pandas())\n",
"student_yes_prediction = six_results.predict(student_yes_x.to_pandas())\n",
"\n",
"print(f\"Student (No): {student_no:.3f}\")\n",
"print(f\"Student (Yes): {student_yes:.3f}\")\n",
"\n",
"print(f\"Student (No prediction): {student_no_prediction[0]:.3f}\")\n",
"print(f\"Student (Yes prediction): {student_yes_prediction[0]:.3f}\")\n",
"\n",
"print(f\"Student (Yes prediction - No prediction): {student_yes_prediction[0] - student_no_prediction[0]:.3f}\")"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Intercept 461.451226\n",
"C(Student)[T.Yes] 404.605544\n",
"center(Income) 6.181137\n",
"C(Student)[T.Yes]:center(Income) -1.429850\n",
"dtype: float64"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"six_results_cent.params"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To verify that:\n",
"\n",
"- $\\beta_2$ = $Balance \\sim Income$ when $Student =0$\n",
"- $\\beta_3$ = the difference between $Balance \\sim Income$ when $Student =0$ vs $Student = 1$\n",
"\n",
"we'll use the same approach we did in `03_models` - we'll set `Student = 0` and `Student = 1` and provide the original values for `Income` to generate **marginal predictions** for `Balance`. \n",
"\n",
"Then we'll estimate the slope of the relationship between these **marginal predictions** and our original values of `Income` using 2 *univariate* regressions:"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
"# Get only student = yes or student = No\n",
"student_0_data = df.filter(col('Student') == 'No').select(['Income', 'Student']) \n",
"student_1_data = df.filter(col('Student') == 'Yes').select(['Income', 'Student']) \n",
"\n",
"# Use values to get model predictions for Balance separately for students and non-students\n",
"student_0_predictions = six_results.predict(student_0_data.to_pandas())\n",
"student_1_predictions = six_results.predict(student_1_data.to_pandas())"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Income slope for Student = No (0): 6.1811\n",
"Income slope for Student = Yes (1): 4.7513\n",
"Difference in slopes: -1.4298\n"
]
}
],
"source": [
"# Create a new dataframe of Predicted_Balance ~ Income when Student = No\n",
"marginal_data_student_0 = pl.DataFrame({\n",
" 'Income': student_0_data['Income'].to_numpy(),\n",
" 'Predicted_Balance': student_0_predictions.to_numpy()\n",
"})\n",
"\n",
"# Run univariate OLS to slope\n",
"marginal_student_0_params = ols('Predicted_Balance ~ Income', \n",
" marginal_data_student_0.to_pandas()).fit().params\n",
"\n",
"# Same for student = Yes\n",
"marginal_data_student_1 = pl.DataFrame({\n",
" 'Income': student_1_data['Income'].to_numpy(),\n",
" 'Predicted_Balance': student_1_predictions.to_numpy()\n",
"})\n",
"\n",
"marginal_student_1_params = ols('Predicted_Balance ~ Income', \n",
" marginal_data_student_1.to_pandas()).fit().params\n",
"\n",
"print(f\"Income slope for Student = No (0): {marginal_student_0_params['Income']:.4f}\")\n",
"print(f\"Income slope for Student = Yes (1): {marginal_student_1_params['Income']:.4f}\")\n",
"\n",
"print(f\"Difference in slopes: {marginal_student_1_params['Income'] - marginal_student_0_params['Income']:.4f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And we can see the interaction term reflects this difference-in-slopes while `center(Income)` reflects the slope of `Student = No`"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Intercept 461.451226\n",
"C(Student)[T.Yes] 404.605544\n",
"center(Income) 6.181137\n",
"C(Student)[T.Yes]:center(Income) -1.429850\n",
"dtype: float64"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"six_results_cent.params"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Summary\n",
"\n",
"When we **multiply** a categorical predictor in a model with a continuous predictor, we estimate different *intercepts* and *different slopes* for each level of the categorical variable. \n",
"\n",
"Intuitively, this is like fitting a separate *univariate* regression to each level of the categorical variable and comparing the *difference-in-slopes* of both regressions.\n",
"\n",
"Alternatively, we can think about it testing whether the *mean difference* between levels of our categorical variable *increase* or *decrease* as we move along the continuous predictor.\n",
"\n",
"**Centering** our continuous predictor makes our estimates more interpretable. It also makes sure we compare levels of our categorical predictor along a **meaningful value** of our continuous predictor!\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {
"vscode": {
"languageId": "plaintext"
}
},
"source": [
"## Challenge\n",
"\n",
"In the **Parameter Interpretation** section of `03_models` we had you answer a **response challenge** about a model you built using the advertising dataset:\n",
"\n",
"$$\n",
"sales_i = \\beta_0 + \\beta_1 tv_i + \\beta_2 radio_i\n",
"$$\n",
"\n",
"
\n",
"\n",
"
\n",
"\n",
"Specifically we said:\n",
"\n",
"> Notice in the plot above that the slopes of the predicted lines **are not** changing - it looks like only the intercept is shifting up or down. Can you provide an explanation why? What is our model failing to capture and how might we fix this? "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Your tasks\n",
"\n",
"Using what you learned about interactions in *multiple regression*:\n",
"\n",
"1. Estimate the model using the formula above (same as in `03_models`)\n",
"2. Estimate a *new* model that captures what this model is missing\n",
"3. Compare this new model to the original model to see if it's *worth it*\n",
"4. Make a new figure like the one above that visualizes the predictions from your *new* model\n",
"5. Interpret the parameter estimates from `.summary()` and provide a natural-language explanation of what they mean\n",
"6. Fit another like you just did, but this time **center** each predictor\n",
"7. How are the parameter estimates from this model different to the uncentered one?\n",
"8. Compare the correlations between predictors in the centered and uncentered models using the provided function\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"| Variable | Description |\n",
"|------------|---------------------------------|\n",
"| tv | TV ad spending in $1000 of dollars |\n",
"| radio | Radio ad spending in $1000 of dollars |\n",
"| newspaper | Newspaper ad spending in $1000 of dollars |\n",
"| sales | Sales generated in $1000 of dollars |"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"