{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Models VI: Interactions and Multicollinearity"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Revisiting the Advertising dataset\n",
"\n",
"At the end of the last notebook we provided you with a challenge using the advertising dataset. \n",
"Specifically we asked you to fit a model that included an interaction between `tv` and `radio` and then explore the **correlations** between predictors with and without **centering**. \n",
"\n",
"Let's take a further look here:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"| Variable | Description |\n",
"|------------|---------------------------------|\n",
"| tv | TV ad spending in $1000 of dollars |\n",
"| radio | Radio ad spending in $1000 of dollars |\n",
"| newspaper | Newspaper ad spending in $1000 of dollars |\n",
"| sales | Sales generated in $1000 of dollars |"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We'll load up the data"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"shape: (5, 4)
tv
radio
newspaper
sales
f64
f64
f64
f64
230.1
37.8
69.2
22.1
44.5
39.3
45.1
10.4
17.2
45.9
69.3
9.3
151.5
41.3
58.5
18.5
180.8
10.8
58.4
12.9
"
],
"text/plain": [
"shape: (5, 4)\n",
"┌───────┬───────┬───────────┬───────┐\n",
"│ tv ┆ radio ┆ newspaper ┆ sales │\n",
"│ --- ┆ --- ┆ --- ┆ --- │\n",
"│ f64 ┆ f64 ┆ f64 ┆ f64 │\n",
"╞═══════╪═══════╪═══════════╪═══════╡\n",
"│ 230.1 ┆ 37.8 ┆ 69.2 ┆ 22.1 │\n",
"│ 44.5 ┆ 39.3 ┆ 45.1 ┆ 10.4 │\n",
"│ 17.2 ┆ 45.9 ┆ 69.3 ┆ 9.3 │\n",
"│ 151.5 ┆ 41.3 ┆ 58.5 ┆ 18.5 │\n",
"│ 180.8 ┆ 10.8 ┆ 58.4 ┆ 12.9 │\n",
"└───────┴───────┴───────────┴───────┘"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"import polars as pl\n",
"from polars import col\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"from statsmodels.formula.api import ols\n",
"from helpers import plot_predictor_correlations\n",
"df = pl.read_csv('./data/advertising.csv')\n",
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And then fit 2 models with the same parameters:\n",
"- One **without** centering our predictors\n",
"- One **with** centering our predictors"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# Uncentered\n",
"model = ols('sales ~ tv * radio', data=df.to_pandas())\n",
"results = model.fit()\n",
"\n",
"# Centered\n",
"model_centered = ols('sales ~ center(tv) * center(radio)', data=df.to_pandas())\n",
"results_centered = model_centered.fit()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's look at the correlations between the predictors in each model. The helper function we provided you `plot_predictor_correlations` will do this by looking at the correlations between the columns of each model's **design matrix** $X$\n",
"\n",
"When we look at the *uncentered* model we see that the interaction term `tv:radio` is highly correlated with both `tv` and `radio` - **this makes sense** - the product of 2 continuous variables is going to increase/decrease if *either* of the variables increase/decrease."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAANlCAYAAACKcAncAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AADhPUlEQVR4nOzdd3hUVf7H8c9MCukBQkkg9N47oRcVkCooRQTprrvKKru67IqL6E9FsWBZy66CFAGJWBABqdKlBJAeUHpNICGN9DK/P0KGCclkJiHJDPJ+Pc88z525555zJnNnMvO953yPwWQymQQAAAAAAODEjI7uAAAAAAAAgC0EMAAAAAAAgNMjgAEAAAAAAJweAQwAAAAAAOD0CGAAAAAAAACnRwADAAAAAAA4PQIYAAAAAADA6RHAAAAAAAAATo8ABgAAAAAAcHoEMAAAAAAAgNMjgAEAAAAAAJweAQwAAAAAAOD0CGAAAAAAAACnRwADAAAAAAA4PQIYAAAAAADA6RHAAAAAAAAATo8ABgAAAAAAcHoEMAAAAAAAgNMjgAEAAAAAAJweAQwATu/ll1+WwWCQwWDQyy+/7OjuFKhmzZrmvp49e9bR3YETupvO5+K2ceNGDR8+XDVr1pSnp6f571CzZk1Hd+2ulfM3NBgMVsvwuQQA+KMggAEUs7i4OC1dulQTJ05Uy5YtVbVqVZUpU0a+vr6qXr26evXqpWnTpmnnzp2O7ipQLDZv3pzrR5TBYFDr1q0LVcf169dVpkyZPPXgj2P69Ol64IEHtGzZMp07d04pKSl3XKflD/Pbb0ajUf7+/qpbt66GDx+uefPmKTk5uRieCQAAcBQCGEAxSUpK0syZM1WrVi2NHDlSX3zxhQ4ePKjLly8rLS1NN27c0IULF7Rhwwa98cYb6tSpkxo0aKCvvvpKJpPJ0d1HPrhqWXS//vqrjhw5Ynf5pUuXKi0trQR7VDDLIEyPHj0c1o8/qp07d+q1114z32/SpIlGjx6tp59+Wk8//bTGjh1b7G2aTCbFx8fr1KlTWrZsmSZMmKDatWtrzZo1xd4WbuG9BAAoSa6O7gDwR3D+/HkNHDhQhw4dyvV49erV1bx5c1WsWFGZmZmKiIjQwYMHFRkZKUn67bff9Nhjj+nChQuaOnWqI7oOlJgFCxbo7bfftqvswoULS7g3cKQFCxaYtydMmKA5c+YU+wib+++/Xw0bNjTfz8rKUnR0tHbu3KkLFy5IkiIiIjRgwACtWLFC/fr1K9b2AQBAySOAAdyhs2fPqmPHjoqIiJCUPR955MiRmjZtmpo0aZKnvMlk0t69e/Wf//xHixcvVlZWlpKSkkq72ygh9/pIjYCAALm4uOjq1atasmSJ3nzzTbm4uBR4zG+//abdu3dLkho3bqxjx46VRlcd5uWXX77ncl/s37/fvD1hwoQSmR40evRojRs3Ls/jWVlZmjt3rv76178qNTVVmZmZGj9+vE6fPi1vb+9i74czutc/lwAAfxxMIQHuQFpamoYNG2YOXnh4eOi7777T4sWL8w1eSNkBjnbt2mnhwoU6ePCgmjZtWppdBkqUq6urRo4cKUm6fPmyNmzYYPMYy6vzY8aMKbG+wXFiYmLM20FBQaXattFo1BNPPKF3333X/NjVq1e1ePHiUu0HAAC4cwQwgDvw1ltvae/eveb7CxYs0ODBg+0+vmnTptq1a5d69epVAr0DHMMyn4GtqSEmk8n8Q7JChQoM6/+DSk9PN28bjY756vHkk0+qQoUK5vv2BNcAAIBzIYABFFFycrI+/PBD8/2HH35Yw4cPL3Q93t7e6ty5c4Flzp8/r5deekkdOnRQ5cqV5e7ursqVK6tDhw6aMWOGeX53QawlVlu9erVGjhypevXqycfHRwaDQe+//76k7GHH+S1zuH37dk2aNEkNGzaUv7+/DAaDpkyZkm+7Fy5c0KuvvqquXbuqSpUqKlOmjMqXL69WrVrp+eef12+//Waz7/bKysrStm3b9NJLL6l3796qXr26vLy85OHhoSpVqui+++7TzJkzFRUVZbUOy+d87tw58+O1atXKd6WDzZs35zq+sIk/S/K1/fnnn/Xoo4+qdu3a8vDwUEBAgLp166aPPvoo1w/K4taqVSs1a9ZMkrR8+XIlJCQU2Pecv/PIkSPl5uZmdztxcXH66quv9OSTTyokJEQVKlSQu7u7/Pz8VLduXT322GNatmyZsrKyrNaRs6Rpz549zY9t2bIl39f69qU+58+fb96XM3UhMzNTS5cu1UMPPaTatWublwpdvnx5njatLaP69ttvm/f7+/vrzJkzBf4doqOjFRwcbD7G2nuxKHbt2qXJkyerSZMmKleunDw8PBQcHKwHH3xQH330kRITE60e26NHD7vfS6XB1dVV7dq1M98/ffp0rv3jxo0z92f+/PmSpNjYWH3wwQfq1q2bqlatKldXVxkMBsXGxuap32Qy6fvvv9fYsWNVv359+fv7y8PDQ9WqVdPgwYO1YMECZWRk2N3f5ORkzZ49Wx07dlRAQIC8vb1Vv359TZgwQXv27CnUcy/s51JmZqa+/vprjRkzRg0aNFC5cuXk5uamgIAAdejQQc8++6w2btyYKwH1nbyXLKWnp2vevHkaPHiwatSoIU9PT/n5+alBgwaaOHGi1q9fX+TnfOrUKb344otq1aqVKlasKKPRqJYtW+Y59vjx45o6dao6dOhg/lzJWdGmQ4cOeuqpp7R8+XLFx8fb1RcAQDEyASiShQsXmiSZb9u3by+Rdl5//XWTh4dHrrZuv3l4eJjeeOONAuvZtGmTuXz37t1NsbGxpiFDhuRb33vvvWcymUymM2fOmB+rUaOGKTU11fTnP/8532OeffbZXO1lZmaapk+fbrPvrq6upmnTppmysrKs9n3GjBnm8jNmzMi3TFpamqlq1aoFtpVz8/b2Nn355Zf51mP5nO25bdq0KdfxNWrUMO87c+ZMga9JSb22qamppj/96U8F1tu6dWvTtWvXCqzXXpbtV65c2WQymUxvvfWW+bEvvvjC6rHjxo0zlwsLCzOFh4fn6qc13377ralMmTJ2vUYtW7a0+lpYnlu2bjVq1Mh17Lx588z7xo4da7p06ZKpa9eu+R77/fff59tmfudzVlaW6YEHHjCX6dSpkykjI8Pq38LyfdysWTNTSkqK1bL2unHjhmnEiBE2/yZBQUGm1atX51tH9+7d7f7bFpXl+23evHk2yz/22GPm8vXq1cu1b+zYsbnq2r59u6latWr59jcmJibXsQcPHjS1bNnS5vNs0KCB6ejRozb7efjwYVPdunWt1mMwGEzTp083mUwmu/6Ohflc2rp1q6l+/fp2vW7//Oc/zcfdyXspx65du0x16tSxeXyvXr1MV69eLfB53P6c//e//+X7eduiRYtcx82YMcPk6upq1/MYNWpUgX0AABQ/kngCRfTzzz+bt6tXr25zFEVRTJ48WR9//LH5vre3t+677z4FBgYqIiJCmzZt0o0bN5SSkqIXXnhBkZGReu+992zWazKZNHr0aK1cudKck6NRo0YymUw6cuSI1Suif/vb3/Tf//5XktSsWTO1aNFCbm5u+u2333INC8/MzNSIESP07bffmh8LCgpSSEiIKlWqpBs3bmj37t06deqUMjIyNHPmTF27dk2fffZZUf9UyszM1KVLlyRJPj4+atKkiWrXri0/Pz+lp6fr4sWL2rVrl+Lj45WYmKjHH39cbm5uGjFiRK56/Pz89PTTT0vKnv6QM3pgzJgx8vX1zdNu1apVi9Tfknptpeyh8vPnz5fRaFRISIgaNmyorKws7dq1SydOnJCUnVRxzJgxWr16dZH6b8vo0aP1wgsvKDMzUwsXLtT48ePzlElKSjKfI40aNVLbtm11/Phxu+q/evWqUlNTJUnBwcFq3LixAgMD5eXlpRs3big8PFz79++XyWTSgQMH1LVrVx04cEABAQG56mnfvr2efvppXbp0yTxKokqVKhoyZEieNm8/1lJqaqoGDRqkffv2ydXVVZ06dVLdunWVkpKSK4GlPQwGgxYsWKDmzZsrOjpav/zyi1599dV8R2t89tln+v777yVl5+BZsmSJypQpU6j2bpeUlKT77rsv11X+KlWqqGvXrvLx8dHJkye1fft2ZWZm6sqVKxo0aJC++uorDR06NFc9Q4YMMef4see9VBosc3H4+/tbLXfy5ElNmTJFcXFx8vX1Vbdu3VSlShXFxMRo69atucpu3bpVAwcONF+Nd3V1Vdu2bdWgQQO5ubnp7Nmz2r59u1JSUnTixAl16tRJO3fuVKNGjfJt+/Tp03rggQfMq1VJUvPmzdWqVStlZmZqz549+u233/Tqq68WeE4WxdKlSzVmzJhcI7Tq16+v1q1by9/fX3FxcTp69KiOHj2qrKwspaSkmMvd6Xtp69at6tu3b66k1u3bt1eTJk2UlpamXbt26dSpU5Kk9evXq0uXLtq+fbsqVqxo83ktW7bMvNJX1apV1alTJ/n7++vy5cu6fv26udz777+vV155xXy/QoUK6tChg4KCgmQwGHT9+nUdP35c4eHhyszMtNkuAKAEODiAAty1LK8SDRs2rNjrDw0NzXWlZ8yYMaa4uLhcZeLi4kyjR4/OVe6bb77Jtz7Lq+Q5V5eaNWtmOnToUJ6yOVdwLUcjuLi4mCSZqlWrZtq6davVY0wmk2n69Onm4ypVqmQKDQ01ZWZm5jlm2bJlJn9/f3PZ0NDQfPtuzwiM1NRU0/jx402bNm0ypaWl5VsmJSXF9NZbb5mff9myZU0JCQn5ljWZCnfVsjDHlORrmzMqoV27dqbw8PBc5bKyskzvv/9+rjq3bNli1/MqSH4jMEwmk6l3797mq8Xnzp3Lc9yXX35pPi5nlIm9IzBWrFhheuONN0y///671TKnT5829enTx1zXxIkT7XoO3bt3t+NZ5x6BkXNOde/ePd/X3fL9Yc/5bDKZTMuXL8/1/tuxY0eu/eHh4SYvLy9zmQ8//NCuftvyl7/8JVe7s2fPzvP+/e2330xt2rQxl/Pz8zOdPn3aap1FeS/ZozAjMNLS0kwBAQFWP7ctR2DkvJ5PP/10ns+ItLQ089/jypUrpsqVK5uPGzlypOnixYt52o6IiMgzUsbaqJqePXuay5UvX960du3aPGW++uork6enp8nd3d2u94s9f//9+/fnGqHQqlUr065du/Ite+XKFdPbb79tmjVrVp59RXkvXb9+PdcIujp16pjCwsLylFu0aJHJ09PTXG7gwIF2PWdXV1eTu7u76bPPPssz2i/nvZmenp7r/HjjjTes/i+Jjo42ffHFF/k+fwBAySKAARSR5RDTl19+uVjrzszMNNWqVctc/yOPPGJ1ikVWVpbpoYceyvXFL79ggeWXSkmmwMBAm1MIbp9O4eXlZTpx4oTNY3KCHb6+vnl+RN9u48aN5vobNWqU7/O09wefvd58801zfZ988onVciURwCiN17ZevXoFBmaGDh1qLvvnP//ZrudVEGsBjMWLF5sff+211/Ic16tXL5Mkk9FoNF24cMFkMtkfwLBXWlqaqXnz5iYpezrO9evXbT6HogQwcn6UJiUl2TyuMOfzk08+aS5bq1Ytc6ArNTXV1KpVK/O+fv362dVnW06ePGkyGo12BUWuX79uqlmzprns+PHjrZZ1hgDGRx99lOv1+u9//5trv2UAQ5Jp0qRJNtufMGGC3eUzMjJyBSeWLl2ap8zatWvN+w0GQ77B4hxLly7N1d87DWB07tzZXKZt27YFfoYUpCjvpZdeesl8TNmyZfMNeOb47rvvcj1na0FYy+csybRo0aIC+3D48GFz2c6dO9vVbwBA6SOJJ1AE8fHxuZKxlS1btljrX7dunTlxn7u7u/7zn/9YndZhMBj08ccfm5Mfnjp1yq4kZy+99FKujPz2mDx5surXr19gmQ8++MA8tHbq1Klq2LBhgeXvu+8+9enTR5IUHh6uX3/9tVB9KgrL6QylvRJBaby2b775pnx8fKzunzBhgnk7LCysMN0vlCFDhpinCnz55Ze59l26dEkbN26UlH0OBAcHl0gf3NzcNGrUKElSSkqKtm/fXiLtSNKsWbPk6elZrHXOnj3bPNXgzJkzeuqppyRJ06ZNM79XKlWqpHnz5hVLe59//rk56Wnz5s01efJkq2XLlSunWbNmme8vWbJEcXFxxdKP4pSVlaU5c+boueeeMz9WsWJF83mRHw8PD7311lsF1nvt2jXzCjr+/v42p3i5uLho5syZ5vv5LeM6Z84c8/aIESPUtWtXq/XZ2l8Yu3fv1o4dOyTdmsJU0GdIcTKZTLmmD06fPl3Vq1e3Wn7IkCHq27ev+f6nn35qs4327dsX+HpLypWQ055pKQAAxyAHBlAEt6+qUNxf9Czza/Tt21dBQUEFlq9ataoefPBB/fjjj5KkTZs2mYMC+TEYDHlyP9jj0UcftVnGMqeCPeWl7B+wa9eulZS9wknr1q0L3TdLWVlZ2rdvnw4cOKCLFy8qPj7e6qobBw4cuKO2CqukX1sPDw8NGDCgwDpbtWpl3rZnRYKi8vT01NChQzVv3jydOHFCu3fvVkhIiCRp0aJF5h/KY8aMuaN2YmNjtWvXLh09elTR0dG6ceNGrpVHLPNqHDhwQAMHDryj9vJTrly5Al+XovLy8tKSJUsUEhKitLQ0LV68WH5+fuZcNJI0b948VapUqVjaszw/x48fb3OFkCFDhqh8+fK6fv26UlNTtXPnTj344IPF0pfCWrRoUa5lrU0mkzmHiOVqPkajUXPnzi3wc7t3794qV65cge1t2LDBnIdlwIABdv0fCAkJkZeXl5KSkvINplmuavT444/brG/MmDHatm2bzXK2rFmzxrx9//33q3Hjxndcp73Cw8MVEREhKfu1sVyG2ZpJkybpp59+kqQ8K0Hlx57/RZZBk59//lnh4eFW85QAAByHAAZQBLcnoLtx40ax1m85CsHe5KCdO3c2/8i1lTSwZs2aKl++fKH65ObmZl4a05ro6Ohcy6K+9957di2ReOzYMfO2PcuGWpORkaH//Oc/mj17ti5evGjXMQUtqVoSSvq1bdCggdzd3QssY5lAr6SvmI8ZM8Y8OmDhwoXmAEbOiAwfHx89/PDDRar74sWL+te//qVvvvnG/EPSlpJ6vVu2bJkrkW1x1/3GG2+YRxBYXnGePHmy+vXrVyztmG4mPM1hz/np5uam9u3bm38A79+/32EBjI0bN5pH9VhTuXJlzZ07V/379y+wXJs2bWy2t3PnTvP2b7/9VuBoFUs5n4kxMTFKTEyUt7e3pOxRSdeuXTOXy3mvFKRDhw52tWnLrl27zNuWy6CWBsvPxIYNG9qVmNTy3IyIiNDly5dVpUoVq+XteT2Dg4PVqVMn/fLLL4qPj1fbtm01atQoDRkyRF26dHFY4lkAQG4EMIAi8PPzk6urq3kaSWxsbLHWb/kltkaNGnYdU7NmTfO2rR9pRRkeW65cObm6FvyRceXKlVz3P/nkk0K3Y7lKQGHkrAKxbt26Qh13+2iaklbSr21BKyvkyJmSIinXVKiS0L17d9WoUUPnzp1TaGio3nvvPR0+fFhHjx6VJD388MPmH3CF8euvv+r+++8v9PlSUq93SQ85/9vf/qY1a9bkmkLUpEkTvf3228XWRlxcXK6RSiVxfpYmg8EgX19fVaxYUa1atVLfvn01cuRIu6b52PN6Xr582bwdFhZWpOlYMTEx5vPf8rPBy8vLrh/y1apVK3Sb+bFc8aR27drFUqe9ivKZWLlyZXl4eJhXQYmKiiowgGHv+/OLL75Qz549deXKFSUlJenzzz/X559/LhcXFzVr1kzdunVT37599cADD9j8fwgAKBnkwACKyPKLluUIguJgOaLD3h93luVs/Ugryjx9e44pjqv5Rf1B/corr5iDF0ajUY899piWLVum8PBwxcXFKS0tTabsxMUymUzm4yy3S0NJv7b2jHgpTQaDwTwUPjo6WqtWrdLChQvN++0ZLn671NRUPfLII+bgReXKlTVjxgxt3rxZFy5cUGJiorKyssyvtWV+CMupJcWpuHNf3M5gMOSZJvLggw/Kw8Oj2Nq4fSRZSZyfJWnevHm53uNZWVmKi4vTyZMntWzZMk2YMMHu18kRn3eWf38vLy+7ji9K8C8/lq9baeW+yFGUz8TbyxbX/7wGDRro4MGD+tvf/pZrlGJmZqYOHDigDz/8UH379lWNGjX0+eef291XAEDxIXwMFFGXLl3Ma9Lv3r27WOu2/AKZmJho1zGW5Rw11NXyC2XZsmWLPJqisFJTU/Wf//zHfH/hwoUFJmxz5I+su/W1vRNjxozRa6+9Jin7CmfO+6VatWrq0aNHoev79ttvzYlQg4ODtXfvXlWuXNlqeUe+3sVlyZIleZI+vv/++3r44YfVqVOnYmnj9h+ultMbCnK3n59FZfm3ef/99/Xss8/eUX2Wf/+kpCS7jrH3M8QWy9etuKdE2lKUz8TbyxbneVexYkXNnj1bs2bN0u7du7V161Zt375dO3bsMCf6vHz5sv70pz/p8OHD+vDDD4utbQCAbYzAAIrovvvuM2+fO3dOv/zyS7HVbTnc9fz583Ydc+7cOfN2YVcXKS6WPyJjY2NzDQ0uSXv27DF/6W7WrJnNbPOWf6vSdre+tneiXr165rn6K1euNJ8Xo0ePLlLeCMs8B3/7298KDF5Ijn29i8O5c+fMq49IMq/sk5mZqdGjR+daPeFO+Pv755pedK+cn0Vled79/vvvd1yf5WdDUlKSoqOjbR5zJzmDLFk+l5zgYGkpymfi1atXzdNHpJI579zc3NSlSxdNmzZNq1evVlRUlNasWaPu3buby/znP/8p0ZWcAAB5EcAAimjYsGG5vjTNnj272Oq2XCXC3sBIzhJ4ku54FY+iCgoKypXJvbD5KIrKci56kyZNbJbfunWrXfWWxHSMu/W1vVP5rTRS1NVHSuL1drapNzlyghQ50xV69eqlsLAw83LGZ86c0dNPP10sbRkMBrVs2dJ8357zMyMjQ3v27DHfv1vPz6KwTLKZs4rSnahatWquH/OWiTWtsaeMPSyTgVquRFMUhX0vWX4mHj9+XNevX7d5jOVnYmBgYIH5L4qLm5ub+vTpo3Xr1uVKaJ2TYBkAUDoIYABF5OnpqWeeecZ8/9tvv9W3335b6HoSExPz/FCwHN2xevVqXb16tcA6IiIici2DZ3l8abPM7v/++++XSo4Jy6v4toZeZ2Vl6bPPPrOrXsv8AtaWYS2su/m1vROPPvqoypQpY77frl0780iCwirM671v3z67rpCWxGtdHGbOnGlebjMgIEDz58+Xj4+PlixZYh4tsWjRIn311VfF0p7l+bVgwQKb798VK1aYRwp4eHioY8eOxdKPu0GfPn3MiRxPnjyplStX3nGdllOqFi1aZLP8ggUL7rhNKXtJ5xwbN25UeHh4kesq7HupUaNGCgwMlJQdsLPneVvmtSntVVPc3d3Vq1cv833LBKgAgJJHAAO4A1OnTs11xfHxxx8v1NWYw4cPKyQkJM9Ihd69e6tWrVqSsvM7TJkyxWodJpNJzzzzjNLS0iRJderU0QMPPFCIZ1G8nnvuObm4uEiS9u7dq1deecXuYyMiIorUpmXW/C1bthSYXO/tt9/WwYMH7arXchWAS5cuFalvt7ubX9s7Ua5cOe3fv9+8WkNRgn05LF/vH374wWq5pKQk/elPf7KrzpJ4re/U7t279X//93/m+59//rn5SnObNm1y7fvLX/5SLFNlnnjiCXOAaP/+/QUG++Li4jR16lTz/ZEjR9q1Cs4fRdWqVTV69Gjz/T//+c92nztZWVn5TrGbOHGieTs0NFTbtm2zWkdoaKg5uHWn2rdvb16a1GQyacyYMUXOhVHY95LBYMj1Pv2///u/Ao9btWpVrv+zf/7zn4vUz9vFxMTYneTXcqpLSa9ABADIjQAGcAfKlCmjZcuWmVcHSE5O1uDBgzVmzBirV7BMJpPCwsI0duxYtWzZ0rycpCWj0ag333zTfP+rr77SE088kecLZUJCgiZOnKhly5aZH5s1a1aR8goUlzp16ujf//63+f4rr7yicePG6eLFi/mWz8zM1IYNGzRmzJgiDz9v1aqVqlatKin7R9WwYcNyTTOQsoMFL730kv71r3/Znenecpjw119/XaS+3e5ufm3vVOPGjdW2bVu1bdv2jpZ/HDBggHl74cKFevfdd5WZmZmrzMmTJ9W7d2/t37/frte7du3a5nLnzp3LNS3CEW7cuKFRo0aZV6mYNGmShgwZkqvM1KlTzVfs4+LiNHr06Dx/h8KqU6eOnnzySfP9yZMn6+OPP87zw+7UqVPq3bu3OZGxn5+fpk+ffkdt341mzpypoKAgSdk/1tu1a6dvvvnG6g/hS5cu6YMPPlDDhg0VGhqaZ3/v3r3NORZMJpMGDx6c71S8pUuXavz48XJ3dy+25/Lhhx+aR0nt3btX3bp1s/o+iIiI0DvvvJPvMr5FeS9NmTLF/BkeHR2t+++/XwcOHMhTLjQ0VCNGjDDfHzhwoLp162azfnv88MMPqlevnt5++22reUBSUlL0/vvv5wrA9uvXr1jaBwDYh1VIgDtUu3Zt7d69WwMHDtSRI0eUlZWlL7/8Ul9++aVq1qyp5s2bq0KFCsrMzFRERIQOHDiQZ8hpfhnUhw8frq1bt+rjjz+WJM2ZM0ehoaHq2bOnKleurKtXr+rnn3/OtcLClClT9Mgjj5TsE7bDjBkzdPbsWfPw5gULFmjRokVq1aqVGjZsKB8fH8XHx+vcuXM6ePCg+ce75ZW7wjAajXr11Vc1YcIESdL69etVv359derUSTVq1FB0dLQ2b95sXhXls88+s5noU5IeeeQR/fe//5Ukffrpp9q/f79at26da4nDv/zlL6pTp06h+ns3v7bOoE+fPurevbu2bNkik8mk559/Xh9//LFat24tf39//f777/rll1+UmZmpqlWr6tlnn801UiA/RqNRgwcPNq/00bNnTz344IOqXr26eURR+fLlNW3atBJ/flJ24CAnOFCvXj29//77+fb5yy+/VPPmzRUTE6Pt27frjTfeyBVALIp33nlHe/fuVVhYmDIyMjR58mS9+eab6tKli3x8fHTq1Clt3brVHCxxdXXV3LlzzSOL7iVBQUH64Ycf1K9fP0VFRenKlSsaNmyYKlWqpJCQEFWuXFlZWVmKjo7WkSNHdPr06QKn5RgMBs2dO1cdO3bUtWvXdP36dfXp00ctW7ZUy5YtlZmZqT179ujEiROSsqfpFTSKqzBat26tuXPnaty4ccrIyNCvv/6qkJAQNWjQQK1atZK/v7/i4uJ07Ngx8/+6/FZeKcp7qVy5clqyZIn69u2rpKQknThxQq1bt1ZISIgaN26stLQ07d69O1ey1Hr16mnu3LnF8txznD59WlOnTtXUqVNVvXp1NW/eXJUqVZLJZFJERIR27dqVa3WtUaNGFdsqQAAAO5kAFIuEhATT//3f/5nKli1rkmTXrUWLFqbvvvuuwHpfffVVU5kyZQqsx8PDwzRz5swC69m0aZO5fPfu3e16TmfOnDEfU6NGDTv/Erf85z//MZUrV86uv4XBYDANGjQo33pmzJhhLjdjxgyr7U2bNs3m3+nTTz81mUymXI8XZPTo0QXWuWnTplzla9SoYd535syZAut25Gtr7/O3h2X7lStXvqO6wsPD7epbRESEqXXr1gX+7Ro3bmw6evSoad68eebHxo4da7XO8+fPm6pUqWK1vtvfA/bWeztb53NoaKh5v6urq2nPnj0F1vf111/nKr979267+2JNQkKCafjw4Tbft0FBQabVq1fbrK8w74vCsKx33rx5d1TX2LFji1zX2bNnTffff7/dn/2VK1c2rVmzxmp9Bw8eNNWuXbvAz8tp06aZTCb73suF+ftv3LjRVKtWLbuex4svvphvHYV9L+XYuXNngc875/bAAw+Yrl69WuDzKOw5t2zZMpPBYLDreRuNRtNTTz1lSktLs1kvAKB4MQIDKCY+Pj6aPn26nnnmGa1atUrr16/Xvn37zFfR3N3dVb58eTVs2FAhISEaPHiwXVMm/v3vf+vxxx/XnDlztHbtWp05c0axsbEqW7asateurT59+mjSpEm5Vv9wFpMnT9bYsWP15Zdfav369Tp48KCuXbumlJQU+fr6Kjg4WE2aNFGPHj3Ur1+/O5pWIEmvv/66+vbtq48++kjbt2/XtWvXzO08+OCDmjhxourVq1eoOhcuXKj+/ftr8eLFOnDggKKionIt33cn7ubX1tEqV66sX375RXPmzNHSpUt15MgRJSUlqVKlSmrQoIFGjBihUaNGycvLy+7pINWqVdPBgwf1n//8R+vWrdOJEyeUkJBgnsZRGi5cuJBrCscrr7yidu3aFXjMsGHDNG7cOM2fP18ZGRkaNWqUfv31V/n4+BS5Hz4+PgoNDdWUKVP05ZdfavPmzbp8+bKSk5NVoUIFNW3aVAMGDNCECRPsnpL1R1ajRg1t2LBBO3fu1LJly7R161ZduHBBMTExcnV1VUBAgOrVq6e2bduqd+/e6tGjhzkBaH6aN2+uw4cP69NPP9XXX3+t3377TampqapSpYo6d+6sJ598ssSu/N933306ceKEli5dqpUrV2rv3r26evWqUlNT5e/vr7p166pjx44aMmSIunbtmm8dRX0vdejQQeHh4Vq0aJGWL1+uAwcO6OrVq3Jzc1NgYKC6dOmikSNHqnfv3sX+vIcOHaorV65o3bp12rFjhw4ePKjTp08rNjZWUvYyw/Xr11eXLl00ZswYNW7cuNj7AACwzWAylcISAQAAAAAAAHfg7s0GBwAAAAAA7hkEMAAAAAAAgNMjgAEAAAAAAJweAQwAAAAAAOD0CGAAAAAAAACnRwADAAAAAAA4PQIYAAAAAABYuHr1qlauXKmXXnpJffv2VYUKFWQwGGQwGDRu3LgSaXPp0qXq06ePgoKC5OHhoZo1a+rxxx/Xrl277K4jOjpaM2bMUIsWLeTv7y8/Pz+1aNFCM2bMUHR0dIn0uzQZTCaTydGdAAAAAADAWRgMBqv7xo4dq/nz5xdbWykpKRo2bJhWrlyZ736j0aiXX35Z06dPL7CesLAwPfTQQ7py5Uq++6tUqaIffvhBbdu2veM+OwojMAAAAAAAsKJatWrq3bt3idU/ceJEc/CiZ8+eWr58ufbs2aO5c+eqTp06ysrK0ksvvaQ5c+ZYrePSpUsaOHCgrly5IldXV02dOlVbt27V1q1bNXXqVLm6uury5csaMGCALl26VGLPpaQxAgMAAAAAAAszZsxQu3bt1K5dO1WuXFlnz55VrVq1JBXvCIwtW7aoR48ekqSBAwfq+++/l4uLi3l/VFSU2rRpo/Pnz6tcuXI6ffq0ypYtm6eecePGacGCBZKkr7/+WsOGDcu1f9myZRo+fLgkafz48friiy+Kpf+ljREYAAAAAABYeOWVVzRgwABVrly5RNt56623JEkuLi765JNPcgUvJKlChQqaNWuWJCkmJkZz587NU0dkZKQWLVokSerTp0+e4IUkDRs2TH369JEkLVy4UJGRkcX6PEoLAQwAAAAAAErZjRs3tHHjRklSr169FBwcnG+5hx9+WH5+fpKk7777Ls/+FStWKDMzU1L26AprcpKPZmZmasWKFXfSdYchgAEAAAAAQCnbs2ePUlNTJUndu3e3Ws7d3V0dOnQwH5Oenp5r/7Zt28zbBdVjuW/79u1F6rOjuTq6AwAAAAAAFMXFixftKmdtdIMjhYeHm7cbNmxYYNmGDRtq3bp1ysjI0O+//67GjRvnqcff31+BgYFW6wgKCpKfn5/i4+NztX03IYABAAAAALgrVatWza5yzrh2xYULF8zbtgIsls/zwoULuQIYOfXYE6SpVq2ajh49mqvtuwkBDAtfd+ji6C4AcGKD1/zo6C4AcGL735rl6C4AcFIdZr7p6C4UC34vFa+EhATzto+PT4Flvb29zds3btzItx5bdVjWc3sddwsCGAAAAACAu9LdOpJAklJSUszb7u7uBZYtU6aMeTs5OTnfemzVYVnP7XXcLQhgAAAAAADuSs6Y28JeHh4e5u20tLQCy+Yk+5QkT0/PPPUkJSXZrMOyntvruFsQwAAAAAAA2GY0OLoHfyi+vr7mbVtTOhITE83bt08V8fX1VVJSkl3TQnLqsWe6iTNiGVUAAAAAAEqZ5egRW6upWE6VuT1xaU499qzIklOPvclPnQ0BDAAAAAAASpnlSiLHjx8vsGzOfldXV9WtWzffeuLi4hQREWG1jitXrig+Pl6S1KhRoyL12dEIYAAAAAAAbDIYjE53u5u1a9fOnHhzy5YtVsulpaVp165deY7J0aXLrdVhCqrHcl/nzp2L1GdHu7tfcQAAAAAA7kK+vr66//77JUkbNmywOgXku+++M4+cGDJkSJ79gwYNktGY/dN+3rx5VtubP3++JMloNGrQoEF30nWHIYABAAAAAEAxmz9/vgwGgwwGg15++eV8yzz//POSpIyMDD399NPKzMzMtT8qKkr//Oc/JUlly5bVpEmT8tQRGBioUaNGSZLWrl2rb775Jk+ZZcuWae3atZKkxx9/XIGBgUV+Xo7EKiQAAAAAAJsM99AqJNu3b9fJkyfN96OioszbJ0+eNI9myDFu3LgitXPffffp0Ucf1dKlS7VixQr16tVLU6ZMUZUqVXT48GG9/vrrOn/+vCTpzTffVLly5fKt5/XXX9eaNWt07do1jRw5Unv37tWAAQMkSStXrtS7774rSapYsaJee+21IvXVGRDAAAAAAADAwpw5c7RgwYJ89+3YsUM7duzI9VhRAxiS9MUXXyg+Pl6rV6/Wpk2btGnTplz7jUajpk+frieffNJqHdWqVdOPP/6owYMHKyIiQrNmzdKsWbNylQkMDNTy5ctzrX5yt2EKCQAAAAAADuLp6alVq1Zp8eLF6tWrlypVqiR3d3dVq1ZNjz32mLZv3251CoqlkJAQHT58WP/+97/VtGlT+fj4yMfHR82aNdO///1vHTlyRCEhISX/hEqQwWQymRzdCWfxdYcutgsBuGcNXvOjo7sAwIntf2uW7UIA7kkdZr7p6C4Ui2+793R0F/J4ZMsm24Xwh8EIDAAAAAAA4PQIYAAAAAAAAKdHEk8AAAAAgG0Grn/DsTgDAQAAAACA0yOAAQAAAAAAnB5TSAAAAAAANhmMBkd3Afc4RmAAAAAAAACnRwADAAAAAAA4PaaQAAAAAABsMhiYQgLHYgQGAAAAAABweozAAAAAAADYZDBy/RuOxRkIAAAAAACcHgEMAAAAAADg9JhCAgAAAACwzUgSTzgWIzAAAAAAAIDTI4ABAAAAAACcHlNIAAAAAAA2GQxMIYFjMQIDAAAAAAA4PQIYAAAAAADA6TGFBAAAAABgk8HI9W84FmcgAAAAAABwegQwAAAAAACA02MKCQAAAADAJlYhgaMxAgMAAAAAADg9AhgAAAAAAMDpMYUEAAAAAGCbkSkkcCxGYAAAAAAAAKdHAAMAAAAAADg9ppAAAAAAAGwyGLj+DcfiDAQAAAAAAE6PAAYAAAAAAHB6TCEBAAAAANhkYBUSOBgjMAAAAAAAgNMjgAEAAAAAAJweU0gAAAAAADYZjFz/hmNxBgIAAAAAAKfHCAwAAAAAgG0GknjCsRiBAQAAAAAAnB4BDAAAAAAA4PSYQgIAAAAAsMlgZAoJHIsRGAAAAAAAwOkRwAAAAAAAAE6PKSQAAAAAAJsMBq5/w7E4AwEAAAAAgNMjgAEAAAAAAJweU0gAAAAAALaxCgkcjBEYAAAAAADA6RHAAAAAAAAATo8pJAAAAAAAmwwGppDAsRiBAQAAAAAAnB4BDAAAAAAA4PSYQgIAAAAAsMlg5Po3HIszEAAAAAAAOD0CGAAAAAAAwOkxhQQAAAAAYBurkMDBGIEBAAAAAACcHgEMAAAAAADg9JhCAgAAAACwiVVI4GicgQAAAAAAwOkRwAAAAAAAAE6PKSQAAAAAAJsMrEICB2MEBgAAAAAAcHqMwAAAAAAA2GQwMgIDjsUIDAAAAAAA4PQIYAAAAAAAAKfHFBIAAAAAgG0Grn/DsTgDAQAAAACA0yOAAQAAAAAAnB5TSAAAAAAANrEKCRyNERgAAAAAAMDpEcAAAAAAAMCK8+fP6/nnn1ejRo3k7e2t8uXLq3379nrnnXeUlJRU5Ho3b94sg8FQqFuPHj3yratmzZp2HV+zZs0i99cZMIUEAAAAAGCT4R5chWTVqlUaNWqU4uLizI8lJSUpLCxMYWFhmjNnjlavXq3atWuXSn8aNGhQKu04KwIYAAAAAADc5uDBgxo+fLiSkpLk4+OjF154QT179lRycrKWLl2qzz//XCdOnFD//v0VFhYmHx+fQtXfrl07HT582Ga5yZMna8uWLZKksWPHFlj2oYce0muvvWZ1v7u7e6H66GwIYAAAAAAAcJspU6YoKSlJrq6uWrdunTp27Gjed99996levXqaOnWqjh8/rtmzZ+ull14qVP3e3t5q2rRpgWViY2O1a9cuSVLdunXVqVOnAsuXLVvWZp13s3tvDBAAAAAAoPCMBue7lZCwsDBt3rxZkjRx4sRcwYsczz33nBo1aiRJev/995Wenl7s/QgNDVVqaqok6fHHHy/2+u82BDAAAAAAALCwfPly8/b48ePzLWM0GjVmzBhJUkxMjDngUZwWLlwoSTIYDAQwRAADAAAAAIBctm3bJil7mkebNm2sluvevbt5e/v27cXah1OnTumXX36RJHXt2lW1atUq1vrvRgQwAAAAAAA2FXbJz9K4lZTw8HBJ2XknXF2tp45s2LBhnmOKS87oC8l28s4cW7duVfPmzeXt7S0vLy/VqlVLI0aM0PLly2UymYq1f45AEk8AAAAAwF3p4sWLdpULDg62u86UlBRFRUXZdVy5cuXk7e2txMREXbhwwe427LFo0SJJkqenp4YOHWrXMWfOnMl1/+zZszp79qy+/vprde7cWaGhoapatWqx9rM0EcAAAAAAANyVqlWrZle5wow+SEhIMG/bszRqTgDjxo0bdrdhy7Zt23T69GlJ0pAhQ+Tn51dgeXd3dw0aNEi9e/dW06ZN5e/vr9jYWO3cuVOffvqpLly4oB07dqhXr17auXOn/P39i62vpYkABgAAAADAJoPx3shAkJKSYt52d3e3Wb5MmTKSpOTk5GLrw5dffmnezkkUWpA9e/aobNmyeR7v0aOHJk+erKFDh2rdunUKDw/XK6+8otmzZxdbX0sTAQwAAAAAwF2puKdtSJKHh4d5Oy0tzWb5nGVOPT09i6X91NRULVu2TJJUpUoVPfDAAzaPyS94kcPX11dff/216tSpo+joaH322Wd688037QrOOBsCGAAAAACAu1JhclvYy9fX17xtz7SQxMRESfZNN7HHDz/8oNjYWEnSqFGj5OLicsd1+vv769FHH9XHH3+sxMRE7d27V506dbrjeksbAQwAAAAAgG0luOqHM/Hw8FCFChUUFRVlM0loTEyMOYBhbz4OWyxXH7Fn+oi9GjdubN6+dOlSsdVbmu6NSUwAAAAAANipUaNGkqSTJ08qIyPDarnjx4/nOeZOXL16VWvXrpUktW7dWk2bNr3jOnP8EZZRJYABAAAAAICFLl26SMqeHrJv3z6r5bZs2WLe7ty58x23u2TJEnPApDhHX0jSsWPHzNtVqlQp1rpLCwEMAAAAAIBNBqPR6W4lZfDgwebtefPm5VsmKyvLPN2jbNmy6tmz5x23m1Ofq6urHnvssTuuL0dcXJxCQ0MlSV5eXmrbtm2x1V2aCGAAAAAAAGChffv26tq1qyRp7ty52rlzZ54y7777rsLDwyVJzz77rNzc3HLtnz9/vgwGgwwGg15++WWbbR49elS//vqrJKlv376qWLGiXX1ds2ZNgUu4JiQkaPjw4YqOjpYkTZw40bz0692GJJ4AAAAAANvukSSeOT744AN17txZycnJ6t27t6ZNm6aePXsqOTlZS5cu1WeffSZJql+/vp577rk7bm/BggXm7bFjx9p93JtvvqlRo0bp4YcfVpcuXVSnTh35+PgoNjZWO3fu1KeffmpebrZBgwZ2BVOcFQEMAAAAAABu06pVK4WGhmr06NGKj4/XtGnT8pSpX7++Vq1alWvp1aLIysrSkiVLJEnlypXTgAEDCnX89evXNWfOHM2ZM8dqmW7dumnJkiUqX778HfXVkQhgAAAAAACQj4EDB+rQoUP64IMPtGrVKl28eFHu7u6qW7euhg0bpsmTJ8vLy+uO29m4caN5adMRI0YUaorHO++8o40bN2rnzp06ceKEoqKiFBsbKy8vL1WpUkUhISEaOXKkevfuLcNdPorGYPojrKVSTL7u0MXRXQDgxAav+dHRXQDgxPa/NcvRXQDgpDrMfNPRXSgW26Y84+gu5NH1/Q8d3QWUIpJ4AgAAAAAAp0cAAwAAAAAAOD1yYAAAAAAAbLrb8yfg7scIDAAAAAAA4PQIYAAAAAAAAKfHFBIAAAAAgG1GppDAsQhg4K5SplxZlW/cWOUbN8q+NWqoMmXLSpLOrFqtsFdnFnub1R64X7UG9JN/3Tpy9/VVyvXrunbgoE5+872uHz1qVx3ufn6qN3yoqnbvJq+gQBkMBiVevqJLW7bq96+/UVp8fLH3G7iXXYmI0OLQr7X1lx2KiIiUm7u7qgcHq8/992vE0Efk6eFRLO38tG69lq9cqd9OnlR8QoIqBJRX6xYt9ejQoWrRrGmBx/YZPFiXr0TYbKNKUKDWLl9eLP0FkM3d31+BnTqrXIOGci9bVqaMDKVERyv68CFF7t6lrPT0YmvLr05dVWzZSr41a8jN10+mrCyl30hQUkSE4k+d1LVff1VWWlqBdRjd3FSxTRuVb9JUnhUqytXbWxkpyUqPi1fC+XOKCQ9X3Mnfi63PAOCsCGDgrvLQTytLrS2ju7s6zXxVVbp0zvW4d1CQvIOCVL13Lx2b84WOzVtQYD3lGjVUl7felGfFCrkeL1uvrsrWq6tagwZqx9R/Keb4iWJ/DsC9aOv2HfrXjBlKuHHD/FhySoqOHDumI8eO6dsVK/TJe7NVrWrVIreRmpqq56ZN05btO3I9fvlKhC5fWaPV69bpL5Mm6c8TJxS5DQAlo2yDBqo7/FG5enreetDdXT5eXvKpVk2V2rXT8fnzlRpz/Y7acfHwVJ2hQ1W+cZM8+1w9PORZoaICmjZTwvnzSrpyxWo9frVrq84jw1SmXLlcj7v7+Mrdx1feVavKt0ZNHf6IAAaAP75SC2CsWrVKDz74oFxcXEqrSfzBJUZEKuHsWQV2CCmR+tu9+C9z8CJy7z79HrpMyVFRKlunjhqOfVy+1YLV9MknlBwdrTMr8g+seFasoC7vzJJnQICyMjL021ehunzzB0+VLp1Vf+QIeVWqqC7vvqUN4yYq+VpUiTwX4F5x4rff9fyLLyo5JUVeXl6aNHaM2rVpo9TUVP20br2+/eEHnT13Tk///e9aOm+evLy8itTOS6+/bg5etG/TRqNGjFClihX0+8lT+nzBAl24eFEff/aZKlYI0CMPPVRgXT27ddNf//yk1f1ubm5F6iOAvLwCg1Rv5Ci5uLsrMzVVlzZvUvzp0zK6uSmgeXNVbh8iz4qV1HDsOB3+5CObIyOscSlTRo0mTJRPcLAkKeZ4uKIPHVRKdLRkMKpMubLyqVpN5ZsWPFLLr05dNRwzVkY3N2WkpOhq2B7FnzqptBs35ObtrTLlyqls/QZy8/EpUj+BwjIYSKEIxyq1AMbAgQMVEBCgESNG6LHHHlOnTp1Kq2n8gRyd84Wuhx/X9fBwpV6PkVdQoAZ8/02xt1OxVUvV6NNbknRp23b98s9pMmVlSZJiwo/r0rbt6jV/rryDAtX86ad08efNSre42puj6Z//JM+AAEnSrpde0cWfN5n3RR08pOvhx9Vp5qvyDAhQ0z89obDX3yj25wLcS2a9956SU1Lk6uKi/334gVo2a2beF9K2rWpUq6bZH32kM2fPacGSr/SXSRML3UbY/v1avXadJKlH1y56f9Ysc3C+aePG6tGtq0aMHacrERGa/dHH6nXfffLz9bVan6+vj+rVqVPofgAovBoDBsjF3V1ZmZkK/2Kublw4b94Xf/qUUqKjVaNvP3lWqqSgLl116eeNRWqn5sCH5BMcrKzMTJ36OlTRhw/l2n/j/DlFHzyoc6tXSsb8fxC6enur3qMjZXRzU9LVSB3/Ym6+U06v7tkjAxcIAdwjSjWEFh0drU8//VRdu3ZV7dq1NX36dB07dqw0u4C73NE5X+jKjl+Uej2mRNtpMPoxSVJWRob2v/WuOXiRIy0uToc+/lSSVMbfT7UGDchTR5ny5cxBkCs7d+cKXuS4+PMmXdm5W5JUo28flSlfLk8ZAPY5cuyYwvbvlyQNGTQoV/Aix9hRj6l2zZqSpEWhoUrPyCh0O/O+XCRJcnFx0Yv/mJpnZGG5smX1t6efliTFx8fr+xUrCt0GgOLnXTVY/rWzg4XX9oblCl7kuLJ9m5KuRkqSgjp1lsFKcKEgvjVqqGLr1pKkS5t+zhO8yOO27xg5qvd+UG7e3spKT9dvi74sMF+WKTOz0P0EgLtRqQUwQkND9dBDD8nNzU0mk0lnz57VzJkz1axZM7Vu3VqzZ8/W5cuXS6s7gFWunp6q3LaNJCkybK+Sr13Lt9ylzVuUdnPURXCPbnn2V+3aRUbX7EFOZ1etstre2VWrJUlGV1dV7drljvoO3Mt+3rLFvD14QP98yxiNRg3s109SdnAhbN++QrWRlJSk3Xv3SpI6tG+nwMqV8i33QM8e8vH2liRt2Ly5UG0AKBnlGzc2b1+z9t43mRR1MxDq6uUlv9q1C91O5Y7Zo4wzU1N1Zfu2wndUkouHhwJatJAkRR06qJQoppjCORiMBqe74d5SagGMYcOG6fvvv1dERIQ+++wzde/eXQaDQSaTSQcOHNA//vEPVa9eXffff7/mzZuneFZlgIOUb9xILmXKSJKu7T9gtVxWRoauHzl685jGeYZvVrj5xcNWPdd+vbWvQvPmhe8wAEnSvgMHJUmenp5q3LCh1XJtW7cyb/960MaV0dscPnZMaTfnxLdt1dpqOTc3NzW/Obf9yNFjRRrpAaB4+dasJSk7sHDj8iWr5eLPnLl1TI2ahWrD4OKi8o2yAyWxv524lUPDaJR72bJy9/e3a7pHuYaN5OLuLkm6fviw+XGju7s8AgLkejNACgD3mlJfhaRs2bKaNGmSJk2apEuXLumrr77S4sWLdfDgQZlMJm3evFmbN2/WU089pf79+2vUqFHq37+/3G9+iAMlze/m8HJJij93rsCy8efOK7BDiIyurvKtVk3xZ89a1FNDkpSWkKCU69YzmadERyvtxg25+/jI9+YxAArvzM33X/XgYLm6Wv/3VqvGrffZaYv3rD1On7lVvpaN92utGjX0y+7dysjM1PnzF1Sndq18y+379YAeHjVKFy9ekslkUkD58mrapLH69u6t+7p1k8HA1SWgOHhWqigp+/+utWkbknKNvPSslP8oK2u8AoNkvJl4N+H8ebn5+KhanwcV0LSZ+eJIVnq64k6f0qVNP+vG+bzTWCTJp3p183bC+fPyr1dfwffdlyugkhYfr+hDB3Vp8yZlJCUVqp8AcLdyaBrZqlWr6vnnn9evv/6qo0ePatq0aapZs6ZMJpNSU1P1/fffa+jQoQoMDHRkN3GP8bQYEp589WqBZZMjb+33vG0oec795Kv5T0HJrx4vK8PRARQsNTVVMbGxkqTKNn5w+Pv5yfPm8okRkZGFaifi6q3ygTbaCaxcOd/jbnfp8mX9fvKUklNSlJKaqktXrmjtho2aMvWfGvunJxVp43MIgG0GV1e5eWev1JEWH1dg2cyUZGWmpkqS3P39C9WOZcDD6Oqq5s9OUaU2bc3BC0kyurmpXIOGavKnPyuwU+f8qjHXk5GcrErt2qnR+Al5RoO4+/kpqEtXNZv8TKEDLUCRGYzOd8M9pdRHYFjTqFEjvfbaa3rttde0c+dOLV68WIsWLVJ8fLzi4gr+RwMUJzeLZRUzkpMLLJuRcmu/q5dnrn059diqI7uelOw6PIu2pCNwr0u0uPro5elZQMlsnh4eSk5OVpId789c7STeasfTRjuenh7m7aR8ro66ubqpR9eu6hQSorp1asvXx0cJCQk6ePiIQr/7ThGRkfr10CH96a/PaNHcOfJlmUSgyCwDCJl2LI2amZ4mlzJl5OJexmZZS64W3yGC77tfRjc3xYSH6+LGDUqKjMjObdG0qar16StXDw/V6NdfKVHXFPvbb7nrufl9wOjmpup9HlRWeroubtygawd+VUZiojwCAlSlW3dVbN1GZcqWVf3RY3T4ow+LvOwrANwtnCaAkeP69es6dOiQDh06pBv5LEsJlDSjxXSlrPSC561npaWbty2/HFnWk5WeLltyvnC4lGGqFFAUaRZf2t1uDt8uSM60xNSbV1lLoh13t1vv55R82lky74t8l1dt16aNRg4bqr+/ME2/7N6t02fP6tM5czR1ypRC9RXALUaLaWWmDNsrduSUMboV7quyi8V3CKObm66HH9Nvi76UTCZJUkZioiJ371ZSRIQaP/GkDEajqj/YL08Aw8XdLVe/f1/6la4fuZULI/nqVZ36ZpmyMjJUuX2IPCtUUOX2IUVOGgoAdwunCGCkpKTohx9+0OLFi7Vu3Tql3/zBZ7r5Yd+xY8c7qv/ixYt33EfcOyyvXtj64mJ0v/UDJvO2HyhZaWkyenqa58IWXI/7zTq4cgIUhWWepHQ7goY5gYgyZQp3dbUw7aSl33o/e+TTTn7Bixze3t56Z+br6vfwI4qNi9M3y3/Q355+2q7gDIC8siwS6RpcbSfRzClj60JGnnZu+1w4/9Nqc/DCUsK5c7p+9IgCmjWXV2CgPCtXVrLFlDbL/iacP5creGHpwtq1qtiqtYxubgpo0YIABkocq37A0RwWwMjKytL69eu1ePFiLV++XImJiZJuBS0aNmyoUaNG6bHHHlOtWvknPrNXtWrV7CoXGpL/PETcW9Ithnq72hgi7upxa39GUu6h6OlJSXL19LRZR3Y92UPNM5JJwgUUhbfFsG17poUk35y2Zc90k1zteN9qJ9lGO8nJKeZtL6/CTw/z9fHRg716aek33yg5OVlHw8PVkpWKgCKxvMjgYkdieJebI6gy0wo3SsuyfMr16AKXP439/XcFNMt+T/sEV8sVwLDs7+2jMyxlJCfpxqVL8qtZU96BQTIYjTIVkKAUAO52pR7A2LVrl5YsWaKvv/5a125mec4JWgQFBenRRx/VqFGj1Lq19eXpgJJkmbjTs1IlxRw/YbVsroSfkbkT7SVfvSbPgABz1vOC5NSTFEmyPqAoypQpo3JlyyomNtZm0su4+Hhz8MEy0aY9LBOERly9qiaNGlkta5kgNLBS4drJUadWTfN25DXbCYEB5M+UkaH0xBty8/aRu1/BiTldPDzN00LTCpmHLS32Vvm0uPiCy8bFmrfdblsW1bJdW33Iqcfg4iJXLy+lMwUbwB9YqQUwXnrpJS1ZskRnbq6tnRO08PX11cMPP6xRo0bp/vvvL5Hl4i5cuGBXuV+GPlrsbePuE2+xTKJfjRq6LOvDMf1qZC9zlpWRoRu3TVWKP3NW5Rs1lLuvrzzKl7e6lKpHQIDcbybnSzhb8LKtAKyrVbOmYg4c0PmLF5WRkWF1KdUzFssj17ZYNtkedSxGBJ45e07qbr1sTjuuLi6qXi24UO3kyGfkOYAiSr56TW61fOQRECAZjVaXUvWsWNHimMJdWEiyWHHI1lB7g8XqCbePmkiKjFRAs5xyNuoxWq8HKG4GVv2Ag5XaGfjaa6/p9OnTMplMcnV11cCBAxUaGqrIyEjNmzdPDzzwQImtdR8cHGzXDZCk6+Hh5gzlFVu3tFrO6Oqq8k2bZB9zLDzXfFVJijp4yLxdUD0VW93aF3Uo/zmuAGxr3aKFpOypHceOH7dabu/+X83brQo5JaNpo0bmPBR7f91vtVx6eroOHTkiSWrSuHGRc1ecuhn0l6RKFSoUqQ4A2RLOnZWUnXTbp0pVq+X8LAKVCecKd2EhLTZWqTExkqQy5QMKLFsm4Nb+tPjcozUSzp7Jt1y+9ZQvLyl7dRV7Vj4DgLtZqYbQunTpok8//VQRERH64YcfNGzYMHl4eNg+EChFGUnJurp3nySpcru2ua7EWKrao7t55MSlLVvz7L+8bbuyMrOzmNfs399qezX795MkZWVm6vK27XfUd+Bedl/3bubt5StX5VsmKytLP65eLSl7BGC7tm0K1Ya3t7dC2raVJO3eE6YIK9O+NmzarBs3czvd372AYRoFSLhxQ2s3bJCUvexrQdNVANh2/dhR83bFNlbe+waDKtycxpyRnKz406cK387R7OClu6+vfKpXt1qufJMm5m3LgIUkxZ85Y54KUr5xY6t1lClXTt5BVSRJN86fY9gWSp7R4Hw33FNKLYAxb948vfbaaxozZozKlStn1zEpKSnaunWrtm7N++MQKKqa/ftq+K7tGr5ru5pMmpBvmROLv5KUPcqi9T/+nmt4piS5+/ur+dN/kSSlxSfo9IqVeepIuX5d59eulyQFdQxRcM8eecoE39dTQR1DJEnn1qy1Os0EgG3NmjRR65YtJUnfr1ihA4fzjmhasHiJTp89K0kaPWK43G6bZrJ85Uo1C+mgZiEd9Mnnn+fbzrjRoyRJGZmZev3tt5WZmXtJxpjYWL338ceSbk6TfGhQnjq279yplJSUPI/nSExM1PPTXlTszbnvQwYNzLUCCoDCS7x4UfE3RzVVbNtOPtXyBheCunSV182cNRG/7MgzJaNi6zbqMPNNdZj5poLvfyDfdq7s2G5ejaTmgEH5rkZWoWVL+deuI0mKOR6eZwSGTCZd3pb9/dezYiVV6ZY3EGowGlVr0GDzd5TIPbutPncA+KMotRwY48ePl9Fo1KFDh9S4gEiypUuXLqlHjx4yGo3KyCjcMlb4Y6rQorl8gm8N+yzjX9a87RMcrJr9++Yqf3bVT0Vq5+q+/Tq/boOq935AVbt1VbcP39PvoV8r+VqU/OvUUaNxY+QdFChJOvTJf5WekJBvPYf/+5kCO4TIo3w5dXj1ZZ1YslRXdvwiSQrq3EkNHsvOu5JyPUZH/pv/jyUA9vvX3/+mMU/8SSmpqXrymWf1xNixatemjVJTU/XT+vX6ZvlySVLN6tU19rHHitRGSNu26turl35av16bt23Tn/76jEY/OkKVKlbUbydP6fP583UlIkKSNOWpp+Tv55enjrkLF+pfL83QAz17qFWLFqpWtaq8vLyUkJCgg4ePKPS778xJQGvWqKGnJk0qUl8B5HZ25Y9q8uSf5eLurkYTJurS5k2KP30qexnS5i1UuX32RYXka9fMAYTCSouL04UN61Wjbz/5BAer6VOTdXnrFiVHRsrFw0PlmzQxt5ORkqJzq/JeBJGkiJ2/KKB5c/lUDVb1B/vKs3JlRR34VemJifIICFBQ567yvTnCI+b4cV2/OW0NAP7ISnUVElMRh7UV9Tj88dQaNEC1bk65uF3FFs1VsUXu+exFDWBIUtjrM+Xq7aUqnTupcts2qnzbUPOszEyFz1ug08t/sFpH8tWr2v6Pf6rzrJnyrFBBjcaMVqMxo3OXiYrSjn9OUzIrDAB3rFGDBnr79df0woyXdSMxUR98+mmeMjWrV9fHs9+V921Z/wvj//79om4kJmrbL79oz7592rNvX679RqNRT04Yr+EPD7FaR1x8vL79YYW+/WGF1TJtWrXSrP97Rf7+Ba+aAMA+SVcu6/elX6nu8BFy9fBQ9T4P5imTfO2aji+Yr6yb+bCK4sq2rXL19FSVbt3lVbmy6g4bnqdM2o0E/fbll0qJjs63DlNGhk4sXKAGj4+VT3CwKrZqrYqt8q7SF3P8uH5fuqTIfQUKgySecLRSX0a1MLJuDttzcXFxcE9wL8pMTdP256aqeu9eqtm/r8rWqys3Hx+lXI9R1MGDOrnsW0UfOWqznutHj2ntqLGqP2KYqnTrKu+gIElS4pXLurx1u35b+nXeoaMAiqxH1676dvEiLQoN1bYdvyjy6lW5urmpenCwet9/n0YOGybPO8y/5OHhoU/em61Va9fqh5WrdOL335Vw44YCypdX65YtNHLYMLVs1szq8c8/84x2hYXp4OEjOnv+nGJj45SQkCAPDw9VrFhBzZo0Ub/evdUpJKTEElwD96rY4+E69OH7CurUWWUbNJS7v79MmZlKiY5S9OHDity10zwF5E5cWLdWMeHhqhzSQb41a8rd11dZGRlKiYpSzPFwRfyyQ5mpqQXWkZ6QoCP//USV2rZVheYt5Vmpklw8PJSRlKQbFy/q2v59ijlm+7sIAPxRGEylNLzBaDTKYDDo8OHDdk8hWb9+vfr06aOAgABdK4Wr01936FLibQC4ew1e86OjuwDAie1/a5ajuwDASXWY+aaju1Asdk9/0dFdyCPk1dcd3QWUohIbgXH+/Pl8H79y5Yp8bq7cYE1qaqpOnTql6dOny2AwqIlFlmYAAAAAgAOw6gccrMQCGLUs1tDOYTKZ1Lt370LXNWbMmOLoEgAAAAAAuEuVWADD2syUwsxY8fDw0DPPPKMJE/Jf6hIAAAAAANwbSiyAMW/evFz3x48fL4PBoFdffVVVq1a1cpRkMBjk4eGhoKAgtWrVyuZ0EwAAAABAyWMVEjhaiQUwxo4dm+v++PHjJUmDBw+2O4knAAAAAACAVIrLqG7atElS/rkxAAAAAAAAClJqAYzu3buXVlMAAAAAgGJmYBUSOBiTmAAAAAAAgNMjgAEAAAAAAJxeqU0hAQAAAADcxQxMIYFjMQIDAAAAAAA4PQIYAAAAAADA6TGFBAAAAABgk8HI9W84FmcgAAAAAABwegQwAAAAAACA02MKCQAAAADAJgOrkMDBGIEBAAAAAACcHgEMAAAAAADg9JhCAgAAAACwjVVI4GCcgQAAAAAAwOkxAgMAAAAAYBNJPOFojMAAAAAAAABOjwAGAAAAAABwekwhAQAAAADYZuD6NxyLMxAAAAAAADg9AhgAAAAAAMDpMYUEAAAAAGCTwcgqJHAsRmAAAAAAAACnRwADAAAAAAA4PaaQAAAAAABsMrAKCRyMMxAAAAAAADg9AhgAAAAAAMDpMYUEAAAAAGAbq5DAwRiBAQAAAAAAnB4BDAAAAAAA4PSYQgIAAAAAsIlVSOBonIEAAAAAAMDpEcAAAAAAAABOjykkAAAAAACbDKxCAgdjBAYAAAAAAHB6BDAAAAAAAIDTYwoJAAAAAMA2ViGBg3EGAgAAAABgxfnz5/X888+rUaNG8vb2Vvny5dW+fXu98847SkpKuqO6X375ZRkMBrtumzdvtllfdHS0ZsyYoRYtWsjf319+fn5q0aKFZsyYoejo6DvqqzNgBAYAAAAAwKZ7MYnnqlWrNGrUKMXFxZkfS0pKUlhYmMLCwjRnzhytXr1atWvXdmAvs4WFhemhhx7SlStXcj1+6NAhHTp0SHPmzNEPP/ygtm3bOqiHd44ABgAAAAAAtzl48KCGDx+upKQk+fj46IUXXlDPnj2VnJyspUuX6vPPP9eJEyfUv39/hYWFycfH547aO3z4cIH7a9WqZXXfpUuXNHDgQEVGRsrV1VV///vfNWDAAEnSypUrNXv2bF2+fFkDBgzQvn37VLVq1Tvqq6MQwAAAAAAA4DZTpkxRUlKSXF1dtW7dOnXs2NG877777lO9evU0depUHT9+XLNnz9ZLL710R+01bdq0yMe++OKLioyMlCQtWbJEw4YNM+/r2rWr2rZtq+HDhysyMlLTp0/XF198cUd9dRRyYAAAAAAAbDMYne9WQsLCwsw5JyZOnJgreJHjueeeU6NGjSRJ77//vtLT00usPwWJjIzUokWLJEl9+vTJFbzIMWzYMPXp00eStHDhQnOw425DAAMAAAAAAAvLly83b48fPz7fMkajUWPGjJEkxcTE2JVksySsWLFCmZmZkqz3VZLGjRsnScrMzNSKFStKo2vFjgAGAAAAAAAWtm3bJkny9vZWmzZtrJbr3r27eXv79u0l3q/85PRVyt2f2zlDX+8UAQwAAAAAgE0Go8HpbiUlPDxcklS3bl25ulpPHdmwYcM8xxRVr169FBAQIHd3d1WqVEk9evTQm2++qZiYGLv66u/vr8DAQKvlgoKC5OfnVyx9dRSSeAIAAAAA7koXL160q1xwcLDddaakpCgqKsqu48qVKydvb28lJibqwoULdreRnw0bNpi3r127pi1btmjLli2aNWuW5s+fr4ceeijf43Latec5VqtWTUePHr3jvjoKAQwAAAAAwF2pWrVqdpUzmUx215mQkGDetmdp1JwAxo0bN+xuw1KzZs00ePBgtW/fXlWqVFF6erpOnDihxYsXa926dYqNjdUjjzyiH3/8UX379rXaX3v7KqnIfXU0AhgAAAAAAJsMJbjqhzNJSUkxb7u7u9ssX6ZMGUlScnJyoduaMmWKXn755TyPh4SEaMyYMfrf//6nP//5z8rMzNSkSZN08uRJeXp65tvfku6rMyCAAQAAAAC4K5XEVAgPDw/zdlpams3yqampkpQnsGCPsmXLFrj/ySef1N69ezVnzhxdvnxZ3333nUaNGpWnv0lJSSXeV2dAAAMAAAAAcFcqTG4Le/n6+pq37ZlqkZiYKMm+KRxF8eSTT2rOnDmSpC1btuQJYPj6+iopKckp+lrS7o0xQAAAAACAO2M0ON+tBHh4eKhChQqSbCcJjYmJMQcF7M3HUViNGzc2b1+6dCnP/pwgjj0JTXNGrJRUX0saAQwAAAAAACw0atRIknTy5EllZGRYLXf8+PE8xxQ3WwlIcwIccXFxioiIsFruypUrio+Pl1RyfS1pBDAAAAAAALDQpUsXSdlTLvbt22e13JYtW8zbnTt3LpG+HDt2zLxdpUqVPPtz+np7f25XGn0taQQwAAAAAAA2GYxGp7uVlMGDB5u3582bl2+ZrKwsLVy4UFJ2Ms6ePXuWSF/+97//mbe7d++eZ/+gQYNkvPm3sNZXSZo/f74kyWg0atCgQcXbyVJCAAMAAAAAAAvt27dX165dJUlz587Vzp0785R59913FR4eLkl69tln5ebmlmv//PnzZTAYZDAY8l0q9fDhwzp58mSB/fjf//6nuXPnSpICAwM1ZMiQPGUCAwPNiT3Xrl2rb775Jk+ZZcuWae3atZKkxx9/XIGBgQW266xYhQQAAAAAgNt88MEH6ty5s5KTk9W7d29NmzZNPXv2VHJyspYuXarPPvtMklS/fn0999xzha5/3759mjRpknr27Km+ffuqWbNmCggIUEZGho4fP65FixZp/fr1kiQXFxf973//k7e3d751vf7661qzZo2uXbumkSNHau/evRowYIAkaeXKlXr33XclSRUrVtRrr71WlD+HUyCAAQAAAACwzVAyq344q1atWik0NFSjR49WfHy8pk2blqdM/fr1tWrVqlxLrxZGZmamNmzYoA0bNlgtExAQoLlz5xY47aNatWr68ccfNXjwYEVERGjWrFmaNWtWrjKBgYFavnx5iSw9W1oIYAAAAAAAkI+BAwfq0KFD+uCDD7Rq1SpdvHhR7u7uqlu3roYNG6bJkyfLy8urSHX369fPPD3l119/VWRkpKKjo2UymVS+fHm1aNFCDz74oMaNGyc/Pz+b9YWEhOjw4cP64IMPtHz5cp09e1aSVKtWLT300EOaMmWKAgICitRXZ2Ew2VqT5R7ydYcutgsBuGcNXvOjo7sAwIntf2uW7UIA7kkdZr7p6C4Ui2NffO7oLuTReMITju4CShEjMAAAAAAANpXkqh+APTgDAQAAAACA0yOAAQAAAAAAnB5TSAAAAAAANhnusVVI4HwYgQEAAAAAAJweIzAAAAAAALaRxBMOxhkIAAAAAACcHgEMAAAAAADg9JhCAgAAAACwiSSecDRGYAAAAAAAAKdHAAMAAAAAADg9ppAAAAAAAGwysAoJHIwzEAAAAAAAOD0CGAAAAAAAwOkxhQQAAAAAYJuB699wLM5AAAAAAADg9AhgAAAAAAAAp8cUEgAAAACATQajwdFdwD2OERgAAAAAAMDpEcAAAAAAAABOjykkAAAAAADbWIUEDsYZCAAAAAAAnB4BDAAAAAAA4PSYQgIAAAAAsIlVSOBojMAAAAAAAABOjwAGAAAAAABwekwhAQAAAADYZGAVEjgYZyAAAAAAAHB6BDAAAAAAAIDTYwoJAAAAAMA2ViGBgzECAwAAAAAAOD1GYAAAAAAAbCKJJxyNMxAAAAAAADg9AhgAAAAAAMDpMYUEAAAAAGCTgSSecDBGYAAAAAAAAKdHAAMAAAAAADg9ppAAAAAAAGxjFRI4GGcgAAAAAABwegQwAAAAAACA02MKCQAAAADAJoOR699wLM5AAAAAAADg9AhgAAAAAAAAp8cUEgAAAACAbQaDo3uAexwjMAAAAAAAgNMjgAEAAAAAAJweU0gAAAAAADaxCgkcjTMQAAAAAAA4PQIYAAAAAADA6TGFBAAAAABgk8HIKiRwLAIYFgav+dHRXQDgxJY/ONDRXQDgxIK7hTi6CwAA/KExhQQAAAAAADg9RmAAAAAAAGwzcP0bjsUZCAAAAAAAnB4BDAAAAAAA4PSYQgIAAAAAsIlVSOBojMAAAAAAAABOjxEYAAAAAACbDCTxhINxBgIAAAAAAKdHAAMAAAAAADg9ppAAAAAAAGwzcv0bjsUZCAAAAAAAnB4BDAAAAAAA4PSYQgIAAAAAsMlgMDi6C7jHMQIDAAAAAAA4PQIYAAAAAADA6TGFBAAAAABgk4FVSOBgnIEAAAAAAMDpEcAAAAAAAABOjykkAAAAAADbWIUEDsYIDAAAAAAA4PQIYAAAAAAAYMX58+f1/PPPq1GjRvL29lb58uXVvn17vfPOO0pKSrqjuuPj47V06VI98cQTat26tcqWLSt3d3dVrFhRPXr00DvvvKPY2Fib9dSsWVMGg8HmrWbNmnfUX0djCgkAAAAAwKZ7cRWSVatWadSoUYqLizM/lpSUpLCwMIWFhWnOnDlavXq1ateuXei6f/rpJw0ZMkSpqal59kVFRWnLli3asmWL3nnnHX311Vfq2bPnHT2XPwICGAAAAAAA3ObgwYMaPny4kpKS5OPjoxdeeEE9e/ZUcnKyli5dqs8//1wnTpxQ//79FRYWJh8fn0LVHx0drdTUVBmNRvXq1UsPPvigWrRoobJly+rixYtavHixQkNDFRkZqQEDBmjHjh1q2bJlgXU+9NBDeu2116zud3d3L1QfnQ0BDAAAAAAAbjNlyhQlJSXJ1dVV69atU8eOHc377rvvPtWrV09Tp07V8ePHNXv2bL300kuFqt/NzU1PPvmkpk2bpurVq+fa16pVKw0cOFCdO3fWM888o6SkJD333HPauHFjgXWWLVtWTZs2LVQ/7ib33hggAAAAAEChGYxGp7uVlLCwMG3evFmSNHHixFzBixzPPfecGjVqJEl6//33lZ6eXqg2RowYof/+9795gheW/vrXv6pt27aSpM2bNys6OrpQbfzREMAAAAAAAMDC8uXLzdvjx4/Pt4zRaNSYMWMkSTExMeaAR3Hr0aOHJCkrK0tnzpwpkTbuFgQwAAAAAACwsG3bNkmSt7e32rRpY7Vc9+7dzdvbt28vkb5YJvk03oOJVC3d288eAAAAAGAfg8H5biUkPDxcklS3bl25ulpPHdmwYcM8xxS3LVu2SJJcXV1Vt27dAstu3bpVzZs3l7e3t7y8vFSrVi2NGDFCy5cvl8lkKpH+lSaSeAIAAAAA7koXL160q1xwcLDddaakpCgqKsqu48qVKydvb28lJibqwoULdrdhr1WrVunQoUOSpD59+sjPz6/A8rdPMTl79qzOnj2rr7/+Wp07d1ZoaKiqVq1a7P0sLQQwAAAAAAB3pWrVqtlVrjCjDxISEszb9iyNmhPAuHHjht1t2OP69et6+umnJUkuLi569dVXrZZ1d3fXoEGD1Lt3bzVt2lT+/v6KjY3Vzp079emnn+rChQvasWOHevXqpZ07d8rf379Y+1paCGAAAAAAAGwqyVU/nElKSop5293d3Wb5MmXKSJKSk5OLrQ+ZmZkaNWqUzp07J0n697//rVatWlktv2fPHpUtWzbP4z169NDkyZM1dOhQrVu3TuHh4XrllVc0e/bsYutraSKAAQAAAAC4K5XEtA0PDw/zdlpams3yOUk2PT09i60PTz31lNasWSNJ6t+/v6ZPn15g+fyCFzl8fX319ddfq06dOoqOjtZnn32mN998067gjLMhgAEAAAAAsMlQgkkzi6owuS3s5evra962Z1pIYmKiJPumm9jjhRde0GeffSZJ6tKli5YtWyYXF5c7qtPf31+PPvqoPv74YyUmJmrv3r3q1KlTcXS3VN0bY4AAAAAAALCDh4eHKlSoIMl2ktCYmBhzAMPefBwFmTVrlt58801JUuvWrbVy5cpiG9nRuHFj8/alS5eKpc7SRgADAAAAAAALjRo1kiSdPHlSGRkZVssdP348zzFF9cknn+hf//qXua61a9cWa7LNP8IyqgQwAAAAAAA2GYxGp7uVlC5dukjKnh6yb98+q+W2bNli3u7cuXOR2/vyyy81efJkSVLt2rW1YcMG8yiQ4nLs2DHzdpUqVYq17tJCAAMAAAAAAAuDBw82b8+bNy/fMllZWVq4cKGk7CSaPXv2LFJb3333ncaPHy+TyaTg4GBt3Lix2AMMcXFxCg0NlSR5eXmpbdu2xVp/aSGAAQAAAACAhfbt26tr166SpLlz52rnzp15yrz77rsKDw+XJD377LNyc3PLtX/+/PkyGAwyGAx6+eWX821n3bp1GjlypDIzM1WpUiVt2LBBNWvWLFRf16xZU+ASrgkJCRo+fLiio6MlSRMnTjQv/Xq3YRUSAAAAAIBtJThlwxl98MEH6ty5s5KTk9W7d29NmzZNPXv2VHJyspYuXWpeKaR+/fp67rnnCl3/rl27NGTIEKWlpcnNzU3vvfee0tPTdeTIEavHBAcH51ky9c0339SoUaP08MMPq0uXLqpTp458fHwUGxurnTt36tNPPzUvN9ugQQOrwZS7AQEMAAAAAABu06pVK4WGhmr06NGKj4/XtGnT8pSpX7++Vq1alWvpVXutWbNGSUlJkqT09HSNGjXK5jHz5s3TuHHj8jx+/fp1zZkzR3PmzLF6bLdu3bRkyRKVL1++0H11FgQwAAAAAADIx8CBA3Xo0CF98MEHWrVqlS5evCh3d3fVrVtXw4YN0+TJk+Xl5eXQPr7zzjvauHGjdu7cqRMnTigqKkqxsbHy8vJSlSpVFBISopEjR6p3794yGAwO7eudMpj+CGupFJO02BhHdwGAE1v+4EBHdwGAEwvuFuLoLgBwUp3eetfRXSgWUQd/dXQX8qjQopWju4BSdG9NYgIAAAAAAHclAhgAAAAAAMDpkQMDAAAAAGCT4R5bhQTOhzMQAAAAAAA4PQIYAAAAAADA6TGFBAAAAABgm4Hr33AszkAAAAAAAOD0CGAAAAAAAACnxxQSAAAAAIBNBqPB0V3APY4RGAAAAAAAwOkRwAAAAAAAAE6PKSQAAAAAAJsMRq5/w7E4AwEAAAAAgNMjgAEAAAAAAJweU0gAAAAAADYZDKxCAsdiBAYAAAAAAHB6jMAAAAAAANhGEk84GGcgAAAAAABwegQwAAAAAACA02MKCQAAAADAJoOB699wLM5AAAAAAADg9AhgAAAAAAAAp8cUEgAAAACATQajwdFdwD2OERgAAAAAAMDpEcAAAAAAAABOjykkAAAAAACbDEauf8OxOAMBAAAAAIDTI4ABAAAAAACcHlNIAAAAAAC2Gbj+DcfiDAQAAAAAAE6PAAYAAAAAAHB6TCEBAAAAANhkMBoc3QXc4xiBAQAAAAAAnB4BDAAAAAAA4PSYQgIAAAAAsMnAKiRwMM5AAAAAAADg9AhgAAAAAAAAp8cUEgAAAACATQYj17/hWJyBAAAAAADA6RHAAAAAAAAATo8pJAAAAAAA24wGR/cA9zhGYAAAAAAAAKfHCAwAAAAAgE0GA9e/4VicgQAAAAAAwOkRwAAAAAAAAE6PKSQAAAAAAJsMJPGEgzECAwAAAAAAOD0CGAAAAAAAwOkxhQQAAAAAYBurkMDBOAMBAAAAAIDTc4oRGCaTSadPn9b169clSeXLl1etWrVkNBJfAQAAAAAADg5grF27Vh999JE2b96spKSkXPu8vLzUs2dPTZ48Wb1793ZQDwEAAAAAEquQwPEcMsQhLS1NI0eOVL9+/bR69WolJibKZDLluiUmJmrVqlXq27evHnvsMaWlpTmiqwAAAAAAwAk4ZATGY489pu+//14mk0murq7q1auXQkJCFBgYKJPJpMjISO3Zs0fr169Xenq6QkNDlZGRoa+//toR3QUAAAAAAA5W6gGMVatW6bvvvpPBYFDPnj31xRdfqEaNGvmWPX/+vCZMmKCff/5Z3377rVavXq1+/fqVco8BAAAAAAZWIYGDlfoZOH/+fElSixYttGbNGqvBC0mqXr26fvrpJ7Vs2VKSNG/evFLoIQAAAAAAcDalHsDYtWuXDAaDnnvuObm5udks7+bmpueff14mk0m7du0qhR4CAAAAAABnU+pTSK5duyZJaty4sd3HNGzYUJIUFRVVIn0CAAAAANhgYBUSOFapj8Dw9vaWJEVHR9t9zPXr1yVlL60KAAAAAADuPaUewGjQoIEkKTQ01O5jli5dmutYAAAAAABwbyn1AMagQYNkMpk0b948c0LPgsyfP1/z5s2TwWDQ4MGDS7x/AAAAAIC8DAaD091wbyn1AMZf//pXBQUFyWQyaeLEierfv7++/fZbXbx4Uenp6UpPT9fFixf17bffql+/fpo4caJMJpOqVKmiyZMnl3Z3AQAAAACAEyj1JJ7e3t5auXKlHnjgAcXExGjNmjVas2aN1fImk0nlypXTypUryYEBAAAAAMA9qtRHYEhSq1atdPjwYT3yyCMyGo0ymUz53oxGo4YOHapDhw6pRYsWjugqAAAAAECSjEbnu+GeUuojMHJUqVJFy5YtU0REhDZt2qQjR46YVxspX768mjZtqh49eigoKMhRXQQAAAAAAE7CYQGMHIGBgRo5cqSjuwEAAAAAAJyYwwMYAAAAAIC7AKt+wMEIYOCudSUiQotDv9bWX3YoIiJSbu7uqh4crD73368RQx+Rp4dHsbTz07r1Wr5ypX47eVLxCQmqEFBerVu01KNDh6pFs6YFHttn8GBdvhJhs40qQYFau3x5sfQXuFeVKVdW5Rs3VvnGjbJvjRqqTNmykqQzq1Yr7NWZxd5mtQfuV60B/eRft47cfX2Vcv26rh04qJPffK/rR4/aVYe7n5/qDR+qqt27ySsoUAaDQYmXr+jSlq36/etvlBYfX+z9Bu517mXLKqhzV5Vr2EhlypVVVkamUqKiFH3ooCJ27lBWenqxteVft54qtm4j35q15O7nK1NmltJv3FDSlcuKPfm7ru3fp6y0NKvHBzRrrgqt2sgnOFhu3t4ymUxKT0jQjQvndXVvmGJ/O1FsfQUAZ2cwmUymkqh469at5u1u3brl+3hRWNZV3NJiY0qsbhSvrdt36F8zZijhxo1899esUUOfvDdb1apWLXIbqampem7aNG3ZviPf/UajUX+ZNEl/njjBah0EMP5Ylj840NFdQAGG79pudV9xBzCM7u7qNPNVVenSOd/9WZmZOjbnCx2bt6DAeso1aqgub70pz4oV8t2fdPWadkz9l2KO8wPlbhDcLcTRXYAdyjVspHojR8nV0zPf/UlXryr8i8+VejM3W1G5eHqq7rBHFdC04IsdB957V0lXLuc93sNDDceOl3+dugUeH3XgV/0e+pVMmZl31F+UrE5vvevoLhSLdCvfvR3JzcfH0V1AKSqxERg9evSQwWCQwWBQRkZGnseL4va6cG868dvvev7FF5WckiIvLy9NGjtG7dq0UWpqqn5at17f/vCDzp47p6f//nctnTevyMvvvvT66+bgRfs2bTRqxAhVqlhBv588pc8XLNCFixf18WefqWKFAD3y0EMF1tWzWzf99c9PWt3v5uZWpD4CyF9iRKQSzp5VYIeS+UHZ7sV/mYMXkXv36ffQZUqOilLZOnXUcOzj8q0WrKZPPqHk6GidWbEy3zo8K1ZQl3dmyTMgQFkZGfrtq1BdvvmZU6VLZ9UfOUJelSqqy7tvacO4iUq+FlUizwW4l3gFBan+6Mfl4l5Gmakpuvjzz4o7dVJGNzdVaNlSgSEd5VWpkhqNn6RD/3m/wJERBXHx8FCTJ56UT3A1SdL18GOKOvCrUqKjZDAYVaZcOflUq6aAZtZX2av/2Ghz8CIlOlqXtmxSUkSEDC5G+VStpqo9esrNx0cVWrZSelKSziz/rkh9BYC7SYlOIbE2uKOEBn3gHjHrvfeUnJIiVxcX/e/DD9SyWTPzvpC2bVWjWjXN/ugjnTl7TguWfKW/TJpY6DbC9u/X6rXrJEk9unbR+7NmycXFRZLUtHFj9ejWVSPGjtOViAjN/uhj9brvPvn5+lqtz9fXR/Xq1Cl0PwDY7+icL3Q9/Liuh4cr9XqMvIICNeD7b4q9nYqtWqpGn96SpEvbtuuXf06TKStLkhQTflyXtm1Xr/lz5R0UqOZPP6WLP2/O94pV0z//SZ4BAZKkXS+9oos/bzLvizp4SNfDj6vTzFflGRCgpn96QmGvv1HszwW419QaNFgu7mWUlZmpo59/phvnz5n3xZ86qZSoKNXsP1BelSurSrfuurhhfdHaeWiIfIKrKSszU78vXaLogwdy7U84d1ZRB37V2R9X5LsMpHfVYJVr2EiSlBIdpQPvz1ZWaqpFX08p6tABtZzynFy9vBTYoaMurF+rjMTEIvUXQMHOnz+vDz/8UKtWrdL58+dVpkwZ1a1bV8OHD9dTTz1V5Aumt1u6dKnmzZunQ4cOKSYmRoGBgeratauefvppdejQwa46oqOj9eGHH2r58uU6e/asTCaTatWqpcGDB+uZZ55RwM3vHnerEgtgbNq0qVCPA/Y4cuyYwvbvlyQNGTQoV/Aix9hRj2n5ypU6ffasFoWGatK4sXJzLdypPu/LRZIkFxcXvfiPqebgRY5yZcvqb08/ranTpys+Pl7fr1ihsaNGFfFZASgOR+d8USrtNBj9mCQpKyND+9961xy8yJEWF6dDH3+qjq+9ojL+fqo1aIB+W7I0V5ky5cuZgyBXdu7OFbzIcfHnTbqyc7eCOoaoRt8+OvTpf5V6namOQFH5BFczj2i4GrY7V/Aix+WtW1SpbTt5VQ5UUJduuvTzxjzvcVt8a9ZSpTZtJUkXN27IE7zII5/6fWvWvNWnbdtyBS9ypMXG6ureMFXp1l0Go1G+1asrJjy8UH0FCu0ezOG5atUqjRo1SnFxcebHkpKSFBYWprCwMM2ZM0erV69W7dq1i9xGSkqKhg0bppUrc4/aPHfunM6dO6clS5bo5Zdf1vTp0wusJywsTA899JCuXLmS6/FDhw7p0KFDmjNnjn744Qe1bdu2yH11tBILYHTv3r1QjwP2+HnLFvP24AH98y1jNBo1sF8/ffDJJ4qPj1fYvn3qFGL/MPKkpCTt3rtXktShfTsFVq6Ub7kHevaQj7e3biQmasPmzQQwgHuAq6enKrdtI0mKDNur5GvX8i13afMWpd24IXcfHwX36JYngFG1axcZbwZWz65aZbW9s6tWK6hjiIyurqratYtO//BjMT0T4N5TvsmtXBRXw8LyL2Qy6dq+farRr7/cvLzkV6eu4n7/rVDtBHXKnl6WmZqiy1s3F6mvRpdbX9FTr0dbLZcSfWufwYXc/EBxO3jwoIYPH66kpCT5+PjohRdeUM+ePZWcnKylS5fq888/14kTJ9S/f3+FhYXJp4j5OCZOnGgOXvTs2VPPPvusqlSposOHD2vmzJk6deqUXnrpJQUFBWnSpEn51nHp0iUNHDhQkZGRcnV11d///ncNGDBAkrRy5UrNnj1bly9f1oABA7Rv3z5VvYNcgY6Ud8wa4MT2HTgoSfL09FTjhg2tlmvbupV5+9eDhwrVxuFjx5R2c85r21atrZZzc3NT85uJuY4cPaZ08rMAf3jlGzeSS5kykqRr+w9YLZeVkaHrR47ePKaxDLeN4qrQ4ta894LqufbrrX0VmjcvfIcBmPnWqiVJykxN1Y1LF62Wizt9yrztV7NWodowuLio3M1ASczx47dyaBiNKlO2nNzLls3zeZCf5KhbwdEy5a0P9/awGAqeEpV/QBVA0U2ZMkVJSUlydXXVunXrNG3aNHXs2FH33XefPvvsM7311luSpOPHj2v27NlFamPLli1asmSJJGngwIFav369HnroIbVr104TJkzQrl27VL16dUnS1KlTFRsbm289L774oiIjIyVJS5Ys0axZs9S1a1d17dpVs2bNMrcRGRlpcySHMyOAgbvKmbNnJUnVg4PlWsC0kFo1api3T988xl6nz9wqX6tmDesFLdrJyMzU+fMXrJbb9+sBPTxqlNp376F23brrwcFD9PyLL2rjli3khAHuIn4Ww7rjz+Udfm4p/tx5SZLR1VW+1ardVk/2Z0daQoJSCljpICU6Wmk382f42vg8AlAwr0qVJWXnlMhv2kaO5GtXzduelfIfhWmNd1AVudxMzJ1w/pzcfHxVd9gIhbzymtpM+7faTpuu9v/3uhpNmCTfGjWt1hN74rhSbo68COrSVUY39zxl3P39VbFtO0lS/NmzSoqwveoZcMcMBue7lZCwsDBt3rxZUvYIiY4dO+Yp89xzz6lRo+x8Ne+//77Si7AEc04QxMXFRZ988kmeqesVKlTQrFmzJEkxMTGaO3dunjoiIyO1aFH2FPg+ffpo2LBhecoMGzZMffr0kSQtXLjQHOy42xDAwF0jNTVVMTcjjpVtfKHw9/OT583l0SIK+eaMuHqrfKCNdgIrV873uNtdunxZv588peSUFKWkpurSlStau2Gjpkz9p8b+6UlFXr1q9VgAzsPTYkpZso33bXKkxY+g26ai5dxPvmr7imlOPV5WprMBsM3g6mpeajHVYh57fjKTk5V5M+dEmbJlC9WOp8X3AqOrq1r+/XlVatfePHJLklzc3FSuYSM1/cvTCurSNd96TJmZ+v2rJUpPTJRnhQpq8bfnVDmkg3xr1JRf7Tqq0q27mj/zN7l5eSnlerROLluabz0Aim758uXm7fHjx+dbxmg0asyYMZKygws5AQ973bhxQxs3bpQk9erVS8HBwfmWe/jhh+Xn5ydJ+u67vCsOrVixQpk3l1K21ldJGjdunCQpMzNTK1asKFRfnUWJTZabMGFCsddpMBjyjTjh3pCYlGTe9rKydrslTw8PJScnKyk5uXDtJN5qx9NGO56eHubtJIv+5XBzdVOPrl3VKSREdevUlq+PjxISEnTw8BGFfvedIiIj9euhQ/rTX5/Rorlz5Ms61oBTc7PIMp5h47MlI+XWflev3J8lOfXYqiO7npTsOjyLJ8M5cC+yDCDklxDzdplpaXIpU0ZG9zI2y1pytfiMqPZAbxnd3HT92FFdWL9OSRFX5OrhqfLNmqlG3/5y9fRUzQGDlHztmmJPHM9TV8K5szr4wWwFde6qoM5dVOeR3FdUM1NTdH7dGkX88osyklh9BChu27ZtkyR5e3urTZs2VstZ5njcvn27evXqZXcbe/bsUerNz6SCckW6u7urQ4cOWrdunfbs2aP09HS53RztZdlXW/Xc3tcnnnjC7r46ixILYMyfP1+GYhzSYzKZCGDc49Is1mK3fMNa4+6ePdwy1Y4vKkVtx91iSGdKPu0smfdFvsurtmvTRiOHDdXfX5imX3bv1umzZ/XpnDmaOmVKofoKoHQZ3W+957PSC857k5V2axip5Y8ny3qy7BhqmjOH3qVM3iHkAOxjdL31/zzr5lXKgphu5rUy2vF9w5KLxfeCnODF8QXzpJvTRdMTbyhy104lRUSo6Z+fksFoVI1+A/INYEhSQLPmCmjW3Jz0N1dbZTxUoUVLpcbE6Nq+vYXqJwDbwm+u6lO3bt0Cp643tMjLF17IlYAsyzcsIL9fzv5169YpIyNDv//+uxo3bpynHn9/fwUGBlqtIygoSH5+foqPjy90X51FiQUwqlevXmAAIykpSdcssre7u7urfPnyMplMiomJMf+INBgMqlChwh2trXvxovVETZYq+XgXuQ2UPHeLHw72zC/LOYfKlCnc1ZPCtJOWfivY4ZFPO/kFL3J4e3vrnZmvq9/Djyg2Lk7fLP9Bf3v6abuCMwAcI8siwGl0K/hfqNH91ns587YAZ1Zamoyennb9OMoJdmSmptkoCcCarIxb/8+NdiTRNNz8sWJPkDF3O7kDm2dX/WgOXlhKOHtG0UcOq0LzFvIOCpJXYGDuHBYGg+o/NloVWrSUJEXu2a2IX3Yo6WqkDAajvKtUUdUePVW+SVPVGzFS3kFBOruSVYpwb7L3t5616Rn5SUlJUVRUlF3HlStXTt7e3kpMTNSFC9Zz4uXHsrytdqpZ5NO6cOFCrgBGTj32PMdq1arp6NGjhe6rsyixAMbZAhIn7t+/X0OHDlVMTIyeeOIJTZgwQS1btjQnLMnMzNTBgwc1d+5cff755/L29tY333yj1q2trwhRkGq3JU+zJjXGeiI1OJ63RRDLnmkhyTeHXdsz3SRXO9632km20U5ycop5uyhBNl8fHz3Yq5eWfvONkpOTdTQ8XC1ZaQBwWukWU8VcbXy2uHrc2p+RlPuzJD0pSa6enjbryK4ne6paRnLeaWoA7GMZRDTacWHDJWeUVFrhRnFmpt76XpASHa0UK0stS1LsbydUoXn2ikQ+wdVzBTACO3YyBy/Or1urixvWmfeZlD295PiCeao7YqQqtWmrKt16KO7kScUcvzuvqAJ3wt7feoVJnJ+QkGDetmdp1JwAxo2bibdLoh1v71sX229vJ6cee/uaXx13i1JP4nnlyhX169dPV65c0dq1a/Xxxx+rTZs2ubKturi4qHXr1vr444+1fv36XMfg3lWmTBmVu5lMy1bSy7j4eHPwwTLRpj0sE4RG2GjHMkFoYKXCtZOjTq2a5u3IAr7oAHA8y8SdtlYnyJXwMzL3Z0lO8k7PShVttplTT1IkyX6BojJlZCj95pf1Mv7+BZZ18fQ0T/tKtbJcoTWpcbH5bucnzaJut9t+dFRqFyIpOwfOpU0brdZxfs3qW8e0D7G/o0CRGZzwVvxSUm4FIy1HZ1uTM+Lb1sXPO2nHclT57e3k1FOSfXUWJTYCw5p33nlHV69e1T//+U/17NnTZvnu3btrypQpmjVrlt5+++0ira97tw6PQV61atZUzIEDOn/xojIyMqzORztjsbxhbYtlD+1Rp9atNd/PnD0nWc+DY27H1cVF1avZPyzNEquoAnePeItllv1q1NBlbbNa1q9G9prtWRkZunHb8Nb4M2dVvlFDufv6yqN8eatLqXoEBMj95g+bhLMFL9sKoGBJVyPl7+Mjj4AKktFodSlVz4r2rzZ0u+SIWxc2DEYb1wmNt354mW7ri9fNAGlyZKRMBeTsSIuLU1pCvNx9/XL1G7iXlMRvPQ+PW4n6LfPjWZOTc8/WAgB30o5lXr/b2/Hw8FBSUlKJ9tVZlPoIjJUrV8pgMKh///52H5NTdtWqVUVqMzg42K4bnF/rFtlDLZOTk3XseP4JryRp7/5fzdutCjklo2mjRuY8FHt/3W+1XHp6ug4dOSJJatK4cZFzV5w6c8a8XalChSLVAaB0XA8PV+bNLwcVW7e0Ws7o6qryTZtkH3MsPM+8+KiDh8zbBdVTsdWtfVGHDhe+wwDMEs5m/791KVNGPlWtf+/zr13HvB1/9ozVcvlJjY0xT0n2CAgosKxH+Vv/89Picy/tmhPQMLjY/qpuMLrkOga415TEbz1fizx29ky1SEzMXgnInikcRW0np4382smppyT76ixKPYCRk2TFMtpkS05ZexO04I/rvu7dzNvLV+Yf0MrKytKPq7OHVPr6+qpdW+vLHuXH29tbIW3bSpJ27wlThJVh2xs2bdaNmx8A9xewXFFBEm7c0NoNGyRlL/vapFGjItUDoHRkJCXr6t59kqTK7drKs2L+U0Cq9uhuHjlxacvWPPsvb9tuXgmhZgEB/Zr9+0nKXjXh8rbtd9R34F53/egR83aldu3yL2QwqOLN5RIzkpIUf+pkoduJPpwdbHT39ZNvjZpWywU0a2bejj9zOte+nFFZXpUD5VLAd2avyoFyuzmfnVxuQPHx8PBQhZsXFm39Bo2JiTEHBezNx5HDMrBiqx3LkSa3t5NTjz2/l3PqKWxfnUWpBzBykoaEhYXZfcyePXskFS1JIv5YmjVpotYtW0qSvl+xQgcO570iuWDxEp2+mUR29IjhcrttmsnylSvVLKSDmoV00Ceff55vO+NGj5IkZWRm6vW331bmbcM3Y2Jj9d7HH0vKDpI8/NCgPHVs37kz17y22yUmJur5aS8qNi77qsuQQQPtmrcGoOTU7N9Xw3dt1/Bd29Vk0oR8y5xY/JWk7FEWrf/x9zzDxN39/dX86b9IktLiE3R6xco8daRcv67za9dLkoI6hii4Z488ZYLv66mgjtlz2s+tWWt1mgkA+9y4cEFxp09Jys4x4VO9Rp4yVbp1l1fl7CUIr+zYlmdUQ8U27dTprXfV6a13Va1X73zbubx9qzJvrl5S66HBMrrl/d9eoVVr+depK0m6Hn5MaXG5R2DEhB+VlL0Ua82BD+XbjsHVVbUeGmxxzLF8ywEomkY3LyyePHlSGRnWl04/bjEqvFEhL0ZariRyvIDR5Zb7XV1dVbdu3XzriYuLU4Tlika3uXLliuLj44vUV2dR6jkw2rZtqzVr1mjmzJkaOnSoKlq5epXj6tWreuONN2QwGNTOWrQc95R//f1vGvPEn5SSmqonn3lWT4wdq3Zt2ig1NVU/rV+vb5YvlyTVrF5dYx97rEhthLRtq769eumn9eu1eds2/emvz2j0oyNUqWJF/XbylD6fP19Xbn44THnqKfn7+eWpY+7ChfrXSzP0QM8eatWihapVrSovLy8lJCTo4OEjCv3uO3MS0Jo1auipSZOK1FcA2Sq0aC6f4Krm+2X8y5q3fYKDVbN/31zlz676qUjtXN23X+fXbVD13g+oareu6vbhe/o99GslX4uSf506ajRujLyDsn8AHfrkv0q3yDBu6fB/P1NghxB5lC+nDq++rBNLlurKjl8kSUGdO6nBY49KklKux+jIf/MPtgIonLMrflDTpybLxd1dTZ74ky7+vFFxp07K6OamCi1aKbBDR0lS8rWrurR1S5HaSIuN1YV1a1Sz/0D5BFdT878+q0tbNikpIkIuHh4KaNrM3E5GcrLO/vhDnjoub92qSu1C5O7rq8rt2suzQgVF7Nqp5KtXZTAa5F2lqoI6d5VXYPZnTVJkhK7utf/iIADbunTpom3btikxMVH79u1TSEj+iXK3bLn1WdG5c+dCtdGuXTu5u7srLS1NW7Zs0b/+9a98y6WlpWnXrl25jrm9r19++aW5PyNGjCj2vjqLUg9gTJ48WWvWrNHly5cVEhKi2bNna9CgQTLedgUrKytLP/74o/7+97/r0qVLMhgMeuaZZ0q7u3BCjRo00Nuvv6YXZrysG4mJ+uDTT/OUqVm9uj6e/W6u5YYK6//+/aJuJCZq2y+/aM++fdqzb1+u/UajUU9OGK/hDw+xWkdcfLy+/WGFvv1hhdUybVq10qz/e0X+NrKiAyhYrUEDVOvmlIvbVWzRXBVb5M6HU9QAhiSFvT5Trt5eqtK5kyq3baPKt01Vy8rMVPi8BTq9PO8PkxzJV69q+z/+qc6zZsqzQgU1GjNajcaMzl0mKko7/jlNyaxQBBSLxMuX9NviL1Xv0cfk6umpGn3zTuFKvnZV4V/MUVZq4ZZQtXR5y2a5enqpao+e8goMVL0RI/OUSUtI0PEF85QSFZVnX0ZSoo7N+UwNx4yTR0CA/GrVll+t2vm2dePSJZ1YMK/AZJ9AcbmXcs8PHjxYb7zxhiRp3rx5+QYwsrKytHDhQklS2bJl7VqkwpKvr6/uv/9+/fTTT9qwYYMuXryYb76O7777zjxyYsiQvL89Bg0apL/85S/KysrSvHnzrAYw5s+fLyn7d8ygQXlHkN8NSj2A0a9fPz3zzDP68MMPde7cOT3yyCMqV66cWrVqpUqVKslgMCgyMlIHDhzQ9evXzev1PvPMM3rwwQdLu7twUj26dtW3ixdpUWiotu34RZFXr8rVzU3Vg4PV+/77NHLYMHkWIs9Kfjw8PPTJe7O1au1a/bBylU78/rsSbtxQQPnyat2yhUYOG6aWFvNXb/f8M89oV1iYDh4+orPnzyk2Nk4JCQny8PBQxYoV1KxJE/Xr3VudQkJkMJTMElAASkZmapq2PzdV1Xv3Us3+fVW2Xl25+fgo5XqMog4e1Mll3yr6yFGb9Vw/ekxrR41V/RHDVKVbV3kHBUmSEq9c1uWt2/Xb0q+VdvMLC4DiERN+TAffe1dBXbqqXKNGcvf3lykjUynRUYo6dEgRv2xX1s0pIHfi/JrVun7sqAI7dpJfrVpy9/VTVkaGkq9dU8yxo7ryy3ZlFjDVNOnKZR2Y/Y4qtW2rco2byjsoSK5eXpLJpPQbN5R4+ZKiDh1U9MEDJPAESkD79u3VtWtXbdu2TXPnztXYsWPVsWPHXGXeffddhYeHS5KeffbZPEn958+fr/Hjx0uSZsyYoZdffjlPO88//7x++uknZWRk6Omnn9Z3330nFxcX8/6oqCj985//lJQdJJmUz6jtwMBAjRo1Sl9++aXWrl2rb775RkOHDs1VZtmyZVq7dq0k6fHHH1fgzRFcdxuDyeSYRRzfffddzZgxQ0lJSdkdue0HXE63PD099eqrr+rvf/97ifcpLTamxNsAcPda/uBAR3cBgBML7pb/8GIA6PTWu47uQrFIu/nbzZm4l2CexF9//VWdO3dWcnKyfHx8NG3aNPXs2VPJyclaunSpPvvsM0lS/fr1tXfv3lyrikj2BTAkaeTIkVq6dKkkqWfPnpoyZYqqVKmiw4cP6/XXX9epU9n5e/773//qySefzLeOCxcuqE2bNrp27ZpcXV313HPPacCAAZKyVwJ99913lZGRoYoVK2r//v137SqcDgtgSNn5LRYsWKANGzbo8OHDionJDiCUK1dOzZo10wMPPKCxY8eqUqXSWdeaAAaAghDAAFAQAhgArCGAUXJKMoAhST/++KNGjx5tnsJxu/r162vVqlV5EmtK9gcwkpOTNXToUK2+uZLi7YxGo6ZPn271+By7d+/W4MGDrSbyDAwM1PLly63m87gblPoUEkuVKlXSP/7xD/3jH/9wZDcAAAAAAMhj4MCBOnTokD744P/bu/PoqKqs7+O/ypyQQEZCQiBEEAki8yizODCICiqjLYOgvs7dDT62j7bT02grttoCdoNMbYMCiiCNtooGBJllCEoiEAlzIIRAyJxK3fePmCIhQyUhqbqR72etWuum7rnn7GJRt5Jd+5zzjtauXavjx4/Ly8tLrVq10r333qvHHnvsinfL9PX11dq1a7V06VItWrRIe/fu1fnz5xUeHq6+ffvqscceKzN9pTw9evTQvn379M4772jVqlVK/nVnxpiYGN1555166qmnFBISckWxuppLKzDMhgoMAJWhAgNAZajAAFARKjDqTl1XYMBcXFqBAQAAAACoH/jqG67m5rgJAAAAAACAa7msAiM/P19LlizRqlWrtHfvXp09e1Y5OTmVXmOxWGS1Wp0UIQAAAACgmCFKMOBaLklgHDhwQHfddZd+/vlnsQQHAAAAAABwxOkJjKysLA0ZMkSHDx+Wm5ub7rzzToWFhWnevHmyWCx67rnnlJ6erp07d2rr1q2yWCzq1auXbrnlFmeHCgAAAAAATMLpCYx//OMfOnz4sNzd3fXll1/qpptu0k8//aR58+ZJkl566SV72z179ui+++7T1q1bNWbMGD322GPODhcAAAAAIBbxhOs5fRHPNWvWyGKxaNSoUbrpppsqbduxY0fFxcWpcePG+sMf/qAffvjBSVECAAAAAAAzcXoCY//+/ZKkESNGlHv+8jUxwsLC9Ic//EFWq1WzZs2q8/gAAAAAAID5OH0Kyfnz5yVJ0dHR9ue8vb3tx5mZmQoICCh1Te/evSVJGzZsqPsAAQAAAABlMIUErub0Cgw/Pz9JRVuiFgsMDLQfHz16tMw1xW1TUlLqNjgAAAAAAGBKTk9gxMTESJJOnjxpfy40NFTBwcGSpO+//77MNcVrX3h5eTkhQgAAAAAAYDZOT2B07dpVkrRz585Szw8aNEiGYeiNN95QWlqa/fnk5GT99a9/lcViUceOHZ0ZKgAAAADgVzbDMN0DVxenJzBuueUWGYahzz77rNTzTzzxhCTpl19+UevWrXXvvfdq2LBh6tChg44fPy5JevDBB50dLgAAAAAAMAGnJzBuv/129evXTwEBAUpKSrI/37t3b/35z3+WYRhKT0/XypUr9d///lcXL16UJE2aNEnjxo1zdrgAAAAAAMAEnL4LiZ+fn9avX1/uuRdffFF9+/bV+++/r59++klWq1XXXnut7r//ft19993ODRQAAAAAYGcwZQMu5vQExr/+9S9J0nXXXacePXqUOT9o0CANGjTI2WEBAAAAAAATc/oUkokTJ2rSpEk6cuSIs4cGAAAAAAD1lNMrMBo1aqSMjAxde+21zh4aAAAAAFBDzCCBqzm9AiMmJkaSlJ6e7uyhAQAAAABAPeX0BMaIESNkGIbWrFnj7KEBAAAAAEA95fQExpNPPqno6Gi99957+vbbb509PAAAAACgBmyGYboHri5OT2A0bNhQX3/9tdq0aaPbbrtNDz74oNavX69z586xLQ8AAAAAACiX0xfxdHd3tx8bhqH58+dr/vz5VbrWYrHIarXWVWgAAAAAAMCknJ7AuLzKgqoLAAAAADA//naDqzk9gfHCCy84e0gAAAAAAFDPkcAAAAAAADhks1GBAddy+iKeAAAAAAAA1UUCAwAAAAAAmJ7Tp5AAAAAAAOofFvGEq1GBAQAAAAAATI8EBgAAAAAAMD2mkAAAAAAAHLIxhQQuRgUGAAAAAAAwPRIYAAAAAADA9JhCAgAAAABwyGZjCglciwoMAAAAAABgeiQwAAAAAACA6TGFBAAAAADgEJuQwNWowAAAAAAAAKZHAgMAAAAAAJgeU0gAAAAAAA7ZmEMCF6MCAwAAAAAAmB4JDAAAAAAAYHpMIQEAAAAAOGSzMYUErkUFBgAAAAAAMD0SGAAAAAAAwPSYQgIAAAAAcMhgFxK4GBUYAAAAAADA9EhgAAAAAAAA02MKCQAAAADAIRtTSOBiVGAAAAAAAADTowIDAAAAAOAQFRhwNSowAAAAAACA6ZHAAAAAAAAApscUEgAAAACAQ4aNKSRwLSowAAAAAACA6ZHAAAAAAAAApscUEgAAAACAQ+xCAlejAgMAAAAAAJgeCQwAAAAAAGB6TCEBAAAAADjEDBK4GhUYAAAAAADA9EhgAAAAAAAA02MKCQAAAADAIZuNOSRwLSowAAAAAACA6ZHAAAAAAAAApscUEgAAAACAQza2IYGLUYEBAAAAAABMjwQGAAAAAAAwPaaQAAAAAAAcMphCAhejAgMAAAAAAJgeCQwAAAAAAJwsOztbb7zxhrp3767g4GD5+/srNjZW06ZN09GjR6+4f6vVqq+//lrTp09X3759FRYWJk9PTwUGBqpz586aNm2akpKSHPYzceJEWSyWKj2Sk5OvOO7KMIUEAAAAAOAQu5DUnqSkJA0bNkw///xzqecTExOVmJio999/X0uXLtXQoUNr1H9qaqpiY2OVlpZW5tyFCxe0e/du7d69W++++65ef/11PfnkkzUax9lIYAAAAAAA4CSZmZm6/fbb7cmLqVOnasyYMfL19VVcXJxeffVVXbhwQffee6+2bNmi9u3bV3uMvLw8e/KiY8eOuvPOO9WjRw+Fh4frwoUL+uKLL/Tuu+8qNzdXTz31lHx9ffXggw9W2mdkZKS+/PLLSts0bdq02rFWBwkMAAAAAACcZObMmUpMTJQkvf7665o+fbr9XK9evTRw4ED169dP2dnZeuqpp/Ttt99WewyLxaJbbrlFL7/8snr27Fnm/MCBA3X33Xdr4MCBysnJ0dNPP62xY8cqICCgwj49PT3Vrl27asdSm1gDAwAAAADgkM1mmO5R3xQUFOidd96RJMXGxuqPf/xjmTa9evXSAw88IEmKi4vTDz/8UO1xmjZtqq+++qrc5EWxHj166JFHHpFUNK1k3bp11R7H2UhgAAAAAADgBOvXr9f58+clSRMmTJCbW/l/kk+cONF+vHLlyjqLZ+DAgfbjqizo6WpMIQEAAAAAOMQanldu48aN9uP+/ftX2K5r165q0KCBsrKytGnTpjqLJy8vz35cUTLFTEhgAAAAAADqpePHj1epXVRUVB1HUjUJCQn24zZt2lTYzsPDQy1btlR8fHypa2rbhg0bqhSPJKWlpalv377at2+fcnJyFBwcrPbt22v48OGaPHmy/Pz86izOYiQwAAAAAAD1UrNmzarUzjBJ+cixY8ckSQ0aNFBgYGClbZs1a6b4+HilpqYqLy9P3t7etRrLqVOntHDhQklSaGhoqekk5cnMzCxVDZKSkqKUlBR99dVXeu2117R8+XLdeOONtRrj5UhgAAAAAAAcspkkCVCfXbx4UZLk7+/vsG2DBg3sx5mZmbWawDAMQw8//LA9nueff16+vr7ltrVYLOrZs6eGDx+uzp07Kzw8XLm5udq3b5/mz5+v7du368SJE7r11lu1ceNGderUqdbivBwJDAAAAABAvVRc0VBf5ObmSpK8vLwcti2ZsMjJyanVOGbMmKHPPvtMUtFCno899liFbd96661yq0V69eqlqVOn6rnnntOMGTOUlZWlKVOmaOfOnbJYLLUabzESGAAAAACAeqmu1rawWq3y9PS84n4WLlxYakcRHx8fSVJ+fr7Da0susFlRdURNLFmyRM8//7wkqUWLFlq6dGmlC3hWNtXFYrHoL3/5i7Zv365169Zp165d2rx5s3r37l1r8ZZk/mVGAQAAAAAuZ7MZpnvUNwEBAZKKpoQ4kpWVZT+uypSTqli7dq0mTZokwzAUHh6ur7/+Wk2aNLnifh966CH7ccmFQWsbFRgAAAAAAJTg4eFRK7t/RERElPo5KipK27ZtU1ZWls6fP19pdUPx9JiwsLBaWf9i/fr1uueee1RQUKCgoCB99dVXatWq1RX3K0lt27a1H584caJW+iwPCQwAAAAAAC7jaFvRmmjbtq0++eQTSVJiYqJ69uxZbjur1aqkpCRJUmxs7BWPu337dg0fPly5ubny9/fXF198ofbt219xv8WctcsLU0gAAAAAAA4ZhmG6R33Tp08f+3FlUy127txpn0JypetJxMfHa/DgwcrMzJSPj4/WrFmjHj16XFGfl9u/f7/9ODIyslb7LokEBgAAAAAATjBgwAA1atRIkrR48eIKkzCLFi2yH48YMaLG4x04cEC33nqr0tPT5enpqU8++UQDBgyocX8V+ec//2k/7t+/f633X4wEBgAAAAAATuDl5aUnnnhCkpSQkKCZM2eWabNlyxbNnz9fUlEyoFu3bmXaJCcny2KxyGKxVJiQOHr0qG6++WadPn1a7u7uWrp0qYYOHVqteLdu3apTp05VeN4wDD333HP65ptvJEkdOnSosx1IJNbAAAAAAABUQT3c9MOUpk+frmXLlunAgQN6+umndejQIY0ZM0a+vr6Ki4vTjBkzZLVa5evrq7fffrtGY6Slpenmm2+2LwT6xz/+UW3atNGPP/5Y4TVBQUFq2rRpqef++9//6rXXXtPgwYN1yy23qG3btgoMDFReXp7i4+M1f/58bd++XZLk5+enefPmyWKx1CjmqiCBAQAAAACAkwQEBGjt2rUaOnSoDh48qLlz52ru3Lml2jRs2FBLlixRx44dazTGvn37dPDgQfvPr7/+ul5//fVKr5kwYUKpqSvF8vLytHr1aq1evbrCa5s3b66lS5eWWy1Sm0hgAAAAAADgRK1atdLu3bs1e/ZsrVixQocOHVJ+fr6aNWumoUOH6sknn1R0dLSrw9SkSZMUHh6uLVu2KD4+XmfOnFFaWpo8PDwUGhqqzp07a/jw4Ro3bpx8fHzqPB6LUR+Xbq0j+efTXR0CABNbNXi4q0MAYGJR/Wp3RXcAvx03vv6mq0OoFVt3J7k6hDJ6dmrp6hDgRCziCQAAAAAATI8EBgAAAAAAMD3WwAAAAAAAOGRj9QG4GBUYAAAAAADA9EhgAAAAAAAA02MKCQAAAADAIZuNKSRwLSowAAAAAACA6ZHAAAAAAAAApscUEgAAAACAQ2xCAlejAgMAAAAAAJgeFRgAAAAAAIdslGDAxajAAAAAAAAApkcCAwAAAAAAmB5TSAAAAAAADhlMIYGLUYEBAAAAAABMjwQGAAAAAAAwPaaQAAAAAAAcstmYQgLXogIDAAAAAACYHhUYJex6/a+uDgGAiUX16+HqEACY2PHvtrk6BAAAftNIYAAAAAAAHGIGCVyNKSQAAAAAAMD0SGAAAAAAAADTYwoJAAAAAMAhw2AOCVyLCgwAAAAAAGB6JDAAAAAAAIDpMYUEAAAAAOCQjSkkcDEqMAAAAAAAgOmRwAAAAAAAAKbHFBIAAAAAgEPMIIGrUYEBAAAAAABMjwQGAAAAAAAwPaaQAAAAAAAcstmYQwLXogIDAAAAAACYHgkMAAAAAABgekwhAQAAAAA4ZGMbErgYFRgAAAAAAMD0qMAAAAAAADhEAQZcjQoMAAAAAABgeiQwAAAAAACA6TGFBAAAAADgEIt4wtWowAAAAAAAAKZHAgMAAAAAAJgeU0gAAAAAAA4ZTCGBi1GBAQAAAAAATI8EBgAAAAAAMD2mkAAAAAAAHLIxgwQuRgUGAAAAAAAwPRIYAAAAAADA9JhCAgAAAABwyMYcErgYFRgAAAAAAMD0SGAAAAAAAADTYwoJAAAAAMAhgxkkcDEqMAAAAAAAgOmRwAAAAAAAAKbHFBIAAAAAgEM25pDAxajAAAAAAAAApkcCAwAAAAAAmB5TSAAAAAAADhlMIYGLUYEBAAAAAABMjwQGAAAAAAAwPaaQAAAAAAAcsjGDBC5GBQYAAAAAADA9KjAAAAAAAA7ZWMQTLkYFBgAAAAAAMD0SGAAAAAAAwPSYQgIAAAAAcMiwuToCXO2owAAAAAAAAKZHAgMAAAAAAJgeU0gAAAAAAA6xCwlcjQoMAAAAAABgeiQwAAAAAABwsuzsbL3xxhvq3r27goOD5e/vr9jYWE2bNk1Hjx694v7Xr18vi8VSpceLL77osD+r1ap//vOf6tevn8LCwuTr66tWrVrp4Ycf1v79+6843qpgCgkAAAAAwCFmkNSepKQkDRs2TD///HOp5xMTE5WYmKj3339fS5cu1dChQ10UYWlpaWkaNmyYtm3bVur5pKQkJSUladGiRZozZ44mT55cp3GQwAAAAAAAwEkyMzN1++2325MXU6dO1ZgxY+Tr66u4uDi9+uqrunDhgu69915t2bJF7du3v+IxFyxYoG7dulV4vnHjxhWeKyws1MiRI+3Ji5EjR2rq1KkKDg7Wtm3b9H//9386c+aMHnzwQTVt2lS33XbbFcdbERIYAAAAAAA4ycyZM5WYmChJev311zV9+nT7uV69emngwIHq16+fsrOz9dRTT+nbb7+94jFjYmLUrl27Gl37wQcf6LvvvpMkPfLII5o9e7b9XPfu3TVkyBB16dJFGRkZevzxx7V//355eNRNqoE1MAAAAAAADtkMw3SP+qagoEDvvPOOJCk2NlZ//OMfy7Tp1auXHnjgAUlSXFycfvjhB6fGeLk33nhDkhQUFGQ/LqlVq1b605/+JEk6ePCgVq9eXWexkMAAAAAAAMAJ1q9fr/Pnz0uSJkyYIDe38v8knzhxov145cqVToisfAcPHrQv0Dl69Gj5+fmV285Z8ZLAAAAAAADACTZu3Gg/7t+/f4XtunbtqgYNGkiSNm3aVOdxVaSq8TZp0kStW7eWVLfxksAAAAAAADhkM8z3qG8SEhLsx23atKmwnYeHh1q2bFnmmpp69tlnFRUVJS8vLwUFBalTp076/e9/rwMHDtRKvCXPHzt2TFlZWVccc3lYxBMAAAAAUC8dP368Su2ioqLqOJKqOXbsmCSpQYMGCgwMrLRts2bNFB8fr9TUVOXl5cnb27vG427ZssV+fP78ee3Zs0d79uzR3//+dz3//PN64YUXZLFYKoxXcvxv2KxZM0mSYRg6fvy4rrvuuhrHWxESGAAAAACAeqn4j2ZHDJMs+Hnx4kVJkr+/v8O2xVNIpKKtV2uSwIiIiNDIkSPVp08fXXPNNfLw8NDRo0e1Zs0affDBByooKNBLL72k/Px8zZgxo8J4qxLz5fHWBRIYAAAAAACHzJIEqM9yc3MlSV5eXg7blkxY5OTkVHusbt266ciRI/L09Cz1fOfOnXXXXXfpoYce0q233qoLFy7otdde06hRo9SxY8dy461KzFcab1WwBgYAAAAAoF46duxYlR7VZbVaZbFYrvixaNGiUv36+PhIkvLz8x3GkJeXZz/29fWt9mto0KBBmeRFSd27d9fs2bMlFSWnio9LKo5XchzzlcZbFVRgAAAAAADqJbOsbVFVAQEBkqo2xaLkQphVmXJSE6NHj9ajjz6qCxcuaMOGDWXOF8crFcVcMqFxOWfESwIDAAAAAOCQ7SqaQuLh4VEru39ERESU+jkqKkrbtm1TVlaWzp8/X+lCnsWVI2FhYVe0gGdlPDw81Lp1a+3YsUMnTpwoc75kguj48eMKDQ2tsK/ieC0WS50llkhgAAAAAABwGUfbhtZE27Zt9cknn0iSEhMT1bNnz3LbWa1WJSUlSZJiY2NrPY6SKlvbpG3btvbjxMTEMmtklJSYmCipaGHVkgt61ibWwAAAAAAAwAn69OljPy5vykaxnTt32qdk9O7du87isVqtOnDggCQpMjKyzPmqxpuSkmLvpy7jJYEBAAAAAHDIMMz3qG8GDBigRo0aSZIWL15cYfVDycU/R4wYUWfxfPTRR8rIyJAk9e/fv8z51q1b2ytAli9fruzs7HL7cVa8JDAAAAAAAHACLy8vPfHEE5KkhIQEzZw5s0ybLVu2aP78+ZKKkgrdunUr0yY5Odm+08mAAQPKnE9PT9f69esrjWX79u16/PHHJRWtW/Hwww+X227atGmSpHPnzunpp58ucz4pKUmvvvqqJKlly5Z1msBgDQwAAAAAgEM2Wz0seTCh6dOna9myZTpw4ICefvppHTp0SGPGjJGvr6/i4uI0Y8YMWa1W+fr66u23367RGBcuXNDAgQPVvn173XXXXerSpYsiIiLk7u6uo0ePas2aNfrggw9UUFAgqShJ0bVr13L7mjBhghYsWKDvv/9es2fPVkpKiqZOnaqgoCBt375dr7zyijIyMuTm5qZ3331XHh51l2YggQEAAAAAgJMEBARo7dq1Gjp0qA4ePKi5c+dq7ty5pdo0bNhQS5YsqXTRzKqIj49XfHx8hefd3d31/PPP689//nOlbVatWqWhQ4dqx44d+uSTT+wLkRbz8vLSrFmzNGTIkCuK1xESGAAAAAAAOFGrVq20e/duzZ49WytWrNChQ4eUn5+vZs2aaejQoXryyScVHR1d4/4jIyO1YsUKbdmyRdu3b9eJEyd09uxZ5ebmqlGjRrruuus0YMAATZkyRS1atHDYX2hoqDZv3qx58+Zp6dKlSkhIUFZWliIjIzVo0CA9+eSTuv7662scb1VZjMr2TLnKbH32GVeHAMDEbNYCV4cAwMSOf7fN1SEAMKlRWze5OoRaMWuZ+e5zj43u4eoQ4EQuq8AoKCjQrl279OOPP+rcuXOSpODgYLVr106dO3eWp6enq0IDAAAAAAAm4/QERnZ2tl555RXNmzdP6enp5bYJCgrSgw8+qOeee05+fn5OjhAAAAAAAJiNUxMYR48e1c0336ykpKQK97uVirZn+etf/6pPPvlE33zzjaKiopwYJQAAAADgciw+AFdzWgKjoKBAQ4YM0aFDhyRJbdq00aRJk9SjRw81adJEhmHo9OnT2r59uxYtWqT9+/fr4MGDGjJkiHbv3l2nW7EAAAAAAABzc3PWQO+//74SEhJksVj0v//7v/rxxx81ffp09evXT61bt9Z1112nfv36adq0aYqPj9dzzz0nSdq/f7/ef/99Z4UJAAAAAABMyGkJjBUrVshiseiuu+7SK6+8Ije3iod2c3PTyy+/rBEjRsgwDK1YscJZYQIAAAAAymEzDNM9cHVxWgLjxx9/lCRNnjy5ytc88MADkqR9+/bVSUwAAAAAAKB+cFoC48KFC5KkyMjIKl8TEREhScrIyKiTmAAAAAAAQP3gtARGcHCwJOnw4cNVvuaXX34pdS0AAAAAwDUMw3wPXF2clsDo3LmzDMPQ7Nmzq3zN7NmzZbFY1KlTpzqMDAAAAAAAmJ3TEhhjx46VJK1fv16TJ09WVlZWhW2zsrI0efJkrV+/XpI0fvx4Z4QIAAAAAABMysNZA40fP17/+Mc/tHnzZi1evFhr167VqFGj1KNHD4WHh8tisSglJUXbtm3TihUrlJqaKknq3bu3xo0b56wwAQAAAADlYNcPuJrTEhgWi0Vr1qzRsGHDtHXrVqWmpmrOnDmaM2dOmbbGr2+MXr16afXq1c4KEQAAAAAAmJTTppBIUlBQkDZt2qR3331XsbGxMgyj3EdsbKxmzZqljRs3KigoyJkhAgAAAAAAE3JaBUYxNzc3Pfroo3r00Ud16tQp/fjjjzp37pykot1G2rVrZ98+FQAAAABgDjZmkMDFnJ7AKCkiIoJkBQAAAAAAcMipU0gAAAAAAABqwqUVGAAAAACA+sFgFxK4WK0nMF5++WX78Z///Odyn6+Jkn0BAAAAAICri8Wo5TSam5ubLBaLJKmwsLDc52uiZF91Zeuzz9T5GADqL5u1wNUhADCx499tc3UIAExq1NZNrg6hVrzxwWZXh1DG9N/d6OoQ4ER1MoWkopwIJUcAAAAAUD+xCwlcrdYTGDabrVrPAwAAAAAAOMIingAAAAAAh6ioh6uxjSoAAAAAADA9EhgAAAAAAMD0mEICAAAAAHCIZQ3harWewLjmmmtqu0tZLBYlJSXVer8AAAAAAKB+qPUERnJycpXaWSwWSWUXginv+eLnAAAAAADA1anWExgTJkyo9PyePXu0d+9eGYahwMBAderUSeHh4TIMQ2fOnNGePXuUnp4ui8WiDh06qEOHDrUdIgAAAACgmmxsQgIXq/UExsKFCys9t3TpUkVFRenNN9/UiBEj5OFROoTCwkKtXLlS06dP1/79+/XYY49p8uTJtR0mAAAAAACoR5y2C8nOnTv10EMPKTQ0VFu3btW9995bJnkhSe7u7rr33nu1ZcsWBQcH6//9v/+nnTt3OitMAAAAAABgQk5LYLz11lsqLCzUs88+q8jISIftIyIi9Oyzz6qgoEB/+9vfnBAhAAAAAKAihmGY7oGri9MSGBs3bpQk9ejRo8rX9OzZU5K0adOmOokJAAAAAADUD05LYKSmpkqS8vLyqnxNcdviawEAAAAAwNXJaQmMsLAwSdIXX3xR5Ws+//xzSVJoaGidxAQAAAAAqBqbYb4Hri5OS2AMHDhQhmHob3/7m77//nuH7Tdv3qy33npLFotFgwYNckKEAAAAAADArJyWwHjmmWfk5eWlvLw8DRo0SE899ZT27Nkjm81mb2MYhvbs2aPf//73uummm5SbmysvLy8988wzzgoTAAAAAACYUNl9TOtIbGysFi1apPvvv1/5+fl699139e6778rLy0vBwcGyWCxKS0tTfn6+pKJkhoeHhxYuXKg2bdo4K0zUI16NGqnJjb0VdF0beQUGyrBalZuWprR98Tq9batsBQW1NlbDlq0U1rGTAlpEyzOgoQybTQWZF5WdkqKMpENK3b1btl//71bEzdNTYV26KPj6dvINDZNHgway5uao4EKGLh49ovSEBF04dLDWYgauZl6BgYro3VdBbWLlHRQom7VQuWfPKi1+r1K2fF+r94dGra5VWOcuCmgRI6+GATIKbSrIzFT2qZM6f+igUnf9UOn9IeSG9grt1EX+UVHybNBAhmGo4OJFZR47qjM7d+j8gZ9rLVbgauYdFKjgtm0V3Da26BHbRt6BgZKkw2s/145XZtT6mM1uHqSY24eqUauW8goIUO65c0rds1eHPv5U5376qUp9eDVsqGtH3aOm/fvJL6KJLBaLsk6e0okN3+ng8o+Vn5FR63EDFbGx6wdczGkJDEkaM2aMYmJi9Oijj2rXrl2SihbqPHXqVJm2nTt31pw5c9S9e3dnhoh6IvC669Rq1Bh5+PpeetLLS/5+fvJv1kyNu3VT4qJFyks/d0XjuPv4quU99yi47fVlznn4+Mg3NEwh7W7QxaNHlV3O/+NiDa+5Ri3vvlfeQUGlnvfyD5CXf4AaNG2qgOgW2jeLBAZwpYLaxOraseNL3R/cvSTP5s0V0Ly5GnfvoYQF85R37grvD76+anXvGIW0a1fmnIevr3zDwhTSvoMuHjmi7FMny17v46M2EyapUctWZc+FhMgnJEShHTvp7J7dOrjsQxmFhVcUL3C1u/OL/zhtLDcvL9044xVF9uld6vkGERFqEBGh5rfeov3vL9D+hYsr7Scoto36vP6afMNKrwcXeG0rBV7bSjF3DNf3Tz+j9EQSnQCuDk5NYEhF26ju3LlTO3bs0Lp167Rv3z6lp6fLMAwFBwfrhhtu0M0336xu3bo5OzTUE35NInTt2PFy9/JSYV6eTqyPU8Yvv8jN01Mh7dsrvHsP+YY1VpsJE7VvziyHlREVcff2VuzkB+QfFSVJSk9MUFr8XuWmpUkWN3kHBcq/aTMFl/PHS0kNW7ZSm/snyM3TU9bcXJ3ZsV0ZSYeUn5kpzwYN5B0UpMDW18nT379GcQK4xC8iQq3v+53cvbxVmJer499+qwtJh+Tm6anQjh3VpEcv+TVurNhJUxT/7ts1vz/4+Oj6qQ/JP6qZJOlcwn6d3bNbuWlnZbG4yTsoSP7Nminkhg4V9tF63H325EVuWppObIhTdkqKLO5u8m/aTE0HDJSnv79CO3ZSQXa2Dq9aWaNYAZSVlXJaF5OT1aRnjzrpv9v/PmNPXpze+YMOLluhnLNnFdiypdpM+J0CmkWp3UNTlZOWpsOflZ9Y8Q0LVZ+Zf5VvSIhsVqsOfLhMJzcVrSMX2ae3Wo8dLb/GYerz5utaN/EB5aSerZPXAgBm4vQERrFu3bqRpECNRN9+u9y9vGQrLFTCgvnKPHbUfi7jlyTlpqUpeshQ+TZurIg+fXXi229qNE6L4XfKPypKtsJCJS1fprR98aXOZx49orS9e3Xk8/9IbuUvJ+PRoIGuHTNWbp6eyj5zWokL5pdb6nlm+3ZZ3N1rFCeAS2LuuEvuXt6yFRbqp3lzlXn0iP1cRtIh5Z49qxbDhssvPFyR/frr+LqvazbOnSPkH9VMtsJCHfxoqdL27il1/uKRZJ3ds1vJaz4r9/7QoGmUgtrESpJy085qz9t/k63ENuMZSUk6G79HHZ/6ozz8/NSkZy8d+/pLWbOyahQvAOmn9xfoXEKiziUkKO9cuvwimuj2Tz+u9XHCOnVU9G23SpJObNykzf/zrIxf13xLT0jUiY2bdMui+WoQ0UTtH31Ex79dr4LMzDL9tHv4QfmGhEiStv75JR3/Ns5+7uzeeJ1LSNSNM16Rb0iI2j04VTv+8mqtvxbgcswggas5bRFPoDY0aBqlRte0lCSl7txRKnlR7NSmjco+c1qSFHFjb1kqSC5UJiA6WmGdO0uSTsR9WyZ5UUaJxWhLan7rYHk2aCBbQYEO/PuDSuepUh4OXBn/qGb2ioYzO7aVSl4UO/ndBmWfTpEkRfTpV7P7Q4sYNe7SVZJ0/Jt1ZZIXZZRzfwho0eJSTBs3lkpeFMs/f15ndu6QJFnc3BTQvHm1YwVwyU/vL9Cp7zcr71x6nY5z3X3jJEk2q1W7Xn/Tnrwoln/hguJnvydJ8m7UUDF33F6mD+/gIHsS5NSWbaWSF8WOfxunU1u2SZKih9wm7+CgMm0A4LeGBAbqleC2be3HqT/8UH4jw9DZX9dY8fDzU8Nrrqn2OOG9bpQkFebl6dSmjdUPVEUl5iEdisrHz8bvVe5ZSjuBuhR8/aXpXGd27Ci/kWHY7x2efn5qWM76E45E3FhUFl6Yl6uT362v9vWS5OZ+qQAy71xahe1y0y6ds7i7rGgSQBV5+PoqvGsXSdLpHTuVk5pabrsT6zco/9eqi6gB/cqcb9q3j9w8it7zyWvXVjhe8trPJUluHh5q2rfPFcUOAPWBS38bSk5O1tmzZ5WTkyPDQT1Sv35lb+64+gS0iJFUlFjIPHmiwnYZhw9fuia6hS4cOlTlMSzu7gqOLUqUnD/w86U58m5u8mrYUDIMFWRmOqyYCGoTK3cvL0nSuX377M+7eXnJKyBA1txcysGBWhQQU+L+cOJ4he0u/JJkP27YIkYXDh6o8hgWd3cF/ZooSU9MLHV/8G7YSIaKdhBxdH/IOXvpjxrv4JAK2/mEXDqXe7b8P4QAmEdw21i5e3tLklJ37amwnc1q1bkff1KTnj0U3LatLO7upe4boR0urZ9TWT+puy+dC23fXr+sXlPj2IGqsDGFBC7m9ATGzz//rBkzZuizzz5TRhW3fbJYLLJarXUcGeoD38Zhkn79VrKCaRuSSn3j4du4cbXG8GsSITdPT0nSxaNH5envr2a3DVZIuxvsv5TYCgp04ZcknYj7VplHy05jkST/EuXeF48eVaNrWyvqppsUEN3C/nx+RobS4vfqxPo4WbOzqxUngNL8GodLKlpTovL7wxn7cXXvDw0iIuVuvz8ckad/gKKHDFVI+w72+0NhQYEykg7p+DfrdPFIcrn9nP85Ubnn0uQTHKKIPn11Zsd22QpKLyjq1aiRwroWrRWVkZys7JSUasUKwPkalpgelnGk7DS2kjKOHFWTnj3k5uGhgGbNlJGcXKKfaElS/sWLyq1kx6TctDTlZ2bKy99fAb9eAwC/ZU5NYKxatUrjx49Xbm6uw4oL4HIWDw95NijaqSM/40KlbQtzc1SYlyd3b295NWpUrXFK/kHj5uGh9k8+ZR/X/rynp4Kua6PAa1vryOdrlbL5+wr7sebkqHG3booeMrRMG6+GDRXRp6+C292gxEULlHPmTJk2AByzeHjYd/LJu+Dg/pBz6f7gHRhYrXF8w8Ptx24eHur4h2lldhBy9/RUUJtYBba+Tsn/+azcaWhGYaEOfrhUbSZOlm9oqDr8/o86ad+FxF3+UVGK7D9Qnn5+yj2XpkMrPqpWnABcwzf80u8Qjj7Tc06XSKaGNy6VwCjuJ+eM48qrnNNn5OXvL7/w6iVkAaA+cloC49ixY7rvvvuUk5Ojpk2bavr06fLz89ODDz4oi8WidevWKT09XTt37tS//vUvnTx5Un369NGLL74od3ZngGT/dlOSCquw9WFhQb7cvb3l7uXtsG1JHn5+9uOomwbJzdNT6QkJOv7NOmWfTila26JdOzW7bYg8fHwUPXSYcs+m6vyB0mXoHr5F/bh5eqr5bYNlKyjQ8W/WKXXPblmzsuQTEqLIfv0V1rmLvAMD1fq++7Vv1t9rvK0jcDUreX8ob0HMyxXmF90f3K7g/tDs5lvl5umpc/t/0rGvv1J2yil5+Pgq+IYbFD1kmDx8fdXi9juUk5qq8z8nlunr4pFk7X3nb4ro3VcRvfuo5d33lo4xL1dHv/qvUjZvljWb6WZAfeBZ4h5hzcmptK0199J5Dz/fcvtx1EdRP7lFffj6OWgJXDkbX0LDxZyWwPj73/+u7OxsBQQEaNu2bYqMjNRPP/1kPz9w4EBJ0siRI/X888/rgQce0LJlyzR//nwtWbLkisY+frziudCoP4oXs5Ikw+p4x47iNm6e1ftvXrxuRdG1njqXsF8H/v2Bfd8oa1aWTm/bpuyUFLWd+pAsbm5qPnhomQSGu5dnqbgPfvShzv14aS2MnDNnlPTxCtmsVoV37yHf0FCFd+9R40VDgauZm4en/dhWhR19jF+nJRZPF6sqd8/L7g/7f1Li4oX2+0NBVqZOb92i7JQUtXv4EVnc3BQ99PZyExiSFHJDe4Xc0L7U/c0+lrePQjt0VF56ulJ/2FmtOAG4hluJ3yFsBZVPf7blF9iPSyZhS/ZjKyiQI8VffLh7ezloCQD1n9MSGOvWrZPFYtEjjzyiyMjIStv6+vrq3//+tw4cOKCPPvpII0eO1N13313jsZs1a1aldlv+9D81HgN1z1ZiHRSLh+OqnOI2jn6BKDPOZb8sHP3i83I3vb545IjO/fSjQm5oL78mTeQbHq6c06fLjffi0SOlkhclHfvyS4V16iw3T0+FdOhAAgOoAZv10vvWrQpVe5ZfEwZV+eOg9Dil7yfJa9eUf39IPqy0H/cptH0HNYiIkF+TJqXXsLBY1HrcfQrt0FGSdHr7NqVs/l7ZZ07LYnFTg8hINR0wUMHXt9O1o8eqQUSEkv/D4nyA2ZWsonT0BYqb16UEauFllWO2/Hy5+fpWKclanOwozKOCE3WPAgy4mtO2UU3+dV7fjTfeaH/OYrHYjy9fpNPNzU1PPPGEDMPQggULnBIjzK3kh3vJKomKFH9TWpjvuJy81Dgl2ueeS6t0+9PzBw/aj/2jSifKSsZ7eXVGSdacbGWeKNpRpUGTCFnc2N0YqK6S7zc3b8fTQorvIbbq3h/ycu3HuWlpyq1gi0SpaBejYv5RzUuda9LrRnvy4uhXXyrp4+XKOnlChtUqW0G+Lh5JVuLihTrza+VFZL8BCmoTW61YAThfQYkFuT18fStpKXn4XDpvzS49VaS4H0d9FPXjU9RHDouBA/jtc1oFRtav20WWrIbwKzFP8MKFCwoJKb2V3PXXXy9J2rt37xWNfezYsSq1Oz5n1hWNg7plWK0qyMqUZwN/eTWsfGFOdx9fezlmvoMF/S6Xf/5S+/wLle+Uk3/hvP3Ys0GDy85dKPe4sn4s7u7y8PNTwa97wwOoGsNqVUFmpjz9/eXtYOFed99L94e88+erNU5eifd8yePy5Jfo+/KFPht36yGpaO76ibhvKuzj6H8/V+MuXYuu6d5D6YkJ1YoXgHOVXLjTt3FjpSf+XGHbUgt+ni694GfOmVT5hoTYd1+rTHE/2adZCBzAb5/TEhiNGjXSuXPnlJt76durkgmLpKSkMgmM4m1Wz1byDXhVREVFVakdK2WYX86ZVHnG+MsnJERyc6twq0TfsLAS11TvAz37zKVpIBY3SyUtJYvlUrWEcVks2adPK+SG4nYO+nGruB8AVZN95rQa+fvLJyTUwf2h6rsEXC4npeT9wUG1VIn7x+Xva79fdynKOX1aRiVrduRfuKD8ixnyCmhYKm4A5pRxONl+3DA6WidV8bTQhtFFlVk2q1WZl63XlnE4WcGxbeQVECCf4OAKt1L1CQmR168J0ovJlW/bCtQGG1NI4GJOq1W/7rrrJEm//PKL/bmAgABFRxftWf3VV1+VuWbdunWSpMBqbnOH366LR5IlFS125R/ZtMJ2DWNiSlxTvQ/0/PPnlZeeLknyDg6ptK13iaRbfkbpao2LyYfLbVduP8HBkop2RqjKiuMAyip+z7l7e8u/acWJ60bXtLQfZ5R4n1ZF3vl05aUX/SHh4+B97RMcaj++fOvn4oSGxd3xx7DFzb3UNQDM61xCgn2ntLDOHSts5+bhoeB2RZXG5/YnlFlf5+zeePtxZf2Edbp07mx8+WttAcBvidMSGL169ZIkbd26tdTzt99+uwzD0BtvvKFvv/3W/vzHH3+st99+WxaLRb1793ZWmDC5c/sv7VwT1qVL+Y0sFoV27iypaPuxjF+Sqj/OTz9KkrwCAuTfvHmF7YJ/neYklU5YSFLG4cP2qSDBbdtW2Id3UJAaRBQtbJt59AirIwE1VPy+laTG3bqV38hisd87rNnZykg6VO1x0vYV/ZHgFdBQAdEtKmwXcsMN9uOMw7+UOlf8bapfeBO5/zp/vTx+4U3s09OKEycAzMuanaMzO3+QJIV361qqIrSkpgP62ysnTmz4rsz5kxs32XdUajFsWIXjtRg2VFLR7ksnN266otgBoD5wWgJj6NChMgxDK1euVGGJctnp06fLz89PmZmZuuWWWxQWFqaGDRtq9OjRysnJkZubm6ZPn+6sMGFyWcePK+NwUaIgrGs3+Tcrm1yI6NNXfo3DJUkpm78v861lWOcu6jnjNfWc8ZqiBt1c7jinvt9k352gxe13lLsKeGjHjvZvctMTE8pUYMgwdHJj0S8lvmGNFdmvf5k+LG5uirnjLnsp+unt2yp87QAql3nsmC78mrBs3K2H/JtHl2kT2a+//MKbSJJOfb+x7P2hSzfd+PqbuvH1N9XsllvLHefkpu9U+Ov9IebOu+TmWXZR4dBOndWoZStJ0rmE/WXWwUlPKErGunl6qsXwO8sdx+LhoZg77ypxzf5y2wFwnhbDhmjU1k0atXWTrp8yudw2Py/5UFJRlUXn6X8oM93Mq1EjtX/0/0mS8jMu6pfP/lOmj9xz53T0y68lSRG9eihq4IAybaJuGqiIXkXr6Rz575cVTjMBapNhGKZ74OritDUwBgwYoBdeeEFWq1UnTpxQ81+/1W7evLlWrFih8ePH6/z580pLS7Nf4+3trffee089e/Z0VpioB5L/s0bXP/Sw3L28FDv5AZ1YH6eMX5KKtiFt30Hh3Ys+zHNSU+0JhOrKv3BBx9Z9reghQ+UfFaV2jzymk99tUM7p03L38VHw9dfbx7Hm5urI2rK/fEhSypbNCmnfXv5No9R88BD5hofr7J7dKsjKkk9IiCJ691XAr++F9MREnfvxx3L7AVA1yZ+tVrtHHpO7l5eun/qgjn/7jS4kHZKbp6dCO3RSk55F1YA5qWd04rsNNRoj//x5Hfvqv2oxbLj8o5qp/eNP6sSGOGWnpMjdx0ch7W6wj2PNyVHymtVl+jj53Xdq3K2HvAICFN6tu3xDQ5WydYtyzpyRxc2iBpFNFdG7r/yaFCVbsk+n6MzOHTX8VwEgSaEd2ss/6tL0U+9GgfZj/6gotRg2pFT75LVf1GicMz/s0tGv1qn5rTerab++6vf3t3Rw2XLlpJ5Vo5YtFTvxfjWIKHpvx8/5hwouXiy3n33/mKsmPXvIJzhIPV95UT8v/Uinvt8sSYrofaOuGzdGkpR7Ll0//mNejWIFgPrGaQkMi8WiF154odxzQ4YM0aFDh7RixQr99NNPslqtuvbaazVq1Cg1bVrxOge4OmWfOqmDH32oVqNGy8PHR81vG1ymTU5qqhIXLyq1H3t1ndr4nTx8fX/9xjZcre4dVaZNfuZFHfjgA+WWSLyVZFit+vlfi3Xd7ybIPypKYZ06K6xT5zLt0hMTdfCjpTWOFUCRrJMndGDJB7p2zDh5+PoqekjZ0uuc1DNKWPC+bHnV20K1pJMb1svD109NBwyUX5Mmunb02DJt8i9eVOLiheVuxWzNztL+9+eqzf0T5RMSooYx16hhzDXljpV54oR+Xryw0sU+ATgWc8ftivl1ysXlwjq0V1iH9qWeq2kCQ5J2/GWGPBr4KbL3jQrv2kXhXUtPe7UVFiph4WL9sqpsgrNYzpkz2jT9f9T7rzPkGxqq2PvvU+z995Vuc/asvv+fZ5VTyZbOAPBb4rQEhiPBwcF66KGHXB0G6onziQmK//vbirixtwKvayOvRo1kFBYqN+2s0vbt0+mtW+xTQK7Esa++VHpCgsJ79FRAixbyCgiQzWpV7tmzSk9MUMrm71Xo4I+ggosX9eM/5qhx164Kbd9Rvo0by93HR9bsbGUeP67UXT8ovcTaHgCuTHrCfu19601F9OmroNjYovuDtej+cDY+XimbN9XK/eHofz/Xuf0/qUmvG9UwJkZeAQ1ls1qVk5qq9P0/6dTmTSossfPW5bJPndSev81U465dFdS2nRpERMjDz08yDBVkZirr5Amdjd+rtL17WMATqGcK8/K16Y9Pq/mtt6jFsCEKvLaVPP39lXsuXWf37tWhFZ8o7UfHn/3nftqvL8dPUOvR9yqyX181iIiQJGWdOqmT323SgY+Wl53CCtQhdiGBq1kMJ00cmjy5aJ7gkCFDdO+99zpjyGrb+uwzrg4BgInZrFf+Ry+A367j37GOEYDyjdr621hkddqsmk2/rEszHyu7zhx+u5xWgbF48WJJ0ujRo501JAAAAAAA+I1wWgIjLCxMqampCg8Pd9aQAAAAAIBawhQSuJrTtlFt27atJOnIkSPOGhIAAAAAAPxGOC2Bcd9998kwDPtUEgAAAAAAgKpyWgJj0qRJGjRokFavXq2XXnpJTlo7FAAAAABQC2yGYboHri5OWwNj48aNmjZtmlJTU/Xyyy/ro48+0ujRo9W+fXsFBQXJ3d290uv79evnpEgBAAAAAIDZOC2BMWDAAFksFvvPBw4c0CuvvFKlay0Wi6xWa12FBgAAAAAATM5pCQxJTBsBAAAAgHqKP+fgak5LYMTFxTlrKAAAAAAA8BvjtARG//79nTUUAAAAAAD4jXHqFBIAAAAAQP1ks7k6AlztnLaNKgAAAAAAKJKdna033nhD3bt3V3BwsPz9/RUbG6tp06bp6NGjV9y/xWKp9qM8EydOrPL1ycnJVxx3ZajAAAAAAAA4ZGMRz1qTlJSkYcOG6eeffy71fGJiohITE/X+++9r6dKlGjp0qNNiat26tdPGqikSGAAAAAAAOElmZqZuv/12e/Ji6tSpGjNmjHx9fRUXF6dXX31VFy5c0L333qstW7aoffv2NRpn3759DtssXrxYM2fOlCRNmDCh0raRkZH68ssvK23TtGnTqgdYA05NYLi7u9uPLRaLrFZrrbQFAAAAAKA+mDlzphITEyVJr7/+uqZPn24/16tXLw0cOFD9+vVTdna2nnrqKX377bc1Gqddu3YO23z33XeSiv7mvu+++ypt6+npWaU+65JT18Awft042DAM+3FttAUAAAAA1K3iv83M9KhvCgoK9M4770iSYmNj9cc//rFMm169eumBBx6QJMXFxemHH36ok1h+/vlnbd++XZI0YMAANW/evE7GqU1OrcBo3rx5hQuDXElbAAAAAADMbv369Tp//rykoikbbm7l1xRMnDhR//znPyVJK1euVJcuXWo9ln/961/2Y0fTR8zCqQmM6qxIWterlwIAAAAA4EwbN260H/fv37/Cdl27dlWDBg2UlZWlTZs21XochmFoyZIlkqQGDRro7rvvrvUx6gLbqAIAAAAAHLIZ5nvUNwkJCfbjNm3aVNjOw8NDLVu2LHNNbVm/fr2OHDkiSRo5cqT8/f0dXpOWlqa+ffsqMDBQ3t7eioiI0G233aZZs2YpOzu71mMsj9MqMNauXavBgweXWpwTAAAAAICaOn78eJXaRUVF1XEkVXPs2DFJRVUPgYGBlbZt1qyZ4uPjlZqaqry8PHl7e9daHCWnj9x///1VuiYzM7NUNUhKSopSUlL01Vdf6bXXXtPy5ct144031lqM5XFaAmP48OEKCQnR6NGjNW7cuDp/YQAAAACA37ZmzZpVqZ1ZFvy8ePGiJFWp4qFBgwb248zMzFpLYGRnZ+uTTz6RVJTYuemmmyptb7FY1LNnTw0fPlydO3dWeHi4cnNztW/fPs2fP1/bt2/XiRMndOutt2rjxo3q1KlTrcRZHqeugZGWlqb33ntP7733nqKjozV+/HiNHTtWbdu2dWYYAAAAAIBqqo9TNswmNzdXkuTl5eWwbcmERU5OTq3FsGrVKnsi5b777qtwIdFib731VrnVIr169dLUqVP13HPPacaMGcrKytKUKVO0c+fOOtuQw2lrYCxbtkx33nmnPD09ZRiGkpOTNWPGDN1www3q3Lmz/va3v+nkyZPOCgcAAAAAUM8dO3asSo/qslqtslgsV/xYtGhRqX59fHwkSfn5+Q5jyMvLsx/7+vpW+zVUpLrTRyqb6mKxWPSXv/xFN998syRp165d2rx58xXHWBGnJTDuvfdeffrpp0pJSdHcuXPVv39/WSwWGYahPXv2aPr06WrevLkGDRqkhQsXKiMjw1mhAQAAAADqoaioqCo9zCIgIEBS0ZQQR7KysuzHVZlyUhWnTp3SunXrJEndunVTbGxsrfT70EMP2Y83bNhQK32Wx6lTSKSi7M2UKVM0ZcoUnThxQh9++KGWLFmivXv3yjAMrV+/XuvXr9cjjzyiYcOGafz48Ro2bFiVSmwAAAAAAHXDJMtIOIWHh0et7P4RERFR6ueoqCht27ZNWVlZOn/+fKXVDcWVI2FhYbW2/sWSJUtUWFgoqeqLd1ZFyWUhTpw4UWv9Xs7pCYySmjZtqmnTpmnatGlKSEjQkiVL9OGHH+rw4cPKy8vTp59+qk8//VSNGjXSuXPnXBkqAAAAAOAqUtk2pzXVtm1b+wKaiYmJ6tmzZ7ntrFarkpKSJKnWqiQk6YMPPpAkeXp6auzYsbXWr7MWSXXaFBJHYmNj9X//939KSkrS999/r0ceeUQBAQEyDEMXLlxwdXgAAAAAAFyRPn362I8rm2qxc+dO+xSS3r1718rYe/bsUXx8vCRp2LBhCgkJqZV+JWn//v3248jIyFrr93KmSWAUO3funOLj4xUfH1+leUEAAAAAgLpnMwzTPeqbAQMGqFGjRpKkxYsXV1i5UHLxzxEjRtTK2CUX75wwYUKt9Fnsn//8p/24f//+tdp3SaZIYOTm5mrZsmW64447FBkZqUceeUTff/+9bDabpKLtWQAAAAAAqM+8vLz0xBNPSJISEhI0c+bMMm22bNmi+fPnSypKBnTr1q1Mm+TkZPtOJwMGDHA4bmFhoT788ENJUkhIiIYNG1aleLdu3apTp05VeN4wDD333HP65ptvJEkdOnSotYqR8rhsDQybzaavv/5aS5Ys0apVq+zlMcUZqDZt2mj8+PEaN26cYmJiXBUmAAAAAAC1Zvr06Vq2bJkOHDigp59+WocOHdKYMWPk6+uruLg4zZgxQ1arVb6+vnr77bdrZcwvv/xSKSkpkqSxY8fK09OzStf997//1WuvvabBgwfrlltuUdu2bRUYGKi8vDzFx8dr/vz52r59uyTJz89P8+bNk8ViqZWYy+P0BMbWrVu1dOlSLV++XKmpqZIuJS0iIiI0ZswYjR8/Xp07d3Z2aAAAAACACtjq34wNUwoICNDatWs1dOhQHTx4UHPnztXcuXNLtWnYsKGWLFmijh071sqYJaePVHf3kby8PK1evVqrV6+usE3z5s21dOnScqtFapPTEhh//vOftXTpUh0+fFjSpaRFQECARo4cqfHjx2vQoEF1mq0BAAAAAMDVWrVqpd27d2v27NlasWKFDh06pPz8fDVr1kxDhw7Vk08+qejo6FoZKyMjQ5999pmkopkO1UkyTJo0SeHh4dqyZYvi4+N15swZpaWlycPDQ6GhoercubOGDx+ucePGycfHp1birYzFcNJ+J25ul5bb8PT01ODBg3Xfffdp+PDhTnmhVbH12WdcHQIAE7NZC1wdAgATO/7dNleHAMCkRm3d5OoQasWk1751dQhlLHzmJleHACdy6hSSPn36aPz48Ro1apSCgoKcOTQAAAAA4AowhQSu5rQExsKFCxUTE6Nu3brJ19e3Stfk5ubaFwTp169fXYYHAAAAAABMzGkJjEmTJsnNzU3x8fFq27Ztla45ceKEBgwYIDc3N1mt1jqOEAAAAAAAmJVTp5DUdLkNJy3TAQAAAACoAFNI4Gpujpu4js1mkyS5u7u7OBIAAAAAAOBKTq3AqK7k5GRJUqNGjVwbCAAAAABc5SiMh6vVWQLj6NGj5T5/6tQp+fv7V3ptXl6ekpKS9Pzzz8tisej666+vixABAAAAAEA9UWcJjJiYmDLPGYahW2+9tdp93X///bUREgAAAAAAqKfqLIFR0cKb1VmQ08fHR0888YQmT55cW2EBAAAAAGqARTzhanWWwFi4cGGpnydNmiSLxaJXXnlFTZs2rfA6i8UiHx8fRUREqFOnTg6nmwAAAAAAgN++OktgTJgwodTPkyZNkiTdddddatu2bV0NCwAAAAAAfoOctgtJXFycpPLXxgAAAAAAmJuNbUjgYk5LYPTv399ZQwEAAAAAgN8YN1cHAAAAAAAA4IjTKjAAAAAAAPUXu5DA1ajAAAAAAAAApkcCAwAAAAAAmB5TSAAAAAAADjGFBK5GBQYAAAAAADA9EhgAAAAAAMD0mEICAAAAAHCIKSRwNSowAAAAAACA6ZHAAAAAAAAApscUEgAAAACAQwZTSOBiVGAAAAAAAADTI4EBAAAAAABMjykkAAAAAACH2IUErkYFBgAAAAAAMD0SGAAAAAAAwPSYQgIAAAAAcIgpJHA1KjAAAAAAAIDpUYEBAAAAAHCICgy4GhUYAAAAAADA9EhgAAAAAAAA02MKCQAAAADAIZvN1RHgakcFBgAAAAAAMD0SGAAAAAAAwPSYQgIAAAAAcIhdSOBqVGAAAAAAAADTI4EBAAAAAABMjykkAAAAAACHmEICV6MCAwAAAAAAmB4JDAAAAAAAYHpMIQEAAAAAOMQUErgaFRgAAAAAAMD0SGAAAAAAAADTYwoJAAAAAMChQqaQwMWowAAAAAAAAKZHAgMAAAAAAJgeU0gAAAAAAA6xCwlcjQoMAAAAAABgeiQwAAAAAACA6TGFBAAAAADgEFNI4GpUYAAAAAAAANMjgQEAAAAAAEyPKSQAAAAAAIeYQgJXowIDAAAAAACYHhUYAAAAAACHCqnAgItRgQEAAAAAAEyPBAYAAAAAADA9ppAAAAAAABxiEU+4GhUYAAAAAADA9EhgAAAAAAAA02MKCQAAAADAIXYhgatRgQEAAAAAAEyPBAYAAAAAADA9ppAAAAAAABxiFxK4GhUYAAAAAADA9EhgAAAAAAAA02MKCQAAAADAIXYhgatRgQEAAAAAAEyPBAYAAAAAAE6SmZmp7777TjNnztSoUaMUExMji8Uii8WiFi1a1MmYW7Zs0e9+9zu1aNFCPj4+ioiI0ODBg/XRRx9VuQ+r1ap//vOf6tevn8LCwuTr66tWrVrp4Ycf1v79++sk7ssxhQQAAAAA4BBTSGrH8OHDtX79eqeN9/LLL+ull16SzWazP5eSkqKUlBR9+eWXWrp0qZYvXy4fH58K+0hLS9OwYcO0bdu2Us8nJSUpKSlJixYt0pw5czR58uQ6ex0SFRgAAAAAADiNYVzKBAUFBemWW26Rv79/nYz1/vvv64UXXpDNZlPLli01f/58bd++XatWrdLAgQMlSWvWrNGUKVMq7KOwsFAjR460Jy9GjhypL774Qtu2bdPf//53NW7cWHl5eXrwwQf15Zdf1snrKGYxSv7rXeW2PvuMq0MAYGI2a4GrQwBgYse/2+a4EYCr0qitm1wdQq1o+/g3rg6hjP3vDnJ1CNU2d+5c+fv7q3v37mrVqpUkqUWLFjpy5Iiio6OVnJxcK+OcP39eMTExOn/+vJo3b64ffvhBoaGh9vOFhYUaMWKE1qxZI0nasGGD+vXrV6afRYsWadKkSZKkRx55RLNnzy51/tChQ+rSpYsyMjJ07bXXav/+/fLwqJvJHlRgAAAAAAAcKrRZTPeojx588EGNGzfOnryoK/PmzdP58+clSX/9619LJS8kyd3dXXPmzJG7u7sk6Y033ii3n+Lng4KCym3TqlUr/elPf5IkHTx4UKtXr66tl1AGCQwAAAAAAH5jVq1aJUlq2LChRo4cWW6bqKgo3XzzzZKkr7/+WpmZmaXOHzx40L5A5+jRo+Xn51duPxMnTrQfr1y58gojrxgJDAAAAAAAfkPy8/O1fft2SVKvXr3k5eVVYdv+/ftLkvLy8rRjx45S5zZu3FimXXmaNGmi1q1bS5I2baq7KVMkMAAAAAAADhUa5nugfAcPHpTVapUktWnTptK2Jc8nJCSUOlfy56r2c+zYMWVlZVUr3qpiG1UAAAAAQL10/PjxKrWLioqq40jM5dixY/ZjR6+9WbNm5V5X034Mw9Dx48d13XXXVTneqiKBAQAAAACol0r+8V2Zq23zzYsXL9qPHW3R2qBBA/vx5Wtg1FY/tYUERgk9Z7zm6hBgEsePH7ffDI8dO3bVZWwBVIz7A4DKcI/Ab9mhOTe5OoQyLO+5OgJzys3NtR9Xtv6FJHl7e9uPc3Jy6qSf2kICAwAAAABQL10+5aG2WK1WeXp6XnE/CxcuLLVDh7P4+PjYj/Pz8yttm5eXZz/29fWttJ+SP1enn9pCAgMAAAAAUC9R5VS+gIAA+7Gj6RwlF9y8fJrI5f1UlsCorJ/aQgIDAAAAAIASPDw8yuzIURMRERG1EE31lUzsOFrotGQVy+VrilzeT2hoqMN+LBZLnSWWSGAAAAAAAHAZR9uGmlnr1q3l7u6uwsJCJSYmVtq25PnY2NhS59q2bVuqXceOHR3206xZs1ILetYmtzrpFQAAAAAAuISXl5e6d+8uSdqyZUul62Bs2LBBUtEinF27di11rk+fPmXalSclJUUHDhyQJPXu3bvGcTtCAgMAAAAAgN+Yu+66S5KUkZGhlStXltvm+PHjWrdunSRp0KBBpda8kIoqOYqrMpYvX67s7Oxy+1m0aJH9eMSIEVcYecVIYAAAAAAAUI8kJyfLYrHIYrFowIAB5baZMmWKGjVqJEl65plnlJaWVup8YWGhHnnkERUWFkqSpk2bVm4/xc+fO3dOTz/9dJnzSUlJevXVVyVJLVu2rNMEBmtgAAAAAADgJIcOHdKmTZtKPVe8U0hmZmapagZJGjx4sJo0aVLtcYKDg/XXv/5VDz/8sI4cOaIePXrof//3f3XDDTfo5MmTevvttxUXFydJGjt2rAYOHFhuPxMmTNCCBQv0/fffa/bs2UpJSdHUqVMVFBSk7du365VXXlFGRobc3Nz07rvvysOj7tIMJDAAAAAAAHCSTZs2adKkSeWeS0tLK3MuLi6uRgkMSXrooYd08uRJvfLKK0pKStLkyZPLtBk6dKgWLFhQYR/u7u5atWqVhg4dqh07duiTTz7RJ598UqqNl5eXZs2apSFDhtQozqoigQGUIyoqSoZhuDoMACbE/QFAZbhHADCbl156Sbfddptmz56tjRs36vTp0woMDFSHDh00adIkjR071mEfoaGh2rx5s+bNm6elS5cqISFBWVlZioyM1KBBg/Tkk0/q+uuvr/PXYjG4wwIAAAAAAJNjEU8AAAAAAGB6JDAAAAAAAIDpkcAAAAAAAACmRwIDAAAAAACYHgkMAAAAAABgeiQwAAAAAACA6ZHAAAAAAAAApkcCAwCAWtKiRQtZLBZNnDixzLn169fLYrHIYrFo/fr1To8NwG/HxIkTZbFY1KJFi3LPF99rXnzxRafGBQB1jQQGAAAAAAAwPRIYuOosWrTI/s1EcnKyq8MBAAAl8DkNAKiIh6sDAADgajBgwAAZhuHqMABcBbjXAPitogIDAAAAAACYHgkMAAAAAABgeiQwcNUo3gFg0qRJ9udiYmLs82yLH4sWLZKbm5ssFouee+45h/0uX77cfu2aNWvq8iUA+NWLL75of99J0oULF/TKK6+oU6dOCgwMtL+XJSkrK0vLli3TlClT1LFjRzVq1Eienp4KCwtT//79NXPmTGVmZlZp3M8//1xDhgxRWFiY/Pz81Lp1a/3hD3/QyZMnHV5b1V1IMjMz9dprr6lXr14KDg6Wt7e3oqKidM899+g///lPleIE6iOzfU5f/p612WxasGCBBg4cqPDwcLm5uZXacchms+nbb7/VtGnT1Lt3b4WGhsrT01OBgYHq2LGjpk2bpqNHj1Zp7P3792vChAlq1qyZfHx81KxZM40bN047duyo0vVV2YXEZrPp3//+t4YOHaomTZrIy8tLYWFhGjhwoObMmaP8/PwqjQUATmUAV4m4uDhDksNHXFyc0adPH0OSERMT47DfO++805BkBAcHG/n5+U54JQBeeOEF+3v2wIEDRosWLcq8lxcuXGgYhmH079/f4fs+JibGSEhIqHTMJ598ssLrGzdubOzcudOIjo42JBkTJkwoc33Je1BcXFy5Y+zatcuIjIysNNaRI0caOTk5V/gvCJiPsz+ni9+vFf06XDKeL774wrj55pvLxFLyvV7yvlTRw8/Pz1i5cmWl8X744YeGl5dXudd7eHgY8+fPNyZMmGBIMqKjo8vto7j9Cy+8UO75tLQ0o3fv3pXGGhsbayQnJ1caKwA4G4t44qrRrVs37du3T6tXr7Z/Y/Pll18qMjKyVLuYmBiNHz9emzZt0uHDh7V582bdeOON5faZnp6uL774QpI0atQoeXp61u2LAFDGPffcoxMnTujxxx/XHXfcoaCgIB08eFDR0dGSJKvVqhtuuEF33HGHunbtqsjISBmGoSNHjujTTz/V8uXLdfjwYd11113as2ePfHx8yozx5ptv6p133pEkRUZG6k9/+pO6d++u3NxcrV27Vm+//bbuueceZWdn1/h1nDhxQoMGDVJ6erosFosmTpyoMWPGKCQkRPv379ebb76pvXv3auXKlZowYYKWLVtW47EAMzLz5/T//M//KD4+XnfccYcmTpyo6OhonT59WhkZGfY2VqtVERERGjFihHr16qVrrrlGPj4+OnbsmDZv3qw5c+YoMzNT48aN065duxQbG1tmnG3btul3v/udrFarvL299fvf/15Dhw6Vt7e3tm3bphkzZujhhx9W27Zta/Q6JKmwsFC33367tmzZIknq37+/HnvsMcXExOjkyZNasGCBVq1apYSEBA0aNEh79uyRv79/jccDgFrl6gwK4GwLFy60f7tw+PDhctukpaUZnp6ehiTj0UcfrbCvuXPn2vvauHFjHUUM4HIlv+l0c3MzvvrqqwrbHjhwoNK+vv76a8PNzc2QZLz//vtlzqekpBh+fn72bztPnTpVps0333xjeHh4lPutbDFHFRj33HOP/Xx5ceTm5hoDBw60t/n8888rfV1AfeWsz+nqVGBIMp5//vlK4z58+HCllZjHjh0zmjZtakgy7rvvvnLbdOnSxZBkeHp6Ghs2bChz/vjx40ZUVJQ9pppUYMyaNct+/v777zdsNluZNs8++6y9zdNPP13hawIAZ2MNDKAcwcHBGjx4sKSiubNWq7XcdkuWLJEkRUdHq3fv3k6LD8AlEydO1C233FLh+WuvvbbS62+++WbdcccdkqRVq1aVOb948WJ7ZcWbb76pJk2alGlz0003aerUqdWIurRTp07p008/lSTddttteuCBB8q08fb21oIFC+ThUVQ8OWvWrBqPB9R3zv6cbt26tV544YVK27Ro0aLSCo+oqChNnz5dkvTZZ5+V2ep0+/bt+uGHHyRJDz30kPr161emj6ZNm+rNN9+sbvilzJ49W5IUGhqqWbNm2dcSKunll19WmzZtJEnz5s1TXl7eFY0JALWFBAZQgfvuu0+SlJqaqq+//rrM+ePHj2vjxo2SpHHjxpX7CwCAujd+/PhqtU9NTdXBgwf1448/2h9hYWGSpL1795Zpv27dOklSUFCQ7rzzzgr7nTx5crXiKCkuLk6FhYWSVG7yoliLFi3syZr169fbrwGuRlf6OZ2cnCzDMMokEsozevRoubu7Vyu+jIwMHT58WD/99JP9XuPn51fqXEnF9xpJpRYyvdyIESMUGBhYrViKnTx5UgkJCZKKptQEBASU287d3d0eQ3p6unbt2lWj8QCgtpHAACowfPhw+wd78Tc4JX344Yey2WySin4xAuAa7du3d9jm+++/1+jRoxUSEqLGjRurdevWuuGGG+yPefPmSZLOnj1b5tp9+/ZJkjp16mSvfihPx44d5eXlVaPX8OOPP9qPe/ToUWnb4vPZ2dn65ZdfajQe8FvgzM/pqtxnJOnIkSN6/PHH1aJFCzVq1EjXXHON2rVrZ7/XPPjgg/a2l99viu81Xl5elY7n6empTp061eBV1Oxec/l1AOBKJDCACvj6+mrkyJGSisrKL1+cr/iXpQ4dOqhdu3ZOjw9AkaCgoErPv/jii+rTp4+WL1+uc+fOVdo2JyenzHPp6emSpMaNG1d6rYeHh4KDgx1EW76ScYWHh1fatuQUFkevB/gtc+bntKP7jCR98cUXatu2rWbNmqUjR444bH/5/ab4XhMcHFxpslRyfJ+oCPcaAPUdCQygEsWl6VlZWVq9erX9+f3799tLzatbvg6gdlVW1v3NN9/opZdekiRdc801mjNnjuLj43X+/HlZrVZ7+fjzzz/vcJyqTBOrSin6lXLGGEB94azPaUfTR9LS0jRu3DhlZ2fL399fL774orZs2aIzZ84oLy/Pfq/55ptv7Ndc/l4u/tlZ9xpH43CvAWBGbKMKVGLQoEGKiIjQqVOntGTJEo0dO1bSpW91LBaL/TkA5lM8NSQwMFBbtmypsIqi+JvP8gQFBSklJUWnT5+udCyr1VppP5UpWblx+vRpNW/evMK2JeOoacUH8Fthls/pFStW6Pz585KklStXVriwcGX3iOL3c1pamgoLCytNmpw5c6ZGcZa8Z6SkpFTalnsNADOiAgNXneostunm5qYxY8ZIkr766iv7fNUPP/xQUtHe6VFRUbUfJIBa8dNPP0kq2iWksikgO3furPDcDTfcIEnas2dPhTsdSEULgObn59cozpLl7du2bau07fbt2yVJfn5+iomJqdF4gJnVx8/p4ntNcHBwpbsiVeVek5+fX+6CwsWsVqv27NlTozhrcq+5/DoAcCUSGLjq+Pj42I+rsi1YcelpQUGBVqxYoc2bN9tXDmf6CGBuxQmHy+fGl7Rnzx5t3bq1wvM333yzpKI54GvWrKmw3YIFC2oYpTRgwAD7t63z58+vsN3Ro0ftuy0MGDDA4Tx5oD6qj5/TxfeavLw8+8Khl8vOzta//vWvCvsovtdIRds3V+TTTz+tcbVXZGSkYmNjJRVVjVy8eLHcdoWFhVq0aJGkoiq0zp0712g8AKhtJDBw1YmIiLAfJyUlOWzfpUsX+17oS5YssZelenl56Z577qmbIAHUimuvvVaStGnTpnJ37EhNTbVvxViRCRMmyNfXV5L0hz/8odypJBs2bNDcuXNrHGdkZKRGjBghSfryyy/LTYbk5+dr8uTJKigokCQ99thjNR4PMDNnfU63aNFCFoulVrZBL77XZGVl6eOPPy5zvrCwUFOmTNHJkycr7KN79+72RMF7772nTZs2lWlz6tQpTZs27YpiffTRRyUV3f8ef/zxcte6eOmll7R//35J0tSpU+Xt7X1FYwJAbSGBgatOp06d7N/uPP/88/rqq6904MABHTp0SIcOHSp3F4Lib3A2b96sf//735KkYcOG1XgfdgDOcf/990uSMjMz1b9/f82aNUtbtmzR5s2bNXPmTHXo0EH79+9Xr169KuwjPDxcr7zyiiQpOTlZXbp00ezZs7Vjxw5t3LhRf/rTn3TbbbepadOmCgsLq3Gsb731ln2ngylTpuiBBx7Q119/rR9++EFLlixRjx497AsAjho1SkOGDKnxWICZ1cfP6VGjRtn/yJ84caKeffZZffvtt9q5c6cWL16sHj166MMPP1Tv3r0r7WfOnDny8PBQQUGBbrnlFj377LPatGmTduzYoVmzZqlLly46deqUOnToUONYH374Yfs9b/Hixbrpppv08ccfa9euXVq7dq3uvvtu+z2vZcuWVVrkGACcxgCuQk8//bQhqdxHXFxcmfZJSUll2n388cfODxyAYRiG8cILL9jfi45MmjSpwve7u7u78fbbb1epvyeeeKLCfkJDQ40dO3YY0dHRhiRjwoQJZa6Pi4ur9D5jGIaxa9cuIzIyssJxJBkjR440cnJyqvpPBdRLzvicLn6/VvS+r8p7tqQFCxYYbm5uFcY9evRoY926dQ77XLp0qeHl5VVuHx4eHsa8efOMCRMmGJKM6Ojocvsobv/CCy+Uez4tLc3o3bt3pfea2NhYIzk52eHrBgBnogIDV6XXXntN8+bNU9++fRUcHOxwe7Rrrrmm1De0DRs21LBhw+o6TAC1YMGCBfrggw/Ut29fBQQEyNvbW9HR0frd736nzZs368knn6xSP++8847Wrl2r2267TcHBwfLx8VGrVq30xBNPaPfu3eratesVx9qpUyf9/PPPevXVV9WjRw8FBgbKy8tLkZGRGjlypD777DN98sknpdYIAH6L6uPn9KRJk7Rx40bdddddCgsLk6enpyIiIjR48GAtW7ZMH330kcPXIUljx47V7t279bvf/U6RkZHy8vJS06ZNNWrUKG3atElTpky54liDg4P13Xff6YMPPtDgwYMVHh4uT09PhYSEaMCAAZo1a5b27Nmj6OjoKx4LAGqTxTDY5BkAAAAAAJgbFRgAAAAAAMD0SGAAAAAAAADTI4EBAAAAAABMjwQGAAAAAAAwPRIYAAAAAADA9EhgAAAAAAAA0yOBAQAAAAAATI8EBgAAAAAAMD0SGAAAAAAAwPRIYAAAAAAAANMjgQEAAAAAAEyPBAYAAAAAADA9EhgAAAAAAMD0SGAAAAAAAADTI4EBAAAAAABMjwQGAAAAAAAwPRIYAAAAAADA9EhgAAAAAAAA0yOBAQAAAAAATI8EBgAAAAAAMD0SGAAAAAAAwPRIYAAAAAAAANMjgQEAAAAAAEyPBAYAAAAAADA9EhgAAAAAAMD0/j/qNRu3sbG/MwAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {
"image/png": {
"height": 434,
"width": 536
}
},
"output_type": "display_data"
}
],
"source": [
"plot_predictor_correlations(model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"But when we look at the *uncentered* model we see that the correlations have now been reduced!"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABV0AAANlCAYAAABv51ncAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3RU1drH8d8M6QmE3kvovfdeFBApAlJEkO4Vhav46uUqXpoVVBDsIkiRDiooIFVaEKQXIYD0llBCSEIqSeb9I+SQkEwySSYMJN/PWrPWSc4+ez+TOXOSPLPPs00Wi8UiAAAAAAAAAIBdmB0dAAAAAAAAAABkJyRdAQAAAAAAAMCOSLoCAAAAAAAAgB2RdAUAAAAAAAAAOyLpCgAAAAAAAAB2RNIVAAAAAAAAAOyIpCsAAAAAAAAA2BFJVwAAAAAAAACwI5KuAAAAAAAAAGBHJF0BAAAAAAAAwI5IugIAAAAAAACAHZF0BQAAAAAAAAA7IukKAAAAAAAAAHZE0hUAAAAAAAAA7IikKwAAAAAAAADYEUlXAAAAAAAAALAjkq4AAAAAAAAAYEckXQEAAAAAAADAjki6AgAAAAAAAIAdkXQFAACwo4kTJ8pkMslkMmnixImODidVPj4+Rqznz593dDh4BD1O57O9bd68WX369JGPj4/c3d2Nn4OPj4+jQ3tsJfwMTSaT1TZclwAA2QVJVwAAcrDg4GAtWbJEw4YNU506dVSiRAm5uroqd+7cKl26tNq3b6+xY8dq165djg4VsIutW7cmSfyYTCbVq1cvXX3cunVLrq6uyfpB9jFu3Dg9+eSTWr58uS5cuKDIyMhM95k4mfjgw2w2y9vbWxUqVFCfPn00Z84cRURE2OGZAAAARyHpCgBADhQeHq4PP/xQZcuWVb9+/fTDDz/o8OHDunr1qqKjo3Xnzh1dunRJmzZt0kcffaRmzZqpcuXKWrx4sSwWi6PDRwqYHZZxBw8e1N9//21z+yVLlig6OjoLI0pd4sRxmzZtHBZHdrVr1y69//77xtfVq1fXgAEDNHLkSI0cOVKDBg2y+5gWi0UhISE6c+aMli9frqFDh6pcuXJat26d3cfCfbyXAABZycnRAQAAgIfr4sWL6tq1q44cOZLk+6VLl1atWrVUqFAhxcbGKiAgQIcPH9a1a9ckSadOndLzzz+vS5cuacyYMY4IHcgy8+bN0yeffGJT2/nz52dxNHCkefPmGdtDhw7VrFmz7D6T+YknnlCVKlWMr+Pi4hQYGKhdu3bp0qVLkqSAgAB16dJFv/76q55++mm7jg8AALIeSVcAAHKQ8+fPq2nTpgoICJAUX1+vX79+Gjt2rKpXr56svcVi0b59+/TFF19o4cKFiouLU3h4+MMOG1kkp8+ILVCggHLlyqXr169r0aJFmjx5snLlypXqMadOndJff/0lSapWrZqOHz/+MEJ1mIkTJ+a4Wq4HDhwwtocOHZolpSMGDBigwYMHJ/t+XFycZs+erX//+9+KiopSbGyshgwZorNnz8rT09PucTyKcvp1CQCQfVBeAACAHCI6Olq9e/c2Eq5ubm76+eeftXDhwhQTrlJ8UrZhw4aaP3++Dh8+rBo1ajzMkIEs5eTkpH79+kmSrl69qk2bNqV5TOJZkAMHDsyy2OA4QUFBxnaxYsUe6thms1kvvviipk6danzv+vXrWrhw4UONAwAAZB5JVwAAcoiPP/5Y+/btM76eN2+eunfvbvPxNWrU0O7du9W+ffssiA5wjMT1OdMqG2CxWIzkV8GCBbnlO5u6e/eusW02O+bfpZdeekkFCxY0vrblAwEAAPBoIekKAEAOEBERoc8//9z4umfPnurTp0+6+/H09FTz5s1TbXPx4kWNHz9eTZo0UZEiReTi4qIiRYqoSZMmmjBhglGvMDXWFjdZu3at+vXrp4oVK8rLy0smk0nTp0+XFH9LasIxPj4+xjG+vr4aPny4qlSpIm9vb5lMJo0ePTrFcS9duqT33ntPLVu2VPHixeXq6qr8+fOrbt26evPNN3Xq1Kk0Y7dVXFycduzYofHjx6tDhw4qXbq0PDw85ObmpuLFi6tdu3b68MMPdfPmTat9JH7OFy5cML5ftmzZFFdI37p1a5Lj07v4Vla+tn/88Yeee+45lStXTm5ubipQoIBatWqlL7/8MkkSzN7q1q2rmjVrSpJWrlyp0NDQVGNP+Dn369dPzs7ONo8THBysxYsX66WXXlLjxo1VsGBBubi4KE+ePKpQoYKef/55LV++XHFxcVb7mDhxokwmk9q2bWt8b9u2bSm+1onfA5I0d+5cY1/Cbe2xsbFasmSJnnnmGZUrV07u7u4ymUxauXJlsjFNJlOKZQY++eQTY7+3t7fOnTuX6s8hMDBQJUuWNI6x9l7MiN27d2vUqFGqXr268uXLJzc3N5UsWVJPPfWUvvzyS4WFhVk9tk2bNja/lx4GJycnNWzY0Pj67NmzSfYPHjzYiGfu3LmSpNu3b2vGjBlq1aqVSpQoIScnJ5lMJt2+fTtZ/xaLRb/88osGDRqkSpUqydvbW25ubipVqpS6d++uefPmKSYmxuZ4IyIiNG3aNDVt2lQFChSQp6enKlWqpKFDh2rPnj3peu7pvS7FxsZq2bJlGjhwoCpXrqx8+fLJ2dlZBQoUUJMmTfTaa69p8+bNSRaBzMx7KbG7d+9qzpw56t69u8qUKSN3d3flyZNHlStX1rBhw7Rx48YMP+czZ87onXfeUd26dVWoUCGZzWbVqVMn2bEnTpzQmDFj1KRJE+O64u3trQoVKqhJkyZ65ZVXtHLlSoWEhNgUCwDAjiwAACDbmz9/vkWS8fD19c2ScT744AOLm5tbkrEefLi5uVk++uijVPvZsmWL0b5169aW27dvW3r06JFif5999pnFYrFYzp07Z3yvTJkylqioKMuIESNSPOa1115LMl5sbKxl3Lhxacbu5ORkGTt2rCUuLs5q7BMmTDDaT5gwIcU20dHRlhIlSqQ6VsLD09PT8uOPP6bYT+LnbMtjy5YtSY4vU6aMse/cuXOpviZZ9dpGRUVZ/vWvf6Xab7169Sw3btxItV9bJR6/SJEiFovFYvn444+N7/3www9Wjx08eLDRbu/evRY/P78kcVrz008/WVxdXW16jerUqWP1tUh8bqX1KFOmTJJj58yZY+wbNGiQ5cqVK5aWLVumeOwvv/yS4pgpnc9xcXGWJ5980mjTrFkzS0xMjNWfReL3cc2aNS2RkZFW29rqzp07lr59+6b5MylWrJhl7dq1KfbRunVrm3+2GZX4/TZnzpw02z///PNG+4oVKybZN2jQoCR9+fr6WkqVKpVivEFBQUmOPXz4sKVOnTppPs/KlStbjh07lmacR48etVSoUMFqPyaTyTJu3DiLxWKx6eeYnuvS9u3bLZUqVbLpdfvvf/9rHJeZ91KC3bt3W8qXL5/m8e3bt7dcv3491efx4HP+7rvvUrze1q5dO8lxEyZMsDg5Odn0PPr3759qDAAA+2MhLQAAcoA//vjD2C5dunSas1UzYtSoUfrqq6+Mrz09PdWuXTsVLVpUAQEB2rJli+7cuaPIyEi9/fbbunbtmj777LM0+7VYLBowYIBWr15t1JitWrWqLBaL/v77b6szz15//XV9++23kqSaNWuqdu3acnZ21qlTp5LcMhwbG6u+ffvqp59+Mr5XrFgxNW7cWIULF9adO3f0119/6cyZM4qJidGHH36oGzduaObMmRn9USk2NlZXrlyRJHl5eal69eoqV66c8uTJo7t37+ry5cvavXu3QkJCFBYWphdeeEHOzs7q27dvkn7y5MmjkSNHSoq/NT5hlubAgQOVO3fuZOOWKFEiQ/Fm1Wsrxd9GPXfuXJnNZjVu3FhVqlRRXFycdu/erZMnT0qKX9ho4MCBWrt2bYbiT8uAAQP09ttvKzY2VvPnz9eQIUOStQkPDzfOkapVq6pBgwY6ceKETf1fv35dUVFRkqSSJUuqWrVqKlq0qDw8PHTnzh35+fnpwIEDslgsOnTokFq2bKlDhw6pQIECSfpp1KiRRo4cqStXrhizUYsXL64ePXokG/PBYxOLiopSt27dtH//fjk5OalZs2aqUKGCIiMjkywiZQuTyaR58+apVq1aCgwM1J9//qn33nsvxVmxM2fO1C+//CIpvqb0okWL5Orqmq7xHhQeHq527dolmU1ZvHhxtWzZUl5eXjp9+rR8fX0VGxsrf39/devWTYsXL1avXr2S9NOjRw+jZrUt76WHIXFtWW9vb6vtTp8+rdGjRys4OFi5c+dWq1atVLx4cQUFBWn79u1J2m7fvl1du3Y1Zj06OTmpQYMGqly5spydnXX+/Hn5+voqMjJSJ0+eVLNmzbRr1y5VrVo1xbHPnj2rJ598UteuXTO+V6tWLdWtW1exsbHas2ePTp06pffeey/VczIjlixZooEDByaZCV+pUiXVq1dP3t7eCg4O1rFjx3Ts2DHFxcUpMjLSaJfZ99L27dvVqVOnJAtLNmrUSNWrV1d0dLR2796tM2fOSJI2btyoFi1ayNfXV4UKFUrzeS1fvlxjxoyRFH/Nbtasmby9vXX16lXdunXLaDd9+nRNmjTJ+LpgwYJq0qSJihUrJpPJpFu3bunEiRPy8/NTbGxsmuMCALKAg5O+AADgIUg8G6d3795273/p0qVJZtQMHDjQEhwcnKRNcHCwZcCAAUnarVixIsX+Es9GTJjFU7NmTcuRI0eStU2YKZd41meuXLkskiylSpWybN++3eoxFovFMm7cOOO4woULW5YuXWqJjY1Ndszy5cst3t7eRtulS5emGLstM12joqIsQ4YMsWzZssUSHR2dYpvIyEjLxx9/bDz/vHnzWkJDQ1Nsa7Gkb3ZYeo7Jytc2YfZnw4YNLX5+fknaxcXFWaZPn56kz23bttn0vFKT0kxXi8Vi6dChgzEr78KFC8mO+/HHH43jEmbz2jrT9ddff7V89NFHln/++cdqm7Nnz1o6duxo9DVs2DCbnkPr1q1teNZJZ7omnFOtW7dO8XVP/P6w5Xy2WCyWlStXJnn/7dy5M8l+Pz8/i4eHh9Hm888/tynutLz88stJxp02bVqy9++pU6cs9evXN9rlyZPHcvbsWat9ZuS9ZIv0zHSNjo62FChQwOp1O/FM14TXc+TIkcmuEdHR0cbPw9/f31KkSBHjuH79+lkuX76cbOyAgIBkM5KtzV5u27at0S5//vyW9evXJ2uzePFii7u7u8XFxcWm94stP/8DBw4kmQlat25dy+7du1Ns6+/vb/nkk08sU6ZMSbYvI++lW7duJblToXz58pa9e/cma7dgwQKLu7u70a5r1642PWcnJyeLi4uLZebMmcnuqkh4b969ezfJ+fHRRx9Z/V0SGBho+eGHH1J8/gCArEXSFQCAHCDx7YcTJ060a9+xsbGWsmXLGv0/++yzVm+/j4uLszzzzDNJ/llNKcGZ+B9hSZaiRYumeXv5g7fae3h4WE6ePJnmMQkJ2ty5cydL/D1o8+bNRv9Vq1ZN8XnamqSy1eTJk43+vv76a6vtsiLp+jBe24oVK6aaTO7Vq5fRdsSIETY9r9RYS7ouXLjQ+P7777+f7Lj27dtbJFnMZrPl0qVLFovF9qSrraKjoy21atWySPGlGm7dupXmc8hI0jUhkRYeHp7mcek5n1966SWjbdmyZY3kfFRUlKVu3brGvqefftqmmNNy+vRpi9lstimRe+vWLYuPj4/RdsiQIVbbPgpJ1y+//DLJ6/Xtt98m2Z846SrJMnz48DTHHzp0qM3tY2JikiRUlyxZkqzN+vXrjf0mkynFD7gSLFmyJEm8mU26Nm/e3GjToEGDVK8hqcnIe2n8+PHGMXnz5k3xQ5oEP//8c5LnbO2Do8TPWZJlwYIFqcZw9OhRo23z5s1tihsA8PCxkBYAANlcSEhIkgVR8ubNa9f+N2zYYCye4+Lioi+++MLqLf8mk0lfffWVsQDRmTNnbFpoZPz48UlW8rbFqFGjVKlSpVTbzJgxw7jtcsyYMapSpUqq7du1a6eOHTtKkvz8/HTw4MF0xZQRiW91f9grmD+M13by5Mny8vKyun/o0KHG9t69e9MTfrr06NHDuI38xx9/TLLvypUr2rx5s6T4c6BkyZJZEoOzs7P69+8vSYqMjJSvr2+WjCNJU6ZMkbu7u137nDZtmnEb+rlz5/TKK69IksaOHWu8VwoXLqw5c+bYZbzvv//eWHisVq1aGjVqlNW2+fLl05QpU4yvFy1apODgYLvEYU9xcXGaNWuW3njjDeN7hQoVMs6LlLi5uenjjz9Otd8bN25o4cKFkuJLFaRV/iNXrlz68MMPja8Tjk1s1qxZxnbfvn3VsmVLq/2ltT89/vrrL+3cuVPS/fIWqV1D7MlisSQpLTNu3DiVLl3aavsePXqoU6dOxtfffPNNmmM0atQo1ddbUpJFsWwpWQAAcAxqugIAkM09uBq7vf85TVwvtlOnTipWrFiq7UuUKKGnnnpKv/32myRpy5YtRiIzJSaTKVktU1s899xzabZJXCPUlvZSfNJt/fr1kiRfX1/Vq1cv3bElFhcXp/379+vQoUO6fPmyQkJCktQoTOzQoUOZGiu9svq1dXNzU5cuXVLts27dusa2LSuZZ5S7u7t69eqlOXPm6OTJk/rrr7/UuHFjSdKCBQuM5N7AgQMzNc7t27e1e/duHTt2TIGBgbpz547Rt6QkdWIPHTqkrl27Zmq8lOTLly/V1yWjPDw8tGjRIjVu3FjR0dFauHCh8uTJY9RWlqQ5c+aocOHCdhkv8fk5ZMgQqx8IJOjRo4fy58+vW7duKSoqSrt27dJTTz1ll1jSa8GCBdq3b5/xtcViMWriXrp0yfi+2WzW7NmzU71ud+jQQfny5Ut1vE2bNhl1hbt06WLT74HGjRvLw8ND4eHhKX4AsHXrVmP7hRdeSLO/gQMHaseOHWm2S8u6deuM7SeeeELVqlXLdJ+28vPzU0BAgKT412bQoEFpHjN8+HD9/vvvkpL+zKyx5XdR4kTvH3/8IT8/P6t1dwEAjkPSFQCAbO7BRWDu3Llj1/4Tz/a0dYGu5s2bG4m5tBbu8fHxUf78+dMVk7Ozs2rWrJlqm8DAQJ06dcr4+rPPPkszaSNJx48fN7YTJ0fSKyYmRl988YWmTZumy5cv23TMzZs3MzxeRmT1a1u5cmW5uLik2ibxIjZZPTNx4MCBxizM+fPnG0nXhJmvXl5e6tmzZ4b6vnz5st566y2tWLHCSH6lJate7zp16iRZTM7efX/00UfGTM3EM/tGjRqlp59+2i7jWO4tOpbAlvPT2dlZjRo1MpJ2Bw4ccFjSdfPmzcbsaWuKFCmi2bNnq3Pnzqm2q1+/fprj7dq1y9g+depUqrOCE0u4JgYFBSksLEyenp6S4md/37hxw2iX8F5JTZMmTWwaMy27d+82ttu2bWuXPm2V+JpYpUoVmxYHS3xuBgQE6OrVqypevLjV9ra8niVLllSzZs30559/KiQkRA0aNFD//v3Vo0cPtWjRwmGLvwEAkiLpCgBANpcnTx45OTkZJQZu375t1/4T/+NdpkwZm47x8fExttNKLGXk1sl8+fLJySn1P3P8/f2TfP3111+ne5zEq4unR8Lq8Rs2bEjXcQ/OWs5qWf3aprYie4KEcgWSkpTJyAqtW7dWmTJldOHCBS1dulSfffaZjh49qmPHjkmSevbsaSSd0uPgwYN64okn0n2+ZNXrndW3I7/++utat25dkvIS1atX1yeffGK3MYKDg5PMCM+K8/NhMplMyp07twoVKqS6deuqU6dO6tevn00lIGx5Pa9evWps7927N0OlOoKCgozzP/G1wcPDw6bkY6lSpdI9ZkquXbtmbJcrV84ufdoqI9fEIkWKyM3NTZGRkZLiz7vUkq62vj9/+OEHtW3bVv7+/goPD9f333+v77//Xrly5VLNmjXVqlUrderUSU8++WSavw8BAFmDmq4AAOQAif85TDxT0x4Sz5y1NSGVuF1aiaWM1J205Rh7zJrMaBJw0qRJRsLVbDbr+eef1/Lly+Xn56fg4GBFR0fLEr/gqSwWi3Fc4u2HIatfW1tmFj9MJpPJuE06MDBQa9as0fz58439ttxK/KCoqCg9++yzRsK1SJEimjBhgrZu3apLly4pLCxMcXFxxmuduN5p4rID9mTvWq4PMplMyUoIPPXUU3Jzc7PbGA/O2M+K8zMrzZkzJ8l7PC4uTsHBwTp9+rSWL1+uoUOH2vw6OeJ6l/jn7+HhYdPxGfnAIiWJX7eHVcs1QUauiQ+2tdfvvMqVK+vw4cN6/fXXk9wNEhsbq0OHDunzzz9Xp06dVKZMGX3//fc2xwoAsB8+8gIAIAdo0aKFzpw5Iyl+ERJ7SvxPb1hYmE3HJG7nqNsgE/8TnDdv3gzPWk2vqKgoffHFF8bX8+fPT3XRFEcmhh7X1zYzBg4cqPfff19S/EyyhPdLqVKl1KZNm3T399NPPxmLkZUsWVL79u1TkSJFrLZ35OttL4sWLUq28NL06dPVs2dPNWvWzC5jPJhsS3zre2oe9/MzoxL/bKZPn67XXnstU/0l/vmHh4fbdIyt15C0JH7d7F0uJy0ZuSY+2Nae512hQoU0bdo0TZkyRX/99Ze2b98uX19f7dy501hs6+rVq/rXv/6lo0eP6vPPP7fb2ACAtDHTFQCAHKBdu3bG9oULF/Tnn3/are/Et0JevHjRpmMuXLhgbBcsWNBusaRH4sTX7du3k9w2mpX27NljJApq1qyZ5irViX9WD9vj+tpmRsWKFY3ak6tXrzbOiwEDBmSoDmriup2vv/56qglXybGvtz1cuHBBr7zyivF1lSpVJMXPvhswYECSVdczw9vbO0npiZxyfmZU4vPun3/+yXR/ia8N4eHhCgwMTPOYzNTATizxc0n4QONhycg18fr160ZpASlrzjtnZ2e1aNFCY8eO1dq1a3Xz5k2tW7dOrVu3Ntp88cUXGSorAQDIOJKuAADkAL17907yj960adPs1nfi1eVtTebu3LnT2K5Xr57dYkmPYsWKJVkBOr31VTMqcW3F6tWrp9l++/btNvWbFbfqP66vbWYNHDjQpu/ZIite70etLEOChMRqwq3s7du31969e1WpUiVJ8QmykSNH2mUsk8mkOnXqGF/bcn7GxMRoz549xteP6/mZEYkXulq/fn2m+ytRokSSBGTixa2ssaWNLRIvyPXHH39kqq/0vpcSXxNPnDihW7dupXlM4mti0aJFU63nai/Ozs7q2LGjNmzYkGRRyYRFDgEADwdJVwAAcgB3d3e9+uqrxtc//fSTfvrpp3T3ExYWliy5kXgW7dq1a3X9+vVU+wgICDBWD3/w+Ict8arg06dPfyg1UxPPlkzrtty4uDjNnDnTpn4T18tMvMBQZjzOr21mPPfcc3J1dTW+btiwoTFjM73S83rv37/fpploWfFa28OHH34oX19fSVKBAgU0d+5ceXl5adGiRcas1AULFmjx4sV2GS/x+TVv3rw037+//vqrMSPTzc1NTZs2tUscj4OOHTsaiymdPn1aq1evznSficttLFiwIM328+bNy/SYktSpUydje/PmzfLz88twX+l9L1WtWlVFixaVFP8hgy3PO3Gd5rZt22YgyoxzcXFR+/btja8TL0IGAMh6JF0BAMghxowZk2Rm1wsvvJCuWS9Hjx5V48aNk80I7dChg8qWLSspvl7p6NGjrfZhsVj06quvKjo6WpJUvnx5Pfnkk+l4Fvb1xhtvKFeuXJKkffv2adKkSTYfGxAQkKExE6+2vW3btlQXuPnkk090+PBhm/pNvHr4lStXMhTbgx7n1zYz8uXLpwMHDhirvGfkA4oEiV/vVatWWW0XHh6uf/3rXzb1mRWvdWb99ddfevfdd42vv//+e2NGX/369ZPse/nll+1SRuHFF180ktoHDhxI9QOK4OBgjRkzxvi6X79+8vb2znQMj4sSJUpowIABxtcjRoyw+dyJi4tLsfzKsGHDjO2lS5dqx44dVvtYunSpkZDPrEaNGql58+aS4q87AwcOzHBt1/S+l0wmU5L36bvvvpvqcWvWrEnye3bEiBEZivNBQUFBNi+0l7gMQuLZyQCArEfSFQCAHMLV1VXLly83VhWPiIhQ9+7dNXDgQKszhSwWi/bu3atBgwapTp06OnbsWLI2ZrNZkydPNr5evHixXnzxxWT/BIeGhmrYsGFavny58b0pU6ZkqE6mvZQvX17/+9//jK8nTZqkwYMH6/Llyym2j42N1aZNmzRw4MAM35pct25dlShRQlJ8Iqh3795JbkGX4hOc48eP11tvvWXzCtmJbyFdtmxZhmJ70OP82mZWtWrV1KBBAzVo0EClSpXKcD9dunQxtufPn6+pU6cqNjY2SZvTp0+rQ4cOOnDggE2vd7ly5Yx2Fy5cSHLLvCPcuXNH/fv3N1a3Hz58uHr06JGkzZgxY4yZkcHBwRowYECyn0N6lS9fXi+99JLx9ahRo/TVV18lS0adOXNGHTp0MBYTzJMnj8aNG5epsR9HH374oYoVKyYpPsHYsGFDrVixwmry7sqVK5oxY4aqVKmipUuXJtvfoUMHo2aoxWJR9+7dUyzTsmTJEg0ZMkQuLi52ey6ff/65MRt93759atWqldX3QUBAgD799FN98sknyfZl5L00evRo4xoeGBioJ554QocOHUrWbunSperbt6/xddeuXdWqVas0+7fFqlWrVLFiRX3yySdW69pGRkZq+vTpST40evrpp+0yPgDANk6ODgAAADw85cqV019//aWuXbvq77//VlxcnH788Uf9+OOP8vHxUa1atVSwYEHFxsYqICBAhw4dSnY7YkorL/fp00fbt2/XV199JUmaNWuWli5dqrZt26pIkSK6fv26/vjjjyQrs48ePVrPPvts1j5hG0yYMEHnz583bn2dN2+eFixYoLp166pKlSry8vJSSEiILly4oMOHDxsJx8QzpNLDbDbrvffe09ChQyVJGzduVKVKldSsWTOVKVNGgYGB2rp1q4KCgiRJM2fOTHOxLUl69tln9e2330qSvvnmGx04cED16tWTh4eH0ebll19W+fLl0xXv4/zaPgo6duyo1q1ba9u2bbJYLHrzzTf11VdfqV69evL29tY///yjP//8U7GxsSpRooRee+21JDMyU2I2m9W9e3ctXLhQUvwty0899ZRKly5tzNzOnz+/xo4dm+XPT4pPdiYkNCtWrKjp06enGPOPP/6oWrVqKSgoSL6+vvroo4+SfOiREZ9++qn27dunvXv3KiYmRqNGjdLkyZPVokULeXl56cyZM9q+fbuR4HVyctLs2bONGdw5SbFixbRq1So9/fTTunnzpvz9/dW7d28VLlxYjRs3VpEiRRQXF6fAwED9/fffOnv2bKolG0wmk2bPnq2mTZvqxo0bunXrljp27Kg6deqoTp06io2N1Z49e3Ty5ElJ8SVcUpstnx716tXT7NmzNXjwYMXExOjgwYNq3LixKleurLp168rb21vBwcE6fvy48bvutddeS9ZPRt5L+fLl06JFi9SpUyeFh4fr5MmTqlevnho3bqxq1aopOjpaf/31V5IFyypWrKjZs2fb5bknOHv2rMaMGaMxY8aodOnSqlWrlgoXLiyLxaKAgADt3r3b+D0iSf3791ezZs3sGgMAIA0WAACQ44SGhlreffddS968eS2SbHrUrl3b8vPPP6fa73vvvWdxdXVNtR83NzfLhx9+mGo/W7ZsMdq3bt3apud07tw545gyZcrY+JO474svvrDky5fPpp+FyWSydOvWLcV+JkyYYLSbMGGC1fHGjh2b5s/pm2++sVgsliTfT82AAQNS7XPLli1J2pcpU8bYd+7cuVT7duRra+vzt0Xi8YsUKZKpvvz8/GyKLSAgwFKvXr1Uf3bVqlWzHDt2zDJnzhzje4MGDbLa58WLFy3Fixe32t+D7wFb+31QWufz0qVLjf1OTk6WPXv2pNrfsmXLkrT/66+/bI7FmtDQUEufPn3SfN8WK1bMsnbt2jT7S8/7Ij0S9ztnzpxM9TVo0KAM93X+/HnLE088YfO1v0iRIpZ169ZZ7e/w4cOWcuXKpXq9HDt2rMVise29nJ6f/+bNmy1ly5a16Xm88847KfaR3vdSgl27dqX6vBMeTz75pOX69eupPo/0nnPLly+3mEwmm5632Wy2vPLKK5bo6Og0+wUA2BczXQEAyIG8vLw0btw4vfrqq1qzZo02btyo/fv3G7OVXFxclD9/flWpUkWNGzdW9+7dbbqd/n//+59eeOEFzZo1S+vXr9e5c+d0+/Zt5c2bV+XKlVPHjh01fPhwlS5d+iE8y/QZNWqUBg0apB9//FEbN27U4cOHdePGDUVGRip37twqWbKkqlevrjZt2ujpp5/O1C3nkvTBBx+oU6dO+vLLL+Xr66sbN24Y4zz11FMaNmyYKlasmK4+58+fr86dO2vhwoU6dOiQbt68qcjIyEzFmeBxfm0drUiRIvrzzz81a9YsLVmyRH///bfCw8NVuHBhVa5cWX379lX//v3l4eFhc6mAUqVK6fDhw/riiy+0YcMGnTx5UqGhocYt/g/DpUuXktzeP2nSJDVs2DDVY3r37q3Bgwdr7ty5iomJUf/+/XXw4EF5eXllOA4vLy8tXbpUo0eP1o8//qitW7fq6tWrioiIUMGCBVWjRg116dJFQ4cOtblcR3ZWpkwZbdq0Sbt27dLy5cu1fft2Xbp0SUFBQXJyclKBAgVUsWJFNWjQQB06dFCbNm2MRbhSUqtWLR09elTffPONli1bplOnTikqKkrFixdX8+bN9dJLL2XZDMt27drp5MmTWrJkiVavXq19+/bp+vXrioqKkre3typUqKCmTZuqR48eatmyZYp9ZPS91KRJE/n5+WnBggVauXKlDh06pOvXr8vZ2VlFixZVixYt1K9fP3Xo0MHuz7tXr17y9/fXhg0btHPnTh0+fFhnz57V7du3JUne3t6qVKmSWrRooYEDB6patWp2jwEAkDaTxfIQlukFAAAAAAAAgBzi8V3dAAAAAAAAAAAeQSRdAQAAAAAAAMCOSLoCAAAAAAAAgB2RdAUAAAAAAAAAOyLpCgAAAAAAAAB2RNIVAAAAAAAAAOyIpCsAAAAAAADwGLt+/bpWr16t8ePHq1OnTipYsKBMJpNMJpMGDx6cJWMuWbJEHTt2VLFixeTm5iYfHx+98MIL2r17t819BAYGasKECapdu7a8vb2VJ08e1a5dWxMmTFBgYGCWxP2wmCwWi8XRQQAAAAAAAADIGJPJZHXfoEGDNHfuXLuNFRkZqd69e2v16tUp7jebzZo4caLGjRuXaj979+7VM888I39//xT3Fy9eXKtWrVKDBg0yHbMjMNMVAAAAAAAAyCZKlSqlDh06ZFn/w4YNMxKubdu21cqVK7Vnzx7Nnj1b5cuXV1xcnMaPH69Zs2ZZ7ePKlSvq2rWr/P395eTkpDFjxmj79u3avn27xowZIycnJ129elVdunTRlStXsuy5ZCVmugIAAAAAAACPsQkTJqhhw4Zq2LChihQpovPnz6ts2bKS7DvTddu2bWrTpo0kqWvXrvrll1+UK1cuY//NmzdVv359Xbx4Ufny5dPZs2eVN2/eZP0MHjxY8+bNkyQtW7ZMvXv3TrJ/+fLl6tOnjyRpyJAh+uGHH+wS/8PETFcAAAAAAADgMTZp0iR16dJFRYoUydJxPv74Y0lSrly59PXXXydJuEpSwYIFNWXKFElSUFCQZs+enayPa9euacGCBZKkjh07Jku4SlLv3r3VsWNHSdL8+fN17do1uz6Ph4GkKwAAAAAAAIBU3blzR5s3b5YktW/fXiVLlkyxXc+ePZUnTx5J0s8//5xs/6+//qrY2FhJ8bNYrUlYACw2Nla//vprZkJ3CJKuAAAAAAAAAFK1Z88eRUVFSZJat25ttZ2Li4uaNGliHHP37t0k+3fs2GFsp9ZP4n2+vr4ZitmRnBwdAAAAAAAAAJDdXb582aZ21maQOpqfn5+xXaVKlVTbVqlSRRs2bFBMTIz++ecfVatWLVk/3t7eKlq0qNU+ihUrpjx58igkJCTJ2I8Lkq4AAAAAAABAFitVqpRN7R7VNe8vXbpkbKeVGE78XC9dupQk6ZrQjy3J5VKlSunYsWNJxn5ckHQFgMfYsiYtHB0CgEdY93W/OToEAI+ouJgYR4cA4BHmVrCQo0PINP5Xsr/Q0FBj28vLK9W2np6exvadO3dS7CetPhL382AfjwOSrgAAAAAAAEAWexxnayYWGRlpbLu4uKTa1tXV1diOiIhIsZ+0+kjcz4N9PA5IugIAAAAAAABZ7FGt1WorNzc3Yzs6OjrVtgkLbkmSu7t7sn7Cw8PT7CNxPw/28Tgg6QoAAAAAAIDsxWxydATZTu7cuY3ttG73DwsLM7YfLCOQO3duhYeH21QyIKEfW0oRPGrMjg4AAAAAAAAAwKMt8Uzdy5cvp9o2cSmFBxcQS+gnrT4S92PrImSPEpKuAAAAAAAAAFJVrVo1Y/vEiROptk3Y7+TkpAoVKqTYT3BwsAICAqz24e/vr5CQEElS1apVMxSzI5F0BQAAAAAAQLZiMpkfucfjrmHDhsbiV9u2bbPaLjo6Wrt37052TIIWLVoY26n1k3hf8+bNMxSzIz3+rzgAAAAAAACALJU7d2498cQTkqRNmzZZLQ/w888/GzNUe/TokWx/t27dZDbHpyTnzJljdby5c+dKksxms7p165aZ0B2CpCsAAAAAAACQw82dO1cmk0kmk0kTJ05Msc2bb74pSYqJidHIkSMVGxubZP/Nmzf13//+V5KUN29eDR8+PFkfRYsWVf/+/SVJ69ev14oVK5K1Wb58udavXy9JeuGFF1S0aNEMPy9HcXJ0AAAAAAAAAIA9mcwmR4fwUPn6+ur06dPG1zdv3jS2T58+bcwaTTB48OAMjdOuXTs999xzWrJkiX799Ve1b99eo0ePVvHixXX06FF98MEHunjxoiRp8uTJypcvX4r9fPDBB1q3bp1u3Lihfv36ad++ferSpYskafXq1Zo6daokqVChQnr//fczFKujkXQFAAAAAAAAHmOzZs3SvHnzUty3c+dO7dy5M8n3Mpp0laQffvhBISEhWrt2rbZs2aItW7Yk2W82mzVu3Di99NJLVvsoVaqUfvvtN3Xv3l0BAQGaMmWKpkyZkqRN0aJFtXLlSpUsWTLDsToS5QUAAAAAAAAA2MTd3V1r1qzRwoUL1b59exUuXFguLi4qVaqUnn/+efn6+lotT5BY48aNdfToUf3vf/9TjRo15OXlJS8vL9WsWVP/+9//9Pfff6tx48ZZ/4SyiMlisVgcHQQAIGOWNWmRdiMAOVb3db85OgQAj6i4mBhHhwDgEeZWsJCjQ8i0n1q3dXQIyTy7bUvajZBtMNMVAAAAAAAAAOyIpCsAAAAAAAAA2BELaQEAAAAAACB7MTHPEI7FGQgAAAAAAAAAdkTSFQAAAAAAAADsiPICAAAAAAAAyFZMZpOjQ0AOx0xXAAAAAAAAALAjkq4AAAAAAAAAYEeUFwAAAAAAAEC2YjJRXgCOxUxXAAAAAAAAALAjZroCAAAAAAAgWzGZmWcIx+IMBAAAAAAAAAA7IukKAAAAAAAAAHZEeQEAAAAAAABkL2YW0oJjMdMVAAAAAAAAAOyIpCsAAAAAAAAA2BHlBQAAAAAAAJCtmEyUF4BjMdMVAAAAAAAAAOyIpCsAAAAAAAAA2BHlBQAAAAAAAJCtmMzMM4RjcQYCAAAAAAAAgB2RdAUAAAAAAAAAO6K8AAAAAAAAALIVk8nk6BCQwzHTFQAAAAAAAADsiKQrAAAAAAAAANgR5QUAAAAAAACQvZgpLwDHYqYrAAAAAAAAANgRSVcAAAAAAAAAsCPKCwAAAAAAACBbMZmYZwjH4gwEAAAAAAAAADsi6QoAAAAAAAAAdkR5AQAAAAAAAGQrJrPJ0SEgh2OmKwAAAAAAAADYEUlXAAAAAAAAALAjygsAAAAAAAAgWzGZmWcIx+IMBAAAAAAAAAA7YqYrAAAAAAAAshcTC2nBsZjpCgAAAAAAAAB2RNIVAAAAAAAAAOyI8gIAAAAAAADIVkxmygvAsZjpCgAAAAAAAAB2RNIVAAAAAAAAAOyI8gIAAAAAAADIVkwm5hnCsTgDAQAAAAAAAMCOSLoCAAAAAAAAgB1RXgAAAAAAAADZi9nk6AiQwzHTFQAAAAAAAADsiKQrAAAAAAAAANgR5QUAAAAAAACQrZhMlBeAYzHTFQAAAAAAAADsiKQrAAAAAAAAANgR5QUAAAAAAACQrZjMzDOEY3EGAgAAAAAAAIAdkXQFAAAAAAAAADuivAAAAAAAAACyF5PJ0REgh2OmKwAAAAAAAADYEUlXAAAAAAAAALAjygsAAAAAAAAgWzGZmWcIx+IMBAAAAAAAAAA7IukKAAAAAAAAAHZEeQEAAAAAAABkKyaTydEhIIdjpisAAAAAAAAA2BEzXQEAAAAAAJCtmMzMdIVjMdMVAAAAAAAAAOyIpCsAAAAAAAAA2BHlBQAAAAAAAJC9mJhnCMfiDAQAAAAAAAAAOyLpCgAAAAAAAAB2RHkBAAAAAAAAZCsms8nRISCHY6YrAAAAAAAAANgRSVcAAAAAAAAgm7h48aLefPNNVa1aVZ6ensqfP78aNWqkTz/9VOHh4Rnud+vWrTKZTOl6tGnTJsW+fHx8bDrex8cnw/E6GuUFAAAAAAAAkK2YTDlznuGaNWvUv39/BQcHG98LDw/X3r17tXfvXs2aNUtr165VuXLlHko8lStXfijjPIpIugIAAAAAAACPucOHD6tPnz4KDw+Xl5eX3n77bbVt21YRERFasmSJvv/+e508eVKdO3fW3r175eXlla7+GzZsqKNHj6bZbtSoUdq2bZskadCgQam2feaZZ/T+++9b3e/i4pKuGB8lJF0BAAAAAACAx9zo0aMVHh4uJycnbdiwQU2bNjX2tWvXThUrVtSYMWN04sQJTZs2TePHj09X/56enqpRo0aqbW7fvq3du3dLkipUqKBmzZql2j5v3rxp9vm4yplzrQEAAAAAAJB9mU2P3iML7d27V1u3bpUkDRs2LEnCNcEbb7yhqlWrSpKmT5+uu3fv2j2OpUuXKioqSpL0wgsv2L3/xwlJVwAAAAAAAOAxtnLlSmN7yJAhKbYxm80aOHCgJCkoKMhI0trT/PnzJUkmk4mkq6MDAAAAAAAAAJBxO3bskBRfAqB+/fpW27Vu3drY9vX1tWsMZ86c0Z9//ilJatmypcqWLWvX/h83JF0BAAAAAACQrZhMpkfukZX8/PwkxddRdXKyvoRTlSpVkh1jLwmzXKW0F9BKsH37dtWqVUuenp7y8PBQ2bJl1bdvX61cuVIWi8Wu8T1sLKQFAAAAAAAAZLHLly/b1K5kyZLp6jcyMlI3b9606dh8+fLJ09NTYWFhunTpUrrGScuCBQskSe7u7urVq5dNx5w7dy7J1+fPn9f58+e1bNkyNW/eXEuXLlWJEiXsGufDQtIVAAAAAAAAyGKlSpWyqV16Z3iGhoYa215eXmm2T0i63rlzJ13jpGbHjh06e/asJKlHjx7KkydPqu1dXFzUrVs3dejQQTVq1JC3t7du376tXbt26ZtvvtGlS5e0c+dOtW/fXrt27ZK3t7fdYn1YSLoCAAAAAAAgWzGZc05FzcjISGPbxcUlzfaurq6SpIiICLvF8OOPPxrbCYt1pWbPnj3Kmzdvsu+3adNGo0aNUq9evbRhwwb5+flp0qRJmjZtmt1ifVhIugIAAAAAAABZzN638ydwc3MztqOjo9NsHxUVJSm+DIA9REVFafny5ZKk4sWL68knn0zzmJQSrgly586tZcuWqXz58goMDNTMmTM1efJkmxLKjxKSrgAAAAAAAEAWS2+tVlvlzp3b2LalZEBYWJgk20oR2GLVqlW6ffu2JKl///7KlStXpvv09vbWc889p6+++kphYWHat2+fmjVrlul+HyaSrgAAAAAAAMheTCZHR/DQuLm5qWDBgrp582aai3UFBQUZSVdba8ymZf78+ca2LaUFbFWtWjVj+8qVK3br92HJOQUuAAAAAAAAgGyoatWqkqTTp08rJibGarsTJ04kOyYzrl+/rvXr10uS6tWrpxo1amS6zwTpXVDsUUPSFQAAAAAAAHiMtWjRQlJ86YD9+/dbbbdt2zZju3nz5pked9GiRUaS156zXCXp+PHjxnbx4sXt2vfDQNIVAAAAAAAA2YrJbH7kHlmpe/fuxvacOXNSbBMXF2eUAsibN6/atm2b6XET+nNyctLzzz+f6f4SBAcHa+nSpZIkDw8PNWjQwG59PywkXQEAAAAAAIDHWKNGjdSyZUtJ0uzZs7Vr165kbaZOnSo/Pz9J0muvvSZnZ+ck++fOnSuTySSTyaSJEyemOeaxY8d08OBBSVKnTp1UqFAhm2Jdt26dIiIirO4PDQ1Vnz59FBgYKEkaNmyYXF1dber7UcJCWgAAAAAAAMhectBCWglmzJih5s2bKyIiQh06dNDYsWPVtm1bRUREaMmSJZo5c6YkqVKlSnrjjTcyPd68efOM7UGDBtl83OTJk9W/f3/17NlTLVq0UPny5eXl5aXbt29r165d+uabb3Tp0iVJUuXKlW1KAD+KSLoCAAAAAAAAj7m6detq6dKlGjBggEJCQjR27NhkbSpVqqQ1a9Yod+7cmRorLi5OixYtkiTly5dPXbp0Sdfxt27d0qxZszRr1iyrbVq1aqVFixYpf/78mYrVUUi6AgAAAAAAANlA165ddeTIEc2YMUNr1qzR5cuX5eLiogoVKqh3794aNWqUPDw8Mj3O5s2bdeXKFUlS375903X7/6effqrNmzdr165dOnnypG7evKnbt2/Lw8NDxYsXV+PGjdWvXz916NBBpsd4xrLJYrFYHB0EACBjljVp4egQADzCuq/7zdEhAHhExd1baRoAUuJW0LbanI+yHaNfdXQIybSc/rmjQ8BDxEJaAAAAAAAAAGBHJF0BAAAAAAAAwI6o6QoAAAAAAIBs5XGuBYrsgZmuAAAAAAAAAGBHJF0BAAAAAAAAwI5IugJ47M2bN08mk0nVq1dXXFycw+KwWCyqWbOmTCaT5syZ47A4AAAAACDHM5sevQdyFGq6AnishYWF6e2335YkjRs3Tmaz4z5LMplMeuedd9SvXz+NHTtWvXv3lpeXl8PiwaPBNV9e5a9WTfmrVY1/VK0i17x5JUnn1qzV3vc+tPuYpZ58QmW7PC3vCuXlkju3Im/d0o1Dh3V6xS+6deyYTX245Mmjin16qUTrVvIoVlQmk0lhV/11Zdt2/bNshaJDQuweN5CT+QcEaOHSZdr+504FBFyTs4uLSpcsqY5PPKG+vZ6Vu5ubXcb5fcNGrVy9WqdOn1ZIaKgKFsiverXr6LlevVS7Zo1Uj+3Yvbuu+gekOUbxYkW1fuVKu8QLIJ5/QIAWrVihHX/ukv+1a3JxdlapkiXVsV1b9enZ037XiE2btGrNWv1z5kz8NSJ/ftWtXVvP9eyhWjVSv0ZI8ZMQNm7ZorUbNur4yZMKun1bZpNJBQrkV42q1fRM56fVvHFju8QKAI86k8VisTg6CACPnrlz52rIkCGSpHPnzsnHx8exAVnx0UcfaezYsapatar+/vvvFJOuCQXUJ0yYoIkTJ2ZpPHFxcapevbpOnDihDz/80EgIZ5VlTVpkaf/IvD67fa3us3fS1eziomYfvqfiLZqnuD8uNlbHZ/2g43PmpdpPvqpV1OLjyXIvVDDF/eHXb2jnmLcUdOJkpmNG1uq+7jdHhwAbbPfdqbcmTFDonTsp7vcpU0ZffzZNpUqUyPAYUVFRemPsWG3z3ZnifrPZrJeHD9eIYUOt9kHSNXuJi4lxdAiw0fY//9TYSe9av0aULq2vPv1EJTN5jXhz3Dht3/lnivvNZrNGDB2ql4YMttpH6J07Gv3W29p38GCqY3V84gl9MO5/cnZ2znC8yHpuBQs5OoRM831jtKNDSKbF1OmODgEPETNdATy2IiIiNHXqVEnS66+/7tBZrgnMZrNGjx6tESNGaOrUqRo9erTc3d0dHRYeEWEB1xR6/ryKNsmaGR4N33nLSLhe27df/yxdroibN5W3fHlVGfSCcpcqqRovvaiIwECd+3V1in24FyqoFp9OkXuBAoqLidGpxUt19V6SpniL5qrUr688ChdSi6kfa9PgYYq4cTNLnguQU5w89Y/efOcdRURGysPDQ8MHDVTD+vUVFRWl3zds1E+rVun8hQsa+X//pyVz5sjDwyND44z/4AMj4dqofn3179tXhQsV1D+nz+j7efN06fJlfTVzpgoVLKBnn3km1b7atmqlf494yep+EimA/Zz85x/9Z9x4RUZGysPdXcNeeEEN69dTZFSU1m/apJ9+/U3nL17UqP+M0aJZ32f4GjHxo8lGwrVhvXrq36e3ChUsqH/OnNHs+T/q0pUr+nrWLBUqUEA9u3VNsY+3Jkw0Eq4lihfT4OefV4Vy5RQTEyu/kyc0Z+EiBd2+rfWbNyuvdx6NfeONjP1QABuZTI7//xA5G0lXAI+tBQsWKDAwUK6ururdu7ejwzH07t1b//73vxUYGKiFCxdq+PDhjg4JDnRs1g+65XdCt/z8FHUrSB7FiqrLLyvsPk6hunVUpmMHSdKVHb76879jZblX4zjI74Su7PBV+7mz5VmsqGqNfEWX/9iquynMmKkx4l9yL1BAkrR7/CRd/mOLse/m4SO65XdCzT58T+4FCqjGv17U3g8+svtzAXKSKZ99pojISDnlyqXvPp+hOjVrGvsaN2igMqVKadqXX+rc+Quat2ixXh4+LN1j7D1wQGvXb5AktWnZQtOnTFGuXLkkSTWqVVObVi3Vd9Bg+QcEaNqXX6l9u3bKkzu31f5y5/ZSxfLl0x0HgPT7eMbnirx3jfh2+meqnegW/8b166t0yVL67Ouvde7CBc1fslQjhg5J9xj7Dh7U2o0bJUmtmzfXZx99eP8aUbWq2rRooX5Dh8n/2jV99vXXerJtm2TXiOMnTsh3925JUsnixbVs7lx5et5PADeqX08d2rVT78GDFRp6R8tXrtKIoUOVP1++dMcLAI8L0v4AHluzZ8+WJHXu3Fl579XIfBTkz59fTz31lKT7MSLnOjbrB/nv/FNRt4KydJzKA56XFH+76IGPpxoJ1wTRwcE68tU3kiRX7zwq261Lsj5c8+czErf+u/5KknBNcPmPLfLf9ZckqUynjnLNzz9LQEb9ffy49h44IEnq0a1bkoRrgkH9n1e5eyV+FixdqrsZuCV8zo8LJEm5cuXSO/8ZYyRTEuTLm1evjxwpSQoJCdEvv/6a7jEA2N/ffn7GzNHuXbokSbgmGNjvOeMasXDZsgxdI+YuXCTp3jXizTdSvEa89srLkqSQ0FD9sjr53TIHjx41tvv36ZMk4ZqgWNGieubpzpLiS3IdPX483bECwOOEpCuQxXbu3Knhw4ercuXKypMnj7y8vFSlShV1795d8+fPV4iVxWguX76st99+W/Xq1VO+fPnk5uam0qVLq2/fvtqyJXkiJMH58+dlMplkMpk0d+5cSdLGjRvVtWtXFS1aVK6uripbtqxefvllXb58OdnxW7dulclkMuq5SlLZsmWNPhMeW7duTXH8jRs3asCAASpbtqzc3d2VJ08e1a5dW2PGjJG/v7/VuCdOnGj0LUnBwcF67733VLduXeXNmzfJ85GkCxcu6K+/4hM/zz77bIp9+vj4GP1J0qRJk5I9j8GDB0uS2rZtK5PJpNKlSyutUtfR0dHKnz+/TCaT1bETvr97925duHAh1f6AzHJyd1eRBvUlSdf27lPEjRsptruydZui781uLdmmVbL9JVq2kNkp/iaY82vWWB3v/Jq1kiSzk5NKtKSuMJBRf2zbZmx379I5xTZms1ldn35aUnxCdO/+/ekaIzw8XH/t2ydJatKooYoWKZxiuyfbtpGXp6ckaZOV3/EAHq4t27cb2890fjrFNmazWV2e6igpPiG670Dq9VQfFB4err/uXVeaNGygIoWtXCNatzauEX9s255sf8zdu8Z2yRLFrY5XKtG+u9F3rbYD7MFkNj1yD+QsJF2BLBIREaHnn39eLVq00OzZs3Xq1CmFhoYqLCxMJ0+e1KpVqzRo0CBNmzYt2bGzZ89WpUqVNHnyZB08eFC3b99WVFSULl26pGXLlqldu3YaPny4Ymz4JPutt95Shw4dtHr1al27dk3R0dE6f/68vv32W9WrV09+fn52eb5hYWHq2bOnOnTooIULF+r8+fOKjIxUaGiojhw5ok8++USVKlXS6hQ+GX/QP//8ozp16mj8+PE6dOiQgoODk7VJnPRt0qRJpuMfMGCAJOnSpUvavj35H5KJrV27VkFB8bMW+/fvn2KbxDFtS/RPNZAV8lerqlyurpKkGwcOWW0XFxOjW38fu3dMNZkemMlSsHZtYzu1fm4cvL+vYK1a6Q8YgCRp/6HDkiR3d3dVq1LFarsG9eoa2wcPH0nXGEePH1d0dHR8P3XrWW3n7OxsrEz+97HjGZotB8C+Dtx7v7u7u6ta5cpW2zWom+gacSSd1wg/P+MaUb9OHavtnJ2dVbN6dUnxs/QfvEaUKVXa2L585arVfi4l2lemdKl0xQoAjxuSrkAWiIuL0zPPPKPFixdLkipWrKjPPvtMO3bs0P79+7V69WqNHTtWFSpUSHbsDz/8oOHDhysiIkI1atTQF198IV9fXx04cEA//fSTnr4322X27Nn673//m2oc33//vaZMmaLWrVtr0aJF2rdvnzZt2qSBAwdKkm7cuKGhQ5OuUtywYUMdPXpU77//vvG99evX6+jRo0keDRs2NPbHxsaqa9eu+uWXX2QymdSvXz8tX75c+/bt065duzRjxgyVLl1ad+7c0bPPPqv9aczS6dWrl65cuaJ///vf2rhxo/bt26fFixercqI/Nnfs2CEp/lb+cuXKpdjPhg0bdDTRrU4vv/xysufxwQcfGGO63ktaLVy4MNX4EvZ7e3urc+eUZyZVqlTJKHmQECuQVfLcu61QkkLSmFkdcuGipPhZqrlLJf1nJ49PGUlSdGioIm/dstpHZGCgMWM2971jAKTfufPnJUmlS5aUk5P1pRbKlrn/Pjt77xhbnT13v33ZNN6vCePExMbq4sVLVtvtP3hIPfv3V6PWbdSwVWs91b2H3nznHW3eti3Nu0UA2O7cvd/ppUuUSP0aUfp+wvPchfPpGyPRNSXxtSbFccrEjxMTG6uLl5JeI5o1bqTixYpJkhYtX67wiIhkx1+7fl2/ro2/W6Z2jRrUhgaQ7bGQFpAFvvjiC228V4y+R48eWrx4sZHQS9C5c2e99957CggIML536dIl/fvf/5YkDRo0SLNmzUryB1bdunXVs2dPvfPOO/rwww81ffp0vfTSS6pUqVKKcfz555968cUX9d133yW5zf6JJ56Qi4uLZs2apd27d+vgwYOqe+8Tck9PT9WoUUP77t2KKMUnEH0SJXUeNH36dG3ZskXOzs5atWqVOnXqlGR/kyZN9MILL6hly5Y6duyYRo8enWoi8u+//9a6devUvn1743v169dP9twSfibWPPhzKVy4sGqkUAtLup9A/fnnn7VixQp9+eWXcnFxSdYuJCTEmK2bOFH7IJPJpLp162rLli1GrEBWcU90u3DE9eupto24dn+/e5HCCkn0z1ZCPxHXUy5P8GA/Ll5e8rByqzKA1EVFRSno9m1Jsno7bwLvPHnk7u6uiIgIBVy7lq5xAq7fb180jXGKFimS5Ljy5cqm2O7K1aSz2K74++uKv7/Wb9qsurVq6ZMP3k/zOQFIXeJrROE03k95klwjUv874EEBif5uKFIojWtEojgCrl9X+bL3rxEuLi76aMJ4vTrmv7p05Yr6DBqsQc/3U4Vy5RQTE6PjJ09q7sJFCgkNVfFixfTu2LHpihPIEBPzDOFYnIGAncXFxemTTz6RJJUoUULz58+3mpgzm80qXvx+XaMZM2YoPDxcxYsX17fffmv1E+1JkyapRIkSiouL0/z5863GUqxYMX3xxRdJEq4J3nzzTWM7MzMx7969q6lTp0qSRo0alSzhmiBfvnzGz8XX11enT5+22ufgwYOTJFxTklCPNq0/QtMjoVRAUFCQfv/99xTb/Pzzz4qMjEzS3pqE2FKqnQvYk7PH/cUqYlKYWZJYTOT9/U4e7in2k1Yf8f3Evw+c3JMvlAEgbWHh4ca2h7t7Ki3jubu5SVKKs8dSHSfs/jjuaYzj7u5mbIcnii+Bs5Oz2rRsqbFvvqkfvvlay3+crx++/kqvvfyykbA9eOSI/vXvVxV6bzY8gIx5WNeIxO91D4+0rhH390eEJx+nTs2aWjrnBw3s95z8r13T+598qsEvv6Lh/35V0778SpGRkXp52DAtmvW9fMqUTnY8AGQ3JF0BOzt06JCuXLkiSXrxxRfl5eVl87GrVq2SJHXt2lVubm5W2zk5Oalp06aSpF27dlltl9pMzMqVKxuxnT171uYYH7Rnzx5jgaw+ffqk2rZVq/sL96QWd1rJzKioKIWGhkqKT+baS+fOnY2SAIsWLUqxTcL3S5QoodatW6faX/78+SXFz45NqJUFZAVzolnZcXdTr8MYl2jRilwPXB8S+om7m/bCFnH3zulcrslnhANIW+LfC87Ozmm2T7j7IioqKsvGcXG+/36OTGGcRXN+0BeffqJ+vXupYb16qlKpkhrWr6/hgwdp5eJFata4saT4EgjfzJqVrjgBJJX0vZv2DaouLvHv7/ReI6ISj5NKCYP4OO5fQyKjk49jsVi0cetWbdqyNcW1J8IjIrR+82bt+NP6/wEAkJ1QXgCws4MH768YmjjJmJbg4GBj9ud3332n7777zqbjEpcneFCVVBblkOITlnfu3DESmBmRuAxBQiLYFqnFXSuNhXluJao1ac+kq6urq3r16qVZs2bpt99+U2hoqHLnzm3sDwgI0B9//CFJ6tevn8zm1D+3ShxbYGCgit2rc2ULZsciPeIS/cNkTuMfM7PL/X+YYh/4xywuOlpmd3eZbUgAJSRoY6P4QAHIiMQlbO7a8EFHQgLG2oep9hgn+u7997NbCuPkSfQ78UGenp769MMP9HTPZ3U7OFgrVq7S6yNH2pRQBpBc0vdu2gvbRd/7UDW91wjXxOOksYBe4muIm0vSceLi4vTfCRO04Y8tkqQeXbqo77M9Va5MGcXGxenkP/9o7sJF2urrq3EffKBTZ07rzXtl1YCsYjInv+MTeJiY6QrY2c2bN43t9CTZrqdRh9GalG7/S+DhkfptvwlJw9jY2AyNLWVN3GklUhPPAo5I5y1UaUmYZRsREaGff/45yb4lS5YYP6u0ZuM+GFtat3Q+qFSpUjY9AEm6m+j95JTGuebkdn9/zAO3Bib0k1Yf8f3Evw9jIqy/lwFY55nod7QttwNH3CvpYcttxknG8bw/Tlq/MyMiIo3ttP6GSEluLy89da88UEREhI75+aW7DwDxHtY1IvF7PTyFkgFJxkj8t+0DpQiW/vyLkXB9edhQTXz7LVWtVEmurq7ycHdX3Vq1NGPKZHV5qqMk6cclS7WddQ8AZHPMdAWyUEq1VK1JnPgcPXq0hg0bZtNxKS329DAljnvr1q0qUKCATcelVos1V65cqR6bN29eOTk5KSYmJsmsV3to3bq1SpUqpUuXLmnRokUaNGiQsS+htEDVqlVVp06dNPtKiM3Z2dkoWwBkhcSLZ7kXLqygEyettk2y6NYDi21EXL8h9wIF5F64UJpjJvQTns4FOwDEc3V1Vb68eRV0+7aupfEBZnBIiJHsSLzYlS2KPLDwTfWqVa22TbxIV9HC6RsnQfmyPsb2tRtpL8oHIGWJrxFpTXIISXKNSN96B4kXz7p247qqV7V+p1ziRbceXJjvl3sLzXp6eGjogAFW+3j1pZe0et16SdLPv/2mVs2apSteAHickHQF7KxgwYLG9tWrV1W5cmWbjkucrAwPD1eNGjXsHltWSBy3i4vLQ4nbZDKpYMGCCggIUFBQkN377tevnz7++GNt3rxZ165dU5EiRXT69Gnt3btXkjQglT8kE0uILfE5YatLly7Z1O7PXs+lu29kPyHnzhvbecqU0VVZXxwvz72FK+JiYnTngTIWIefOK3/VKnLJnVtu+fMr0sqHGm4FCsjlXk3o0PMXMhk9kHOV9fFR0KFDunj5smJiYqwuoHnuwv33WTkfn3SNkXh18XPnL0iplCNPGMcpVy6VLlUyXeMksFgydBiAFJQtU0ZBt2/r4pUrqV8jLl5MdIxPusYol+iDksTXmhTHuRA/jlOuXCpdsuQD++KPLefjk+qkkCKFC6tA/vwKvHVL5y9ctNoOsAeTiZu74VicgYCd1atXz9jevn27zccVKlRIJUqUkCRt2rRJFgf/12LrLN26desa2xs2bMiqcJKpWbOmJOnUqVN27zuhdEBsbKyWLl0qSVq4cKGxv1+/fjb1kxBbQqzpUbJkSZsegCTd8vNT7L16j4Xq1bHazuzkpPw1qscfc9xPcQ/Ubrt5+IixnVo/here33fzyNH0BwxAklSvdm1J8bfsHj9xwmq7fQfu14uvm0bd8wfVqFrVqKu67+ABq+3u3r2rI3//LUmqXq1ahmuxnjl3ztgunIEPHQHcl/B+j4iI0PGT1u9i2ZdoTYk66fy7s0aV+9eI/YcOWW139+5dHT12TJJUPdF1JUHCnWq2lC1LWGQrrbvbAOBxR9IVsLPatWsbtTZnzZqlO3fu2Hxst27dJElnz57VihUrsiQ+WyWum5raKqgtWrRQ/vz5JUnffvutQkJCsjw2SWrZsqUk6eTJk2kuBJbwXGxdzbVWrVrGjN2EZGtCaYHmzZurbKJZQ9aEhITo5L0/jhNiBbJKTHiEru/bL0kq0rCB3AulXB6gRJvWxgzVK9uSfyh0dYev4u79s+TTubPV8Xw6Py1JiouN1dUdvpmKHcjJ2rW+v+DmytVrUmwTFxen39aulSTlzp1bDRvUT9cYnp6eatyggSTprz17FWClJMimLVt1JyxMkvRE61Smw6Yi9M4drd+0SZLk7uaWaikDAGlr2+r+35Cr1qxNsU1cXJxxu37u3F5qWL9eiu2s8fT0UOP68deVv/bus1ruZNO2bcY1ol0KiwWXuLeWxelz5xSSyt/m/5w9q+B7/y+USMf6F0CGmE2P3gM5CklXwM7MZrP+85//SIpfgX7gwIHGisMPiouL09WrV42v//Of/xgrjo4YMUL79u1Lday1a9fqyJEjqbbJqMSLgJ05c8ZqOzc3N7355puSpICAAD333HMKu/cHWUpCQ0P15ZdfZjq+hERmXFxcmj+nhOeS2vN4UMJs1z179mjx4sXGrFVbFtCSpH379hmzlUm6IrN8OndSn92+6rPbV9WHD02xzcmFiyXFz2at95//k8mc9Fe8i7e3ao18WZIUHRKqs7+uTtZH5K1burh+oySpWNPGKtm2TbI2Jdu1VbGmjSVJF9att1qCAEDaalavrnr3aoT/8uuvOnQ0+czxeQsX6ez585KkAX37yPmB24tXrl6tmo2bqGbjJvr6++9THGfwgPjfXTGxsfrgk0+SzUQLun1bn331laT4xG7PZ7ol68N31y5FRkYm+36CsLAwvTn2Hd0ODpYk9ejW1eF154HHXc1q1YwZ8StXr9bhe7PRE5u/eIlxjejfu3eya8SqNWtVu3kL1W7eQt/Mnp3iOAOfj7+LKyY2Vh9OnZbiNWLG199Iik/s9uzaJVkfrZs3lyRFR0fr0y++SPGuvaioKE35bLrxdavm1HMFkL1R0xXIAiNHjtRvv/2mjRs36pdfflHNmjX1yiuvqEGDBvLw8FBAQIB2796txYsX6/nnn9fEiRMlSWXLltW3336rIUOG6NatW2revLleeOEFdenSRaVLl1ZMTIwuX76sPXv2aMWKFTpz5ox+++031UrnrYa2qFu3rtzc3BQZGalx48bJyclJPj4+Mt9L5JQoUULu91ZHHTNmjDZv3qzNmzfr999/V7Vq1TRixAg1bdpUefPmVWhoqE6ePKmtW7dq5cqVcnNz06hRozIVX7NmzZQvXz4FBQVp8+bNatu2baptz507p19//VXfffedmjdvbsx+zZMnT4qLevXv319jx46VxWLRK6+8Iil+QazevXvbFN/mzZslSfny5VPTpk3T+/SQjRSsXUteJUsYX7t65zW2vUqWlE/nTknan1/ze4bGub7/gC5u2KTSHZ5UiVYt1erzz/TP0mWKuHFT3uXLq+rggfIsVlSSdOTrb3XXyiyUo9/OVNEmjeWWP5+avDdRJxctkf/O+NWFizVvpsrPx9cRjrwVpL+/TTnBA8B2b/3f6xr44r8UGRWll159TS8OGqSG9esrKipKv2/cqBUrV0qSfEqX1qDnn8/QGI0bNFCn9u31+8aN2rpjh/7171c14Lm+KlyokE6dPqPv586Vf0CAJGn0K6/IO0+eZH3Mnj9fb42foCfbtlHd2rVVqkQJeXh4KDQ0VIeP/q2lP/9sLMTlU6aMXhk+PEOxAkhqzOjXNHjEy4qMitKI0a9r+MCBalivriKjorVu8yb9tOpXSVKZUqU08DnbSmA9qHH9+nrqySe0btNmbfX11UujX9eAPn1UqGBB/XP2jGbNmy//e+/v10aMUJ4UrhEvPNdXv6xerVtBQVq1Zq0uXrqs3t27q2yZ0oqNi9OJU6e0aPkKI0FczsdHzzz9dMZ+KADwmCDpCmQBs9mslStXatCgQVqxYoVOnTql0aNH23Ts4MGD5e7urn/9618KCQnR7NmzNdvKp9Jms1menp52jPy+3Llz69VXX9XHH3+sAwcOqGPHjkn2b9myRW3atJEUX4/pt99+04gRIzR//nxdvHhRY8eOtdp3SknO9HJxcVGfPn303XffafHixXr//fettn3zzTe1YsUKRUVFacSIEUn2DRo0SHPnzk12TKlSpdSyZUtt375dt2/fliR17NjR5kWxFi+On3XYp08fZvrkcGW7dVHZzin/U1Godi0Vqp30Q5OMJl0lae8HH8rJ00PFmzdTkQb1VeSB25DjYmPlN2eezq5cZbWPiOvX5fuf/6r5lA/lXrCgqg4coKoDky4eF3Hzpnb+d6wiWJkcyLSqlSvrkw/e19sTJupOWJhmfPNNsjY+pUvrq2lTM/U7/93/vaM7YWHa8eef2rN/v/bs359kv9ls1ktDh6hPzx5W+wgOCdFPq341kjwpqV+3rqa8O0ne3t4ZjhXAfVUrVdKUdyfpnXff052wMH3+3XfJ2pQpVUpffvqJPD09MjzOpLFjFRYWrh27dmnvgQPaeyBpDWiz2ax/DR6k3t27p3h8vrx59c20afq/d8bqylV/HTxyRAet3JFXuWJFTZ/8UYZrRwO2YiEtOBpJVyCLeHh4aPny5dqyZYvmzJkjX19fBQQEyMnJSSVKlFC1atXUq1cvo45rYn379lWHDh00c+ZMrVu3TsePH1dQUJCcnZ1VtGhRVa9eXW3btlWvXr2M+rFZYfLkyapYsaLmz5+vY8eOKTg42GpxfHd3d82bN0+vvvqqZs+ere3bt+vy5csKCwuTl5eXfHx8VL9+fXXq1ElduiS/JSkjRo4cqe+++05nz57Vrl27rM4orVOnjnbt2qVPPvlEO3fu1LVr12yq79q/f/8ki6E9b+MMo127duncvYVEEmbJAg9DbFS0fN8Yo9Id2suncyflrVhBzl5eirwVpJuHD+v08p8U+PexNPu5dey41vcfpEp9e6t4q5byvFeiI8z/qq5u99WpJcsU/ZDqNwM5QZuWLfXTwgVasHSpduz8U9euX5eTs7NKlyypDk+0U7/eveWeqNZ6Rri5uenrz6Zpzfr1WrV6jU7+849C79xRgfz5Va9ObfXr3TvVBXjefPVV7d67V4eP/q3zFy/o9u1ghYaGys3NTYUKFVTN6tX1dIcOata4sc2LcQKwTZsWLbR8/jwtXLZcO/78U9du3JCzs5NKlyip9u3a6rlnn838NcLVVV9++onWbtigVWt/16nTp+9dI/KpXq3aeq7Xs6p9b80Da6pUqqgV8+frt99/15YdvvrnzBkFh4TIZDIpf768qlKxktq3a6uOTzyRrAwCAGRHJoujl0gHgEx46qmntH79eg0bNkyzZs1ydDiSpOHDh2v27Nlq3769NmzYkKVjLWvSIkv7B/B4677uN0eHAOARFXdvBXkASIlbwZQXZn2c/DXuHUeHkEzj9z5wdAh4iJhrDeCxNmnSJEnS/PnzdeHCBQdHI128eFHz58+XdD82AAAAAMBDZjY9eg/kKCRdATzWGjdurD59+uju3bv66KOPHB2OPvroI929e1fPPvssC2gBAAAAAJBDUUgFwGNv6tSpqlq1qlxdXRUXFyez2TGfJ1ksFpUpU0YTJkzQ0KFDHRIDAAAAAABwPJKuAB57JUuW1MSJEx0dhkwmk9566y1HhwEAAAAAOZ7JxM3dcCzOQAAAAAAAAACwI5KuAAAAAAAAAGBHlBcAAAAAAABAtmIymxwdAnI4ZroCAAAAAAAAgB2RdAUAAAAAAAAAO6K8AAAAAAAAALIXE+UF4FjMdAUAAAAAAAAAOyLpCgAAAAAAAAB2RHkBAAAAAAAAZCsmM/MM4VicgQAAAAAAAABgRyRdAQAAAAAAAMCOKC8AAAAAAACAbMVkMjk6BORwzHQFAAAAAAAAADsi6QoAAAAAAAAAdkR5AQAAAAAAAGQvZuYZwrE4AwEAAAAAAADAjpjpCgAAAAAAgGyFhbTgaMx0BQAAAAAAAAA7IukKAAAAAAAAAHZEeQEAAAAAAABkLybmGcKxOAMBAAAAAAAAwI5IugIAAAAAAACAHVFeAAAAAAAAANmKyWxydAjI4ZjpCgAAAAAAAAB2RNIVAAAAAAAAAOyI8gIAAAAAAADIVkwm5hnCsTgDAQAAAAAAAMCOSLoCAAAAAAAAgB1RXgAAAAAAAADZi9nk6AiQwzHTFQAAAAAAAADsiKQrAAAAAAAAANgR5QUAAAAAAACQrZhMzDOEY3EGAgAAAAAAAIAdkXQFAAAAAAAAADuivAAAAAAAAACyFZPZ5OgQkMMx0xUAAAAAAAAA7IikKwAAAAAAAADYEeUFAAAAAAAAkL2YmGcIx+IMBAAAAAAAALKJixcv6s0331TVqlXl6emp/Pnzq1GjRvr0008VHh6eqb4nTpwok8lk02Pr1q1p9hcYGKgJEyaodu3a8vb2Vp48eVS7dm1NmDBBgYGBmYrV0ZjpCgAAAAAAgGwlpy6ktWbNGvXv31/BwcHG98LDw7V3717t3btXs2bN0tq1a1WuXDkHRhlv7969euaZZ+Tv75/k+0eOHNGRI0c0a9YsrVq1Sg0aNHBQhJlD0hUAAAAAAAB4zB0+fFh9+vRReHi4vLy89Pbbb6tt27aKiIjQkiVL9P333+vkyZPq3Lmz9u7dKy8vr0yNd/To0VT3ly1b1uq+K1euqGvXrrp27ZqcnJz0f//3f+rSpYskafXq1Zo2bZquXr2qLl26aP/+/SpRokSmYnUEkq4AAAAAAADAY2706NEKDw+Xk5OTNmzYoKZNmxr72rVrp4oVK2rMmDE6ceKEpk2bpvHjx2dqvBo1amT42HfeeUfXrl2TJC1atEi9e/c29rVs2VINGjRQnz59dO3aNY0bN04//PBDpmJ1BGq6AgAAAAAAIHsxmR+9Rxbau3evUUN12LBhSRKuCd544w1VrVpVkjR9+nTdvXs3S2Oy5tq1a1qwYIEkqWPHjkkSrgl69+6tjh07SpLmz59vJGgfJyRdAQAAAAAAgMfYypUrje0hQ4ak2MZsNmvgwIGSpKCgIJsWusoKv/76q2JjYyVZj1WSBg8eLEmKjY3Vr7/++jBCsyuSrgAAAAAAAMBjbMeOHZIkT09P1a9f32q71q1bG9u+vr5ZHldKEmKVksbzoEch1swg6QoAAAAAAIBsxWQ2PXKPrOTn5ydJqlChgpycrC/hVKVKlWTHZFT79u1VoEABubi4qHDhwmrTpo0mT56soKAgm2L19vZW0aJFrbYrVqyY8uTJY5dYHYGFtAAAAAAAAIAsdvnyZZvalSxZMl39RkZG6ubNmzYdmy9fPnl6eiosLEyXLl1K1zgP2rRpk7F948YNbdu2Tdu2bdOUKVM0d+5cPfPMMykelzCuLc+zVKlSOnbsWKZjdQSSrgAAAAAAAEAWK1WqlE3tLBZLuvoNDQ01tr28vNJsn5B0vXPnTrrGSVCzZk11795djRo1UvHixXX37l2dPHlSCxcu1IYNG3T79m09++yz+u2339SpUyer8doaq6QMx+pIJF0BAAAAAACQrZhMOaeiZmRkpLHt4uKSZntXV1dJUkRERLrHGj16tCZOnJjs+40bN9bAgQP13XffacSIEYqNjdXw4cN1+vRpubu7pxhvVsfqaCRdAQAAAAAAgCyWVbfIu7m5GdvR0dFpto+KipKkZMlQW+TNmzfV/S+99JL27dunWbNm6erVq/r555/Vv3//ZPGGh4dneayORtIVAAAAAAAAyGLprdVqq9y5cxvbttyGHxYWJsm22/sz4qWXXtKsWbMkSdu2bUuWdM2dO7fCw8MfiVizUs6Zaw0AAAAAAICcwWx69B5ZxM3NTQULFpSU9mJdQUFBRiLT1hqz6VWtWjVj+8qVK8n2JySfbVlYLGF2cFbFmpVIugIAAAAAAACPsapVq0qSTp8+rZiYGKvtTpw4kewYe0trIbCEpGxwcLACAgKstvP391dISIikrIs1K5F0BQAAAAAAAB5jLVq0kBR/O/7+/futttu2bZux3bx58yyJ5fjx48Z28eLFk+1PiPXBeB70MGLNSiRdAQAAAAAAkK2YzOZH7pGVunfvbmzPmTMnxTZxcXGaP3++pPgFsdq2bZslsXz33XfGduvWrZPt79atm8z3fh7WYpWkuXPnSpLMZrO6detm3yAfApKuAAAAAAAAwGOsUaNGatmypSRp9uzZ2rVrV7I2U6dOlZ+fnyTptddek7Ozc5L9c+fOlclkkslk0sSJE5Mdf/ToUZ0+fTrVOL777jvNnj1bklS0aFH16NEjWZuiRYsai2utX79eK1asSNZm+fLlWr9+vSTphRdeUNGiRVMd91Hk5OgAAAAAAAAAAGTOjBkz1Lx5c0VERKhDhw4aO3as2rZtq4iICC1ZskQzZ86UJFWqVElvvPFGuvvfv3+/hg8frrZt26pTp06qWbOmChQooJiYGJ04cUILFizQxo0bJUm5cuXSd999J09PzxT7+uCDD7Ru3TrduHFD/fr10759+9SlSxdJ0urVqzV16lRJUqFChfT+++9n5MfhcCRdAQAAAAAAkL2YTI6O4KGrW7euli5dqgEDBigkJERjx45N1qZSpUpas2aNcufOnaExYmNjtWnTJm3atMlqmwIFCmj27NmplgQoVaqUfvvtN3Xv3l0BAQGaMmWKpkyZkqRN0aJFtXLlSpUsWTJDsToaSVcAAAAAAAAgG+jatauOHDmiGTNmaM2aNbp8+bJcXFxUoUIF9e7dW6NGjZKHh0eG+n766aeN0gUHDx7UtWvXFBgYKIvFovz586t27dp66qmnNHjwYOXJkyfN/ho3bqyjR49qxowZWrlypc6fPy9JKlu2rJ555hmNHj1aBQoUyFCsjwKTxWKxODoIAEDGLGvSIu1GAHKs7ut+c3QIAB5RcTExjg4BwCPMrWAhR4eQacd/+N7RISRTbeiLjg4BDxEzXQEAAAAAAJCtmMysHQ/H4gwEAAAAAAAAADsi6QoAAAAAAAAAdkR5AQAAAAAAAGQrJpPJ0SEgh2OmKwAAAAAAAADYETNdAQAAAAAAkL2wkBYcjDMQAAAAAAAAAOyIpCsAAAAAAAAA2BHlBQAAAAAAAJCtsJAWHI2ZrgAAAAAAAABgRyRdAQAAAAAAAMCOKC8AAAAAAACAbMVkZp4hHIszEAAAAAAAAADsiKQrAAAAAAAAANgR5QUAAAAAAACQvZiYZwjH4gwEAAAAAAAAADsi6QoAAAAAAAAAdkR5AQAAAAAAAGQrJrPJ0SEgh2OmKwAAAAAAAADYEUlXAAAAAAAAALAjygsAAAAAAAAgezExzxCOxRkIAAAAAAAAAHZE0hUAAAAAAAAA7IjyAgAAAAAAAMhWTGaTo0NADsdMVwAAAAAAAACwI5KuAAAAAAAAAGBHlBcAAAAAAABAtmIyMc8QjsUZCAAAAAAAAAB2RNIVAAAAAAAAAOyI8gIAAAAAAADIXswmR0eAHI6ZrgAAAAAAAABgR8x0BQAAAAAAQLbCQlpwNM5AAAAAAAAAALAjkq4AAAAAAAAAYEeUFwAAAAAAAEC2YmIhLTgYM10BAAAAAAAAwI5IugIAAAAAAACAHVFeAAAAAAAAANmLiXmGcCzOQAAAAAAAAACwI5KuAAAAAAAAAGBHlBcAAAAAAABAtmIyM88QjsUZCAAAAAAAAAB2RNIVAAAAAAAAAOyI8gIAAAAAAADIXkwmR0eAHI6ZrgAAAAAAAABgRyRdAQAAAAAAAMCOKC8AAAAAAACAbMVkZp4hHIszEAAAAAAAAADsiKQrAAAAAAAAANgR5QUAAAAAAACQrZjMJkeHgByOpCsAPMa6r/vN0SEAeIStfKqro0MA8Ijq8ccGR4cAAEC2RnkBAAAAAAAAALAjZroCAAAAAAAgezExzxCOxRkIAAAAAAAAAHZE0hUAAAAAAAAA7IjyAgAAAAAAAMhWTGaTo0NADsdMVwAAAAAAAACwI2a6AgAAAAAAIFsxsZAWHIwzEAAAAAAAAADsiKQrAAAAAAAAANgR5QUAAAAAAACQvZiZZwjH4gwEAAAAAAAAADsi6QoAAAAAAAAAdkR5AQAAAAAAAGQrJpPJ0SEgh2OmKwAAAAAAAADYEUlXAAAAAAAAALAjygsAAAAAAAAgWzGZmWcIx+IMBAAAAAAAAAA7IukKAAAAAAAAAHZEeQEAAAAAAABkLyaToyNADsdMVwAAAAAAAACwI5KuAAAAAAAAQDZx8eJFvfnmm6patao8PT2VP39+NWrUSJ9++qnCw8Mz1XdISIiWLFmiF198UfXq1VPevHnl4uKiQoUKqU2bNvr00091+/btNPvx8fGRyWRK8+Hj45OpeB3JZLFYLI4OAgCQMdG3gxwdAoBH2Mqnujo6BACPqB5/bHB0CAAeYc4eHo4OIdP8//R1dAjJFGvWIsvHWLNmjfr376/g4OAU91euXFlr165VuXLl0t3377//rh49eigqKirVdkWKFNHixYvVtm1bq218fHx04cKFNMcsU6aMzp8/n95QHwnUdAUAAAAAAAAec4cPH1afPn0UHh4uLy8vvf3222rbtq0iIiK0ZMkSff/99zp58qQ6d+6svXv3ysvLK139BwYGKioqSmazWe3bt9dTTz2l2rVrK2/evLp8+bIWLlyopUuX6tq1a+rSpYt27typOnXqpNrnM888o/fff9/qfhcXl3TF+Cgh6QoAAAAAAAA85kaPHq3w8HA5OTlpw4YNatq0qbGvXbt2qlixosaMGaMTJ05o2rRpGj9+fLr6d3Z21ksvvaSxY8eqdOnSSfbVrVtXXbt2VfPmzfXqq68qPDxcb7zxhjZv3pxqn3nz5lWNGjXSFcfjgpquAAAAAAAAyFZMZvMj98hKe/fu1datWyVJw4YNS5JwTfDGG2+oatWqkqTp06fr7t276Rqjb9+++vbbb5MlXBP797//rQYNGkiStm7dqsDAwHSNkZ2QdAUAAAAAAAAeYytXrjS2hwwZkmIbs9msgQMHSpKCgoKMJK29tWnTRpIUFxenc+fOZckYjwOSrgAAAAAAAMBjbMeOHZIkT09P1a9f32q71q1bG9u+vlmz2FjihbbMWTzD91GWc585AAAAAAAAsieT6dF7ZCE/Pz9JUoUKFeTkZH0JpypVqiQ7xt62bdsmSXJyclKFChVSbbt9+3bVqlVLnp6e8vDwUNmyZdW3b1+tXLlSFoslS+J7WFhICwAAAAAAAMhily9ftqldyZIl09VvZGSkbt68adOx+fLlk6enp8LCwnTp0qV0jWOLNWvW6MiRI5Kkjh07Kk+ePKm2f7D8wPnz53X+/HktW7ZMzZs319KlS1WiRAm7x/kwkHQFAAAAAAAAslipUqVsapfeGZ6hoaHGtpeXV5rtE5Kud+7cSdc4abl165ZGjhwpScqVK5fee+89q21dXFzUrVs3dejQQTVq1JC3t7du376tXbt26ZtvvtGlS5e0c+dOtW/fXrt27ZK3t7ddY30YSLoCAAAAAAAgWzHloFqikZGRxraLi0ua7V1dXSVJERERdoshNjZW/fv314ULFyRJ//vf/1S3bl2r7ffs2aO8efMm+36bNm00atQo9erVSxs2bJCfn58mTZqkadOm2S3Wh4WkKwAAAAAAAJDFsuJ2fklyc3MztqOjo9Nsn7DQlbu7u91ieOWVV7Ru3TpJUufOnTVu3LhU26eUcE2QO3duLVu2TOXLl1dgYKBmzpypyZMn25RQfpSQdAUAAAAAAEC2YsrihasyIr21Wm2VO3duY9uWkgFhYWGSbCtFYIu3335bM2fOlCS1aNFCy5cvV65cuTLVp7e3t5577jl99dVXCgsL0759+9SsWTN7hPvQ5Jy51gAAAAAAAEA24+bmpoIFC0pKe7GuoKAgI+lqa43Z1EyZMkWTJ0+WJNWrV0+rV6+22wzaatWqGdtXrlyxS58PE0lXAAAAAAAA4DFWtWpVSdLp06cVExNjtd2JEyeSHZNRX3/9td566y2jr/Xr19t1wav0Lij2qCHpCgAAAAAAgGzFZDY/co+s1KJFC0nxpQP2799vtd22bduM7ebNm2d4vB9//FGjRo2SJJUrV06bNm0yZtvay/Hjx43t4sWL27Xvh4GkKwAAAAAAAPAY6969u7E9Z86cFNvExcVp/vz5kuIXsmrbtm2Gxvr55581ZMgQWSwWlSxZUps3b7Z7UjQ4OFhLly6VJHl4eKhBgwZ27f9hIOkKAAAAAAAAPMYaNWqkli1bSpJmz56tXbt2JWszdepU+fn5SZJee+01OTs7J9k/d+5cmUwmmUwmTZw4McVxNmzYoH79+ik2NlaFCxfWpk2b5OPjk65Y161bp4iICKv7Q0ND1adPHwUGBkqShg0bJldX13SN8ShwcnQAAAAAAAAAgF1l8e38j6IZM2aoefPmioiIUIcOHTR27Fi1bdtWERERWrJkiWbOnClJqlSpkt544410979792716NFD0dHRcnZ21meffaa7d+/q77//tnpMyZIllTdv3iTfmzx5svr376+ePXuqRYsWKl++vLy8vHT79m3t2rVL33zzjS5duiRJqly5stUE8KOOpCsAAAAAAADwmKtbt66WLl2qAQMGKCQkRGPHjk3WplKlSlqzZo1y586d7v7XrVun8PBwSdLdu3fVv3//NI+ZM2eOBg8enOz7t27d0qxZszRr1iyrx7Zq1UqLFi1S/vz50x3ro4CkKwAAAAAAAJANdO3aVUeOHNGMGTO0Zs0aXb58WS4uLqpQoYJ69+6tUaNGycPDw6Exfvrpp9q8ebN27dqlkydP6ubNm7p9+7Y8PDxUvHhxNW7cWP369VOHDh1kMpkcGmtmmCwWi8XRQQAAMib6dpCjQwDwCFv5VFdHhwDgEdXjjw2ODgHAI8zZwUk5e7h5+KCjQ0imYO26jg4BD1HOK3ABAAAAAAAAAFmIpCsAAAAAAAAA2BE1XQEAAAAAAJCtmMzMM4RjcQYCAAAAAAAAgB2RdAUAAAAAAAAAO6K8AAAAAAAAALIXE/MM4VicgQAAAAAAAABgRyRdAQAAAAAAAMCOKC8AAAAAAACAbMVkNjk6BORwzHQFAAAAAAAAADsi6QoAAAAAAAAAdkR5AQAAAAAAAGQrJjPzDOFYnIEAAAAAAAAAYEckXQEAAAAAAADAjigvAAAAAAAAgGzFZDI5OgTkcMx0BQAAAAAAAAA7YqYrAAAAAAAAshcW0oKDcQYCAAAAAAAAgB2RdAUAAAAAAAAAO6K8AAAAAAAAALIVk4l5hnAszkAAAAAAAAAAsCOSrgAAAAAAAABgR5QXAAAAAAAAQLZiMpscHQJyOGa6AgAAAAAAAIAdkXQFAAAAAAAAADuivAAAAAAAAACyFZOZeYZwLM5AAAAAAAAAALAjkq4AAAAAAAAAYEeUFwAAAAAAAED2YmKeIRyLMxAAAAAAAAAA7IikKwAAAAAAAADYEeUFAAAAAAAAkK2YzCZHh4AcjpmuAAAAAAAAAGBHJF0BAAAAAAAAwI4oLwAAAAAAAIBsxWRiniEcizMQAAAAAAAAAOyIpCsAAAAAAAAA2BHlBQAAAAAAAJCtmMzMM4RjcQYCAAAAAAAAgB2RdAUAAAAAAAAAO6K8AAAAAAAAALIXs8nRESCHY6YrAAAAAAAAANgRM10BAAAAAACQrZhMzDOEY3EGAgAAAAAAAIAdkXQFAAAAAAAAADuivAAAAAAAAACyFRMLacHBmOkKAAAAAAAAAHZE0hUAAAAAAAAA7IjyAgAAAAAAAMheTMwzhGNxBgIAAAAAAACAHZF0BQAAAAAAAAA7orwAAAAAAAAAshWT2eToEJDDMdMVAAAAAAAAAOyIpCsAAAAAAAAA2BHlBQAAAAAAAJCtmEzMM4RjcQYCAAAAAAAAgB2RdAUAAAAAAAAAO6K8AAAAAAAAALIXk8nRESCHY6YrAAAAAAAAANgRSVcAAAAAAAAAsCPKCwAAAAAAACBbMVFeAA7GTFcAAAAAAAAAsCOSrgAAAAAAAABgR5QXAAAAAAAAQPZiZp4hHIszEAAAAAAAAADsiKQrAAAAAAAAANgR5QUAAAAAAACQvZhMjo4AORxJVwDJzJs3T4MHD1a1atV09OhRmR+TWjgTJ07UpEmTJEkWiyXZfh8fH124cEGDBg3S3Llz7T7+xx9/rP/+979q3bq1tm7davf+8XjzDwjQwqXLtP3PnQoIuCZnFxeVLllSHZ94Qn17PSt3Nze7jPP7ho1auXq1Tp0+rZDQUBUskF/1atfRc716qXbNGqke27F7d131D0hzjOLFimr9ypV2iRfIyVzz5VX+atWUv1rV+EfVKnLNm1eSdG7NWu1970O7j1nqySdUtsvT8q5QXi65cyvy1i3dOHRYp1f8olvHjtnUh0uePKrYp5dKtG4lj2JFZTKZFHbVX1e2bdc/y1YoOiTE7nEDuM/f318LFi/Wdl9fBfj7x/9NUaqUOnbooOd695a7u7vdxlq7bp1W/vqrTv3zj0JCQlSwQAHVq1dP/fr0Ue1atWzq4/bt21qweLH+2LJFV/39ZbFYVKJ4cbVr21YD+vVT3nvXPQDIbkyWlDITAHKssLAwVaxYUf7+/lq8eLGee+45R4dkM0cnXcPCwuTj46ObN29qxYoVevbZZ+0+xoOibwdl+RjIvO2+O/XWhAkKvXMnxf0+Zcro68+mqVSJEhkeIyoqSm+MHattvjtT3G82m/Xy8OEaMWyo1T5IumY/K5/q6ugQkIo+u32t7rN30tXs4qJmH76n4i2ap7g/LjZWx2f9oONz5qXaT76qVdTi48lyL1Qwxf3h129o55i3FHTiZKZjRtbq8ccGR4eADNi2Y4feGjvW6t8UZX189PUXX6hUyZKZGicqKkr/N2aMtm3fnuJ+s9msV156SSP+9a9U+zl67JheHT1aN27eTHF/4UKF9Plnn6lG9eqZihf25+zh4egQMu2ulfeJIzl7eTk6BDxEzHQFHpK5c+dqyJAhkqRz587Jx8fHsQFZ8fnnn8vf319Vq1ZVnz59HB3OY8XT01Ovv/663nnnHY0bN049evR4bGYJI+ucPPWP3nznHUVERsrDw0PDBw1Uw/r1FRUVpd83bNRPq1bp/IULGvl//6clc+bII4N/4I7/4AMj4dqofn3179tXhQsV1D+nz+j7efN06fJlfTVzpgoVLKBnn3km1b7atmqlf494yep+Z2fnDMUIwLqwgGsKPX9eRZs0zpL+G77zlpFwvbZvv/5ZulwRN28qb/nyqjLoBeUuVVI1XnpREYGBOvfr6hT7cC9UUC0+nSL3AgUUFxOjU4uX6uq9607xFs1VqV9feRQupBZTP9amwcMUcSPlJAuAjDlx8qTeHDPm/t8UQ4eqUYMG8X9TrF+vFT//rHPnz+uVV1/V0gULMvw3hSSNnzTJSLg2athQA/r1U6HChfXPP//o+x9+0KVLl/TlN9+oYMGC6tWzZ4p9XLt+XaNee02BgYFycnLSwAED1LplS0nxyeP5Cxbo+o0bGvnaa1q2aJGKFC6c4XgB4FFE0hWAISIiQlOnTpUkvf7669kuYXj+/PksH2PkyJF677335Ofnp59++km9e/fO8jHxaJvy2WeKiIyUU65c+u7zGapTs6axr3GDBipTqpSmffmlzp2/oHmLFuvl4cPSPcbeAwe0dn38jKU2LVto+pQpypUrlySpRrVqatOqpfoOGiz/gABN+/IrtW/XTnly57baX+7cXqpYvny64wCQPsdm/aBbfid0y89PUbeC5FGsqLr8ssLu4xSqW0dlOnaQJF3Z4as//ztWlrg4SVKQ3wld2eGr9nNny7NYUdUa+You/7E1xdlBNUb8S+4FCkiSdo+fpMt/bDH23Tx8RLf8TqjZh+/JvUAB1fjXi9r7wUd2fy5ATjbl00/j/6ZwctLMr79Wndq1jX2NGzVS6dKlNW36dJ07d07zfvxRL79k/QPU1Ozdt09rfv9dktSmVSvNmDbN+LuiZvXqatu6tfo8/3z83xUzZqhD+/Yp/l3x+ZdfKjAwMD72Dz9Ux/btjX3169VT9WrV9MaYMQoMDNQXX3+t9ydOzFC8AJK7ePGiPv/8c61Zs0YXL16Uq6urKlSooD59+uiVV17J1IcyiS1ZskRz5szRkSNHFBQUpKJFi6ply5YaOXKkmjRpYlMfgYGB+vzzz7Vy5UqdP39eFotFZcuWVffu3fXqq6+qwL2/PR5H2SujAiBTFixYoMDAQLm6upIszCBvb289/fTTkqQZM2Y4OBo42t/Hj2vvgQOSpB7duiVJuCYY1P95lbs3833B0qW6GxOT7nHm/LhAkpQrVy69858xxj9GCfLlzavXR46UJIWEhOiXX39N9xgA7O/YrB/kv/NPRd3K2lIxlQc8L0mKi4nRgY+nGgnXBNHBwTry1TeSJFfvPCrbrUuyPlzz5zMSt/67/kqScE1w+Y8t8t/1lySpTKeOcs2fz67PA8jJjh47pr379kmSejzzTJKEa4LBL7ygcmXLSpJ+XLRId+/ezdBYP8yLLzOSK1cu/W/s2OR/V+TLp9dfe01S/N8VP//yS7I+bgYGavXatZKk5s2aJUm4JujYvr2aN2smSfpt9WrdvJegBezG9Ag+HoI1a9aoVq1amjp1qk6cOKHw8HAFBQVp7969+s9//qN69erp7NmzmRojMjJSXbt2Vb9+/bRhwwYFBAQoKipKFy5c0IIFC9S8eXO99957afazd+9e1axZU++++66OHDmikJAQhYaG6siRI3r33XdVq1Yt7bt37XsckXQFYJg9e7YkqXPnzhS0z4T+/ftLknbu3KmTJ6lpl5P9sW2bsd29S+cU25jNZnW9l6gPCQnR3v370zVGeHi4/rr3h0iTRg1VtEjKt+Y92baNvDw9JUmbWOgNyDGc3N1VpEF9SdK1vfsUceNGiu2ubN2m6HuzW0u2aZVsf4mWLWR2ir9J7vyaNVbHO78mPslidnJSiZYtMhU7gPv+2HL/g44eVsoEmc1mdesS/6FJRv6mkO79XbFnjySpaePGKlqkSIrt2j/xhLzu1abc9McfyfZv3bZNsbGxkqTu3bpZHe+ZrvG1x2NjY7U10d9NADLm8OHD6tOnj4KDg+Xl5aUPPvhAf/75pzZv3qwXX3xRknTy5El17txZdzJR83bYsGFavTq+HFHbtm21cuVK7dmzR7Nnz1b58uUVFxen8ePHa9asWVb7uHLlirp27Sp/f385OTlpzJgx2r59u7Zv364xY8bIyclJV69eVZcuXXTlypUMx+pIJF3x2Nm5c6eGDx+uypUrK0+ePPLy8lKVKlXUvXt3zZ8/XyFWVsy9fPmy3n77bdWrV0/58uWTm5ubSpcurb59+2rLluSzNRKcP39eJpNJJpPJWHxp48aN6tq1q4oWLSpXV1eVLVtWL7/8si5fvpzs+K1bt8pkMhn1XCWpbNmyRp8JD2ur3W/cuFEDBgxQ2bJl5e7urjx58qh27doaM2aM/P39rcY9ceJEo29JCg4O1nvvvae6desqb968SZ6PJF24cEF//RU/OyW1BaBS+nn8/PPPevrpp1W8eHE5OTmpTZs2SY7ZvXu3/ve//6lNmzYqWrSoXFxclCdPHlWrVk0vv/yyjh8/bnW8xC5fvqyRI0eqXLlycnNzU/HixdWtWzdt2rTJpuN9fHxkMpk0ePDgVNv99ttv6tWrl0qWLClXV1cVKFBATZs21eTJk236xdS5c2e53VuJfunSpTbFhuxp/6HDkiR3d3dVq1LFarsG9eoa2wcPH0nXGEePH1d0dHR8P3XrWW3n7OysWjVqSJL+PnY8QzNqATx+8lerqlyurpKkGwcOWW0XFxOjW38fu3dMNZkemNlWMNGsutT6uXHw/r6CNq5sDiBtB+7dOePu7q5qVatabdegfv37xxw8mO5xjv799/2/KxL19SBnZ2fVuncHz9/HjiWbVbv/XryS1DCVfhpmMl4ASY0ePVrh4eFycnLShg0bNHbsWDVt2lTt2rXTzJkz9fHHH0uSTpw4oWnTpmVojG3btmnRokWSpK5du2rjxo165pln1LBhQw0dOlS7d+9W6dKlJUljxozR7du3U+znnXfe0bVr1yRJixYt0pQpU9SyZUu1bNlSU6ZMMca4du2axo0bl6FYHY2kKx4bERERev7559WiRQvNnj1bp06dUmhoqMLCwnTy5EmtWrVKgwYNSvHCMXv2bFWqVEmTJ0/WwYMHdfv2bUVFRenSpUtatmyZ2rVrp+HDhyvGhiTEW2+9pQ4dOmj16tW6du2aoqOjdf78eX377beqV6+e/Pz87PJ8w8LC1LNnT3Xo0EELFy7U+fPnFRkZaUy1/+STT1SpUiXj06XU/PPPP6pTp47Gjx+vQ4cOKTg4OFmbxElfW2uvWCwWDRw4UM8++6x+//13+fv7G59oJ5g7d66aNm2qDz74QNu2bdO1a9d09+5dhYaGys/PT99++61q1aqlr7/+OtWxtm3bpurVq+vrr7/WuXPnFBUVJX9/f/32229q37693n33XZtiTk1kZKR69uypbt266aefftKVK1cUHR2tW7duaffu3Xr7/9m77/CmyveP45+UtrS0QMEis1CGQNl7iAiIbHEgGxFQEARF/ImoOBBRcCsyvqKUpYAiGxHZqzLKlD1lb8rspG3y+6NNSNskTUtqSn2/rquXkfOc59xNk9PTO/e5n3feUYUKFbR7926H8+TOnVs1atSQJLvJdPw3nEjuI1yyRAl5etpvo166VCnL438y2Hv4nxN3x5cOLmV/oNVxEhITdfr0GbvjduzarQ49eqhek6aq+2gTtX76GQ19912tXr9eJpMpQ/EBcK98Vgt33jp1yuHYW6dOS0qqUs0bFJRqnqTzx53btxV77ZrdOWIjIiwVs3nTOScBcN4/J05IkkoGBTm+pkhuLyAlLd6b2eOknsvmsZLPLwkJCTp9+rTNefL6+yswMNDuHIUKFbJUzP6TiXgBhwyG7PeVhbZt22b5+/PFF19Uw4YN04x54403FJL8wc23336bqTYk5sRtrly5NHHixDQtSAIDA/XZZ59Jkq5fv265o9bapUuX9PPPSS3SWrVqZbO9YadOndSqVStJ0owZMywJ2vsJSVfcF4xGo5566inNnj1bkvTQQw/pm2++0caNG7Vjxw79/vvvGj58uMqVK5dm3ylTpqhv376KiYlRlSpVNG7cOIWFhWnnzp2aN2+epf9maGio3nrrLYdx/Pjjj/rss8/UpEkTzZo1S9u3b9eqVav0/PPPS5KuXLmiF154IcU+devW1d69e/Xxxx9b/m358uXau3dviq+6detaticmJqp9+/ZasGCBDAaDunXrpt9++03bt2/X5s2bNXbsWJUsWVKRkZF69tlntSOdW4c6duyoc+fO6dVXX9XKlSu1fft2zZ49WxUqVLCM2bhxoySpYMGCKlOmjMP5zL799lv99NNPaty4cYrno2fPnpYxCQkJKlCggHr16qUpU6Zo48aN2rlzp37//Xd99NFHCgwMVGJiol555RWtsXFrkpRUXdu+fXvdunVLHh4eGjBggFatWqVt27YpNDRUDz30kEaMGKGlDm53dEavXr20ILknVfXq1TVjxgxt27ZNy5cvV58+fWQwGHT+/Hk1b9483dsb6tWrJympyjez/bRwf4uLi9P15E9101uNN3++fPL19ZUkXczgxcTFy3fHF0nnONa3CFrvl9q58+d19NhxxcTGKjYuTucuXNDyVas1ZNhb6vVSf126fDlDMQJwH1+rliMx6bx3Yy7d3e6bqlWJ+f9jLttuT2Brnjx22p0AyJgU1xR2bvc3S3FNcfFiho9lvU961y9FihS5u1+q6xfz/6cXr3T3+iSj10AAUlq4cKHlsfWdttY8PDws+Yvr169nuEgoMjJSq1evliS1aNFCJUqUsDmuQ4cOypcvn6SkO2NTW7x4saVgy16skix3qSYmJmrxfbguhf2PyIBsZNy4cVq5cqUk6ZlnntHs2bOVO/lWObN27dpp1KhRKS4Uzpw5o1dffVVSUkJt8uTJKT4Zrlmzpjp06KB3331Xo0eP1rfffqv+/furfPnyNuPYtGmT+vXrp0mTJllu25ek5s2by9vbW5MnT9aWLVu0a9cu1ayZdLuwn5+fqlSpkqL5c/ny5RVsVXmS2rfffqu1a9fKy8tLixYtUps2bVJsb9CggXr27KnGjRtr//79GjJkiCVpasu+ffv0559/qoX1iqGpbvPZtGmT5Tlx1p49e/T8889r2rRpKZ4Pa23atFH37t3TrI5Ys2ZNtWvXToMHD9ajjz6qPXv2aMSIEXrsscfSzPHGG2/o9u3bkpIW++rWrZtlW506ddSpUyc1btz4nhpsL126VHPmzJGU9PP8448/5O3tbdnesmVLNWzYUC+99JKuXbum//u//3PYOsD8/MbExGj37t0pkur4b4iKjrY8zpP8x48jvj4+iomJUXRMTMaOE3X3OL7pHMfX18fyONoqPjMvTy81bdxYD9evr3Jlyyivv79u376tv/fu06/z5+vipUvatWePXnp1sH4Onay8yZUpALIvL6vfvwnpnF8SYu9u98yT8nxinie9OZLmiU2aw9c1KyMD/3VRUVGWx05dU/j6ZuqaQkp1/ZLO6ua+PvavK6KTY3ZmhXTz9YutaxMAzjPnBPz8/NL8vW+tSZMmlsdhYWEp8gTpCQ8PV1xcXJp5UvP29laDBg20YsUKhYeHKz4+Xl5eXmliTW+e1LGa+9LeL6h0RbZnNBr1xRdfSJKKFy+uGTNmpEm4mnl4eKhYsWKW/x87dqyio6NVrFgxff/993ZvxRk5cqSKFy8uo9GoGTNm2I2laNGiGjdunM0E49ChQy2PHSVA0xMfH6+vvvpKkvTKK6+kSbiaFShQwPK8hIWF6dixY3bn7N27d7onUnM/2gfT+UTbWkBAgMaPH2834Sol/cwcXWzlz5/f0hogLCxMEalWLb1w4YIWLVokSXriiSdSJFzN8ubNqx9++MHpuG2ZMGGCpKT+VFOnTk2RcDXr16+fHn/8cUlJn9Y56qlr/Tza6vWLnM/cD01SigsMe8yvOfNFTFYcx9vr7us61sZxZk2donFffqFunTqqbq1aqli+vOrWrq2+vXtp4exZerh+fUlJLRD+56ApPoDsw8Pq95kx3nEbJeOdu3dm5Ep1rWWex+jE3RvG5PNSrtxpf5cCyLi4TF5T2Ppdn+6xrPZJ97rC2/51hTlmLwetECzzJB8no9dAAFIytzosV66cwzYkFa3Wmshoe0Tr8RUdrFlhvT0hIUFHjx61OU/+/PlTVM2nVrRoUUvFrKtaOf6bqHRFtrd7927Lrdz9+vWz9PxxhjlZ1759e8vCRrZ4enqqYcOGmjt3rjZv3mx3XMeOHe0mfCtUqCB/f39FRkbqn3/+cTrG1MLDwy3JvM6dOzsc++ijd1cX3rx5s832CpLUo0cPh/PExcVZKkkLFCjgdKzt27dX3rx5nR4vJX1Sf+XKFUVFRVl6Q1pf0P39998pql3Xrl3r1G0H9erVU+XKlbV///4MxSMl/RJYn7xaaosWLRSUqo+dtX79+mnVqlVKSEjQunXrbCaBpaQ2DWZX7KwU7YizidoH/f0yPDf+HdZ/iDjTYsKcPLV3jnHFce7E3/2jzcfGcfI5eD/7+fnpy9GfqG2HZ3Xj5k3NXbhIrw8a5NQffwDcx2iVrPHwcnzp7+F99/2cmCr5YbxzRx6+vvJw4j1vTtAmxt1JZySAS5cv210IOF++fCr84IPKnclrClu/69NjfR2S7nXFHfvXFbm9vRUTG+vUwp13ko+T0Wsg4H7k7N959m7btyc2NlZXr151at8CBQrIz89PUVFROnPG/joPtliPT+841n9XnzlzRpUqVUozjzPfZ1BQkPbv35/hWLMDkq7I9nZZrWJpnWRMz82bNy3Vn5MmTdKkSZOc2s9R76P0PskpUKCAIiMjLQnMzLC+Rd5W42t7HMVdLZ3Vg69ZLYiRkaRrevOaXb16VV9//bXmzZuno0ePOlyIx/yLwmzv3r2Wx+ndol+vXr1MJV3/+ecfy+1M9ZMr+eyx3r5v3z6746yfx9TVu85wlPi1Fnfd/mImcC8/qwpvZ27vi0m+HdeZ2wZTHMfv7nFi0jlOTEys5bEzt/ulltffX61btNAvc+cqJiZG+w8eVA1WJweytXir23U90zm/ePrc3Z4QnfJ8Eh8dLU9f33TnSJon6YPuhBhuFQbS89348Vq0ZInNbU+1b69PPvpIfn53P2R36poieUxGrymkVNcv6dzub752kdJeV+Tx81NMbKxTLQMs8Wbi2gS43zj7d15GF6+1zkE4U6hmTrpGJi9+mRXHsT53pT6OeR5nY7U1x/2A9gLI9qyTcEWLFnV6v8uZXOjF0YVBehcCHh5JbylzZWZmZEXc6SVSrauA00vaZGReSdqxY4cqVqyoMWPG6MiRI+n+8kh9/OvXr1sep9f6wJlG/bZYJ53Tm8P61odrDlZvtv4+0uuziZwpd+7cKhAQIEnpLjx189Yty2umSAZfx9aLXFxM5zjWC1QUeTBz75eypYMtjy9looobwL/LevEs33R+j6ZYdOtSyvOJeQEt3wcLpXtM8zzRlzJ3TQMgpRTXFOksNpXimsLBLbv2WF8Lp3f9Yl30kfr6xXx94sxq4+brk4xeAwHpM2TDr6wRa/UhiK1WeamZK8sz8vd/Ro9jXb2e+jjmebIy1uyASlfcVxz1Dk3NOvE5ZMgQvfjii07t58ybPitZx71u3To98MADTu3nKCGZK1cuh/sGBATI09NTCQkJDhOJGZ33zp076ty5syIiIuTl5aVXX31VTz31lMqXL68CBQpYTp7//POPypYtKyntJ3rW/5/ezz+jnwbakpHXmCPWz2OhQun/gZra/XjrBNIqHRys67t36/TZs0pISLDbW+nEqVOWx2UcLLJnS9nSpe/Oc/KUZL8PveU4nrlyqWRQxm5ZMnPB2wzAv+jWiZOWx/lKldJ52e87n69USUmSMSFBkaluf7x14qQKhlSUd9688ilYULF2rhd8HnhA3slVK7dPnrI5BsBdn3z0kT5JXt/AkTKlS2vHrl06feaM42uKEycsj0tbXSM4q2yZMinnatbM7tgTJ09KSmrVVrJkyTTzHDh4ULcjI3X16lUFBgbanOPKlSuW6rUymYgXuN9k1d951oVU1q0/7DH3UM5ogVBGjmPdpzn1cXx8fBQdHZ2lsWYHJF2R7Vn/gj5//rwqVKjg1H7Wycro6GhVqVLF5bFlBeu4vb29/5W4DQaDAgMDdfHixRSVpfdqzZo1lv62EyZMsLvSoKNjWvdGvXTpksPbMTJbJWx9DEdtGlJvt94vNevvKTNJV2d7+Ny54bqfF1yvVvXq2rl7t2JiYnTg0CFVs/N+3r7zbhuVmhm8Xb9KSIi8vLwUHx+v7bt2qm+v522Oi4+P157klhiVK1XKdC/W41Z/zD1o5w8oANnHtYMHlXjnjnJ5e6tQrRo69NPPNsd5eHqqYJXKSfscOChjqj6MV//eo+C2rSVJhWrV0JlVa2zOU6hmjbv77NlrcwyAjKtZs6Z27NqVdE1x8KCqVa1qc9z2HTvu7lOjRoaPU6Vy5bvXFTt2qO8LL9gcFx8frz3JbcBsXVfUqllTS5YulSRt27FDbVq1sjnPtnuMF7jfZLRXq7Os11px5jb8qKgoSc7d3p/Z45iPYes4efPmVXR0dJbGmh3QXgDZXq1atSyPN2zY4PR+hQoVUvHixSVJq1atckkV5L1wtoKyZs2alscrVqzIqnDSqJp84XbkyBGXzWndX7Vr1652x1n3sbUXlyRt27bN4fHS225PmTJlLK0jtm7d6nBseHi45bGjhLj181jVzkUxcr7HmtztQ73w96U2xxiNRi354w9JSRcfdevUztAx/Pz8VL9OHUnS1vBtumjndt5Va9cpMvmCpXkTB+WwDtyOjNTyVaskSb4+PqocEpKpeQD8exKiY3R5e1JSo3DdOvK180Fg8aZNLBWq59anvd46vzFMxuS7cYLbtbN7vOB2bSVJxsREnd8Ydk+xA7iruVXF6YLkxYJTMxqNWvz775KSFsesl3x9kBF+fn5qUK+eJGlLeHiK1kTWVq5ebUmWNLdaBNesWZMmltZrCxcvtns8cz9bDw8PNcvk9QmApMpRc8Faeot1Xb9+3ZLIdLbHrJl10ji941hX9aY+jnkeZxYWM8+T0VizA5KuyPaqV69ueXNNnjw5Q82Tn3zySUlJt6/PnTs3S+JzlnUZflyqFYGtPfLII5YKyu+//97uaqau1rhxY0nS4cOH72khMGsJVlUy9nrOGo1G/fDDD3bnaNasmaWNwfTp0+2O2759u8OFrRzx9PRUk+SLvJUrVzq85WPy5MmSklorNG3a1O44cwK4bNmyGepFjJylauXKqpVctbFg8WLt3pu26mv6zFn6J/n2vOe6dJZXqtsFF/7+u6rWb6Cq9Rto4o8/2jxO7+d6SJISEhP1yRdfpOkrff3GDX0zYYKkpMRuh6eeTDNH2ObNKXo0pRYVFaWhw9/VjZs3JUnPPNne7e1YAEjB7dqo85Ywdd4Spsp9bVekHZ45W1JSNWutN/9PBo+UfwJ458+vaoNeliTduXVb/yz+Pc0csdeu6fTylZKkog3rq0SzpmnGlHismYo2TFpw8tSfy+22IACQcVWrVFHt5OKMBYsWaffff6cZM+2nn/RP8h0pPbp3t3lXy8LFi1WlZk1VqVlTE77/3uaxej+fdNdMQkKCPhkzJu11xfXr+mbsWElJyd1nn3kmzRyBgYFq16aNJOmvTZu0YuXKNGOWr1ypvzZtkiS1b9fObgsCAM4JSS6IOHbsWIq/xVM7dOhQmn2cValSJZvzODqOp6enypUrZ3OemzdvOrzb9MKFC5acSEZjzQ5IuiLb8/Dw0Jtvvikp6VOQ559/3m7fD6PRqPPnz1v+/80337T0DR0wYIDDikpJ+uOPP7Rnzx4XRZ6SdeLt+PHjdsf5+Pho6NChkpJuZe/atWuKsvzUbt++rfHjx99zfOakq9FoTPd5ctZDDz1keWwvYfrOO+9o586dducoWrSonnrqKUnS4sWLNWfOnDRjIiMj9dJLL91TrIMGDZKUdKvUCy+8YPM1NmXKFEv18bPPPuswmWquiDU/r/jvevv/XpdP7txKSExU/8GvafK06fp77z6Fb9+hkWM+1dfJ79/gkiXVq3v3TB2jfp06atOihSRp3caNeunVwVq7YYP2HzyoBUt+V48X++pC8sXMkIEDlT9fvjRzhM6YocfbP6kPR4/WoqVLtXP3bh06ckTbduzQ5GnT9XS37tqUXAkeXKqUBvbtm6lYAdwVWL2agtu1sXwFWVWy+ZcokWJbcLs2mT7O5R07dXpFUpV68Ucb69HvvlGxxo1UoGIFBbdrq+aTJ8mvaNKCO3smfq94Ox++7v3+B8VeS2pr02DUh6o6cIACq1dTYPVqqjpwgBp8NEKSFHvtuvZ9b/tDIgCZ9/awYfLx8VFCQoJeGjhQP4aG6u89exS+bZtGfvyxvv72W0lJv6d79+yZ6ePUr1fP0g5g7fr16vfyy1q7bp327d+vBYsWqXuvXnevKwYPtnldIUmDX3lFBZMX3h02fLi+GTtWO3ft0s5du/TN2LF6a/hwSVLBAgX0avK1OIDMe+SRRyQlFUvssGrdkdr69estjxs1apShY9StW9dSeGE9T2p37tzRli1b0uyTOtb05rmXWLMDerrivjBo0CAtWbJEK1eu1IIFC1S1alUNHDhQderUUZ48eXTx4kVt2bJFs2fPVvfu3fXhhx9KSmoe//3336tPnz66du2aGjVqpJ49e+qJJ55QyZIllZCQoLNnzyo8PFxz587V8ePHtWTJElXLYE9FZ9SsWVM+Pj6KjY3V+++/L09PTwUHB1tuuylevLilMfSwYcO0evVqrV69WsuWLVOlSpU0YMAANWzYUAEBAbp9+7YOHz6sdevWaeHChfLx8dErr7xyT/E9/PDDKlCggK5fv67Vq1ermYOm+c5q1aqVHnzwQV2+fFnvvvuuTp06pSeffFKBgYE6duyYfvzxR61evVqNGjXSX3/9ZXeer776SitXrtTt27fVvXt3rV+/Xh07dlS+fPm0Z88effrppzpy5Ijq1KmT6YRxu3bt1KlTJ/32229atWqV6tevrzfeeEMhISG6fv26fvnlF02ZMkVSUi/Xr7/+2u5cR48etVTLtnNwCyb+G0IqVNAXn3ysd0Z8qMioKI393//SjAkuWVITvv5Kfn5+mT7OR++9q8ioKG3ctEnhO3YoPNWFloeHh/q/0EedO6StRjG7eeuW5i1arHmL7N8GWLtmTX320Ujlz58/07ECSFL6ySdUOvl2/NQKVa+mQtVTXo+cXLos08fa9sloefrlUbFGD6twndoqnKqViTExUQenTtc/C23ftixJMZcvK+zNt9Tos9HyDQxUyPPPKeT551KOuXpVf701XDFXrmQ6VgC2hVSsqC8//VRvv/eeIiMjNdZG4UVwqVKa+N1393RNIUmjPky6btkYFqbwbdsUnqqNl4eHh/r366fOHTvanaNokSIaP3asBv/f/+nq1asKnTZNodOmpRgTGBio777+WkUKF76neAFb/mvrvz799NMaM2aMJGnq1KmqX79+mjFGo1EzZsyQlLSgdkb/7s+bN6+aN2+uZcuWadWqVTp79qzNPrXz58+3VKg+Y6Ma/sknn9TLL78so9GoqVOnqkuXLjaPNy35nOHh4WG5k/l+QtIV9wUPDw8tXLhQvXr10ty5c3XkyBENGTLEqX179+4tX19fvfTSS7p165ZCQ0MVGhpq9zj3eoFiT968eTV48GB9/vnn2rlzp1qlaia/du1ay+3quXLl0pIlSzRgwADNmDFDp0+f1vDkT4JtefDBB+85Pm9vb3Xu3FmTJk3S7Nmz9fHHH9/znH5+fpoxY4aefvppxcbGauLEiZo4cWKKMU2bNtX48eMd9kcNDg7W4sWL9eSTT+r27ds25xkxIqm65l6qdGfMmKGEhAQtWLBAu3fvVk8bFQLFihXT0qVLLf2CbZk1a5YkKX/+/HriiScyHQ9yjqaNG2vezJ/186+/auNfm3Tp8mV5enmpZIkSatn8MXXr1Em+Vi1IMsPHx0cTv/laS5cv16Lfl+rw0aO6HRmpBwoWVK0a1dWtUyfVcNBfeOjgwdqybZv+3rtPJ0+f0o0bN3X79m35+PioUKFAVa1cWW1bttTD9es73aMaQPaRGHdHYW8MU8mWLRTcro0CHionL39/xV67rqt//61jv81TxL796c5zbf8BLe/RS+W7dFKxRxvLL/muj6gL53V+Q5iO/DJHd/6l1kjAf1HTJk00/9df9fOsWdoQFqZLly7Jy8tLQUFBatWihbp16eKSFb59fHz0v3HjtHTZMi1cvFiHjxzR7du39cADD6h2zZrq1qWLalSvnu481apW1YI5c/TzrFlas26dziXflVi8eHE91qSJevbooYCAgHuOF4BUr149NW7cWBs3blRoaKh69eqlhg0bphjz1Vdf6eDBg5Kk1157LU0bkmnTpqlPnz6Skv7GNhe0WRs6dKiWLVumhIQEDRo0SPPnz7e0BJSkq1ev6q233pKUlNjta+MOuSJFiqhHjx766aeftHz5cs2dO1cdU32I89tvv2n58uWSpJ49e6pIkSIZfEbcz2By9+pCQAatXbtWU6dOVVhYmC5evChPT08VL15clSpVUseOHfXkk0/aTJxev35dP/zwg/78808dOHBA169fl5eXl4oUKaLKlSurWbNm6tixY5rmzCdPnlTp0qUlJX1a1Lt3b7uxBQcH69SpU+rVq5flExlrJpNJoaGhmjFjhvbv36+bN29aeiRZJ12t7dixQ6GhodqwYYPOnj2rqKgo+fv7Kzg4WLVr11abNm30xBNPWNoomH344YcaOXKk5bjO2Lt3r6XKd9OmTWlO0FLGng+z/fv369NPP9WaNWt05coVBQQEqFKlSurRo4defPFFnT592qk5z5w5ozFjxuiPP/7QhQsXVKBAAdWpU0evvvqqWrVqle73nN7Px2zJkiWaNm2atmzZoqtXr8rPz0/ly5fX008/rVdeeSXdVRMrVqyow4cP6/XXX3dYEesKd25cz9L5AdzfFrZu7+4QAGRTz6z59xZsBXD/8UpeaPh+dsfOuiLu5J3Fz+uuXbvUqFEjxcTEyN/fX8OHD1ezZs0UExOjX375xbKeSvny5bV9+3blzZs3xf7OJF0lqVu3bvrll18kJa3DMmTIEBUrVkx79+7VJ598Ymmp+P3336t///425zhz5oxq166tK1euyNPTU2+88YalaOn333/XV199pYSEBBUqVEg7d+60WVGb3ZF0BZBC69attXz5cr344ouWRaPgvLCwMDVu3FheXl46cuSIgoODs/R4JF0BOELSFYA9JF0BOELSNWtkddJVSioieu655+wuyl2+fHktXbo0zeJWkvNJ15iYGHXs2FF//PGHze0eHh56//337e5vtnXrVj399NN2F9MqUqSIFi5caLNVwv2AhbQApGCuFJ0xY4ZOnTrl5mjuP6NGjZIk9enTJ8sTrgAAAAAAWGvfvr327Nmj119/XeXLl1eePHkUEBCgOnXq6LPPPtOuXbtsJlwzwtfXV0uXLtXMmTPVokULPfjgg/L29lZQUJC6d++usLCwdBOuklS/fn3t3btX7733nqpUqSJ/f3/5+/uratWqeu+997Rv3777NuEqUekKwIYuXbpozpw56t+/v77//nt3h3PfCA8PV/369eXv768jR46oaHKfu6xEpSsAR6h0BWAPla4AHKHSNWv8G5WuyD5YSAtAGl999ZVCQkKUO3duGY1GeXhQFO+Mq1evasSIEapVq9a/knAFAAAAANhGiSHcjUpXALiPUekKwBEqXQHYQ6UrAEdyQqVrXFT2q3TN7Xf/P69wHpWuAAAAAAAAyFFMosYQ7sU9wwAAAAAAAADgQiRdAQAAAAAAAMCFaC8AAAAAAACAHIUVjOBuVLoCAAAAAAAAgAuRdAUAAAAAAAAAF6K9AAAAAAAAAHIU2gvA3ah0BQAAAAAAAAAXIukKAAAAAAAAAC5EewEAAAAAAADkKEb6C8DNqHQFAAAAAAAAABci6QoAAAAAAAAALkR7AQAAAAAAAOQoJtoLwM2odAUAAAAAAAAAFyLpCgAAAAAAAAAuRHsBAAAAAAAA5Ch0F4C7UekKAAAAAAAAAC5E0hUAAAAAAAAAXIj2AgAAAAAAAMhRjPQXgJtR6QoAAAAAAAAALkTSFQAAAAAAAABciPYCAAAAAAAAyFFMtBeAm1HpCgAAAAAAAAAuRKUrAAAAAAAAchSjkUpXuBeVrgAAAAAAAADgQiRdAQAAAAAAAMCFaC8AAAAAAACAHIWFtOBuVLoCAAAAAAAAgAuRdAUAAAAAAAAAF6K9AAAAAAAAAHIUI+0F4GZUugIAAAAAAACAC5F0BQAAAAAAAAAXor0AAAAAAAAAchSjkfYCcC8qXQEAAAAAAADAhUi6AgAAAAAAAIAL0V4AAAAAAAAAOYqJ7gJwMypdAQAAAAAAAMCFSLoCAAAAAAAAgAvRXgAAAAAAAAA5ipH+AnAzKl0BAAAAAAAAwIVIugIAAAAAAACAC9FeAAAAAAAAADmK0Uh7AbgXla4AAAAAAAAA4EIkXQEAAAAAAADAhWgvAAAAAAAAgBzFZKK9ANyLSlcAAAAAAAAAcCGSrgAAAAAAAADgQrQXAAAAAAAAQI5ipL0A3IxKVwAAAAAAAABwISpdAQAAAAAAkKNQ6Qp3o9IVAAAAAAAAAFyIpCsAAAAAAAAAuBDtBQAAAAAAAJCjmIy0F4B7UekKAAAAAAAAAC5E0hUAAAAAAAAAXIj2AgAAAAAAAMhRjCbaC8C9qHQFAAAAAAAAABci6QoAAAAAAAAALkR7AQAAAAAAAOQodBeAu1HpCgAAAAAAAAAuRNIVAAAAAAAAAFyI9gIAAAAAAADIUYxG+gvAvah0BQAAAAAAAAAXIukKAAAAAAAAAC5EewEAAAAAAADkKEYT7QXgXlS6AgAAAAAAAIALkXQFAAAAAAAAABeivQAAAAAAAAByFBPtBeBmVLoCAAAAAAAAgAuRdAUAAAAAAADgUHR0tL744gvVq1dPBQsWlL+/v0JCQjR06FCdPn36nudPSEjQypUr9eabb6px48YqVKiQvLy8FBAQoFq1amno0KE6fvx4uvP07t1bBoPBqa+TJ0/ec9z20F4AAAAAAAAAOYqR9gIudfz4cbVr106HDx9O8e+HDh3SoUOHNHnyZM2aNUtt27bN1PxXrlxRSEiIIiIi0my7efOmdu3apV27dmncuHH6/PPP9dprr2XqOP8mkq4AAAAAAAAAbIqMjNQTTzxhSbj269dPXbt2la+vr9auXasxY8bo5s2b6tSpkzZv3qxq1apl+BhxcXGWhGuNGjX01FNPqX79+ipcuLBu3rypZcuWady4cYqNjdWQIUPk6+url156yeGcxYoV0/Llyx2OKV68eIZjdRZJVwAAAAAAAAA2ffnllzp06JAk6fPPP9ebb75p2dawYUM1a9ZMjz76qKKjozVkyBCtWbMmw8cwGAxq0aKFPvroIzVo0CDN9mbNmunZZ59Vs2bNFBMTo2HDhqlbt27Kmzev3Tm9vLxUpUqVDMfiKvR0BQAAAAAAQI5iNJqy3df9KD4+XmPHjpUkhYSE6I033kgzpmHDhnrxxRclSWvXrtWOHTsyfJzixYtrxYoVNhOuZvXr19fAgQMlJbUcWLVqVYaP828i6QoAAAAAAAAgjXXr1unGjRuSpF69esnDw3YqsXfv3pbH8+fPz7J4mjVrZnnszKJa7kR7AQAAAAAAAOQorKPlGhs3brQ8btKkid1xderUkZ+fn6KiohQWFpZl8cTFxVke20sAZxckXQEAAAAAAIAsdvbsWafGlShRIosjcd7BgwctjytWrGh3nKenp8qWLas9e/ak2MfV1q9f71Q8khQREaHGjRtr7969iomJUcGCBVWtWjW1b99eL7zwgvLkyZNlcUokXQEAAAAAAIAsFxQU5NQ4UzYq0z1z5owkyc/PTwEBAQ7HBgUFac+ePbpy5Yri4uKUO3dul8Zy4cIFTZ06VZIUGBiYotWALZGRkSmqbi9evKiLFy9qxYoV+vTTTzVnzhw9/PDDLo3RGklXAAAAAAAA5CjGbJS4vJ/dvn1bkuTv75/uWD8/P8vjyMhIlyZdTSaTBgwYYInn/fffl6+vr82xBoNBDRo0UPv27VWrVi0VLlxYsbGx2rt3r0JDQxUeHq5z586pZcuW2rhxo2rWrOmyOK2RdAUAAAAAAACymLlq9H4SGxsrSfL29k53rHWSNSYmxqVxjB49WosXL5aUtJjWK6+8YnfsN998Y7Mqt2HDhurXr5/ee+89jR49WlFRUerbt6+2b98ug8Hg0nglkq4AAAAAAABAlsvKXq0JCQny8vK653mmTp2q3r17W/7fx8dHknTnzp1097Ve5MpeFWpmzJw5U++//74kKTg4WLNmzXK4iJajNggGg0GffPKJwsPDtWrVKu3cuVObNm1So0aNXBavWfZe5gsAAAAAAADIIKPRlO2+7kd58+aVlNQuID1RUVGWx860I3DG0qVL1adPH5lMJhUuXFgrV65UkSJF7nne/v37Wx5bL87lSlS6AgAAAAAAAPcxT09PHTx48J7nKVq0aIr/L1GihLZu3aqoqCjduHHDYRWpuX1CoUKFXNLPdd26derYsaPi4+NVoEABrVixQuXKlbvneSWpUqVKlsfnzp1zyZypkXQFAAAAAAAA7nMVK1Z0+ZyVKlXSvHnzJEmHDh1SgwYNbI5LSEjQ8ePHJUkhISH3fNzw8HC1b99esbGx8vf317Jly1StWrV7ntfM9C8stEZ7AQAAAAAAAOQoJpMp233djx555BHLY0e34W/fvt3SXuBe+6Pu2bNHrVu3VmRkpHx8fLRkyRLVr1//nuZM7cCBA5bHxYoVc+ncZiRdAQAAAAAAAKTRtGlT5c+fX5I0ffp0u8njadOmWR4/88wzmT7ekSNH1LJlS12/fl1eXl6aN2+emjZtmun57Jk0aZLlcZMmTVw+v0TSFQAAAAAAAIAN3t7eGjx4sCTp4MGD+vLLL9OM2bx5s0JDQyUlJTDr1q2bZszJkydlMBhkMBjsJlFPnz6txx9/XJcuXVKuXLk0a9YstW3bNkPxbtmyRRcuXLC73WQy6b333tPq1aslSdWrV7/nylx76OkKAAAAAACAHMV4f97Nny29+eab+vXXX3XkyBENGzZMx44dU9euXeXr66u1a9dq9OjRSkhIkK+vr7799ttMHSMiIkKPP/64ZTGuN954QxUrVtS+ffvs7lOgQAEVL148xb/9+eef+vTTT9W6dWu1aNFClSpVUkBAgOLi4rRnzx6FhoYqPDxckpQnTx79+OOPMhgMmYo5PSRdAQAAAAAAANiUN29eLV26VG3bttXRo0f1ww8/6IcffkgxJl++fJo5c6Zq1KiRqWPs3btXR48etfz/559/rs8//9zhPr169UrR1sAsLi5OixYt0qJFi+zuW7JkSc2aNctmVa6rkHQFAAAAAAAAYFe5cuW0a9cuTZgwQb/99puOHTumO3fuKCgoSG3bttVrr72mUqVKuTtM9enTR4ULF9bmzZu1Z88eXb58WREREfL09FRgYKBq1aql9u3bq3v37vLx8cnSWAym+3X5NACA7ty47u4QAGRjC1u3d3cIALKpZ9ascHcIALIxrzx53B3CPduy67i7Q0ijQc2y7g4B/yIW0gIAAAAAAAAAFyLpCgAAAAAAAAAuRE9XAAAAAAAA5ChGumnCzah0BQAAAAAAAAAXIukKAAAAAAAAAC5EewEAAAAAAADkKEYj7QXgXlS6AgAAAAAAAIALkXQFAAAAAAAAABeivQAAAAAAAAByFBPdBeBmVLoCAAAAAAAAgAtR6QoAAAAAAIAcxUipK9yMSlcAAAAAAAAAcCGSrgAAAAAAAADgQrQXAAAAAAAAQI5ior0A3IxKVwAAAAAAAABwIZKuAAAAAAAAAOBCtBcAAAAAAABAjmI00l4A7kWlKwAAAAAAAAC4EJWuAHAfMyYkuDsEANnYM2tWuDsEANnUgsdaujsEANlY5y1h7g4BuO+RdAUAAAAAAECOQncBuBvtBQAAAAAAAADAhUi6AgAAAAAAAIAL0V4AAAAAAAAAOYrJRH8BuBeVrgAAAAAAAADgQiRdAQAAAAAAAMCFaC8AAAAAAACAHMVIewG4GZWuAAAAAAAAAOBCJF0BAAAAAAAAwIVoLwAAAAAAAIAche4CcDcqXQEAAAAAAADAhUi6AgAAAAAAAIAL0V4AAAAAAAAAOYrRSH8BuBeVrgAAAAAAAADgQiRdAQAAAAAAAMCFaC8AAAAAAACAHMVoor0A3ItKVwAAAAAAAABwISpdAQAAAAAAkKNQ6Ap3o9IVAAAAAAAAAFyIpCsAAAAAAAAAuBDtBQAAAAAAAJCjsJAW3I1KVwAAAAAAAABwIZKuAAAAAAAAAOBCtBcAAAAAAABAjmKivQDcjEpXAAAAAAAAAHAhkq4AAAAAAAAA4EK0FwAAAAAAAECOYqS7ANyMSlcAAAAAAAAAcCGSrgAAAAAAAADgQrQXAAAAAAAAQI5ipL8A3IxKVwAAAAAAAABwIZKuAAAAAAAAAOBCtBcAAAAAAABAjmKiuwDcjEpXAAAAAAAAAHAhkq4AAAAAAAAA4EK0FwAAAAAAAECOYqS/ANyMSlcAAAAAAAAAcCGSrgAAAAAAAADgQrQXAAAAAAAAQI5ior0A3IxKVwAAAAAAAABwIZKuAAAAAAAAAOBCtBcAAAAAAABAjmKkuwDcjEpXAAAAAAAAAHAhKl0BAAAAAACQoxhZSAtuRqUrAAAAAAAAALgQSVcAAAAAAAAAcCHaCwAAAAAAACBHMRndHQH+66h0BQAAAAAAAAAXIukKAAAAAAAAAC5EewEAAAAAAADkKEaTyd0h4D+OSlcAAAAAAAAAcCGSrgAAAAAAAAAcio6O1hdffKF69eqpYMGC8vf3V0hIiIYOHarTp0/f8/zr1q2TwWBw6uvDDz9Md76EhARNmjRJjz76qAoVKiRfX1+VK1dOAwYM0IEDB+453vTQXgAAAAAAAAA5Ct0FXOv48eNq166dDh8+nOLfDx06pEOHDmny5MmaNWuW2rZt66YIU4qIiFC7du20devWFP9+/PhxHT9+XNOmTdPEiRP1wgsvZFkMJF0BAAAAAAAA2BQZGaknnnjCknDt16+funbtKl9fX61du1ZjxozRzZs31alTJ23evFnVqlW752NOmTJFdevWtbv9wQcftLstMTFRHTp0sCRcO3TooH79+qlgwYLaunWrPv74Y12+fFkvvfSSihcvrlatWt1zvLaQdAUAAAAAAABg05dffqlDhw5Jkj7//HO9+eablm0NGzZUs2bN9Oijjyo6OlpDhgzRmjVr7vmYpUuXVpUqVTK1708//aQNGzZIkgYOHKgJEyZYttWrV09t2rRR7dq1devWLb366qs6cOCAPD1dnyKlpysAAAAAAAByFKPJlO2+7kfx8fEaO3asJCkkJERvvPFGmjENGzbUiy++KElau3atduzY8a/GmNoXX3whSSpQoIDlsbVy5crpnXfekSQdPXpUixYtypI4SLoCAAAAAAAASGPdunW6ceOGJKlXr17y8LCdSuzdu7fl8fz58/+FyGw7evSoZZGsLl26KE+ePDbH/RvxknQFAAAAAAAAkMbGjRstj5s0aWJ3XJ06deTn5ydJCgsLy/K47HE23iJFiqh8+fKSsi5ekq4AAAAAAADIUYym7Pd1Pzp48KDlccWKFe2O8/T0VNmyZdPsk1nDhw9XiRIl5O3trQIFCqhmzZp6/fXXdeTIEZfEa739zJkzioqKuueYU2MhLQAAAAAAACCLnT171qlxJUqUyOJInHfmzBlJkp+fnwICAhyODQoK0p49e3TlyhXFxcUpd+7cmT7u5s2bLY9v3Lih3bt3a/fu3fruu+/0/vvva8SIETIYDHbjldJ/HoOCgiRJJpNJZ8+eVYUKFTIdry0kXQEAAAAAAIAsZk7ypceUjRbdun37tiTJ398/3bHm9gKSFBkZmamka9GiRdWhQwc98sgjKlOmjDw9PXX69GktWbJEP/30k+Lj4zVy5EjduXNHo0ePthuvMzGnjtfVSLoCAAAAAAAgR8lOicv7WWxsrCTJ29s73bHWSdaYmJgMH6tu3bo6deqUvLy8Uvx7rVq19PTTT6t///5q2bKlbt68qU8//VSdO3dWjRo1bMbrTMz3Gm966OkKAAAAAAAAZLEzZ8449ZUZCQkJMhgM9/w1bdq0FPP6+PhIku7cuZNuDHFxcZbHvr6+Gf4e/Pz80iRcrdWrV08TJkyQlJRUNz+2Zo5XSj/me403PVS6AgAAAAAAAFksO/VqdVbevHklOXf7vfViVM60I8iMLl26aNCgQbp586bWr1+fZrs5XikpZuskbGpZHS9JVwAAAAAAAOQoxv9YewFPT08dPHjwnucpWrRoiv8vUaKEtm7dqqioKN24ccPhYlrmKt1ChQrd0yJajnh6eqp8+fLatm2bzp07l2a7dWL77NmzCgwMtDuXOV6DwZAlCXGSrgAAAAAAAMB9rmLFii6fs1KlSpo3b54k6dChQ2rQoIHNcQkJCTp+/LgkKSQkxOVxWHPUr7dSpUqWx4cOHUrT89XaoUOHJCUtcGa9qJar0NMVAAAAAAAAQBqPPPKI5bGt2/nNtm/fbrldv1GjRlkWT0JCgo4cOSJJKlasWJrtzsZ78eJFyzxZFS9JVwAAAAAAAOQoJlP2+7ofNW3aVPnz55ckTZ8+3W6VqfUCXM8880yWxfPLL7/o1q1bkqQmTZqk2V6+fHlLpe2cOXMUHR1tc55/I16SrgAAAAAAAADS8Pb21uDBgyVJBw8e1JdffplmzObNmxUaGiopKRFat27dNGNOnjwpg8Egg8Ggpk2bptl+/fp1rVu3zmEs4eHhevXVVyUl9WEdMGCAzXFDhw6VJF27dk3Dhg1Ls/348eMaM2aMJKls2bJZlnSlpysAAAAAAAByFKPxPi0tzYbefPNN/frrrzpy5IiGDRumY8eOqWvXrvL19dXatWs1evRoJSQkyNfXV99++22mjnHz5k01a9ZM1apV09NPP63atWuraNGiypUrl06fPq0lS5bop59+Unx8vKSkxGqdOnVsztWrVy9NmTJFf/31lyZMmKCLFy+qX79+KlCggMLDwzVq1CjdunVLHh4eGjdunDw9syY9StIVAAAAAAAAgE158+bV0qVL1bZtWx09elQ//PCDfvjhhxRj8uXLp5kzZzpcuMoZe/bs0Z49e+xuz5Url95//3198MEHDscsXLhQbdu21bZt2zRv3jzLYmBm3t7eGj9+vNq0aXNP8TpC0hUAAAAAAACAXeXKldOuXbs0YcIE/fbbbzp27Jju3LmjoKAgtW3bVq+99ppKlSqV6fmLFSum3377TZs3b1Z4eLjOnTunq1evKjY2Vvnz51eFChXUtGlT9e3bV8HBwenOFxgYqE2bNunHH3/UrFmzdPDgQUVFRalYsWJq3ry5XnvtNVWuXDnT8TrDYLLXARcAkO3FXr3i7hAAZGO58vi5OwQA2dSCx1q6OwQA2VjnLWHuDuGejf91q7tDSOOVLvXdHQL+RSykBQAAAAAAAAAuRNIVAAAAAAAAAFyInq4AAAAAAADIUWimCXej0hUAAAAAAAAAXIikKwAAAAAAAAC4EO0FAAAAAAAAkKMY6S8AN6PSFQAAAAAAAABciKQrAAAAAAAAALgQ7QUAAAAAAACQo9BdAO5GpSsAAAAAAAAAuBBJVwAAAAAAAABwIdoLAAAAAAAAIEcx0l8AbkalKwAAAAAAAAC4EElXAAAAAAAAAHAh2gsAAAAAAAAgRzHSXQBuRqUrAAAAAAAAALgQSVcAAAAAAAAAcCHaCwAAAAAAACBHMZnoLwD3otIVAAAAAAAAAFyIpCsAAAAAAAAAuBDtBQAAAAAAAJCjGOkuADej0hUAAAAAAAAAXIhKVwAAAAAAAOQoLKQFd6PSFQAAAAAAAABciKQrAAAAAAAAALgQ7QUAAAAAAACQoxiN7o4A/3VUugIAAAAAAACAC5F0BQAAAAAAAAAXor0AAAAAAAAAchSjyd0R4L+OSlcAAAAAAAAAcCGSrgAAAAAAAADgQrQXAAAAAAAAQI5iMtFfAO5FpSsAAAAAAAAAuBBJVwAAAAAAAABwIdoLAAAAAAAAIEcx0l0AbkalKwAAAAAAAAC4EEnXHGT69OkyGAyqXLmyjEaj2+IwmUyqWrWqDAaDpk6d6rY4cG9Gjhwpg8GgNm3auDuUDOndu7cMBoOCg4NtbjcYDDIYDPrwww+z5PgDBw6UwWBQr169smR+AAAAAACQ/dFeIIeIiorSO++8I0l6//335eHhvny6wWDQu+++q27dumn48OHq1KmT/P393RYPMu7s2bP67LPPJEkjRoxwczT3l3feeUehoaH66aef9Morr6hu3bruDgnZxIWLFzVr7lxt3LRZFy5dkreXl4JKlFCrx5qpc4cO8vXxcclxlq1apUVL/9DR48d16/ZtBRYsqJrVq6trh2dUrUqVdPc3mUxauXat/lixUgcOH9b1GzfkYTDogQcKqkpIJT3Vrq0a1a/vklgB2HbhwgX9PHu2NoSF6eKFC/Ly9lbJoCC1atlSXTt1kq+vr8uO9ceff2rh4sU6cvSobt26pcAHHlCtWrXUrXNnVa9Wzak5bty4oZ9nz9aatWt1/sIFmUwmFS9WTI81a6bnunVTQECAy+IF/ktyFwhQwUqVVLBSSNJXSEXlTn4/nVj6h7aNGu3yYwY93lyln2ir/OXKyjtvXsVeu6Yru//WsbkLdG3/fqfm8M6XTw917qjiTR5VnqJFZDAYFHX+gs6t36Cjc+bqzq1bLo8bsMVoor8A3MtgMvEqdGTatGnq06ePJOnEiRN2q+fcbcyYMRo+fLhCQkK0b98+m0lXg8EgKSmJllVVfmZGo1GVK1fWoUOHNHr0aEtC+L/uww8/1MiRIyUlJTayq/79++uHH35Qq1at9Oeff7o7nAzp3bu3pk+frlKlSunkyZNptv8b74OXXnpJP/74o1q2bKnly5dnyTHMYq9eydL54RobNm3S8JEf6XZkpM3twSVLasKXX6hE8eKZPkZcXJyGvv++Nvy1yeZ2Dw8PDXjhBfXv09vuHLcjIzXk7Xe0fdcuh8dq1by5Pnn/PXl5eWU6Xvw7cuXxc3cIyKD1Gzfq7eHD7Z4vSgcHa+K4cQoqUeKejhMXF6f/GzZM6zdssLndw8NDA/v314CXXnI4z979+zV4yBBduXrV5vYHCxXSd998oyqVK99TvHC9BY+1dHcISEfnLWF2t7k66erh7a2HR49SsUca2dxuTEzUgclTdGDqdIfzFAipqEc+/1S+hQJtbo++fEV/DXtb1w8dvueYkbUcvf7uFyN+3OjuENIY2a+xu0PAv4hK1xwgJiZGX331lSTp9ddfd2uVq5mHh4eGDBmiAQMG6KuvvtKQIUNcWpWBrHPu3DlLW4g33njDzdG43r+R7H7jjTf0448/asWKFdq2bRvVrv9xh48e1Zvvf6DY2Fjl8fXViz17qm7tWoqNi9PyVas0b/ESnTx9Wq+8OUyzJv+oPHnyZOo4H4751JJwrVurlnp07qRCgYE6evy4Qmf8pDPnzmni5Mkq9MAD6vBke5tzvD3iQ0vCtXixourdvbvKlSmjhIREHTx8SFNnztL1Gze0fPVqBeTPp+E58BwBuNOhw4c1dNgwxcTGKk+ePOr7wguqV6eO4uLitGz5cs2dP18nTp7UwMGD9evPP2f6fCFJH4wcaUm41qtbV89166ZCDz6oo0eP6scpU3TmzBmN/9//FBgYqI4dOtic49Lly3rltdcUEREhT09PPf/cc2rSOOmPyfUbN2rGzz/r8pUrGvTaa5oza5YKP/hgpuMF/uuiLl7S7ZMnVaRB1txtUvfdty0J10vbd+jor78p5upVBZQtq4q9eipvUAlV6d9PMREROrH4d5tz+BYK1CNffibfBx6QMSFBR2b/qvNhf0mSij3SSOW7dVGeBwvpka8+16reLyrmiu0PawAgpyDpmgP8/PPPioiIUO7cudWpUyd3h2PRqVMnvfrqq4qIiNDMmTPVt29fd4cEJ0ycOFHx8fEqWrSomjdv7u5w7ksVKlRQrVq1tHPnTo0dO1Y///yzu0OCG30+9jvFxsbKM1cuff/tN6pudYt//dq1VbJEkL6ZOFEnTp3SjF9+1YAX+mT4GNt37dIfK1dKkpo0aqRvxoxWrly5JElVQkLU9JFH1O2FF3Xh0iV9M3GiHm/WVPny5k0xx4FDhxS2ZYskqUSxYpozbZr8/O4mdOrVrqWWjz2mTr176/btSP22cJEGvPCCChYokOF4Adj22ZdfKiY2Vp6envph4kTVqF7dsq1+vXoqWbKkvv72W504cULTf/pJL/fvn6njbNu+XUuXLZMkNX30UY39+mvLOaNq5cpq1qSJOnfvrgsXL+rrsWPVskWLNOcMSfpu/HhFREQkxT56tFq1aGHZVrtWLVWuVElvDBumiIgIjZs4UR9n8Z1WQE6zf/IUXTt4SNcOHlTctevKU7SInlgw1+XHKVSzhkq1Sqp8PrcxTJveGi5T8hoh1w8e0rmNYWoxLVR+RYuo2qCBOrtmneJtVONXGfCSfB94QJK05YOROrtmrWXb1b/36NrBQ3p49Cj5PvCAqrzUT9s+GePy7wWwlo1vLsV/hPtLInHPQkNDJUnt2rXLVj2zChYsqNatW0u6GyOyN6PRqGnTpkmSunXrli2qpu9XPXr0kCTNmzdPN2/edHM0cJd9Bw9aKkeffuKJFAlXs+e7dVWZ5NY1M+fMUXxCQoaPM23mLElSrly59O7QNyzJE7MCAQF6beDLkqRbt29rwe9pK1R27d1redyjc+cUCVezokWK6Km27SQlnS/2HjiQ4VgB2LZ3/35t275dkvTMU0+lSLia9e7ZU2VKl5Yk/TRrluLj4zN1rCnTk24PzpUrl94bPjztOaNAAb3+2muSpFu3bmn+ggVp5rgaEaHf//hDktTo4YdTJFzNWrVooUYPPyxJWvL777qanKAF4Jz9k6fowl+bFHftepYep8Jz3SVJxoQE7fz8K0vC1ezOzZvaM+F/kqTc+fOp9JNPpJkjd8EClsTthc1bUyRczc6uWasLm7dKkkq1aaXcBfngFkDO9q9lVP766y/17dtXFSpUUL58+eTv76+KFSvq6aef1owZM3TLTjPts2fP6p133lGtWrVUoEAB+fj4qGTJkurSpYvWrk17Ijc7efKkZZVycxJp5cqVat++vYoUKaLcuXOrdOnSevnll3X27Nk0+69bt04Gg8HSz1WSSpcubZnT/LVu3Tqbx1+5cqWee+45lS5dWr6+vsqXL5+qV6+uYcOG6cKFC3bj/vDDDy1zS9LNmzc1atQo1axZUwEBASm+H0k6deqUtm5N+sX17LPP2pwzODjYMp90d1V666/evXtLkpo1ayaDwaCSJUumexv2nTt3VLBgQRkMBrvHNv/7li1bdOrUKYfzOeuPP/7Qc889pzJlysjPz0/58+dX5cqV1bVrV82bN08xMTF29z18+LAGDx6sypUrK3/+/PL19VWZMmXUp08f7dy50+5+5teD9c98zpw5at68uQoVKiRfX19VqFBBw4YN07Vr19LsP23aNBkMBks/V0lpfgYGg8FmD1KTyaS5c+fq2WefVVBQkHx8fFSgQAHVq1dPo0aN0o0bN+zG3bt3bxkMBksv4gsXLuitt95S5cqVlTdv3jSv4bCwMJ0/f16S/deTrefDaDRqypQpatasmQoXLiwPDw/La0pKSs6sWbNGQ4cOVaNGjRQYGCgvLy8FBASoRo0aGjp0qE6fPm33eNYOHDigXr16WZ6LoKAgde/eXdu2bXNqf3Pcjvq5Go1G/fzzz2rbtq2KFCkib29vFSpUSM2aNdPEiRN1586ddI9jfv5iY2O1aNEip2JDzrPWqlfiU+3a2hzj4eGhJ1q3kpSUEN2+03E/1dSio6O1dccOSVKDunXs3r77eJMm8vdL6u+5Zn3aHo4JVsmbEsWL2T1ekNW2+DuZS/gASGuN1XXtM089ZXOMh4eHnnwiKdlx69YtbUt+72dEdHS0toaHS5Ia1q+vIoUL2xzXonlzy0Koq9asSbN93fr1SkxMlCQ9/eSTdo/3VPukdiaJiYlat359huMFkLU8fX1VuE5tSdKlbdsVc8X2egHn1q3XneTq1hJNH02zvXjjR+ThmXQj7cmlS+0e7+TSpA9rPDw9VbzxI/cUOwBkd1medI2JiVH37t31yCOPKDQ0VEeOHNHt27cVFRWlw4cPa9GiRerVq5e+/vrrNPuGhoaqfPny+vTTT7Vr1y7duHFDcXFxOnPmjObMmaPHHntMffv2VYITVUFvv/22WrZsqd9//12XLl3SnTt3dPLkSX3//feqVauWDh486JLvNyoqSh06dFDLli01c+ZMnTx5UrGxsbp9+7b27NmjL774QuXLl9fvNqqMUjt69Khq1KihDz74QLt377ZZLWedMGvQoME9x//cc89Jks6cOaMNdhZWMPvjjz90/XrSp67mqr7UrGNab+dC2zqBZ52oSy0iIkKPP/642rVrp5kzZ+rEiROKjo7WrVu3dODAAf3666/q2LGjfv31V5v7jxo1SlWqVNG4ceN04MAB3bp1S7GxsTpx4oSmTZumOnXqaMSIEQ6/Zynpj4YePXqoS5cuWrNmja5evarY2FgdOXJEX3zxherXr6+LFy+mO48zrly5osaNG6tTp06aP3++zp49q7i4ON24cUPbtm3TBx98oIoVK1oS745s2bJF1apV0+eff64DBw4o0sYtQeYPMry8vFSrVi2nYoyNjVWrVq304osvat26dbp8+XKahP1HH32k5s2b66uvvtKmTZsUERGhhIQE3bx5U3///be++uorhYSEaIGNShprv/zyi2rWrKkZM2ZYnouzZ89q9uzZevjhhzVlyhSnYnbk2rVrevTRR9WzZ08tW7ZMly5dUnx8vK5evap169Zp0KBBqlGjRrofIpQqVUpFixaVJLsfziDn2/n3HkmSr6+vKlWoYHdcnZo1LY937dmToWPsPXjQ8kFA7Ro17I7z8vJS1eSFbPYdOJCmorZUUEnL47Pnztud54zVtlIlgzIUKwD7zB/++vr6qlJIiN1xdWrXvrtPOove2bJ33z7LOcN6rtS8vLxUrWpVSdK+/fvTVNXusPqwuq6DeereY7wAslbBSiHKlTu3JOnKzt12xxkTEnRt3/7kfSrJkKpCPtCqOt/RPFd23d0WWK1axgMGMsBoyn5f+G/J0p6uRqNRTz31lFYm95l76KGHNHDgQNWpU0d58uTRhQsXtGnTJs2ZMyfNvlOmTLH0AK1SpYr69++vmjVrKk+ePDpx4oRCQ0P1xx9/KDQ0VPnz57csJGXLjz/+qE2bNqlJkybq37+/ypcvrxs3bmjGjBmaMWOGrly5ohdeeEGbN2+27FO3bl3t3btXixYt0nvvvSdJWr58uYoVS1n9Uzr5Fi8pKRnXvn17rV27VgaDQV27dlWHDh1UunRpxcfHKzw8XF999ZVOnz6tZ599Vps2bVJtBxepHTt21Llz5/Tqq6/qySefVIECBXT06FGVKlXKMmbjxqTV+AoWLKgyZcrYnGfFihW6c+eOqiZfOL/88ssaOHBgijEFknvydezYUYMGDVJcXJxmzpypJk2a2I1v5syZkqT8+fOrXbt2NseUL19eAQEBunHjhjZu3Kjnn3/e7nyOREdHq1mzZtqbfPtr7dq19dJLL6lKlSrKnTu3JUlsL+H6wQcfaNSoUZKkhx9+WC+88IIqV64sLy8vHT58WOPHj9fmzZv10UcfKTAwUK+++qrdWD744ANt2rRJTz/9tJ5//nmVKlVKly5d0oQJE7R06VIdO3ZMr7/+umbPnm3Z5+mnn1adOnU0ceJE/e9/Sbfm7LW6ldesuNXK5VFRUWrSpIkOHjwob29v9enTR23btlVQUJCioqK0YcMGff3117p06ZLatGmjXbt2pXhtWIuMjNSzzz6r2NhYvfvuu2rRooXy5MmjvXv3WhKD0t3XU9WqVeXj42P3ObD21ltvac+ePXryySfVu3dvy/NhXb2ekJCgokWL6plnnlHDhg1VpkwZ+fj46MyZM9q0aZMmTpyoyMhIde/eXTt37lSIjT82t27dqp49eyohIUG5c+fW66+/rrZt2yp37tzaunWrRo8erQEDBqhSpUpOxW1LYmKinnjiCcu5oEmTJnrllVdUunRpnT9/XlOmTNHChQt18OBBNW/eXLt377ZUAdlSt25dLV682PK84r/nRHJyvmTx4vL0tP8rt3TJuwnPE6dOZuwYVhXype2cA+5uL6nN4eFKSEzU6TNnVNbqd9jD9eupWNGiOn/hgmb99puefqKd8qRaAPHS5ctanHw7cfUqVfRQ2bIZihWAff+cOCFJKhkU5Ph8YfW+PZG8T2aOk3oum8cKDtamzZuVkJCg06dPq6zVe948T15/fwUG2l6lXJIKFSokf39/RUZGpjg2gOwhX/IdcZJ0K52iglunTqtIg/ry8PRU3qAg3bK6BskXnHQNcuf2bcXauPPPLDYiQnciI+Xt76+8wY6vWwDgfpelSddx48ZZEq7PPPOMZs+erdzJn6KZtWvXTqNGjUpRGXjmzBlL0qtXr16aPHlyiovPmjVrqkOHDnr33Xc1evRoffvtt5Zkqi2bNm1Sv379NGnSpBS32Tdv3lze3t6aPHmytmzZol27dqlmcrWRn5+fqlSpou3JvbWkpARisNUvpdS+/fZbrV27Vl5eXlq0aJHatGmTYnuDBg3Us2dPNW7cWPv379eQIUMcJmP27dunP//8Uy2sFyVIlaTdtGmT5TmxJ/Xz8uCDD6qKjb6C0t0E6vz58zV37lyNHz9e3t7eacbdunXLUq3bsWPHND9XM4PBoJo1a2rt2rWWWDPj3XfftSQpBw0apHHjxqX4WdauXVtPP/20Pv30U0v1rdm2bdv0ySefSJLee+89S/LVet+uXbuqV69e+vnnn/Xuu++qZ8+edvvjbtq0SR9//LHefffdFP/eunVrtW7dWitWrNDcuXP13XffqVChQpKkgIAABQQE6EGr237t/QzM3n77bR08eFD58+fXqlWrVKdOnRTbH3nkEfXo0UMNGzbUhQsX9N577+mnn36yOVdERIT8/f0VFham6lafQtetW9fy2GQyaUvyIjqOXk+p7dmzR++//74++ugju2P69u2rESNGyMvLK8W/16pVS0899ZReffVVNWjQQOfOndPo0aNtfh+DBg1SQkKCvLy8tGLFCj366N3bmurVq6cOHTqoQYMG+vvvv52OPbXvv//eknB9/vnnLW0hpKTXSfv27S3nnePHj2vUqFH67LPP7M5Xu3ZtLV68WMeOHdPly5dT/PyR88XFxel6cvuP9H72+fLlk6+vr2JiYnTx0uUMHefi5bvjCxdyfJwiVnFcvHw5RdLV29tbY0Z8oMHD3tKZc+fUuVdv9ereTeXKlFFCQoIOHD6saTNn6dbt2ypWtKg+Gj48Q3ECsM/6fFHYzu3+ZvmtzxeZuLPGeh977UjMihQpcne/S5dSJF0vXrrkVLySVKRwYR2LjLTsAyD78C189zwQc9nxNUiM1TWKb+EHUyRdzfPEXLbdniD1PN7+/spTmGtjADlblrUXMBqN+uKLLyQlVe/NmDHDbmLOw8MjRQXp2LFjFR0drWLFiun777+3+2n/yJEjVbx4cRmNRs2YMcNuLEWLFk2TpDMbOnSo5fG9VKPFx8dbqm1feeWVNAlXswIFCliel7CwMB07dszunL17906RcLXF3I/Wlckcc6uA69eva1nyyrapzZ8/X7GxsSnG22OOzVbvXGdcv35dP/zwg6SkJN3YsWNt/iylpKRB6ov/zz77TEajUbVr17abGPTw8NC4ceOUO3du3b59W3Pn2l8VtHbt2hpuI9lgMBj0f//3f5KSKjutK6cz6urVq5o8ebKkpFvzUydczUqVKqX3339fkvTrr78qOjra7pzDhg1LkXBN7fr164qKipKUsddT+fLl023LEBwcnCbhaq1EiRJ68803JUmLFy9O054gPDxcO5L71vXv3z9FwtWsePHiDivenTFhwgRJUmBgoMaPH2/zdfbRRx+pYsWKkpKq6OPi4uzOZ/08njt37p5iw/0nyur9mLpi1Bbf5OryaAd9qW2xft/nyeP4OL5WccREpz1OjapV9evUKXq+W1dduHRJH3/xpXq/PFB9Xx2sr8dPUGxsrF5+8UXNmvyjgkuVTLM/gMwx//6VnDxfJI/J6PlCSnVuypN2wbwUx7G66yX1NUZ0cszpzSFZxevgOgWAe3hZvYcT0jmnJMTe3e6Z6prDPE96cyTNk/R3pKdv+ucP4F4YTaZs94X/lixLuu7evduSZOjXr5/DW3BTMy860759e4e3OHt6eqphw4aS5DDB5agSs0KFCpbY/vnnH6djTC08PNyyQFbnzp0djrVOGDmKO71kZlxcnG7fvi3pbnsAV2jXrp2lynPWrFk2x5j/vXjx4g5bEEhJrQ+kpOpYWwsQNW3aVCaTSSaTKcUiYWZr1661XKQPHjw4zQq7jsTHx1sSxx07drSbrJWSqlHNLRgc/Vy6d+9udx7rSuR7eT0tX77cktR29vUUHx9vSUzakt7r6YpV0/yMvJ66dOmSoZ+JlPRaOHHihPbv3699+/Zp3759lj/azNusrVq1yvLYenG71J555hm7FcrpOX/+vKW3c+fOnZU3b16b43LlymWJ4fr16w4XYDO/9qWUz68zzp4969QXsi/r852XV/o3lnh7J30w4SiRb0uc9XEc3JKcFMfdDz9i76Q9jslk0sp167Rq7Tqb/dKjY2K0fPVqbdyU+Q+VAKSV4n3s4ENKM/NdSLEZPF9IKc8x6R3L+m6n1Mcyx5zeeUeSvL0yd34DkPU8rN7nxnjHa6UYrRbQzJXq72vzPMb49BfZNCafP3LlTntHJQDkJFnWXmCXVaN8W1Vp9ty8edNS/Tlp0iRNmjTJqf0c3V5lrkqzp0CBAoqMjLQkMDPDug2BORHsDEdxV0unsfg1q145rky65s6dWx07dtTkyZO1ZMkS3b59O0UC6uLFi1qTvIptt27d5OHhOHdvHVtERESKHqLOyOxrSUpa6d6csH3nnXf0zjvvOLVfZl9P1kk2V72eMvJ82Yvb39/fbs9fs8y+ntJ7nZqdOnVKX375pZYsWZLuIlRXr15NEa+5tYS3t7fD43l5eVnaWWTUvn37LI/r16/vcKz19n379tl9z6d+7WdEUJBzCxTFXMnYrej491gnK+LT+SNGku4k/yFj70NCe3JbHyedhSWtF8Lx8U55HKPRqLdGjNCKNUnvn2eeeEJdnu2gMqVKKdFo1OGjRzVt5iytCwvT+598oiPHj2mog/7XAJJcunw5RZ9za/ny5VPhBx9M+T52ImFh/lDHJ4PnCynlOSa9Y1l/eJT6WLm9vRUTG5vueUeS7sRn7vwGIOsZrd7nHul8SOzhffeDmsRUH6IY79yRh6+vPJz44MicoE2MS1uQA7gShaVwtyxLul69etXyOCNJo8vp9JGxx9HtSund9mROGiYmJmbq2FLWxJ1e4su6CjgmE7eXOdKjRw9NnjxZMTExmj9/vnr16mXZ9ssvv1ieq/SqJ1PH5uvELXOpZfa1JP37ryfrBHR2ej05U/2Z2deTMwnaZcuWqWPHjk7fVpj6+OY+vQULFnS4uIjkXG85W6yTzunNYd3j7pqDhQLu9bWP+5uf1bnCmVuAY5Kr2525tdia9Tkp2kbLgBTHsH5Nprot8Nf5CywJ15dffEEDXnghxfaa1aqpZrVqenfUKP3+53L99Muvqle7th59+OEMxQv813w3frwWLVlic9tT7dvrk48+kp+fn+XfnDpfJI/J6PlCSnVuSuf3svm8JKW9/snj56eY2Finfrdb4nWiFQGAf1e81XvYM51ziqfP3e0Jqa454qOj5enrm+4cSfMk/d2REEPLEQA5W5YupGXm6Jbu1KwTVUOGDNGLL77o1H62Fnv6N1nHvW7dOj3wwANO7eeod2Z6t2wHBATI09NTCQkJDhM/mdGkSRMFBQXpzJkzmjVrVoqkq7m1QEhIiGrUqJHuXObYvLy8Mn3rd2ZZ/1y++OILtW7d2qn9rP/4cQdz3N7e3g5bBqRWokQJm//uzO3/5kW/JMeJxIzOHRERoe7duys6Olr+/v4aOnSoWrVqpbJlyyp//vyW9+6aNWvUvHlzSUrT09X8/86cS1LvmxnpHcfZY1g/j9bPrzPOnDmTofHIfnLnzq0CAQG6fuNGuh+k3Lp1y5KUKJLBRSWsF8+6dOWyKofYr8a3XnSrSKrfPwuSF0f0y5NHLzz3nN05Bvfvr9//XC5Jmr9kCUlXwAWszxeX0lls6qb1+cLqQ0BnWX+weOnyZVWpXNnuWOs7aIqk+kCy8IMPKiIiIt14pbuLbqWeA4D7WS+e5fvgg7p+6LDdsSkW3Uq18GfM5SvyfeAB+T6Y/jWveZ7oDC4eCgD3myxLugYGBloenz9/XhUqVHBqP+tkZXR0dLorvGcX1nF7e3v/K3EbDAYFBgbq4sWLlkpAV87drVs3ff7551q9erUuXbqkwoUL69ixY9q2bZsk6TkHf5RbM8dm/ZrICOv9Lly4oNJWq22nx/rnEh8ff9+9nu7cuaMHHnggwxW+mWGdFHTl6+m3337TjeQVmefPn293cThHxzS3bYiIiFBiYqLDRG9mq4StW0Oktxq09R+Y1vulZv09ZTTpai+Bnlrs1Yz1isW/q3SpUrp+44ZOnzunhIQEu5XaJ06fttonOEPHKFP67vgT6bTuOHEq6TieuXKpZKrXmHnfMsHBDj/ILPzgg3qgYEFFXLumk6dO2x0HIMknH32kT+ws5GmtTOnS2rFrl06fOeP4fGHV9zwj10RmZa3a95w4cUJq1szu2BPJK5N7enqqZMmUi+eVLVNGBw4e1O3ISF29etXudd6VK1cUGRkpKel7BJC93Dpx0vI4X6lSOi/7i0vnS15E05iQoMhUawvcOnFSBUMqyjtvXvkULKhYO0UcPg88IO/kNVVun3R83QLcKyPtBeBmWbaQVq1atSyPN2zY4PR+hQoVUvHixSUlLZ7jiqq1e+FslW7NmjUtj1esWJFV4aRhXvjpyJEjLp/b3DogMTFRv/76qyRp5syZlu3dunVzah5zbOZYMyqzryVJqly5siV58G/+XOzJzq+n3Llz66GHHpLk2tfT/v37JSUlJ+0lXKWUfWxTM7927ty5o7///tvuuISEBO3evTtTcVon5Ldu3epwbHh4uM39UjM/j35+fun21EXOVDO5B3FMTIwOHLZfObLdqnd1jQyeK6tUDLEshrPDwes/Pj5ee5Pfj5VDQtIsoGP+MMOZ1ijmRbYyuogeAPvMv/tjYmJ0IHlhR1u2W90BU9OJO45Sq1K5suX9v93B3TTx8fHak9xTvXKlSmnOGbWsrlW2OZhn2z3GCyBrXTt4UInJfV0L1aphd5yHp6cKVkmqjL924KCMqfo5X/17j+Wxo3kK1by77eqevRkPGADuI1mWdK1evbplIZjJkydbPuF2xpNPPikpafX3uXPnZkl8zrLuc+loxdVHHnnEUvH2/fff210wwdUaN24sSTp8+HC6CzeZvxdnV46tVq2aJaFkTraaWws0atTIqeqKW7du6XByosEca0Y1a9bMcrv/uHHjMtQrNU+ePJZb1tetW5ciWeYOzr6e2rRpY/nj5ptvvrG5inhWMP+MzNXMrmCOPS4uTkaj0eaY6OhozZgxw+4cjz/+uOXx9OnT7Y5bsGBBpqt0ixUrppCQEElJ1bn23k+JiYmaNm2apKR+ttYfCqRmfh4bNGiQbi9a5EzNHr173lu09A+bY4xGo+V2/bx5/VW3tv3XlC1+fnlUv3ZtSdLWbdt1yU6196r16xUZFSVJeszGooTFkyvqj504oVsOfp8c/ecf3Uz+HVf8X6jCB/4rmltVnC5YtMjmGKPRqMXJrUDy5c2renXqZPg4fn5+alCvniRpS3i45db/1FauXm25fm/+2GNptjdr0sTSy37h4sV2j2fuZ+vh4aFmTZpkOF4AWSshOkaXtyd9OFK4bh352rk7q3jTJpYK1XPr0xbCnN8YJmPy32nB7drZPV5wu7aSJGNios5vDLun2AEgu8uypKuHh4fefPNNSdLZs2f1/PPPp1gB1ZrRaNT58+ct///mm29aVjcdMGCAwwo4Sfrjjz+0Z88eh2Myy/q27uPHj9sd5+Pjo6FDh0pKujW5a9euikr+49aW27dva/z48fccnzlJZjQa032ezN+Lo+8jNXO1a3h4uGbPnm2p3HNmAS0pqXrRXK1sL+m6bt06GQwGGQwG9e7dO832gIAA9e/fX5K0Y8cODRkyxG4FdHx8fJrby999911LhWnXrl0dfv+JiYmaNWuWzqa6XcZVnH09FS9eXH369JEk/f333+rfv7/DxOvly5c1efLke47P/DO6evVqitsX74W5ejYqKsrmhyiJiYnq27dvinNAavXq1bMkN//3v/8pLCztBdqFCxcs78HMGjRokKSkWyFfffVVm6+zkSNH6sCBA5Kkfv362V2JOS4uznJeyuwHDrj/Va1USbWqV5ckLfz9d/29b1+aMTNm/6J/km/h7dGpk7xSJegXLf1D1Rs9ouqNHtH/QkNtHuf57kl3HiQkJmr0V1+n+XDq+o0bGjvxf5KSErsd2j+RZo4mjRpJSqoo/3LcOJuv/7i4OH32zbeW/3+0Ef1cAVepWqWKaidXjy5YtEi7bdzZMe2nn/RP8u/nHt27p6k+lZISoFVq1lSVmjU14fvvbR6r9/PPS0r6YPSTMWPSnjOuX9c3Y8dKSkruPvvMM2nmCAwMVLs2bSRJf23apBUrV6YZs3zlSv21aZMkqX27dpluNQUg84LbtVHnLWHqvCVMlfu+YHPM4ZmzJSVVs9Z68/9k8EiZJvDOn1/VBr0sSbpz67b+Wfx7mjlir13T6eVJ54GiDeurRLOmacaUeKyZijasL0k69edyuy0IAFcxmUzZ7gv/LVlaejVo0CAtWbJEK1eu1IIFC1S1alUNHDhQderUUZ48eXTx4kVt2bJFs2fPVvfu3fXhhx9KSupP9f3336tPnz66du2aGjVqpJ49e+qJJ55QyZIllZCQoLNnzyo8PFxz587V8ePHtWTJElVLvo3TlWrWrCkfHx/Fxsbq/fffl6enp4KDgy2f7BcvXtyyKvmwYcO0evVqrV69WsuWLVOlSpU0YMAANWzYUAEBAbp9+7YOHz6sdevWaeHChfLx8dErr7xyT/E9/PDDKlCggK5fv67Vq1ermYO+XA8//LBOnDihxYsXa9KkSWrUqJGl8jJfvnw2F/Xq0aOHhg8fLpPJpIEDB0pKWhCrU6dOTsW3evVqSUkVgQ0bNszot2cxatQorVy5Unv37tX48eO1efNm9e/fX1WrVpW3t7fOnj2rsLAwzZo1Sx9//HGK5G2jRo30wQcfaOTIkTpx4oRq1KihF198US1btlTRokUVFxenkydPavPmzZo7d67Onz+vvXv3Ot1TMyMetlpw5vXXX9e7776rokWLWpLCwcHBlorIr776Sps2bdK+ffs0ZcoUbdmyRS+99JJq164tf39/3bhxQ/v379eqVav0xx9/qGrVqurbt+89xde6dWvlypVLiYmJWr169T3PJ0mdO3fW8OHDFRcXp969e2v37t16/PHHlS9fPu3fv1/jxo3Tjh071KhRI/31119255k4caIeeeQRxcfHq0WLFnr99dfVtm1b5c6dW1u3btXo0aN19epVVa9e3WELAkcGDBigmTNnavPmzZo+fbpOnTqlQYMGqUyZMrpw4YKmTJmi+fPnS5LKli2r999/3+5cGzZsUHx8vCSpnYNP+5HzDRvymnoPeFmxcXEaMOR19X3+edWtVVOxcXf05+pVmrcoqUKsVFCQnu/qXNuW1OrXrq3WjzfXn6tWa11YmPoPeV3Pde6sQoGBOvrPcU2ePkMXkqvZXhswQPny5UszR8+uXbTg99917fp1LVr6h06fOatOTz+t0qVKKtFo1KEjRzTrt7mWBHGZ4GA91bZt5p4UADa9PWyYevbpo9jYWL00cKD6vfCC6tWtq7i4OC1bvly/zZsnSQouVUq9e/bM9HHq16unNq1aadny5Vq7fr36vfyyenbvrkKFCunosWP6ITRUF5L7mw8ZPFj5bZwzJGnwK6/or02bdO36dQ0bPlz7DxxQk+RK+vUbNmj6zz9LkgoWKKBXkz/YBOC8wOrV5F+iuOX/c+cPsDz2L1FCwe3apBh/cumyTB3n8o6dOr1ilUq2fFzFH22sR7/7Rkd/naOYK1eVv2xZhfR+Xn5Fkxbu2zPxe8XbuSNm7/c/qEiD+vIpWEANRn2ow7N+0YW/kj54KdroYVXo3lWSFHvtuvZ9/2OmYgWA+0mWJl09PDy0cOFC9erVS3PnztWRI0c0ZMgQp/bt3bu3fH199dJLL+nWrVsKDQ1VqJ0KHw8PjyxbbT5v3rwaPHiwPv/8c+3cuVOtWrVKsX3t2rVq2rSppKTedkuWLNGAAQM0Y8YMnT59WsOHD7c7t60kZ0Z5e3urc+fOmjRpkmbPnq2PP/7Y7tihQ4dq7ty5iouL04ABA1Js69Wrl+WWaWtBQUFq3LixNmzYYFkMqVWrVk5XKsyenfSpaefOnR0uzJKePHnyaM2aNXr22We1YcMG7dixQy+99JLT+3/44YcKCAjQ22+/rcjISI0dO1Zjkys4UvP29k7RBsCVypUrp86dO2vOnDlasWJFmn6tJ06cUHBwsCTJ399f69evV48ePfTnn3/qwIEDDt8/tpIoGVWkSBE9/vjjWr58uWbNmuWSpGuJEiX0v//9T3379lVMTIzGjBmjMWPGpBjTpUsX9evXL0UbgdTq16+vGTNmqHfv3oqNjU0zj6enp6UKNrNJ11y5cun333/Xk08+qb/++kvr1q3TunXr0owLCQnRsmXL5J98i5Ut5lYcFSpUUJ1M3P6JnCOkfHl99tFIvfvRKEVGRem7SZPSjCkVFKTxX34hP788mT7OyOHDFRUVrY2bN2vbzp3atnNniu0eHh56qXcvdXr6aZv7FwgI0P++/lr/9+5wnTt/Qbv27NEuO3eRVHjoIX376RibVXYAMi+kYkV9+emnevu995KuV2zcFRVcqpQmfvfdPV/7jvrwQ0VGRWljWJjCt21TeKrWQh4eHurfr586d+xod46iRYpo/NixGvx//6erV68qdNo0haa6ngwMDNR3X3+tIoUL31O8wH9R6SefUOl2tj/gLFS9mgpVT1l0lNmkqyRt+2S0PP3yqFijh1W4Tm0VrlM7xXZjYqIOTp2ufxbabn8iSTGXLyvszbfU6LPR8g0MVMjzzynk+ZSLL8dcvaq/3hqumCssBgsg58vyJoN58uTRb7/9prVr12rq1KkKCwvTxYsX5enpqeLFi6tSpUrq2LGjpY+rtS5duqhly5b64YcfLEmn69evy8vLS0WKFFHlypXVrFkzdezY0dI/Nit8+umneuihhzRjxgzt379fN2/etNtX1NfXV9OnT9fgwYMVGhqqDRs26OzZs4qKipK/v7+Cg4NVu3ZttWnTRk88kfb2zswYNGiQJk2apH/++UebN2+2W1Fao0YNbd68WV988YX++usvXbp0yan+rj169EixgFX37t2dimvz5s2WW9TNVbL3IjAwUOvXr9eCBQs0a9YsbdmyRVeuXFGePHlUvHhxVa9eXZ07d1br1q1t7j9kyBB16tRJkyZN0sqVK3Xs2DHduHFDuXPnVvHixVW1alW1aNFCzz77bJbe/vbzzz+rTp06mjt3rqUXr71epwULFtSyZcu0Zs0a/fzzzwoLC9OFCxcUGxurfPnyqWzZsqpXr57atWunli1buiS+QYMGafny5Vq/fr3OnTtnWdjuXvTp00cVKlSwvPZu3LihwMBAVa9eXX369FHnzp1tJjdT69atm6pXr65PP/1Uq1ev1tWrV1WoUCE1atRI//d//6f69evbbD2QEQULFtSGDRs0a9YszZw5U7t27dK1a9eUL18+Va1aVR07dlS/fv0cfogQGxurBQsWSHLNax/3v6aPPKLfZkzXzDm/aeOmTbp05Yq8vDxVsngJtXismbo++6x87/HDHp/cuTX+yy/0x4oVWvTHMh05dky3IyP1QMECqlWturp2fFbVHSz8JkkVyz+kuTNmaMmyZVq7MUxHjx/XzVu3ZDAYVLBAgCo+VF4tHmumVs2bp2mDAMA1mjZpovm//qqfZ83ShrAwXbp0SV5eXgoKClKrFi3UrUsXy11W98LHx0f/GzdOS5ct08LFi3X4yBHdvn1bDzzwgGrXrKluXbqoRnJ7FEeqVa2qBXPm6OdZs7Rm3TqdS24XVLx4cT3WpIl69uihgICAe44XQNZKjLujsDeGqWTLFgpu10YBD5WTl7+/Yq9d19W//9ax3+YpYt/+dOe5tv+AlvfopfJdOqnYo43ll9xeLerCeZ3fEKYjv8zRnX9p/RPAyN38cDODiaYSOULr1q21fPlyvfjiiy7p7ekKffv2VWhoqFq0aJGmohPZl9FoVJUqVXTw4EGNGjVK7733nrtDuu/8/PPP6tmzpwoWLKiTJ08qb968WXas2KtUCQCwL1eerLkTCMD9b8FjrvnAHkDO1HnL/b/Q2dDx690dQhpfvsKikv8lWbaQFv5dI0eOlCTNmDFDp06dcnM00unTpy2r0Ztjw/3Bw8PD0l/522+/taxcDOcYjUaNHj1aUlJLj6xMuAIAAAAAgOyJpGsOUb9+fXXu3Fnx8fFp+mW6w5gxYxQfH69nn332nhbQgnt06tRJDRo0UEREhMbb6CcH+3777TcdPHhQQUFBTvewBgAAAAC4ltGU/b7w30JDthzkq6++UkhIiHLnzi2j0SgPD/fk1E0mk0qVKqURI0bohRdecEsMuDcGg0E//vij5s6d63CxKKSVmJioESNG6LHHHnNJzz0AAAAAAHD/oacrANzH6OkKwBF6ugKwh56uABzJCT1d/29c9uvp+vWr9HT9L6HSFQAAAAAAADmKkRpDuBk9XQEAAAAAAADAhUi6AgAAAAAAAIAL0V4AAAAAAAAAOQrdBeBuVLoCAAAAAAAAgAuRdAUAAAAAAAAAF6K9AAAAAAAAAHIUo9HdEeC/jkpXAAAAAAAAAA5FR0friy++UL169VSwYEH5+/srJCREQ4cO1enTp+95foPBkOEvW3r37u30/idPnrznuO2h0hUAAAAAAAA5ipGFtFzq+PHjateunQ4fPpzi3w8dOqRDhw5p8uTJmjVrltq2bfuvxVS+fPl/7ViZQdIVAAAAAAAAgE2RkZF64oknLAnXfv36qWvXrvL19dXatWs1ZswY3bx5U506ddLmzZtVrVq1TB1n79696Y6ZPn26vvzyS0lSr169HI4tVqyYli9f7nBM8eLFnQ8wg0i6AgAAAAAAALDpyy+/1KFDhyRJn3/+ud58803LtoYNG6pZs2Z69NFHFR0drSFDhmjNmjWZOk6VKlXSHbNhwwZJSa0InnvuOYdjvby8nJozq9DTFQAAAAAAADmKyWTKdl/3o/j4eI0dO1aSFBISojfeeCPNmIYNG+rFF1+UJK1du1Y7duzIklgOHz6s8PBwSVLTpk1VsmTJLDmOq5B0BQAAAAAAAJDGunXrdOPGDUlJt/N7eNhOJfbu3dvyeP78+VkSy4wZMyyP02stkB2QdAUAAAAAAACQxsaNGy2PmzRpYndcnTp15OfnJ0kKCwtzeRwmk0kzZ86UJPn5+enZZ591+TFcjaQrAAAAAAAAchSjKft93Y8OHjxoeVyxYkW74zw9PVW2bNk0+7jKunXrdOrUKUlShw4d5O/vn+4+ERERaty4sQICApQ7d24VLVpUrVq10vjx4xUdHe3yGFNjIS0AAAAAAAAgi509e9apcSVKlMjiSJx35swZSUnVpQEBAQ7HBgUFac+ePbpy5Yri4uKUO3dul8Vh3Vrg+eefd2qfyMjIFFW3Fy9e1MWLF7VixQp9+umnmjNnjh5++GGXxZgaSVcAAAAAAAAgiwUFBTk1LjstunX79m1Jcqqy1NxeQEpKeLoq6RodHa158+ZJSkpIP/bYYw7HGwwGNWjQQO3bt1etWrVUuHBhxcbGau/evQoNDVV4eLjOnTunli1bauPGjapZs6ZL4kyNpCsAAAAAAABylPv1dv7sJjY2VpLk7e2d7ljrJGtMTIzLYli4cKEl+fvcc8/ZXczL7JtvvrFZlduwYUP169dP7733nkaPHq2oqCj17dtX27dvl8FgcFm8ZiRdAQAAAAAAgCxmvlU/KyQkJMjLy+ue55k6dap69+5t+X8fHx9J0p07d9LdNy4uzvLY19f3nmMxy2hrAUdtEAwGgz755BOFh4dr1apV2rlzpzZt2qRGjRq5ItQUSLoCAAAAAAAAWSw79Wp1Vt68eSUltQtIT1RUlOWxM+0InHHhwgWtWrVKklS3bl2FhIS4ZN7+/ftb5l2/fj1JVwAAAAAAACA92agt6r/C09NTBw8evOd5ihYtmuL/S5Qooa1btyoqKko3btxwWEVqruQtVKiQy/q5zpw5U4mJiZKcX0DLGZUqVbI8PnfunMvmtUbSFQAAAAAAALjPVaxY0eVzVqpUybKI1aFDh9SgQQOb4xISEnT8+HFJclk1qiT99NNPkiQvLy9169bNZfP+G4uVOe48CwAAAAAAAOA/6ZFHHrE8Xr9+vd1x27dvt7QXcNWt+rt379aePXskSe3atdMDDzzgknkl6cCBA5bHxYoVc9m81ki6AgAAAAAAIEcxmkzZ7ut+1LRpU+XPn1+SNH36dLsVotOmTbM8fuaZZ1xybOsFtHr16uWSOc0mTZpkedykSROXzm1G0hUAAAAAAABAGt7e3ho8eLAk6eDBg/ryyy/TjNm8ebNCQ0MlJSUw69atm2bMyZMnZTAYZDAY1LRp03SPm5iYqNmzZ0uSHnjgAbVr186peLds2aILFy7Y3W4ymfTee+9p9erVkqTq1atnySJaEj1dAQAAAAAAANjx5ptv6tdff9WRI0c0bNgwHTt2TF27dpWvr6/Wrl2r0aNHKyEhQb6+vvr2229dcszly5fr4sWLkqRu3brJy8vLqf3+/PNPffrpp2rdurVatGihSpUqKSAgQHFxcdqzZ49CQ0MVHh4uScqTJ49+/PFHGQwGl8ScGklXAAAAAAAA5CjG+/Nu/mwpb968Wrp0qdq2baujR4/qhx9+0A8//JBiTL58+TRz5kzVqFHDJce0bi3w/PPPZ2jfuLg4LVq0SIsWLbI7pmTJkpo1a5bNqlxXIekKAAAAAAAAwK5y5cpp165dmjBhgn777TcdO3ZMd+7cUVBQkNq2bavXXntNpUqVcsmxbt26pcWLF0uSKlasmKHEaJ8+fVS4cGFt3rxZe/bs0eXLlxURESFPT08FBgaqVq1aat++vbp37y4fHx+XxGuPwWSvAy4AINuLvXrF3SEAyMZy5fFzdwgAsqkFj7V0dwgAsrHOW8LcHcI96/PpGneHkMbUtx9zdwj4F1HpCgAAAAAAgByF9gJwNw93BwAAAAAAAAAAOQlJVwAAAAAAAABwIdoLAAAAAAAAIEehvQDcjUpXAAAAAAAAAHAhKl0BAAAAAACQo5iodIWbUekKAAAAAAAAAC5E0hUAAAAAAAAAXIj2AgAAAAAAAMhRWEgL7kalKwAAAAAAAAC4EElXAAAAAAAAAHAh2gsAAAAAAAAgRzGa6C8A96LSFQAAAAAAAABciKQrAAAAAAAAALgQ7QUAAAAAAACQoxjpLgA3o9IVAAAAAAAAAFyIpCsAAAAAAAAAuBDtBQAAAAAAAJCj0F4A7kalKwAAAAAAAAC4EElXAAAAAAAAAHAh2gsAAAAAAAAgR6G9ANyNSlcAAAAAAAAAcCGSrgAAAAAAAADgQrQXAAAAAAAAQI5ior0A3IxKVwAAAAAAAABwIZKuAAAAAAAAAOBCtBcAAAAAAABAjmKkvQDcjEpXAAAAAAAAAHAhkq4AAAAAAAAA4EK0FwAAAAAAAECOQnsBuBuVrgAAAAAAAADgQlS6AgAAAAAAIEeh0hXuRqUrAAAAAAAAALgQSVcAAAAAAAAAcCHaCwAAAAAAACBHMRrdHQH+66h0BQAAAAAAAAAXIukKAAAAAAAAAC5EewEAAAAAAADkKEaTuyPAfx2VrgAAAAAAAADgQiRdAQAAAAAAAMCFaC8AAAAAAACAHIX2AnA3Kl0BAAAAAAAAwIVIugIAAAAAAACAC9FeAAAAAAAAADkK7QXgblS6AgAAAAAAAIALkXQFAAAAAAAAABeivQAAAAAAAABylETaC8DNqHQFAAAAAAAAABci6QoAAAAAAAAALkR7AQAAAAAAAOQoRtoLwM2odAUAAAAAAAAAFyLpCgAAAAAAAAAuRHsBAAAAAAAA5Ci0F4C7UekKAAAAAAAAAC5E0hUAAAAAAAAAXIj2AgAAAAAAAMhRaC8Ad6PSFQAAAAAAAABciEpXAAAAAAAA5CiJVLrCzah0BQAAAAAAAAAXIukKAAAAAAAAAC5EewEAAAAAAADkKCykBXej0hUAAAAAAAAAXIikKwAAAAAAAAC4EO0FAAAAAAAAkKMk0l4AbkalKwAAAAAAAAC4EElXAAAAAAAAAHAh2gsAAAAAAAAgRzHSXgBuRqUrAAAAAAAAALgQSVcAAAAAAAAAcCHaCwAAAAAAACBHSaS9ANyMSlcAAAAAAAAAcCGSrgAAAAAAAABsioyM1IYNG/Tll1+qc+fOKl26tAwGgwwGg4KDg7PkmJs3b1bPnj0VHBwsHx8fFS1aVK1bt9Yvv/zi9BwJCQmaNGmSHn30URUqVEi+vr4qV66cBgwYoAMHDmRJ3NZoLwAAAAAAAIAchfYCrtO+fXutW7fuXzveRx99pJEjR8poNFr+7eLFi7p48aKWL1+uWbNmac6cOfLx8bE7R0REhNq1a6etW7em+Pfjx4/r+PHjmjZtmiZOnKgXXnghy74PKl0BAAAAAAAA2GQy3c1gFyhQQC1atJC/v3+WHGvy5MkaMWKEjEajypYtq9DQUIWHh2vhwoVq1qyZJGnJkiXq27ev3TkSExPVoUMHS8K1Q4cOWrZsmbZu3arvvvtODz74oOLi4vTSSy9p+fLlWfJ9SJLBZP3MAQDuK7FXr7g7BADZWK48fu4OAUA2teCxlu4OAUA21nlLmLtDuGeVXl3t7hDSODCuubtDyJQffvhB/v7+qlevnsqVKydJCg4O1qlTp1SqVCmdPHnSJce5ceOGSpcurRs3bqhkyZLasWOHAgMDLdsTExP1zDPPaMmSJZKk9evX69FHH00zz7Rp09SnTx9J0sCBAzVhwoQU248dO6batWvr1q1beuihh3TgwAF5erq+GQCVrgAAAAAAAMhREo2GbPd1v3rppZfUvXt3S8I1q/z444+6ceOGJOmzzz5LkXCVpFy5cmnixInKlSuXJOmLL76wOY/53wsUKGBzTLly5fTOO+9Iko4ePapFixa56ltIgaQrAAAAAAAAALdauHChJClfvnzq0KGDzTElSpTQ448/LklauXKlIiMjU2w/evSoZZGsLl26KE+ePDbn6d27t+Xx/Pnz7zFy20i6AgAAAAAAAHCbO3fuKDw8XJLUsGFDeXt72x3bpEkTSVJcXJy2bduWYtvGjRvTjLOlSJEiKl++vCQpLCxr2mmQdAUAAAAAAECOkmjKfl+w7+jRo0pISJAkVaxY0eFY6+0HDx5Msc36/52d58yZM4qKispQvM5wfZdYAAAAAAAAACmcPXvWqXElSpTI4kiynzNnzlgep/f9BwUF2dwvs/OYTCadPXtWFSpUcDpeZ5B0BQAAAAAAALKYdbLQEZPpv1cWe/v2bctjf39/h2P9/Pwsj1P3dHXVPK5A0hUA7mM+gYXcHQKygbNnz1ou4M6cOfOf/GQcgH2cI2BL5y1Z078O9x/OEcipjk18zN0hpGH4n7sjyL5iY2Mtjx31c5Wk3LlzWx7HxMRkyTyuQNIVAAAAAAAAyGKpb4V3pYSEBHl5ed3zPFOnTlXv3r3vPaAM8vHxsTy+c+eOw7FxcXGWx76+vg7nsf7/jMzjCiRdAQAAAAAAgCxGJbl9efPmtTxO71Z/60WvUrcQSD2Po6Sro3lcgaQrAAAAAAAAcB/z9PTUwYMH73meokWLuiCajLNOSKe34Jh1xXDqPrmp5wkMDEx3HoPBkCUJcZKuAAAAAAAAwH2uYsWK7g4h08qXL69cuXIpMTFRhw4dcjjWentISEiKbZUqVUoxrkaNGunOExQUlGJRLVfxcPmMAAAAAAAAAOAkb29v1atXT5K0efNmh31d169fLylpIaw6deqk2PbII4+kGWfLxYsXdeTIEUlSo0aNMh23IyRdAQAAAAAAALjV008/LUm6deuW5s+fb3PM2bNntWrVKklS8+bNU/RwlZIqZs3Vr3PmzFF0dLTNeaZNm2Z5/Mwzz9xj5LaRdAUAAAAAAACQZU6ePCmDwSCDwaCmTZvaHNO3b1/lz59fkvT2228rIiIixfbExEQNHDhQiYmJkqShQ4fanMf879euXdOwYcPSbD9+/LjGjBkjSSpbtmyWJV3p6QoAAAAAAADApmPHjiksLCzFv0VGRlr+a101KkmtW7dWkSJFMnycggUL6rPPPtOAAQN06tQp1a9fX++++66qVq2q8+fP69tvv9XatWslSd26dVOzZs1sztOrVy9NmTJFf/31lyZMmKCLFy+qX79+KlCggMLDwzVq1CjdunVLHh4eGjdunDw9syY9StIVAAAAAAAAgE1hYWHq06ePzW0RERFptq1duzZTSVdJ6t+/v86fP69Ro0bp+PHjeuGFF9KMadu2raZMmWJ3jly5cmnhwoVq27attm3bpnnz5mnevHkpxnh7e2v8+PFq06ZNpuJ0BklXAADucyVKlJDJZHJ3GACyKc4RABzhHAEguxk5cqRatWqlCRMmaOPGjbp06ZICAgJUvXp19enTR926dUt3jsDAQG3atEk//vijZs2apYMHDyoqKkrFihVT8+bN9dprr6ly5cpZ+n0YTJxdAQAAAAAAAMBlWEgLAAAAAAAAAFyIpCsAAAAAAAAAuBBJVwAAAAAAAABwIZKuAAAAAAAAAOBCJF0BAAAAAAAAwIVIugIAAAAAAACAC5F0BQAAAAAAAAAXIukKAAAAAAAAAC5E0hUAAGTI9OnTZTAYVLlyZRmNRrfFYTKZVLVqVRkMBk2dOtVtcQD3q+zyXs6oDz/8UAaDQQaDweb24OBgGQwG9e7dO0uO//nnn8tgMKhp06ZZMj+yVnZ53fM7LGcYOXKkDAaD2rRp4+5QMqR3794yGAwKDg62ud18jv3www+z5PgDBw6UwWBQr169smR+ILsg6QoAAJwWFRWld955R5L0/vvvy8PDfZcSBoNB7777riRp+PDhioyMdFsswP0mO72X7zeDBg1SYGCg1q9fr3nz5rk7HGRAdnrd8zvs/nf27Fl99tlnkqQRI0a4OZr7yzvvvCNvb2/99NNP2rZtm7vDAbIMV1cAAGQD06ZNs1QVnDx50t3h2PXdd9/pwoULCgkJUefOnW2OyerqCGudO3dWxYoVdfHiRY0bNy7LjwekJye9l2Gbn5+fXn/9dUlJibv7qUo4q+Sk1z2/w9wvvWr27GLUqFGKiYlRq1at1KBBA3eHc18JCgpSr169ZDKZ9N5777k7HCDLkHQFAABOiYmJ0VdffSVJev3117NFZZyHh4eGDBkiSfrqq68UExPj3oCA+0B2fC+70smTJ2UymTRt2rQsO8agQYPk4+OjgwcPUu16n8iOr3t+h92/zp07Z2kL8cYbb7g5GtczmUwymUxZ+uGD+XlbsWIF1a7Isdz/mwYAANwXfv75Z0VERCh37tzq1KmTu8Ox6NSpk7y8vBQREaGZM2e6Oxwg28uu7+X7Sf78+dW2bVtJ0tixY90cDZyRXV/3/A67P02cOFHx8fEqWrSomjdv7u5w7ksVKlRQrVq1JHEeRc5F0hUAADglNDRUktSuXTsFBAS4NxgrBQsWVOvWrSXdjRGAfdn1vXy/6dGjhyTpr7/+0uHDh90cDdKTXV/3/A67/xiNRkslfbdu3bJF1fT9ynwenTdvnm7evOnmaADX4+wAAMhR/vrrL/Xt21cVKlRQvnz55O/vr4oVK+rpp5/WjBkzdOvWLZv7nT17Vu+8845q1aqlAgUKyMfHRyVLllSXLl20du1au8c7efKkpe+Y+QJ85cqVat++vYoUKaLcuXOrdOnSevnll3X27Nk0+69bt04Gg0F9+vSx/Fvp0qUtc5q/1q1bZ/P4K1eu1HPPPafSpUvL19dX+fLlU/Xq1TVs2DBduHDBbtyp+6XdvHlTo0aNUs2aNRUQEJDi+5GkU6dOaevWrZKkZ5991uac5hXDzcwr+lp/mVcTb9asmQwGg0qWLCmTyWQ3Tkm6c+eOChYsKIPBYPfY5n/fsmWLTp065XA+3B94L7vvvWzv+Zg/f77atm2rYsWKydPTU02bNk2xz5YtW/Tee++padOmKlKkiLy9vZUvXz5VqlRJL7/8sg4cOGD3eNbOnj2rQYMGqUyZMvLx8VGxYsX05JNPatWqVU7tbz4Xmc839ixZskQdO3ZUiRIllDt3bj3wwANq2LChPv30U6cWNWrXrp18fHwkSb/++qtTsaWH1z2/w1z1O+yPP/7Qc889pzJlysjPz0/58+dX5cqV1bVrV82bN89hK4PDhw9r8ODBqly5svLnzy9fX1+VKVNGffr00c6dO+3uZ349WP/M58yZo+bNm6tQoULy9fVVhQoVNGzYMF27di3N/ubewCNHjrT8W+qfgb2+wSaTSXPnztWzzz6roKAg+fj4qECBAqpXr55GjRqlGzdu2I27d+/eMhgMCg4OliRduHBBb731lipXrqy8efOmeQ2HhYXp/PnzkhyfR1M/H0ajUVOmTFGzZs1UuHBheXh4pDhPGY1GrVmzRkOHDlWjRo0UGBgoLy8vBQQEqEaNGho6dKhOnz5t93jWDhw4oF69elmei6CgIHXv3t3p2/id6W1sNBr1888/q23btpZzfqFChdSsWTNNnDhRd+7cSfc45ucvNjZWixYtcio24L5iAgAgB4iOjjZ169bNJMnh14gRI9LsO3nyZJOvr6/D/V588UVTfHx8mn1PnDhhGTN16lTTW2+9ZXeOQoUKmQ4cOJBi/7Vr16YbsyTT2rVrU+wXGRlpeuaZZxzu4+/vb1qyZInN52vEiBGWcUeOHDEFBwen2X/q1KmW8dOmTbP8+/Hjx23OWapUqXS/j169elmec/O/rVu3zv4P1mQyLViwwDJ23rx5NsccOnTIMmb69OkO50P2xnvZ/e/l1M/HixQTGQAAG7VJREFUlClTTD179kwzb5MmTSzjp06dmu73nitXLtOECRPsHtNkMpnWrVtnypcvn905Ro4cmeJ7tsV8LjKfb1KLiYlJ9zkvVqyYadeuXQ5jNZlMpgYNGpgkmZo1a5buWEd43bv/dZ/df4dZP9f2Xtsmk8l09epVU/PmzdP9XqyfH2sfffSRydPT0+5+BoPB9MEHH6Qb46pVq0zdu3e3O0+5cuVMFy5cSLG/M+cRSaYTJ06k2O/y5cumRo0aOdyncOHCpi1bttiMu1evXiZJplKlSpk2b95sCgwMdPga/vDDD02STF5eXqaYmBi7Pwvr52PZsmWmxx9/3O5rymRK+bq295UnTx7T/Pnz7R7TZDKZZs+ebfL29ra5v6enpyk0NDTF92yLo3OOyWQyRUREpPuch4SEmE7+f3t3HhbVdf4B/AsyLAqyuQRwieIuLpXEpYkRa42mRuMWFNcoGqNGa9poi8aapGnMky6aSBsVNTEmqMG9FndQMSHCAKZoLZIIUdwlGhSUZXh/f/DM7QzMvTPgKDP5fT/Pw/OM3nPOPffec86d+8659+bna9ZVRCQoKEgAyLRp06ymJXI2DLoSEZHTMxgMMnjwYOVLXvv27WXFihWSkpIiGRkZsnfvXlm8eLG0a9euxpfH9evXK/nCwsJk1apVcuLECcnMzJTt27fLr371K2X5b37zmxrrNr1g/fnPfy5AVSAiPj5e9Hq9HD58WKZMmaKk6du3r1n+u3fvSnZ2trzzzjtKmgMHDkh2drbZ3927d5U8FRUVMnDgQOXiJyoqShISEkSv10tqaqp88MEH0qpVKwEg7u7uotfra9Tb9It99+7dRafTybx58+TQoUOi1+tl8+bN8tVXXynpo6OjBYAEBASoHoecnBzJzs5Wyp09e3aN7SgoKBARkdu3b4uHh4cAkJkzZ2oe37FjxwoA8fX1lfv371tMU1lZKX5+fgJAZsyYoVkeOS72Zcfoy9X3R/fu3QWA9O/f32x/rFu3TkkfFxcn/v7+MnXqVNmwYYOkpKRIZmam7N27V95++20liOHi4iJHjhxRXaePj48AEFdXV3nllVfk8OHDkp6eLuvXr5f27dsLAHniiSeUulliLegaGRmp5O/Ro4d8+umnkp6eLgcOHJBp06aJi4uLso+MY5aa+fPnCwDx8vKSsrIyzbRq2O4do907+jnMlqBrcXGxdOvWTUkXHh4ua9askS+//FL0er3s3LlTXnvtNQkODrYYdF26dKlZe1i3bp2kpqaKXq+Xzz//XPr166cs//DDDzXraGxPI0eOlB07dkhGRoYkJibKsGHDlDTjx483y3/r1i3Jzs6W2bNnK2mqH4Ps7Gyzvnb37l3p3Lmz0l5mzZolu3fvlszMTElJSZE//elPEhgYKADE39/fYhDQGIAMDAyU4OBg8fb2liVLlsjRo0clLS1N1q9fL//973+V9Magdq9evSweB0v7wziOjhgxwmx/bNmyRUm/ZMkSCQoKkjlz5simTZvkyy+/lIyMDNm1a5csWrRIvL29BYB4enrW+AHE6Ouvv1aC5h4eHvL73/9ejh8/LidPnpQPP/xQHnvsMdHpdNKjR486B10rKirM2sKAAQOUPrxnzx4ZOXKksiw0NFTu3LmjuZ9GjBghQFUgnuinhkFXIiJyeitXrlS+3I0aNUr1osZgMMilS5eUf1+4cEEaNmyoXMBYmgUkIrJ48WIlCJCTk2O2zPSC1XjxVVlZWaOMGTNmKGkyMzNrLDed3VF9Bkd1f/nLXwSommGRmJhoMc0PP/wgXbt2FQDy9NNP11huesHq6uoqBw8e1Fyn8YJm0KBBmulErM+OMBo9erRyEVRaWmoxzY8//iienp4CVM3U0mK8iO/SpYvVOpJjYl+uqb76cvX9MWXKFIv7w6igoECKi4tVl9++fVsJOljaDpH/jQkAJD4+vsbyoqIiJVBQ16Dr3r17lbyDBg2yOPasXbtWSRMZGam6TSIiGzduVNKmpaVpplXDdl8Tz2E12RJ0XbBggZJm7ty5qn22tLRUrl69avZ/aWlp4urqKgDkjTfesJjPYDDIpEmTBID4+PjIrVu3VOsIQN55550aZVRWVsqzzz4rQNWsy+vXr9dIY202u6lXX31VCWqnp6dbTJOfn6/Mppw0aVKN5cagK1A1w/rUqVOq66usrJRGjRrZdEyr74+lS5dqps/Ly9P88ebixYsSEhKiuh0iIuHh4Ur/OnbsWI3lBQUF0qJFC6VOdQm6xsbGWj03GMcdALJo0SLVbRIReeutt5S0165d00xL5GwYdCUiIqdmMBiUL6AhISFWf0039dvf/laAqttItW4PKy8vV9axZMkSs2WmF6xBQUGqF8umtw5+8MEHNZbbesFaVlamXDi89tprmtuXmJiolJmbm2u2zPSCZvr06ZrliIgy+ywqKspqWlsvWLdv366k3bVrl8U0pvslKSlJs7xx48YJAGncuLHVOpLjYV9WVx992XR/+Pn5SVFRkdWyrdm1a5dS5s2bN82WXb58WRo0aCAA5Pnnn1ct4+TJkw8UdH3uueeUgMSFCxdU12O8DdjNzU0uX76smm7fvn1KXazd8msJ2706nsPMWQu6/vDDD0oQvlevXlJRUaG5vurGjBkjQNXsWK0fWG7duqXM8o2Li1Oto1Y5+/fvV9Lt3r27xnJbg643btxQgtqW2qWpf/zjH0rfr/4DkWnQ9e2339Ysp7CwUEkbExOjmdZ0f3To0KHWx8QS4480jRs3rrF/TcfHV199VbWMrVu3PlDQ1fgjRpMmTVTPDRUVFdKpUycBqn6YUBtbREQ++ugjZX2WftQhcmZ8kRYRETm1U6dO4dKlSwCAmTNnwtvb2+a8xgf2Dx8+XHkZiiVubm7o168fACA1NVU13dixY+Hh4WFxWceOHZW6nT9/3uY6VpeWlqa8XCQyMlIz7TPPPKN81qq38c2xakpLS3Hnzh0AgL+/v61Vtcr0DdLx8fEW0xj/PyQkBAMGDNAsLyAgAABQVFRk08sbyLGwL6ur7748fPhw+Pj42JweAIqLi5Gfn48zZ87g9OnTOH36NHQ6nbL8m2++MUufnJwMg8EAAGYvZaqud+/e6Nq1a63qYlRRUYFjx44BAAYPHoyWLVuqpp05c6aSR+0lUMD/xh0AuHHjRq3rxHavrr7bvTWP+hwWEREBqZo0ZfaSMKPk5GSUlJQAAObPn48GDRrYuikoLy/Hvn37AFS1A9MXilXn5+eHbt26AdA+LhMmTFAtJzw8XPn8IO3pwIEDuH//PgDb21N5eTkyMjJU01lrT6b9vDbtady4cbU6JkBVW8jLyzMbRxs2bGi2zJTpywa1xtFRo0Ypbbe2Ll++jLNnzwKo2udq54YGDRoodbh165bmC9gedBwlcmQMuhIRkVPLyspSPpteoFnz448/4ttvvwUArFmzxuLbcU3/tm3bBgC4evWqapmdOnXSXKfxy7nx4q8u9Hq98rlfv36adTa9eNeqd/fu3TXXafqGYXtesHp4eGDs2LEAqt4iXn2/XL16FUlJSQCAqKgouLpqf20xrVthYaHd6kmPBvuy4/Zla+Ua3bx5E4sXL0bHjh3h4+ODNm3aICwsDN26dUO3bt0wbNgws7SmsrOzlc9PPvmk5np69+5tc91NnT9/XglK9enTRzOt6fLTp0+rpnvQcYft3nHbvTWOdg6ra1sCqt50b+wbMTExVtuT8TjWtT2ZBtns1Z6CgoI06xwWFqakVau3t7c32rZtq7nOhz2Ofv/995g3bx4ef/xx+Pr6om3btmbj6Msvv6ykVRtH3d3dNden0+nws5/9zOa6mzIdDx1lHCVyZAy6EhGRUzP9whkUFGRzvuvXr9dpfcaLEkuMsw/UGC+4jLO56uJh1NvaRYPpDKp79+7Vaf1qjDNK7t27hx07dpgt27Jli7KvrM08qV43Ly8vO9aSHgX2ZdvUR1+2JbCQkZGBTp06Yfny5Th37hxERDN99fXfunVL+dysWTPNvM2bN7daH0tMgyXWynjssccs5qvuQccdtnvb8BxmXV3bEvDo25NpANqR2pMtsz8f5ji6b98+dOnSBbGxsfj++++tplcbRwMCAuDm5qaZ96c0jhI5Mu2eSERE5ES0boerzvRL/oIFCxAdHW1TPnd391rXy55M63306FEEBgbalE8riGHtdjc/Pz+4ubmhoqJC80tzXQwYMAAtW7bExYsXER8fj6lTpyrLjLdldu7cGT179rRalrFuOp2uzrfNkWNgX1ZXH33ZWrllZWWIjIxEYWEhdDod5s2bhxdeeAEdOnSAv7+/csv6+fPnERoaCgA1grKm/7Z2/K0FdG1RmzamxXQ/Nm3a9IHKYrtXx3PYw2V6XP785z9j6NChNuVr1KjRw6qSTYz1dnd313xkQHUtWrSw+P+23P5v2s/tOY4WFhZiwoQJKCkpgbe3N15//XUMGTIEoaGh8PX1VfpuUlISBg0aBEB9HLVlLHkU46it67DnOErkaBh0JSIip9akSRPl8+XLl9GxY0eb8ple6JWUlJjddubITOvt7u7+SOrt4uKCJk2a4OrVq2az0exVdlRUFN5//30cOXIE165dQ/PmzfHtt98iPT0dADBp0iSbyjLWzbRNkPNgX3bevpyUlKQ8l/Hvf/+78jzU6rTWaXq78bVr1zSft1rX2W2m69C6Lbr6ctN81ZluU12CBWz3ztvujWU7yjnMNN+VK1fQpk0bm/OaHpfy8nKna09lZWUIDAys9QzfujDt5/ZsTwkJCbh9+zYAYMeOHRg8eLDFdLaMo4WFhTAYDJqB3kcxjl67ds1ivuoedBwlcmR8vAARETm1Xr16KZ+PHz9uc76mTZsiJCQEQNWLB+zxi/+DsHWGk+kzuA4ePPiwqlOD8aUZ586ds3vZxtsuDQYDtm7dCgD4/PPPleVRUVE2lWOsm7Gu5FzYlx+Nh9GXz5w5o3weP368ajrT5y+q1QuAEqxSY225mrZt2yq3PJ88eVIzbVpamvJZKwBluh/rMvaw3T8a/x/OYXVtSwDQtWtXZSblozwuahy5PXl4eKB9+/YAHs44GhAQoBpwBWwbR8vKymq8rNBURUUFTp06Vad6mo6H9h5HGzVqZPWZukTOhkFXIiJyaj169FBmRK1btw537961Oe+IESMAVN3yanzJSH0xfUZYaWmparqnn35amS2wevVqFBUVPfS6AUD//v0BADk5OVZfemHcFq3tMNW9e3fly7jxQtV4W+ZTTz1l02ydoqIi5OTkmNWVnAv7suP1ZVtVVFQon9WelVhZWYm1a9eqljFw4EBlVtbGjRtV0+n1es0Xsmhxc3NT3iB/6NAhXLx4UTXtunXrAFTdEhwREaGazhgADg0NrdMsO7Z7x2v3znoOGzhwoHK7/6pVq2r1rNSGDRsqt6wfPXrULFhWH2xtT8899xx0Oh0AYMWKFWZj0cNkPEZ1/QHIEmPdS0tLUVlZaTFNSUkJPv30U9UyfvnLXyqftcbRnTt31nmWbnBwMDp37gyganauWn8yGAz45JNPAFQ9z9b0R4HqjPuxb9++Vp9FS+RsGHQlIiKn5urqioULFwIACgoKMGXKFJSVlVlMW1lZicuXLyv/XrhwofKswVdeeUVz9gAAJCYm4t///redam7O9GL9u+++U03n6emJ119/HUDVbV3jx49HcXGxavo7d+4gNjb2getnvMCorKy0up+M26K1HdUZZwqlpaVh8+bNyqwHW14+AlQFYowzvRh0dU7sy47Xl21lnPUFqF/ox8TEIDMzU7WMoKAgvPDCCwCAPXv24IsvvqiR5u7du2Zv7q6LuXPnAqi6hXr69OkW29iGDRuUWXNjxozRDKYag1N1HXfY7h2v3TvqOezo0aNwcXGBi4sLXnrppRrL/fz8MGvWLABVL7ZbsGCB6gzo8vLyGreXL1myRJlhOn78eM3tNxgMiI+PR0FBgdVtqwtb21NISAimTZsGAPjmm28wa9YszcDr9evXlR9UHoTxGN28eRN5eXkPXB7wv3G0uLjY4o8oBoMBM2bMMBsDquvdu7cS3Pzoo49w4sSJGmmuXLmi9MG6Mo6jN27cwLx58yy2s7feegv/+c9/AAAzZ85UxqrqSktLlXGJ39/oJ0mIiIicnMFgkMGDBwsAASAdOnSQlStXyokTJyQzM1MSExPlD3/4g7Rv316WLVtmlvfjjz9W8rm7u0t0dLTs3LlTMjIy5OTJk7J9+3b53e9+J6GhoQJA/vnPf5rlz8vLU/J//PHHmvVs3bq1AJCpU6fWWFZUVCSenp4CQHr16iUHDhyQnJwcyc3NldzcXCkpKVHSVlRUyKBBg5T1tmrVSt59911JTk6WrKwsOX78uMTFxcnEiROlUaNGEhgYWGN9y5YtU/LborS0VPz9/QWALFmyRDPtxIkTBYB4eHjI6tWrJTs7W9mOa9euWcxz4cIFcXFxEQDi5+cnAESn08mNGzdsqt/ixYsFgPj7+0tpaalNecjxsC87Tl+uzf64e/euNGvWTACIm5ubzJkzR/bv3y96vV62bNmibONTTz2lWWZeXp74+PgIAGnQoIHMmTNHkpKSRK/Xy4YNG6RDhw4CQJ544gnNbdY6PiIiL774opK/Z8+esmnTJtHr9XLo0CGJjo5WxqKAgAApKChQ3e5z584p5SQkJGjuIy1s947T7kUc9xyWnJysbLNa2y4uLpZu3bop6cLDw2Xt2rWSmpoqGRkZsnv3blm4cKGEhIRYPN6m+9Xb21t+/etfy7/+9S/JzMyU1NRU2bx5s8yfP1+Cg4MFgGRnZ6vWMTk5WXObjemqt2kRkdzcXGX5s88+K8eOHZNz584px6G8vFxJe+fOHQkLC1PSd+nSRVauXCkpKSmSlZUlycnJEhsbKyNHjhR3d3cJDw+vsb6pU6cKAGndurVmnY2uXLkiDRo0EAASFxenmq42++PixYvi4eEhAMTLy0tiYmLkyJEjkp6eLp988omEh4fXGEctlfn111+Lm5ubABBPT0+JiYmRlJQUSUtLk1WrVklQUJDodDrp0aOH5jZrHZ+Kigrp16+fkiYiIkISEhIkIyND9u7dK6NHj1aWhYaGyp07d1S3++DBg0ra9PR0zX1E5IwYdCUiop+E4uJiGTt2rPLFTe3P0pfHLVu2SOPGja3mdXV1laSkJLO89rpgFRFZtGiR6rqrf7EuKSmRKVOmWK0zAGnTpk2NddX2glVEZNasWQJA2rZtq5kuKytLuXCo/qe27SIizzzzjFna559/3ua6tWnTRgDIrFmzbM5Djol92TH6cm32h4jI/v37laCbpb+IiAg5ffq01TKTk5OVwKvacbe2zdaOz71792TUqFGa+zo4OFiysrI0t/nNN98UAOLr6yv37t2zuo+0sN07RrsXcdxzmC1BVxGRGzdu1KiLpT+1471ixQrV7Tf9c3d3l9zcXNU6PkjQVUQkMjJSdd15eXlmaQsLC2Xo0KE2taeBAwfWWFdtg64iIkOGDFEtz6g2+0NEZMOGDeLq6qpa93Hjxsnhw4etlhkfHy/u7u4Wy3Bzc5O4uDir22zt+BQWFpoFgC39de7cWfLz8zW3+aWXXhIA0rFjR6v7h8gZ8fECRET0k9CwYUMkJCQgKSkJkydPRps2beDl5QUfHx906tQJo0ePRnx8vHIbp6lx48YhPz8f7733HiIiItCsWTPodDo0bNgQbdu2xfDhw/G3v/0N+fn5GDhw4EPbhvfeew9xcXHo378/AgICNN866+XlhY0bN0Kv12P27Nno2rUrfH194ebmBj8/P/Ts2RPR0dHYtm0bzp49a5f6GW8nO3/+PFJTU1XT9ezZE6mpqYiKikKrVq1UbymrrvptmBMmTLApX2pqqnJ735w5c2zKQ46Lfdlx+nJtDBkyBHq9HpMmTUJwcDB0Oh2aNm2KAQMGYO3atThy5IjyvEktEREROHPmDGbPno3WrVvD3d0dzZs3x7Bhw7B//368+eabD1xXT09P7NixA3v27MHo0aMRHBwMd3d3+Pv7o0+fPli+fDlycnLQs2dPzXI2b94MAJg+fbrZMyjrgu3ecdq9s5/DmjRpgmPHjmHHjh0YO3YsWrRoAQ8PD/j7+yMsLAwTJ07E7t27Veu3YMECfPfdd1i6dCn69u2LJk2awM3NDY0aNUKHDh0wZswYrF69GpcuXUK7du0euL5qPvvsM7z//vvo3bs3fH194eqqHroICAjAvn37cOTIEUybNg3t27eHt7c33NzcEBAQgCeffBJz585FYmIiDh06ZJf6GdvTsWPHcOnSJbuUOW3aNKSkpGDkyJFo2rQpdDodgoKCMHToUGzduhVbtmzR7FdGUVFRyMrKwuTJk5XxLSQkBJGRkThx4gRmzJjxwHUNCAjA8ePHsWnTJgwdOhTNmzeHTqdDYGAgIiIiEBsbi1OnTqF169aqZdy/fx87d+4EwO9v9NPlIlLPr7okIiIipzF06FAcOHAA0dHRdnkumj3MmDED69evx+DBgx3irctEzsAR+7IzOXHiBPr37w+dTodz587h8ccfr+8qkQ0csd3zHOacKisrERYWhrNnz+KPf/wj3njjjfquktP57LPPMHnyZAQEBCA/Px8+Pj71XSUiu2PQlYiIiGx28uRJ9O3bFzqdDrm5uZozGB6FCxcuoF27digvL8dXX32Ffv361Wt9iJyFo/VlZzNkyBAcPHgQL7/8MtasWVPf1SEbOVq75znMuX3xxRcYN24cAgMDkZ+fD29v7/quktMwDVq/++67iImJqe8qET0UfLwAERER2axPnz6IjIxEeXk5li9fXt/VwfLly1FeXo4xY8bwYpWoFhytLzuTtLQ0HDx4EN7e3nZ53AE9Oo7W7nkOc24vvvgi+vbti8LCQsTGxtZ3dZxKQkICzp49i5YtW2LBggX1XR2ih8atvitAREREzuWvf/0rOnfuDA8PD1RWVmo+Z+1hEhG0bt0ay5Ytw/Tp0+ulDkTOzFH6srO5efMmli1bhl69eiEoKKi+q0O15Cjtnucw5+fi4oK4uDhs27aNs1xryWAwYNmyZfjFL34BLy+v+q4O0UPDxwsQERERERERERER2RF/ziYiIiIiIiIiIiKyIwZdiYiIiIiIiIiIiOyIQVciIiIiIiIiIiIiO2LQlYiIiIiIiIiIiMiOGHQlIiIiIiIiIiIisiMGXYmIiIiIiIiIiIjsiEFXIiIiIiIiIiIiIjti0JWIiIiIiIiIiIjIjhh0JSIiIiIiIiIiIrIjBl2JiIiIiIiIiIiI7IhBVyIiIiIiIiIiIiI7YtCViIiIiIiIiIiIyI4YdCUiIiIiIiIiIiKyIwZdiYiIiIiIiIiIiOyIQVciIiIiIiIiIiIiO2LQlYiIiIiIiIiIiMiOGHQlIiIiIiIiIiIisiMGXYmIiIiIiIiIiIjsiEFXIiIiIiIiIiIiIjti0JWIiIiIiIiIiIjIjv4PHVvzu/VTDs8AAAAASUVORK5CYII=",
"text/plain": [
"
"
]
},
"metadata": {
"image/png": {
"height": 434,
"width": 686
}
},
"output_type": "display_data"
}
],
"source": [
"plot_predictor_correlations(model_centered)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's try to understand **why** this matters by revisiting one of the assumptions of the GLM we haven't discussed yet: **multicollinearity**."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Multicollinearity - the other assumption\n",
"\n",
"
\n",
"\n",
"
\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Previously we discussed the fundamental assumptions of GLMs that can be summarized as **i**ndependent & **i**identically **d**istributed errors (**iid**):\n",
"- errors should be independent of each other\n",
"- errors should be independent of predictors\n",
"- errors should be approximately normal\n",
"\n",
"Now let's explore **multicollinearity** - a situation in which the predictors of a GLM are **correlated** with each other. How correlated? There isn't actually a principled answer for this because it depends on the goals of your analysis! \n",
"\n",
"Instead in this notebook we'll explore the key points you should understand about this assumption:\n",
"\n",
"- Why it matters\n",
"- How it affects parameter estimates\n",
"- How it affects estimate uncertainty (standard-errors & confidence intervals)\n",
"- How to check for it\n",
"- How to deal with it\n",
"\n",
"We'll also ask you to skim the following paper which provides a more detailed discussion of what (and what not to) worry about when it comes to multicollinearity:\n",
"\n",
"[Vanhove, J. (2021). Collinearity isn’t a disease that needs curing. Meta-Psychology, 5.](https://paperpile.com/shared/sM2u33xdnTMGoFTl59avK1Q)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Why it matters\n",
"\n",
"
\n",
"\n",
"\n",
"\n",
"
\n",
"\n",
"Intuitively, collinearity matters because in the *worst case*, when 2 or more predictors are *perfectly correlated*, we **can't tell the difference** between how much 2 or more variables uniquely predict $y$!\n",
"\n",
"In the figures above, the overlap in circles shows how much $X1$ and $X2$ predict $y$ and how much overlap (corelation) exists between $X1$ and $X2$. In the right most figure, we see that $X1$ and $X2$ are so overlapping that it doesn't even make sense to use both of them in the same model!\n",
"\n",
"In linear algebra terms:\n",
"- If any of the predictors in $X$ is a perfect linear combination of the other predictors, we say that $X$ is **rank-deficient** - it doesn't need as many columns as it has to reflect the overall variance that it does\n",
"- In this case, there is no unique solution for $\\hat{\\beta}$, because the matrix $ (X^TX)^{-1} $ is not invertible."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's see this with some 3d plots of a multiple regression with 2 predictors X1 and X2\n",
"\n",
"Remember that graphically, fitting a *multiple regression* with 2 predictors is extending the idea of a **line** of best fit to a **plane** or **sheet** of best fit.\n",
"\n",
"In this first movie X1 and X2 are uncorrelated and we can see that the regression plane is stable across repeated samples\n",
"\n",
"\n",
"\n",
"In the second, the two predictors are correlated. The regression plane tips on a ridge defined by the correlated predictors, and is unstable across repeated samples:\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Key Takeaways\n",
"In general we want to avoid multi-collinearity because it makes it harder to identify the unique contribution of each predictor in our GLM. Concretely we'll see this reflected in our calculations in the following ways:\n",
"- Our parameter estimates can become very large and even flip sign from negative to positive\n",
"- Our *uncertainty* in those estimates becomes larger so our standard errors *always* increase\n",
"- As a result our confidence intervals become *wider* \n",
"- So our statistical *power* decreases - we're less certain of our estimates so our ability to make reliable conclusions given the same sample size *decreases*\n",
"- Our overall model fit *does not change* - in other words our error in predicting our dependent variable does not increase as a result of collinearity - but our model does get *less interpretable* - we can't pinpoint the unique contribution of each predictor!\n",
"\n",
"You can see this reflected in the following figure just plotting the estimates and 95% confidence intervals for two predictors with varying levels of collinearity:\n",
"\n",
"
\n",
"\n",
"
"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Inspecting collinearity: VIF\n",
"\n",
"We already saw one way of checking for collinearity: **visual inspection of predictor correlations**\n",
"\n",
"We can also generalize this idea to calculate what's called a **variance inflation factor (VIF)** for each predictor in our model:\n",
"\n",
"$$\n",
"\\text{VIF}_k = \\frac{1}{1-{R^2_{(-k)}}}\n",
"$$\n",
"\n",
"where $R^2_{(-k)}$ refers to $R$-squared value you would get if you ran a regression using $X_k$ as the outcome variable, and all the other $X$ variables as the predictors. The idea here is that $R^2_{(-k)}$ is a very good measure of the extent to which $X_k$ is correlated with all the other variables in the model. Better yet, the square root of the VIF is pretty interpretable: it tells you how much wider the confidence interval for the corresponding coefficient $b_k$ is, relative to what you would have expected if the predictors are all nice and uncorrelated with one another. If you've only got two predictors, the VIF values are always going to be the same.\n",
"\n",
"\n",
"To calculate VIF we can use the `variance_inflation_factor()` function from `statsmodels`. However, this function only calculated VIF for a single predictor, so we'll write our own function (we've also provided it in `helpers.py` which you can import using: `from helpers import vif`) to calculate the VIFs for all of our predictors at once. We'll also return the square-root of the VIF to get a sense of how much wider our CIs would be:\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Import statsmodels function\n",
"from statsmodels.stats.outliers_influence import variance_inflation_factor\n",
"\n",
"# Just showing you the code here\n",
"\n",
"# For future just do: \n",
"# from helpers import vif\n",
"\n",
"def vif(model):\n",
" \"\"\"Calculate VIFs for all predictors in a model\"\"\"\n",
" vifs = []\n",
" for i in range(model.exog.shape[1]):\n",
" this_vif = variance_inflation_factor(model.exog,i)\n",
" vifs.append(this_vif)\n",
"\n",
" return pl.DataFrame({\n",
" 'variable': model.exog_names, \n",
" 'VIF': vifs, \n",
" 'CI_increase': np.sqrt(vifs)\n",
" })"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's use this to calculate the VIFs for our uncentered and centered models:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
],
"text/plain": [
"shape: (4, 3)\n",
"┌──────────────────────────┬──────────┬─────────────┐\n",
"│ variable ┆ VIF ┆ CI_increase │\n",
"│ --- ┆ --- ┆ --- │\n",
"│ str ┆ f64 ┆ f64 │\n",
"╞══════════════════════════╪══════════╪═════════════╡\n",
"│ Intercept ┆ 1.002983 ┆ 1.00149 │\n",
"│ center(tv) ┆ 1.010291 ┆ 1.005132 │\n",
"│ center(radio) ┆ 1.003058 ┆ 1.001528 │\n",
"│ center(tv):center(radio) ┆ 1.007261 ┆ 1.003624 │\n",
"└──────────────────────────┴──────────┴─────────────┘"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vif(model_centered)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### VIF rule-of-thumb"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"So how should we interpret these? A decent **rule-of-thumb** is to be concerned about VIFs that are 5 or greater - **but this is not a hard-and-fast rule**.\n",
"\n",
"Why 5? Because it means our estimates are going to be 2.5x as uncertain as they would have been with no collinearity. Is 2.5x the right number? It depends on how much *certainty* you need in your specific estimates and what kind of statistical inference you want to make. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can see that when we *don't center* our predictors - the *widths* of our confidence intervals are larger by a factor of about `np.sqrt(VIF)` for each predictor relative to our *centered* predictors:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"