{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Models VII: 3+ level categorical predictors & One-way ANOVA\n", "\n", "In notebook `05_models` we saw how we can *encode* a *categorical predictor with 2-levels* (`Student = (Yes or No)`) in a GLM using **treatment (dummy) codes**. \n", "\n", "Let's extend this idea to explore how to model categorical variables with **more thant 2 levels**\n", "\n", "We're going to look at a new dataset that comes from the following paper:\n", "\n", "[Meyer, G., von Meduna, M., Brosowski, T., & Hayer, T. (2012). Is poker a game of skill or chance? A quasi-experimental study. Journal of Gambling Studies](https://link.springer.com/article/10.1007/s10899-012-9327-8)\n", "\n", "The experiments used a 2 (skill) x 3 (hand) x 2 (limit) design\n", "\n", "This is reflected in the provided tidy-dataset which has 4 columns:\n", "\n", "| Variable | Description |\n", "|------------|---------------------------------|\n", "| skill | a player's skill (expert/average)|\n", "| hand | the quality of the hand experimenters manipulate (bad/neutral/good)|\n", "| limit | the style of game (fixed/no-limit)|\n", "| balance | a player's final balance in Euros|\n", "\n", "### Slides for reference\n", "\n", "[Modeling Data VI (slides)](https://stat-intuitions.com/lectures/wk7/2.html) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data\n", "\n", "Let's load the data and verify the details above:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "shape: (5, 4)
skillhandlimitbalance
strstrstrf64
"expert""bad""fixed"4.0
"expert""bad""fixed"5.55
"expert""bad""fixed"9.45
"expert""bad""fixed"7.19
"expert""bad""fixed"5.71
" ], "text/plain": [ "shape: (5, 4)\n", "┌────────┬──────┬───────┬─────────┐\n", "│ skill ┆ hand ┆ limit ┆ balance │\n", "│ --- ┆ --- ┆ --- ┆ --- │\n", "│ str ┆ str ┆ str ┆ f64 │\n", "╞════════╪══════╪═══════╪═════════╡\n", "│ expert ┆ bad ┆ fixed ┆ 4.0 │\n", "│ expert ┆ bad ┆ fixed ┆ 5.55 │\n", "│ expert ┆ bad ┆ fixed ┆ 9.45 │\n", "│ expert ┆ bad ┆ fixed ┆ 7.19 │\n", "│ expert ┆ bad ┆ fixed ┆ 5.71 │\n", "└────────┴──────┴───────┴─────────┘" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "import polars as pl\n", "from polars import col\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "from statsmodels.formula.api import ols\n", "from statsmodels.stats.anova import anova_lm\n", "df = pl.read_csv('./data/poker-tidy.csv')\n", "df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This reflects the 300 participants in the experiment and 4 columns of our dataframe:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(300, 4)" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Challenge: Using polars, figure out how many observations there are per *cell* of the 2x3x2 design" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Your code here" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "shape: (12, 4)
skillhandlimitlen
strstrstru32
"expert""neutral""fixed"25
"average""neutral""no-limit"25
"average""good""fixed"25
"expert""bad""fixed"25
"expert""good""no-limit"25
"average""good""no-limit"25
"average""bad""fixed"25
"average""bad""no-limit"25
"expert""neutral""no-limit"25
"expert""good""fixed"25
" ], "text/plain": [ "shape: (12, 4)\n", "┌─────────┬─────────┬──────────┬─────┐\n", "│ skill ┆ hand ┆ limit ┆ len │\n", "│ --- ┆ --- ┆ --- ┆ --- │\n", "│ str ┆ str ┆ str ┆ u32 │\n", "╞═════════╪═════════╪══════════╪═════╡\n", "│ expert ┆ neutral ┆ fixed ┆ 25 │\n", "│ average ┆ neutral ┆ no-limit ┆ 25 │\n", "│ average ┆ good ┆ fixed ┆ 25 │\n", "│ expert ┆ bad ┆ fixed ┆ 25 │\n", "│ expert ┆ good ┆ no-limit ┆ 25 │\n", "│ … ┆ … ┆ … ┆ … │\n", "│ average ┆ good ┆ no-limit ┆ 25 │\n", "│ average ┆ bad ┆ fixed ┆ 25 │\n", "│ average ┆ bad ┆ no-limit ┆ 25 │\n", "│ expert ┆ neutral ┆ no-limit ┆ 25 │\n", "│ expert ┆ good ┆ fixed ┆ 25 │\n", "└─────────┴─────────┴──────────┴─────┘" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Solution\n", "df.group_by(['skill','hand', 'limit']).len()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Categorical Predictor with 3 levels\n", "\n", "The first question we're interested in testing is: **does having a better `hand` earn more money, i.e a higher `balance`?**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Challenge: Visualization\n", "\n", "Create a figure that plots data from each level of `hand` on the x-axis and `balance` on the y-axis\n", "\n", "Add a bar or point that also reflect the *mean* balance at each level" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Your code here" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB4sAAAOiCAYAAABpaTEfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdfZxbZZ3///c5c3IymSQzTFu6hRYoNwURpNDSXUERBBFQAUWqsroL6gNYBIQv6C7qesfiqvtbBVQUdpEiK4sIsgqi1Jul3Cv3ULDcVaGdoUDvmCYzmZycnPP7o5uQzCSZJJPkJJPX8/GYB+Scc13nyjwezZxcn+vzuQzf930BAAAAAAAAAAAAALqKGfQAAAAAAAAAAAAAAACtR7AYAAAAAAAAAAAAALoQwWIAAAAAAAAAAAAA6EIEiwEAAAAAAAAAAACgCxEsBgAAAAAAAAAAAIAuRLAYAAAAAAAAAAAAALoQwWIAAAAAAAAAAAAA6EIEiwEAAAAAAAAAAACgCxEsBgAAAAAAAAAAAIAuRLAYAAAAAAAAAAAAALoQwWIAAAAAAAAAAAAA6EIEiwEAAAAAAAAAAACgCxEsBgAAAAAAAAAAAIAuRLAYAAAAAAAAAAAAALoQwWIAAAAAAAAAAAAA6EJW0AMAppLNZvXKK69MOj5v3jz19PQEMCIAAAAAAAAAAACg8xEsRtt75ZVXtGDBgknHh4aGNH/+/ABGBAAAAAAAAAAAAHQ+ylADAAAAAAAAAAAAQBciWAwAAAAAAAAAAAAAXYhgMQAAAAAAAAAAAAB0IYLFAAAAAAAAAAAAANCFCBYDAAAAAAAAAAAAQBciWAwAAAAAAAAAAAAAXYhgMQAAAAAAAAAAAAB0IYLFAAAAAAAAAAAAANCFCBYDAAAAAAAAAAAAQBciWAwAAAAAAAAAAAAAXYhgMQAAAAAAAAAAAAB0IYLFAAAAAAAAAAAAANCFCBYDAAAAAAAAAAAAQBciWAwAAAAAAAAAAAAAXYhgMQAAAAAAAAAAAAB0IYLFAAAAAAAAAAAAANCFCBYDAAAAAAAAAAAAQBciWAwAAAAAAAAAAAAAXYhgMQAAAAAAAAAAAAB0IYLFAAAAAAAAAAAAANCFCBYDAAAAAAAAAAAAQBciWAwAAAAAAAAAAAAAXYhgMQAAAAAAAAAAAAB0IYLFAAAAAAAAAAAAANCFCBYDAAAAAAAAAAAAQBciWAwAAAAAAAAAAAAAXYhgMQAAAAAAAAAAAAB0IYLFAAAAAAAAAAAAANCFrKAHAAAAAAAAAAAAgNbyPE+ZTEa+78swDIVCIZkmOYZAtyFYDAAAAAAAAAAA0CVc11UqlZLjOJPO2batSCQiyyJ8BHQL/rUDAAAAAAAAAAB0AcdxlEgkKp53HEfxeFy2bbdwZACCQj0BAAAAAAAAAACAGc513YqB4kKJREKu6zZ5RADaAcFiAAAAAAAAAACAGS6VSjX1egCdiWAxAAAAAAAAAADADOZ5Xsk9iitxHEee5zVpRADaBcFiAAAAAAAAAACAGSyTybS0HYDOQbAYAAAAAAAAAABgBvN9v6XtAHQOgsUAAAAAAAAAAAAzmGEYLW0HoHMQLAYAAAAAAAAAAJjBQqFQS9sB6BwEiwEAAAAAAAAAAGYw0zRl23ZNbWzblmkSRgJmOv6VAwAAAAAAAAAAzHCRSKSp1wPoTASLAQAAAAAAAAAAZjjLshSPx6u6Nh6Py7KsJo8IQDsgWAwAAAAAAAAAANAFbNvWwMBA2ZLUU50HMPOwLAQAAAAAAAAAAKBL5DKMPc9TJpOR7/syDEOhUIg9ioEuRLAYAAAAAAAAAACgy5imqXA4HPQwAASMJSIAAAAAAAAAAAAA0IUIFgMAAAAAAAAAAABAFyJYDAAAAAAAAAAAAABdiGAxAAAAAAAAAAAAAHQhgsUAAAAAAAAAAAAA0IUIFgMAAAAAAAAAAABAFyJYDAAAAAAAAAAAAABdiGAxAAAAAAAAAAAAAHQhgsUAAAAAAAAAAAAA0IUIFgMAAAAAAAAAAABAFyJYDAAAAAAAAAAAAABdiGAxAAAAAAAAAAAAAHQhgsUAAAAAAAAAAAAA0IUIFgMAAAAAAAAAAABAFyJYDAAAAAAAAAAAAABdiGAxAAAAAAAAAAAAAHQhgsUAAAAAAAAAAAAA0IUIFgMAAAAAAAAAAABAFyJYDAAAAAAAAAAAAABdyAp6AAAAAAAAAJLkeZ4ymYx835dhGAqFQjJN1rkDAAAAQLMQLAYAAAAAAIFyXVepVEqO40w6Z9u2IpGILIspDAAAAABoNL5pAQAAAACAwDiOo0QiUfG84ziKx+OybbuFIwMAAACAmY9aTgAAAAAAIBCu61YMFBdKJBJyXbfJIwIAAACA7kKwGAAAAAAABCKVSjX1egAAAABAZQSLAQAAAABAy3meV3KP4kocx5HneU0aEQAAAAB0H/YsbrKhoSE99dRTWrdunbZu3SpJGhwc1Lx587Rs2TLttNNOAY8QAAAAAIDWy2QydbcLh8MNHg0AAAAAdCeCxQ326quv6tZbb9Xvf/973XnnnXrttdcqXr/nnnvqk5/8pM444wzNnj275vstXLhQL730Ur3DlSTNnj1bmzZtmlYfAAAAAADUwvf9lrYDAAAAAExGGeoGefjhh3XkkUdq55131hlnnKEbb7xxykCxJK1du1af//zntccee+hHP/pRC0YKAAAAAEDwDMNoaTsAAAAAwGQEixvk4Ycf1p133ln33knbtm3TaaedpnPOOafBIwMAAAAAoP2EQqGWtgMAAAAATEYZ6ibaa6+9dPTRR+uII47Qvvvuq7lz56q3t1evvPKK7r//fv3Hf/yH/vCHPxS1ueKKK7Tjjjvqy1/+cl33POWUU7TrrrvW1CYajdZ1LwAAAAAA6mWapmzbluM4VbexbVumybp3AAAAAGgUgsUNZlmWPvShD+mMM87Q4YcfXvKagYEB7bPPPvr4xz+uq666Sueee64ymUz+/CWXXKLly5frzW9+c833P+OMM3TEEUfUO3wAAAAAAFomEonUFCyORCJNHA0AAAAAdB+W4zaIaZr6yEc+oj/96U+6/vrrywaKJzrzzDN11VVXFR1zXVcXX3xxM4YJAAAAAEDbsCxL8Xi8qmvj8bgsizXvAAAAANBIhu/7ftCDmAmy2ax6enrqbn/EEUforrvuyr+Ox+PatGmTbNuu2G7hwoV66aWX8q/vvPPOGZdZPDw8rAULFkw6PjQ0pPnz5wcwIgAAAABAI7muq1QqVTLL2LZtRSIRAsUAAAAA0ARkFjfIdALFknTqqacWvU4kEnryySen1ScAAAAAAJ0gl2E8ODioWCymaDSqWCymwcFBMooBAAAAoIn4ttUmFi9ePOnYhg0bAhgJAAAAAADBME1T4XA46GEAAAAAQNcgs7hNRCKRScdGR0cDGAkAAAAAAAAAAACAbkCwuE2sW7du0rG5c+cGMBIAAAAAAAAAAAAA3YAy1G1i1apVk47ttddeNfeTzWb1yCOP6LHHHtPGjRs1Pj6uWbNmafbs2Vq8eLH2339/GYbRgBEDAAAAAAAAAAAA6GQEi9tANpvV9ddfX3Rs//3316677lpzX8cee6xc1y17ftasWTrxxBP12c9+Vvvuu2/N/QMAAAAAAAAAAACYGQgWt4Grr75a69evLzr2kY98pK6+KgWKJWnLli1asWKFrr32Wp122mn63ve+p76+vrruNdG2bduUSCQa0lehDRs2NLxPAAAAAAAAAAAAoNsZvu/7QQ+imw0NDWn//ffXyMhI/tisWbO0du1a7bDDDlO2X7hwoV566aW677/ffvvpV7/6VV1ZzBN95Stf0Ve/+tVp91OtoaEhzZ8/v2X3AwAAAAAAAAAAAGYSM+gBdDPXdfW3f/u3RYFiSfrGN75RVaC40AEHHKAvfOEL+sUvfqEXXnhBIyMjymQy2rhxox555BFddtllWrJkyaR2Tz/9tN73vvc1JSMYAAAAAAAAAAAAQPuiDHWAzj//fN1zzz1Fx4477jidfvrpVffxiU98QieddJL233//kufnzJmjOXPmaMmSJTrvvPN000036fTTTy8KUK9evVpnn322rrvuuvreCAAAAAAAAAAAAICOQ2ZxQL773e/qiiuuKDq2YMGCmgO2X/rSl8oGiktZvny57rvvPg0MDBQdv/7667V69eqa7g0AAAAAAAAAAACgcxEsDsCNN96o888/v+jYwMCAbr/9ds2ZM6fp999vv/109dVXFx3zPE+XXnpp0+8NAAAAAAAAAAAAoD0Yvu/7QQ+inHQ6rdHRUbmuq76+PkWjURmGEfSwpuWOO+7QCSecoEwmkz8WiUS0cuVKHXbYYS0dy8EHH6xHHnkk/3rnnXfW8PBw3f1t27atKXsfb9iwQcuWLZt0fGhoSPPnz2/4/QAAAAAAAAAAAIBu0BZ7Fq9evVoPPfSQHnroIT333HN68cUXNTQ0JNd1J107a9Ys7bbbbtp99921ePFiLVu2TMuWLdOsWbMCGHlt7r33Xn3wgx8sChSHQiHddNNNLQ8US9IHP/jBomDxyy+/rOeff16LFi2qq7/+/n719/c3angAAAAAAAAAAAAAmiiQYPHY2Jh+8Ytf6Pbbb9dvfvMbbd68ueh8pWTnzZs3a/PmzXrsscd0yy23SJIMw9DSpUv1nve8RyeeeKIOPPDAZg6/Lo8++qje9773aWxsLH/MNE1dd911eu973xvImA455JBJx4aHh+sOFgMAAAAAAAAAAADoHC0NFq9atUorVqzQ//zP/2h0dFRS6cBwNaWmC9v5vq+HHnpIDz/8sC6++GLtt99+OvXUU3Xqqae2ZA/gqTz99NN697vfrZGRkaLjV155pT7ykY8ENCpp7ty5k45t3LgxgJEAAAAAAAAAAAAAaDWz2TfIZDL60Y9+pAMPPFBHHXWUfvzjHyuZTMr3ffm+L8MwJv1Iyp8v9SOpZLvc+aeeekr/+I//qF133VVnnnmm1qxZ0+y3WdbatWt19NFHT8qe/vd//3edfvrpAY1qu3oD9QAAAAAAAAAAAAA6X9Myiz3P0zXXXKN/+Zd/0dDQUFFgsjAgOTFgucMOO2jBggXaaaed1NfXp0gkIsuylEqllEqltGXLFg0NDemVV16ZtKfxxH7Hx8d19dVX64c//KFOPvlkXXzxxdp7772b9I4nW79+vY466iht2LCh6PhXvvIVXXjhhS0bRzmvvfbapGM77rhjACMBAAAAAAAAAAAA0GpNCRb/z//8jy666CK98MILRZnAkoqyg3fbbTe9853v1LJly7R48WK95S1vUTwer+oevu/rhRde0BNPPKEnnnhC99xzj/74xz8qnU6XvN9NN92kW265Raeeeqq+9rWvlSzB3EivvvqqjjrqKL300ktFxy+44AJ9+ctfbuq9q3X//fdPOrbTTjsFMBIAAAAAAAAAAAAArWb4pWoR1+nZZ5/Vpz/9af3ud78rGSQ2TVNve9vbdPLJJ+v444/XwoULG3VrSdL4+Ljuuece/exnP9PPf/7zfOZs4RgMw1B/f78uvvhinX322TLNxlfi3rp1qw4//HCtXr266PiZZ56pK6+8suH3q4fv+1qyZIkef/zx/LGddtpJL7/8cnCDKmN4eFgLFiyYdHxoaEjz588PYEQAAAAAAAAAAABA52tosDgcDst13XxQNtf1HnvsoU9+8pP6+Mc/rnnz5jXqdhX5vq/f/e53uuqqq3Tbbbcpk8lMChp/7Wtf00UXXdTQ+yaTSR111FF68MEHi45/7GMf049+9KOmBKfr8ZOf/ESnnHJK0bHTTjtNK1asCGhE5REsBgAAAAAAAAAAABqvoZHLTCaT/3/f93XEEUfo17/+tV544QV97nOfa1mgWNqeTXz00Ufr5ptv1vr16/XP//zP2mGHHfKBYklyHKeh9xwfH9fxxx8/KVB80kkn6dprr21ooHjTpk35ktu1euKJJ3TGGWcUHTMMQ+eff34DRgYAAAAAAAAAAACgEzQ8zdX3fR133HF64IEH9L//+7865phjGn2Lms2dO1cXX3yx1q1bp3/7t3/T7NmzG34P13W1fPlyrVq1quj4cccdpxtuuEE9PT0Nvd+9996rPffcU5dffrm2bNlSVRvf93X99dfrsMMOUyKRKDr30Y9+VIsXL27oGAEAAAAAAAAAAAC0r4aWof6bv/kb/du//ZsOP/zwRnXZFIlEQt/85jc1ODioCy+8sCF9fuELX9C//uu/Fh2zLEuf+tSnFIlE6upz6dKlWr58eclzP//5z/WBD3wgf5+jjjpKhx9+uA466CDtueeeGhgYUF9fn0ZGRrRu3Trdc889uu666/T0009P6mvx4sW6++671d/fX9c4m40y1AAAAAAAAAAAAEDjWY3s7I9//GMju2uaeDyuSy65pKF9Dg8PTzrmuq6+853v1N3nqaeeWjZYPPE+K1eu1MqVK2u+x+LFi/WrX/2qbQPFAAAAAAAAAAAAAJqj4WWo0RlCoZAuvPBCPfjgg9p5552DHg4AAAAAAAAAAACAFmtoZjFa5/DDD9c111yjO++8U3/4wx+0du1aeZ43Zbt99tlHy5cv11lnnUWQGAAAAAAAAAAAAOhiDd2zGMFJJpN69tlntW7dOr388ssaHR2V4ziKxWIaHBzUvHnztGzZMs2aNSvoodaMPYsBAAAAAAAAAACAxiNYjLZHsBgAAAAAAAAAAABoPPYsBgAAAAAAAAAAAIAu1NF7Fg8PD2v16tUaGRnRjjvuqP33319z584NelgAAAAAAAAAAAAA0PY6Mlh877336rOf/awefPDBouOmaeroo4/Wt771Le27774BjQ4AAAAAAAAAAAAA2l9gZaiff/557bzzzvmfvffeW+Pj41O2u+6663TkkUfqwQcflO/7RT/ZbFZ33HGHli5dqltuuaUF7wIAAAAAAAAAAAAAOlNgweKbb75Zr7zyil555RW9+uqrOuqoo9Tb21uxzRNPPKEzzjhDruvK930ZhjHpR5LGx8f1sY99TH/84x9b8VYAAAAAAAAAAAAAoOMEFiy+4447il7//d///ZRtPvOZz8hxnKLA8MTs4ty58fFxnXnmmfJ9vynjBwAAAAAAAAAAAIBOFkiwOJvN6uGHH84HfAcHB/XWt761YpvHHntMv//972UYRj4wvGDBAl122WW64447tGLFCi1btqwoOLx69Wr99Kc/bep7AQAAAAAAAAAAAIBOZAVx0+eee06pVCqfBXzIIYfkA8flXH/99UWv58+fr4ceekhz587NH/voRz+q448/XitXrsz391//9V/68Ic/3Pg3AQAAAAAAAAAAAAAdLJDM4hdffLHo9X777Tdlm1tuuSWfVWwYhr70pS8VBYolybIsXXnllQqFQpK2l6j+3e9+p0wm07CxAwAAAAAAAAAAAMBMEEiweGhoSJLyJaN33333itevW7euKMAciUT00Y9+tOS1u+22m4444oh835lMRk8//XQDRg0AAAAAAAAAAAAAM0cgweJkMln0Oh6PV7z+7rvvzv+/YRh65zvfqb6+vrLXH3rooUWv16xZU8coAQAAAAAAAAAAAGDmCiRYnEqlil5HIpGK1z/00EOS3shEfte73lXx+oULFxa93rJlS40jBAAAAAAAAAAAAICZLZBgsWVZRa8nBo8neuCBB2QYRv71YYcdVvH6WCwmSfk2iUSinmECAAAAAAAAAAAAwIwVSLC4v7+/6PXLL79c9tpEIqHHHnss/zoSiejAAw+s2L/jONMaHwAAAAAAAAAAAADMdIEEi+fNmyfpjczf1atXl732N7/5jbLZbP76ZcuWyTQrD/v111+X9EbZ6lymMQAAAAAAAAAAAABgu0CCxQcccED+/33f18qVK5XJZEpee8MNN+Svk6R3vOMdU/Y/MVN5zpw59Q4VAAAAAAAAAAAAAGakQILFe+yxh/7qr/4q/3rjxo367ne/O+m6P/3pT/rFL35RtF/x0UcfPWX/jz/++KT7AQAAAAAAAAAAAADeEEiwWJI+9KEPyfd9GYYh3/d10UUX6ZJLLtErr7yiTCajO++8UyeccEK+BLUk7bLLLnr7298+Zd+PPvpoUYB50aJFTXkPAAAAAAAAAAAAANCpDD9X37nFnn/+eb3lLW/Jl5/OBY4LFQaTDcPQN7/5TX3mM5+p2O9jjz2mpUuX5tvtscceeuGFF5r2PtB8w8PDWrBgwaTjQ0NDmj9/fgAjAgAAAAAAAAAAADpfYJnFixYt0mc/+9n8XsS54G7hT2HwePfdd9c555wzZb+33HJL/v8Nw9Chhx7a+MEDAAAAAAAAAAAAQIcLLFgsSf/yL/+ij33sY0UB48IfaXt28axZs/Szn/1Mvb29FfvzPE/XX399PvAsSUcddVRz3wQAAAAAAAAAAAAAdKBAg8WSdN1112nFihXac889S2YWv//979eDDz6oxYsXT9nXz3/+c7344otFwef3vve9zX4LAAAAAAAAAAAAANBxrKAHIEmnnnqqTj31VP3pT3/Sn//8ZyUSCc2ePVvLli3T4OBg1f0kEgmdd955+ddz587VnDlzmjFkAAAAAAAAAAAAAOhohp9LwwXa1PDwsBYsWDDp+NDQkObPnx/AiAAAAAAAAAAAAIDOF3gZagAAAAAAAAAAAABA6xEsBgAAAAAAAAAAAIAuRLAYAAAAAAAAAAAAALoQwWIAAAAAAAAAAAAA6EJW0AMoZePGjVq1apXuu+8+Pfroo9q0aZO2bNmiRCKheDyuWbNmac6cOVq6dKkOPfRQvfOd79ScOXOCHjYAAAAAAAAAAAAAdAzD930/6EHkPProo/r2t7+tm2++WZlMJn+81BANw8j/fygU0oc//GGdf/75Ouigg1oyVrTO8PCwFixYMOn40NCQ5s+fH8CIAAAAAAAAAAAAgM7XFmWoM5mMLrzwQv31X/+1brjhBjmOI9/38z+GYUz6KTzvOI5+/OMfa9myZfrsZz9bFGgGAAAAAAAAAAAAAEwWeGbx66+/rqOPPlqPPvpoPoO4MGs4p3CYlc4bhqGlS5fqt7/9rQYGBpo0arQSmcUAAAAAAAAAAABA4wW6Z7HjODrxxBP1yCOPSCoOAueCv6ZpapdddtHg4KCi0ahGR0f1+uuva926dfI8L98u19b3fT3yyCM68cQT9Zvf/Ea2bbf4XQEAAAAAAAAAAABA+ws0WPyP//iPuueeeyYFiQcHB3XKKafoQx/6kJYuXapoNDqp7djYmB555BH99Kc/1Q033KAtW7YUlai+55579E//9E+69NJLW/mWAAAAAAAAAAAAAKAjBFaG+s9//rP23Xdfua4r6Y1M4n/4h3/Q17/+9ZpKSG/btk2f//zn9YMf/CB/zPd92batNWvWaPfdd2/s4NFSlKEGAAAAAAAAAAAAGs8M6sbf/OY3lclkJG0P7Pb09Oiqq67S97///Zr3Gu7v79f3vvc9/ed//mdRlnImk9G//du/NXTcAAAAAAAAAAAAADATBBYsvv322/Mlow3D0IUXXqjTTz99Wn1+4hOf0Gc/+9l8n77v67bbbmvQiAEAAAAAAAAAADqX53lKp9MaHx9XOp2W53lBDwlAwAIpQ/3UU0/pgAMOyAd058yZo/Xr1yscDk+773Q6rV122UWbN2/OB42feOIJ7b///g0YOYJAGWoAAAAAAAAAAOrnuq5SqZQcx5l0zrZtRSIRWZYVwMgABC2QzOLnnnsu//+GYegDH/hAQwLFkhQOh/WBD3xAhTHwwvsBAAAAAAAAAAB0C8dxNDIyUjJQXM15ADNbIMHijRs3SlI+oLt48eKG9n/ggQcWvX7ttdca2j8AAAAAAAAAAEC7c11XiUSiqmsTiYRc123yiAC0m0CCxVu2bCl6PXfu3Ib2P2fOHEnbs5Yl6fXXX29o/wAAAAAAAAAAAO0ulUo19XoAnS+QYPHAwEDR64nB4+nKBYdzmcv9/f0N7R8AAAAAAAAAAKCdeZ5Xc2lpx3HkeV6TRgSgHQUSLN5xxx0lvZH5u2bNmob2P7G/3P0AAAAAAAAAAAC6QSaTaWk7AJ0pkGDx7rvvnv9/3/d1yy235LOApyvXXy4QLUkLFy5sSN8AAAAAAAAAAACdoN64S6PiNQA6QyDB4iVLlmjWrFn510NDQ/rud7/bkL6///3va926dfnXg4ODOvjggxvSNwAAAAAAAAAAQCcoTKprRTsAnSmQYLFpmjr66KPl+74Mw5Dv+/r85z+vVatWTavfu+++WxdddFG+T8Mw9O53v5sPNgAAAAAAAAAA0FVCoVBL2wHoTIEEiyXpM5/5TD6IaxiGxsbG9N73vlff//736+rvyiuv1Hve8x6Njo7mjxmGoc985jMNGS8AAAAAAAAAAECnME1Ttm3X1Ma2bZlmYKEjAAEI7F/80qVLtXz58nzte8MwlEqldO655+rAAw/UlVdeqddee61iHxs3btQPfvADHXTQQTr77LM1NjZWlFW8fPlyLVmypBVvBwAAAAAAAAAAoK1EIpGmXg+g8xl+gDuVb968WYcccojWrl2bP1YYPJakBQsWaN9999UOO+ygaDSq0dFRvf7661qzZo2GhoZKtpGkRYsW6b777tPs2bNb9XbQJMPDw1qwYMGk40NDQ5o/f34AIwIAAAAAAAAAoDM4jqNEIjHldfF4vOZMZACdL9BgsST9+c9/1tvf/na98sor+WDvxCGV2nO43DW+72unnXbSfffdp4ULFzZn0GgpgsUAAAAAAAAAANTPdV2lUik5jjPpnG3bikQisiwrgJEBCFrghef32GMPPfHEEzr22GOLMoQLf3zfn/RT7pr3vOc9evzxxwkUAwAAAAAAAAAASLIsS/F4XIODg4rFYopGo4rFYhocHFQ8HidQDHSxwIPFkrTjjjvqV7/6lX784x9ryZIlRUFhaXLwuDCLOPdz8MEH67//+7/1y1/+UjvuuGOQbwcAAAAAAAAAAKDtmKapcDis3t5ehcNhmWZbhIkABCjwMtSl/PGPf9Rvf/tb3XfffXr00Ue1ZcsWZbPZ/Pmenh7Nnj1bS5Ys0aGHHqpjjjlGy5YtC3DEaCbKUAMAAAAAAAAAAACN15Z1Bf7mb/5Gf/M3f1N0bNu2bUokEorH4+rv7w9oZAAAAAAAAAAAAAAwMwQSLB4fH9drr71WdGzBggUVyx309/cTJAYAAAAAAAAAAACABgkkWPyTn/xEn/zkJ/Ov582bp/Xr1wcxFAAAAAAAAAAAAADoSoHsXP7qq6/K933ltktevnw5m6gDAAAAAAAAAAAAQAsFEqHNZrOSJMMwJEl77713EMMAAAAAAAAAAAAAgK4VSLA4Ho9LUj6zeO7cuUEMAwAAAAAAAAAAAAC6ViDB4t12263o9datW4MYBgAAAAAAAAAAAAB0LSuImx500EGS3ihDvXbt2iCGAQAAAABAYDzPUyaTke/7MgxDoVBIphnImm4AAAAAQJcK5FvoLrvsore85S2Stpei/vWvfx3EMAAAAAAAaDnXdZVIJLR161Ylk0mNjo4qmUxq69atSiQScl036CECAAAAALpEYEuW/+Ef/iG/Z/FTTz2lO+64I6ihAAAAAADQEo7jaGRkRI7j1HUeAAAAAIBGCixYfPrpp2u//faTYRjyfV9nn322Xn311aCGAwAAAABAU+UyiqtBhjEAAAAAoBUCCxZblqVbbrlFg4ODkqS//OUvOvLII/Xkk08GNSQAAAAAAJomlUo19XoAAAAAAGoVWLBYkhYtWqT77rtPixYtkiStWbNGy5Yt0+mnn64HHnggX6YaAAAAAIBO5nlezaWlHceR53lNGhEAAADamed5SqfTGh8fVzqd5rkQQNMYfkAR2U984hP5/x8dHdUtt9wiz/Pk+74Mw5AkRSIRHXDAAZo7d676+/tlWVbN9zEMQz/84Q8bNm603vDwsBYsWDDp+NDQkObPnx/AiAAAAACgNul0WslksuZ2sVhM4XC4CSMCAABAO3JdV6lUquRCQ9u2FYlE6oqVAEA5gQWLTdPMB4UnKhxSuWuqkQs8Z7PZuvtA8AgWAwAAAOh04+PjGh0drbldNBpVb29vE0YEAACAduM4jhKJxJTXxeNx2bbdghEB6AaBlqGWtgd0J8arDcPI/xReU8sPAAAAAADtot6F0NNZQA0AAIDO4bpuVYFiSUokEnJdt8kjAtAtAg8WFwaFp7qmlh8AAAAAANpFKBRqaTsAAAB0llQq1dTrAaCcwArb77rrrgR1AQAAAABdwTRN2bZdcu+5cmzblmkGvsYbAAAATeZ5Xk3PidL2ktWe5/G8CGDaAgsWv/jii0HdGgAAAACAlotEIjVNAkYikSaOBgAAAO0ik8nU3S4cDjd4NAC6DUtOAAAAAABoAcuyFI/Hq7o2Ho/LsgJb3w0AAIAW8n2/pe0AoBDBYgAAAAAAWsS2bQ0MDMi27brOAwAAYOapd8tOtvoE0AgsUwYAAAAAoIVyGcae5ymTycj3fRmGoVAoxJ5zAAAAXSgUCrW0HQAUIlgMAAAAAEAATNNkjzkAAADINE3Zti3HcapuY9s2Cw0BNASfJAAAAAAAAAAAAAGKRCJNvR4AyiFYDAAAAABAQDzPUzqd1vj4uNLptDzPC3pIAAAACEBuq5JqxONxWRaFYwE0Bp8mAAAAAAC0mOu6SqVSJUsN2ratSCTCBCAAAECXsW1bAwMDPCcCaKnAPlHWrVvXsnvtuuuuLbsXAAAAAACVOI6jRCJR8bzjOIrH47Jtu4UjAwAAQNByGcae5ymTycj3fRmGoVAoxB7FAJoisGDxwoULZRhG0+9jGIZc1236fQAAAAAAmIrruhUDxYUSiYQGBgbIHAEAAOhCpmkqHA4HPQwAXSDQb5y+7wd5ewAAAAAAWiqVStV8fbV71wEAAAAAUKtAg8XNziwmGA0AAAAAaBee55Xce64Sx3HkeR4lBwEAAAAATdHxmcWFAWeCwwAAAACAdpXJZOpuRwlCAAAAAEAzBBYsXrFiRd1tM5mMNm/erBdeeEF33XWXXnjhhfy5SCSiL3zhC5o/f34jhgkAAAAAQEPUu8CZhdEAAAAAgGYx/BnwrfPOO+/URRddpIceekiGYWjOnDm6/fbbdfDBBwc9NDTA8PCwFixYMOn40NAQiwIAAAAAdIx0Oq1kMllzu1gsRmYxAAAAAKApZsSmR+985zt133336fTTT5fv+9q4caOOOuooPfXUU0EPDQAAAAAASVIoFGppOwAAAAAApjIjgsWSZFmWrrzySh133HGSpEQioZNOOknj4+MBjwwAAAAAAMk0Tdm2XVMb27ZlmjPmqzsAAAAAoM3MqG+chmHo8ssvl2VZMgxDa9eu1aWXXhr0sAAAAAAAkCRFIpGmXg8AAAAAQC1mxJ7FEx1zzDH67W9/K0maP3++1q9fH9hYhoaG9NRTT2ndunXaunWrJGlwcFDz5s3TsmXLtNNOOzXlvlu2bNEDDzygtWvXKpFIKBwOa+edd9ZBBx2kfffdtyn3bBb2LAYAAAAwkziOo0QiMeV18Xi85kxkAAAAAABqYQU9gGZ45zvfmQ8Wv/zyy3riiSe0ePHiltz71Vdf1a233qrf//73uvPOO/Xaa69VvH7PPffUJz/5SZ1xxhmaPXv2tO9/77336mtf+5p++9vfKpvNlrxmr7320rnnnquzzjqLva8AAAAAoMVs29bAwIBSqZQcxyl5PhKJyLJm5Fd2AAAAAEAbmVFlqHMmZps+8cQTTb/nww8/rCOPPFI777yzzjjjDN14441TBoolae3atfr85z+vPfbYQz/60Y/qvn8mk9E555yjww47THfccUfZQLEkvfDCCzrvvPO0dOlSPf/883XfEwAAAABQH8uyFI/HNTg4qFgspmg0qlgspsHBQcXjcQLFAAAAAICWmJHB4t7eXknb9zCWtmf7NtvDDz+sO++8U57n1dV+27ZtOu2003TOOefU3NZ1XZ188sm64ooramq3evVqHXrooVqzZk3N9wQAAAAATJ9pmgqHw+rt7VU4HJZpzsiv6QAAAACANjUjv4W+8sorkqTcdsxBbcu811576ayzztKNN96oJ598Uq+88opef/11PfPMM7rmmmv01re+dVKbK664Ql/96ldrus/nPvc53XrrrUXH5syZo69+9at6/PHHtWXLFj3//PO64YYb9Nd//ddF123atEnHH3+8tm3bVvsbBAAAAAAAAAAAANCxZmRdq1WrVhW9njNnTsvubVmWPvShD+mMM87Q4YcfXvKagYEB7bPPPvr4xz+uq666Sueee64ymUz+/CWXXKLly5frzW9+85T3e/LJJ/Wtb32r6Nh+++2nlStXFpXjHhwc1F577aUPf/jDuuCCC3TZZZflz61du1YXX3yx/v3f/73GdwsAAAAAAAAAAACgU824zOI1a9botttuy5eglqTddtut6fc1TVMf+chH9Kc//UnXX3992UDxRGeeeaauuuqqomOu6+riiy+uqv0///M/F2VOx+Nx3XHHHZP2bc4xDEOXXnqpTjzxxKLj3//+9/Xyyy9XdU8AAAAAAAAAAAAAnc/wg6rR3ATr16/XUUcdpRdeeEGGYcj3ffX29mrLli35fYybJZvNqqenp+72RxxxhO66667863g8rk2bNsm27bJtHn/8cR100EFFxy699FKdf/75U95vw4YN2nPPPZVKpfLHzj//fF166aW1D77JhoeHtWDBgknHh4aGygbFAQAAAAAAAAAAAFQ2IzKL16xZoy9+8Yvaf//9tXbt2nyg2DAMnXDCCU0PFEuaVqBYkk499dSi14lEQk8++WTFNj/96U+LXkejUX3yk5+s6n477bSTPvjBDxYdu/nmm6tqCwAAAAAAAAAAAKDzBbZn8ZFHHjmt9plMRtu2bdOLL76oZDIpSflyzLkS1JZl6ZJLLpneQFtk8eLFk45t2LChYptf/OIXRa9POukkxePxqu952mmn6cc//nH+9dDQkB555BEtXbq06j4AAAAAAAAAAAAAdKbAgsWrVq0q2le4HhMraOf6yx3/j//4D+21117TukerRCKRScdGR0fLXr9u3Tr96U9/Kjp2xBFH1HTPQw89VKFQSJlMJn/s9ttvJ1gMAAAAAAAAAAAAdIGOLkNtGEbRj7Q9UNzf369rr712UmnndrZu3bpJx+bOnVv2+lIlqt/2trfVdM9IJKIlS5YUHVu9enVNfQAAAAAAAAAAAADoTIEHi33fb9hPf3+/zjrrLD311FP6+7//+6DfWk1WrVo16VilrOhnnnmm6LVlWVq0aFHN9913330r9gsAAAAAAAAAAABgZgqsDPU73vGOaZWhDoVC6u/v1w477KB99tlHS5cu1aGHHqre3t4GjrI1stmsrr/++qJj+++/v3bdddeybdasWVP0ev78+TLN2mP/u+yyS9Hr559/XtlsVj09PTX3BQAAAAAAAAAAAKBzBLpnMba7+uqrtX79+qJjH/nIRyq2efnll4teTwz6VmtiQDqdTmvz5s0VS2CXs23bNiUSibrGUcmGDRsa3icAAAAAAAAAAADQ7QILFmO7oaEh/dM//VPRsVmzZunss8+u2C6ZTBa97u/vr+v+pdolk8m6gsXf/va39dWvfrWucQAAAAAAAAAAAABorcD3LO5mruvqb//2bzUyMlJ0/Bvf+IZ22GGHim0nBosjkUhdYyjVbmLfAAAAAAAAAAAAAGYegsUBOv/883XPPfcUHTvuuON0+umnT9l2dHS06HW9ezUTLAYAAAAAAAAAAAC6E8HigHz3u9/VFVdcUXRswYIFuu6666pq7/t+0WvDMOoax8R+ptMXAAAAAAAAAAAAgM5BsDgAN954o84///yiYwMDA7r99ts1Z86cqvqIxWJFr1OpVF1jGR8fn3QsGo3W1RcAAAAAAAAAAACAzmEFPYBuc8cdd+jv/u7v5Hle/lgkEtFtt92mAw44oOp+GhUsLtVuYt/VuuCCC6oqoV2rDRs2aNmyZQ3vFwAAAAAAAAAAAOhmTQkW33rrrfn/HxgY0OGHH96M25R1xhln6IUXXpC0vaTy73//+5bev5x7771XH/zgB5XJZPLHQqGQbrrpJh122GE19TUxoLtt27a6xlSqXb3B4v7+fvX399fVFgAAAAAAAAAAAEBrNSVY/P73vz+/7+3ixYv16KOPVt32W9/6loaHh/Ovv/3tb9d8/4ceekhPPvmkfN9vm/13H330Ub3vfe/T2NhY/phpmrruuuv03ve+t+b+dt5556LX69evr2tcE9uFw2HNnj27rr4AAAAAAAAAAAAAdI6mlqH2fb/mNj/+8Y/15JNP5l/XEyxuN08//bTe/e53a2RkpOj4lVdeqY985CN19fmmN72p6PXw8LA8z5Np1rYN9bp164peL1q0SD09PXWNCQAAAAAAAAAAAEDnqC2y2CK+79cVaG5Ha9eu1dFHH63NmzcXHf/3f//3ae3vu++++xa9dl1Xzz//fM39PPPMM0WvJwahAQAAAAAAAABAMDzPUzqd1vj4uNLptDzPC3pIAGaYpmYW18swjBkRLF6/fr2OOuoobdiwoej4V77yFV144YXT6vuAAw6YdOz+++/XPvvsU3Uf4+Pjk0qEv+Utb5nWuAAAAAAAAAAAwPS4rqtUKiXHcSads21bkUhEltWWIR4AHaYtM4tngldffVVHHXWUXnrppaLjF1xwgb785S9Pu/9dd91Vb37zm4uOrVq1qqY+7r///kl/aOrZPxkAAAAAAAAAADSG4zgaGRkpGSiu5jwA1IJgcRNs3bpVRx999KSy0Geeeaa+9a1vNew+J554YtHrW265Rclksur2P/rRj4peL1iwQEuXLm3I2AAAAAAAAAAAQG1c11Uikajq2kQiIdd1mzwiADMdweIGSyaTOvbYY7V69eqi4x/72Mf0/e9/v6H3Wr58+aR7X3PNNVW1feWVV3TTTTcVHTv55JMbNjYAAAAAAAAAAFCbVCrV1OsBYCKCxQ00Pj6u448/Xg8++GDR8ZNOOknXXnutTLOxv+6DDjpI73vf+4qOfelLX9Lw8PCUbc8+++yiPyK9vb367Gc/29DxAQAAAAAAAACA6nieV3Npacdx5Hlek0YEoBsQLG4Q13W1fPnySfsGH3fccbrhhhvU09PTlPtecsklMgwj/3pkZETHHXecXn755ZLX+76vz3zmM7rllluKjp999tnaeeedmzJGAAAAAAAAAABmIs/zlE6nNT4+rnQ6Pa3AbSaTaWk7AJAkK+gBzBRf/vKX9ctf/rLomGVZWrRokb70pS/V1efSpUsnlZqeaPHixbrggguK9kJevXq1DjzwQH3605/WCSecoF122UVbt27Vww8/rG9/+9v64x//WNTHnnvuWfcYAQAAAAAAAADoNq7rKpVKlcwEtm1bkUhEllVbCMb3/brGUm87AJAIFjdMqdLPruvqO9/5Tt19nnrqqVMGiyXpG9/4hp577jnddttt+WMbN27UF7/4RX3xi1+s2HbOnDm69dZb1d/fX/c4AQAAAAAAAAAoxfM8ZTIZ+b4vwzAUCoUavmVjqzmOo0QiUfG84ziKx+OybbvqfguriNai3nYAIFGGekawLEs/+9nP9KlPfaqmdvvvv7/uv/9+vfnNb27SyAAAAAAAAAAA3ch1XSUSCW3dulXJZFKjo6NKJpPaunWrEomEXNcNeoh1yb2vatT6PkOhUF1jqrddI0toA+hcBItniFAopCuuuEJ33323jjnmmIors/bYYw9ddtllevTRR7Vo0aIWjhIAAAAAAAAAMNM5jqORkZGSJZqrOd/OUqlU0643TbOmTGRpe8nrWjO1Z2ogH0B9KEPdINdee62uvfbaoIehww47THfccYc2b96sBx54QGvXrlUikZBt29p55521ZMkSMokBAAAAAAAAAE1Ra+btwMBAzXv7BsXzvJoD3I7jyPO8qgO6kUikpntEIpGax9OMEtoAOldnfAKjZrNnz9b73ve+oIcBAAAAAAAAAOgi9WTexuPxJo2msTKZTN3twuFwVddalqV4PF5VwD0ej9cUaJ/JgXwA9aMMNQAAAAAAAAAAmLbpZN52At/3W9LOtm0NDAyUzeyd6nw5zSyhDaBzsSQEAAAAAAAAAABMWysyb4NkGEbL2uUyjD3PUyaTke/7MgxDoVCo5j2KpdaU0AbQmZoeLHYcR+vXr6965czED6ta2pbrAwAAAAAAAAAANFerMm+DEgqFWtpOkkzTbEggfaYH8gHUr+nB4jVr1mjhwoU1tcn9YfB9v+a2AAAAAAAAAACg9VqZeRsE0zRl23ZNCWu2bbdFZu5MD+QDqF/Tg8XT/SCpt32n/HEBAAAAAAAAAGAmCCLzttUikUhNweJIJNLE0VRvpgfyAdSvqcFiPkQAAAAAAAAAAOgOnZx5W63cXsKJRGLKa+PxuCyr6Tl7VemGQD6A+jT1U4ryBAAAAAAAoJE8z1Mmk5Hv+zIMQ6FQqKMmmAEAmOk6NfO2FrZta2BgQKlUquR7tW1bkUikbQLFUncE8gHUpymfVO94xzvIKgYAAAAAAA3jum5HTcgCANCtOjXztla59xnkQrZa790NgXwAtWvKp/CqVaua0S0AAAAAAOhCjuNUnHB2HEeO4ygej8u27RaODAAAlNLOmbeNDu6apqlwONzAEU6t3kV03RLIB1Ab/qUDAAAAAIC25bpuVROakpRIJDQwMMDEJgAAbaAdMm8LzZQqJdNdRNfOgXwAweBfOwAAAAAAaFupVKrm6+PxeJNGAwAAahVE5u1EM6VKSaMW0bVbIB9AsPhXDwAAAAAA2pLneTXtqydtn+z1PK9JIwIAAJ2m1gCr67pNHlH96llEV0kukN/b26twOEygGOhS/MsHAAAAAABtKZPJtLQdAACYeRodYA0Ki+gANAvBYgAAAAAA0JZ8329pOwAAMLPMpAAri+gANAvBYgAAAAAA0JYMw2hpOwAAMLPMpAAri+gANAvBYgAAAAAA0JZCoVBL2wEAgJllJgVYWUQHoFmsoAcAAAAAAABQimmasm27pvKRtm3LNFkbDwAAphdg9TxPmUxGvu/LMAyFQqFAnzFYRAegWQgWAwAAAACAthWJRGoKFkcikSaOBgAAdJJ6AqWu62p8fFzJZHLSOdu2FYlEZFmtD62wiA5As/ApAQAAAAAA2pZlWYrH41VdG4/HA5m8BQAA7SkXYK2W4zhKp9NyXbfs+ZGRkZoCto1U66I4FtEBqAbBYgAAAAAA0NZs29bAwEDZyd6pzgMAgO5VbcDUdV2NjY0pHA5PeW0ikSgbUG4mFtEBaAY+KQAAAAAAQNvLTY622/6BAACgveWeIRKJRMXrxsfH1dfXV3WANZVKVR24baTcIrlUKlUywznIUtkAOhOfFgAAAAAAoGOYpllVxg8AAEDOVAFWy7LU29tbU4DVcRx5nhfIojUW0QFoJILFAAAAAAAAAABgRqsUYM1kMnWVlc5kMoEuYmMRHYBGIFgMAAAAAAAAAAC6QqkAq+/7dfVVb7tWIvsYwFQIFgMAAAAAAAAAgK5lGEZL27WC67rsawygKnwSAAAAAAAAAACArhUKhVrartkcx1Eikah43nEcxeNx2bbdwpEBaEfUGgAAAAAAAAAAAF3LNM2ag6a2bbdlOWfXdSsGigslEom69moGMLO03ycZAAAAAAAAAABAC0UikaZe3yqpVKqp1wOYeQgWAwAAAAAAAACArmZZluLxeFXXxuPxttzv1/O8knsUV+I4jjzPa9KIAHQCgsUAAAAAAAAAAKDr2batgYGBsiWppzoftEwm09J2AGaG9lv6AgAAAAAAAAAAEIBchrHnecpkMvJ9X4ZhKBQKteUexYV8329pOwAzA8FiAAAAAAAAAAAQqHYLzpqmqXA4HNj962EYRkvbAZgZ2jZYPDw8rJGREY2MjEy7BMI73vGOBo0KAAAAAAAAAAA0iuu6SqVSJffatW1bkUikLfcHbkehUKil7QDMDG3zCbthwwatWLFCK1eu1OOPP65kMtmQfg3DkOu6DekLAAAAAAAAAAA0huM4SiQSFc87jqN4PN62+wS3E9M0Zdt2ycB7ObZtt315bQDNFXiweGxsTBdddJGuvPJKZbNZSdTHBwAAAAAAAABgJnNdt2KguFAikdDAwAAZxlWIRCI1BYsjkUgTRwOgEwT6ybpx40YdfvjhevbZZ4sCxI2qj0/QGQAAAACA1mi3fQYBAEB7S6VSNV8fj8ebNJrmCOL5yLIsxePxqgLx8XicADyA4ILFruvq2GOP1TPPPCOpOEBMkBcAAAAAgM7APoMAAKBWnufVlP0qbS9J7XleRyxGC/r5yLZtDQwM8IwGoCqBfRJceeWVeuyxxyYFiXt7e/We97xHf/3Xf60999xTAwMDbK4OAAAAAEAbYp9BAABQj0wmU3e7cDjc4NE0Vrs8H+UyjKn+AmAqgQWLv/Wtb+UDxblM4tNPP13f+MY3NDg4GNSwAAAAAABAFdhnEAAA1Kve6qLtXpW0HZ+PTNNs+wA7gGAFsnzk2Wef1UsvvSRJ+dUsn/vc53TVVVcRKAYAAAAAoAPUs88gAACAVLwtZSvatQrPRwA6USDB4kcffbTo9e67766LL744iKEAAAAAAIAaTWefQQAAgHq3nmznLSt5PgLQqQIJFm/cuDH//4Zh6IMf/KB6enqCGAoAAAAAAKjRdPYZBAAAME2z5v16bdtu6712eT4C0KkC2SwomUxKeqME9b777hvEMAAAAAAAQB1m6j6Dnucpk8nk5ytCoVBbT0oDANDJIpFITZm4kUikiaOZvpn6fARg5gskWDwwMFD0OhaLBTEMAAAAAABQh5m2z6DrukqlUiUnrG3bViQSkWUFMoUCAMCMZVmW4vG4EonElNfG4/G2/1uce87xPE+u6+YXn1mWVXHxme/7SqfTLFYDEJhAPl0XLVok6Y0Pz02bNgUxDAAAAAAAUIeZtM+g4zgVJ6kdx5HjOIrH4zWXywQAAJXZtq2BgYEZsWjLMAwlk8l8oLjwuGVZ6u3tLXofrutqfHxcnudNCg530vsG0PkC+aR561vfqlAoJNd1JUmrV68OYhgAAAAAAKAOuX0Gaykd2Y77DLquW1U2kyQlEgkNDAwwaQsAQIPlMow7eTuI3OIzwzAmlZX2fV+ZTEau66qvry//DDU2Nlb2PbJYDUArBfJJ29/fr+OPP16+78v3fd1+++3U5QcAAAAAoIPUum9gO+4zmEqlmno9AAConmmaCofD6u3tVTgc7phAceHis3A4XPY63/c1Njam8fFxjY2Nyff9itdL2xer5ZLuAKBZAvu0/eIXv6ienh4ZhqH169drxYoVQQ0FAAAAAADUKJcFVI123GfQ87yaMqOl7Vk+nuc1aUQAAKATFS4msyxL0Wi07LW+72vbtm3yfV/RaLSq5yMWqwFotsCCxYsXL9ZFF12Uzyi+4IIL9NRTTwU1HAAAAAAAUKPcPoPlyiNOdT5ImUympe0AAMDMU2rxmW3bZctH+74v13UVjUarfj5isRqAZgu0jsPFF1+sv/3bv82vpnnnO9+p22+/PcghAQAAAACAGuQyjAcHBxWLxRSNRhWLxTQ4ONiWGcU59W6HxTZaAAAgp9wislyG8cDAgKLRqPr6+vL/rWdrDharAWimQIPFhmHov/7rv3TRRRfJMAxt3rxZJ5xwgo488kjdcMMNevnll4McHgAAAAAAqFKn7TNoGEZL2wEAgJlnqkVkpmnKtm2Fw2HZtp1/jqh18RmL1QA0U2DLe/fYY4+i16FQSJlMRr7v66677tJdd90lSert7dWsWbMUCoXquo9hGFq7du20xwsAAAAAAGaOeucZ6m0HAABmnloXkeWur7cdADRDYMHiF198UYZhyPf9og+63LGcVCql4eHhuu/DhygAAAAAAJgol+kzcZ/BSmzbbvuMaQAA0Dq1LiKzLEuGYdS8TQeL1QA0U+AbB5UK5jYqwEtpBgAAAAAAUE4kEqkpWFzPHoMAACA4nuflK5oahqFQKNTQhV+1Lj4zTVN9fX01jYHFagCaLdBgMcFcAAAAAAAQFMuyFI/HlUgkprw2Ho/XnAUEAACC4bquUqlUySCubduKRCIN+7te6+KzwcFBjY6O1tQ/ADRTYN9yTj311KBuDQAAAAAAqtDsbJx2YNu2BgYGWjahDAAA6lPtc4njOBUXgjmOI8dxFI/HZdv2tMdV6+KzXKYwi9UAtAvDJ70XbW54eFgLFiyYdHxoaEjz588PYEQAAAAAMLO1MhunnXRDcBwAgE5Ty3OJ67oaGRmpuu+BgYGGPdPU+vzUrc9bANoPnzQAgLbCBB0AAECwWp2N005M01Q4HA56GAAA4P/U+lySSqVq6j+VSikej093mJLeyDCudm6rluuZLwPQTASLAQBtgdWUAAAAwXNdt6qSiJKUSCQamo0DAABQqNbnkng8XtPewdL2YLPneQ0NvNa6+KzS9cyXAWgFlp4AAALnOI5GRkbKPtBPdR4AAACNUU82DgAAQDPU+pyxbdu2uu6TyWTqatdszJcBaBWCxQCAQNW6StR13SaPCAAAoDt5nld3Ng4AAEAjtfK5xPf9mts0G/NlAFqJYDEAIFBkrwAAALSHerNq2jUbBwAAdK56ni8Mw6graGoYRs1tmo35MgCtRLAYABAYslcAAADaR71ZNe2YjQMAADpbPc8XlmXV1S4UCtXcppmYLwPQagSLAQCBIXsFAACgfdSbVdOO2TgAAKCz1fN8YZqmbNuuqY1t2zLN9gqTMF8GoNWsRna2bt26ksd33XXXqq9thlL3BwAEj+wVAACA9lFvVk27ZeMAAIDO43meMpmMfN+XYRjq6empq5/+/v6q9/qVpEgkUtd9mon5MgCt1tBg8cKFCyet+Cm3T0Cpa5uh3n0KAADNR/YKAABA+8hl49RS9rAds3EAAEDncF1XqVSq5POH4zgyTVOWVV0Yw7Zt2bateDxeVcA4Ho9X3XcrMV8GoNUa/klYy+oVVroAQHcjewUAAKC9RCKRmoLF7ZiNAwAAOoPjOBWDuqZpKplMqq+vr6ry0rnnEtu2NTAwUDYIbdu2IpFIIIHiiRnUoVBo0sI75ssAtFrDPw0LV69MFQxu9koXgtEA0N7IXgEAAGgvlmV1fDYOAABof67rTvm8YVmW+vr6NDY2NmWG8cTnktwzTTXB2VaolEE9MXjdyvmydvn9AAgWmcUAgECRvQIAANBe2jkbBwAAzAypVKqq63JBUM/zyp6v9FximqbC4XDd46xWpaDrVBnUjuPIcRzF4/F8BnWz58tqCV4DmPka+q99xYoVTbkWADBzkb0CAADQftotGwcAAMwcnufVFAjNzQUNDAwom80G8lxS7ploqqBrKBTS6OhoVfdIJBIaGBiQZVlNnS+rJ3gNYGYzfNJ70eaGh4e1YMGCSceHhoY0f/78AEYEoBlY0QgAAAAAADDzpdNpJZPJmtvFYrGWZAkXqjRflTtfab4qmUzKtu2qg662bSsej5e9v+d5cl1Xvu/Ltm319/fXFNB1XVcjIyNVX58LXgOY2fhXDgBoC2SvAAAAAAAAzHz15q+1Ou+tUgZubs9lwzDU19dXMmCbm+PKZDJT7rlceE/P8/JzYbn5MsdxtG3bNmUymfx8mWEYSiQSNSVZVFv+u/D6wuA1gJmJYDEAoK20ai8ZAAAAAAAAtJ5hGC1tV49cMLicdDotaXsAe2xsrGQw2HXdouurzdDNZDJFc2O5oLVhGCXnzArLRluWVTYJo9by37m+C4PXAGYmgsUAAAAAAMwQVGkBAADtLhQKtbRdPSpl4E4Muvq+r/HxccVisaLrCjOhHcdRJBKp6rmssN1UQevC6zZs2KBIJKKenp6ic7nM42w2O2U/pUwMXgOYeQgWAwAAAADQ4Srtp1dLaUIAAIBmM01Ttm3XlOVq23bLFsBNlYFbmDFceGxiBu7ETGjXdavaX7iwXTVlox3H0djYWH6xYDQanXTecZy6g+2tLv8NoPVYXgwAAAAAQAdzHEcjIyNlJzWnOg8AANBqkUikqddPRyaTqXi+VPDU9/1JQWTLsooCv9UGXXNB3WrKRruumw8US2+UjS5ldHS0ZKB7Kq0s/w0gGASLAQAAAADoUNWWJpSkRCJR1wQhAABAo1mWpXg8XtW1ub14C3mep3Q6rfHxcaXT6bIB0npMFdQtFzyd2G7iPsbVBF0LM6inClpL0vj4+KT7lnvesywrv9dyLVpZ/htAMKhBBQAAAABAh6qmNOHE66udmAUAAGgm27Y1MDBQ01Yardh6Y6qgbrn+S7Xr7e2V67ryfb+qcRVmUE8VtPY8r2RAuVw70zTl+/6kctmVtLL8N4DgNPRf+SmnnKIXX3yxkV02he/7uuaaa3T11VcHPRQAAAAAAOpSTWnCiSqVJgQAAGi1XIbx4OCgYrGYotGoYrGYBgcHJ2UUt2rrjakyaXN7LhcyDKNkMNiyLPX19VUVdJ34fqcKWpfLIK7ULhe8rlYry38DCE5Dg8U33nij9t13X1144YV69dVXG9l1w9x6661avHixTj/9dL388stBDwcAAAAAgLpUU5qwke0AAACaxTRNhcNh9fb2KhwOyzTNolLTo6OjGhkZqaqv6W69USoYPFE4HC56bVlW2WCwbduaO3du2T5zGdYTz08VtC6XQVwpg9myLEWj0Yr95pQq/w1gZmp4/QDHcXTZZZdp99131znnnKOXXnqp0beoWTab1fXXX6+3vOUt+sAHPqCnnnoq6CEBAAAAADAtU5UmbHQ7AACAVnBdV4lEQlu3blUymdTo6Kg2bdqkkZERjY6OVhUIrnWrjommyqgtDLoahqHe3t6y18bjcfX29ladQZ0zVdC6VAZxNRnM4XC4ZHC6sI9K5wHMPE1bFjI+Pq4f/OAHuuqqq/Se97xHZ555po477riqNnFvlHXr1uk///M/dc011+iVV17JfyHOjaGVYwEAAAAAoJHq/U7Ld2EAANCuHMdRIpEoOla4N6/jOHIcR9FotGIwM7f1Rr377ebKY08cSyHbttXT06Oenp6y5yfuoZzLoK5WJBIpW1bbsiwZhlG0ELCavkOhkEzTVDwez/9ufd+XYRj5cwC6S0ODxStXrtS5556r5557Lv/lM5vN6pe//KV++ctfat68eTrppJN08skn6x3veEdTvqAODQ3pZz/7mX72s5/p/vvvl+/7RUFi3/dlmqY+9alP6bzzzmv4/QEAAAAAaIWpShM2uh0AAECjlApSep5XMjhbKpN4dHRUpmlWLJOcyWRqCsxOlMuwTaVSJQO2hcHgZgVdKwWtc+8/F0iPRqNTlo3OBdjT6TQBYgB5ht/g+lOZTEbf+ta39PWvf12JRCIfEJ6Y1dvf36+3v/3tOuKII3TwwQfrgAMO0ODgYE33ymazeuaZZ/TEE0/onnvu0Z133qnnn38+f35ikFiS3vGOd+g73/mODjjggGm/V7TG8PCwFixYMOn40NCQ5s+fH8CIAAAAAKA9JBKJstkmpdi2rXg83sQRAQAAlOe6btngq+M4JQPA6XRaY2Njk663bbvi/rvRaLRieehaBJ2BW+735rqu0um0wuHwlIFi13Vl27Y8z5t0rlQWNIDu0fBgcc6WLVv0r//6r/rBD36gVCo1KWgsTS59NW/ePO22226aP3++5s2bp2g0qkgkop6eHo2PjyuVSmnLli0aGhrS0NCQ/vKXv+RXzZTrO3dsyZIluuSSS3Tsscc24+2iiQgWAwAAAEBprutqZGSk6usHBgaYBAQAAIEoVWI6x/M8jYyMyDAM9fX1FZWYdhxHo6OjJdsNDAyUDdrGYrFpZRa3o1JB69wez5U4jpO/vpJ4PM5exUAXalqwOGfDhg267LLL9J//+Z96/fXXiwLEpW5dbWnqqdoWZhJfeOGFOv7442sdOtoEwWIAAAAAKK/SxGshJv8AAEBQplrgVhgQNgxDsVgsv8DN8zxt27atZEyg0t7Fg4ODXVNeuVLGtmmaymQyZfdWnojFhUD3aXqwOGd0dFTXXnutVqxYoUcfffSNAZQIDlczpErtBgYGdPLJJ+uss87SkiVLpjFqtAOCxQAAAABQWaUJQsoKAgCAoE21dcbEUtOhUEixWCz/OplMFlUZzenr6yuZPdzOW280s6R1qb5HR0fZtgRARS0LFhdas2aNbrjhBt1+++16/PHHK5amLmfisGfPnq13v/vdev/7368TTjhhxpWX6GYEiwEAAACgOkHvpwcAADCR53naunVrxWsmlpo2DEP9/f355xjXdZVMJifFBcplFrdjdmwQi/uq+d2X0k1Z2QACChYXevXVV3X33XfroYce0sMPP6znnntOr7zySslN1nPi8bh23313HXDAAVq2bJne+ta36uCDD6460IzOQrAYAAAAAAAAADpTOp1WMpmseE1uz+JCEwPBjuNobGysKGBcas/idtx6I6htQ6r53ZcyE/d7BlBe4MHiUjKZjIaHh7Vt2zaNjY0pm80qEokoGo1q7ty5GhwcDHqIaCGCxQAAAAAAAADQmcbHx4uyhsuZWC65VIlp13U1Pj4u13UVCoUUjUbz59p1642p9mueqJFZ0dX+7ieKRqPq7e1tyBgAtL/2+tT8P6FQSAsXLgx6GAAAAAAAAAAAYBqqrQgaDoeLgsWl2lmWpVgsJs/z1NfXp56enrbfeiOVStV8faP2DK63GitVXIHu0pbBYgAAAAAAAAAA0PlCoVBV11mWpWg0qtHRURmGUTG7dmBgoO1KTZfieV7JPYorcRxHnuc1JPhd7e++Ue0AdKb2XGozQ2zevFkrV67UJZdcohNOOEE77bSTDMMo+vnKV74y7fssXLhwUr+1/syZM2f6bxgAAAAAgBp4nqd0Oq3x8XGl02l5nhf0kAAAQIOZpll1YNe2bcXjcfX19ZUMltq23TGBYmn7lpuV5ILJ6XQ6HySupl21avnd59i23bZZ2gCag8ziBvv2t7+thx56SA899JDWrl0b9HAAAAAAAGg7rusqlUqVzLRp1/0GAQBA/SKRSNUZtpZlaWBgQKZpKpPJyPf9ti81XY7v+yWPu66bDxBPZNu2wuHwpP2a61XL7z53PYDuwjevBrvwwguDHgIAAAAAAG3LcRwlEomK5x3HUTwe75isIQAAUJllWYrH4xWfAXLi8Xh+0VijAqbN4HnelMHsUnv/Oo6j0dHRsv3mnpVs227Is1C9v3sA3YN/9TPQKaecol133bWmNtFotEmjAQAAAABgO9d1q5qolKREIqGBgQEmLAEAmCFyJaQ7qbpIqYCw53lVv4eJe/+6rlsxUCwpv19zI5+FOvF3D6B1+JffZLFYTEuWLNGyZcu0bNkyfeQjH2n6Pc844wwdccQRTb8PAAAAAAC1SKVSNV8fj8ebNBoAANBquSzXarJyg1RuywzHcZTJZBQOh0sGVidWSMntGZzrJ51OT3lvy7Lyv4tGPgt1yu8eQOsRLG6wXFA497PvvvsWfdC2IlgMAAAAAEC78Tyvpv3ypO0Trp7nMYEJAMAM0u7BynJbZriuq7GxMfm+L8dxFI1Gy5aJLswKzu0ZXM2zkGEY6u3tLRpLo5+FTNNs6/LeAFqPYHGDPfjgg0EPAQAAAACAtpPJZOpux4QmAACdr1y2rtQ+ZZArbZkxPj4u3/fzr0dHR2WaZtkx57KCcxm9mzdvrnhvwzDU19c3qT+ehQA0G8FiAAAAAADQdIWTq61oBwAAgpfLIk6n0xodHS0qsVxoYvnmoJTbMiP3PiZKp9Nlg8WFWcG2bSsej8txHLmuW/R8k9ujuLe3t2RfPAsBaDaCxQAAAAAAoOkMw2hpOwAAEJzCLOLCbN2pAqOF5ZtbrVKZaNd1Sx53HEeRSKRsmejCrOBQKKRYLCbP8/IB49zvo1KZaZ6FADRb+2wEAAAAAAAAZqxQKNTSdgAAIBiO42hkZCQfeE2n0/lzvu8rk8komUyWDcyWy+5ttkpbZlTK7i0XSJ7YLvdMkytdbRiGfN+X67ryPK9sHzwLAWg2MosBAAAAAOhAuXKIuayUUChUMSslaLkSjOUmhkuxbbut3xMAACg2cc/fctm6vu9rbGys5J6/heWbW6lSQLhSdm+17UzTlGma2rZtW9WlqHkWAtAKBItnoGw2q0ceeUSPPfaYNm7cqPHxcc2aNUuzZ8/W4sWLtf/++1O6AgAAAAA6VGFZx4ls21YkEgmkdGM1IpFITcHiSCTSxNEAAIBGm5gVPFXW7fj4uGKx2KRzheWbG6nSYrtKc+aFmcATVWpXmBXsOI4ymUzJDOZcxrXruurr68vv28yzEIBWaM9vj5iWY489tuIf4VmzZunEE0/UZz/7We27774Nu++2bduKVo01yoYNGxreJwAAAAB0IsdxKn7vchxHjuMoHo/nJxnbiWVZisfjVX13jMfjbRv0BgAAk5XKIq6UdSspX4J5YvbsVO1qVc1iu0rlnnMZ0KUCveWeVwqzgnMZ1z09PYpGoxodHS3ZpjDjenBwsKpnoU6rNgOg/fCtawaqFCiWpC1btmjFihW69tprddppp+l73/ue+vr6pn3fb3/72/rqV7867X4AAAAAAJNNLOtYSSKR0MDAQFsGW23b1sDAQMdmRwMAgNJKBVKnqnCZ27N34iK3Uu3qDYrWutiuXBWU3t7eSeWjK5WJLswKLsy4zrVJp9Ml7xUKhWTb9pQL/zq52gyA9sInRRfzfV8rVqzQgw8+qF/96lfaddddgx4SAAAAAKCMiWUdq7k+Ho83aTTTk8swJhMGAICZo1Q2cDXBylLtCrN8pxMUrXWxXTQaLRsstixLfX19Ghsby4+5XKnswgoppTKuLcuSZVmKRCL5AHRu32LTNOV5XsV9mzu92gyA9sI3sBnkgAMO0Be+8AX94he/0AsvvKCRkRFlMhlt3LhRjzzyiC677DItWbJkUrunn35a73vf+5pSQhoAAAAA8AbP85ROpzU+Pq50Oi3P86puV8tev9L2ScJq+w+KaZoKh8Pq7e1VOBwmUAwAQAcrlQ1smuaUwcqJ7QqzdR3H0cjISNnnoKnO17rYLpPJVFxsZ9u2YrGYQqGQYrHYpCB1roJK4XsulXGdk/v9hMPhSVnK5drVGgCfqhIpAJBZPAN84hOf0EknnaT999+/5Pk5c+Zozpw5WrJkic477zzddNNNOv300zUyMpK/ZvXq1Tr77LN13XXXtWrYAAAAANA1plsmsNIkYyWZTKZsxgsAAEAjldvzNxwOl3wG8jxP2WxW2WxWjuPks2pz5ZunuwVHvYvtotFoxS0z+vr6NHv2bJmmWVWFlHr3Xy7XbiZVmwHQHliyOwN86UtfKhsoLmX58uW67777NDAwUHT8+uuv1+rVqxs9PAAAAADoatPNiJEaP8kIAADQaOWyiC3LUjQazb/OZrMaGxtTMplUJpPR+Pi4RkdHtW3btqJ29QRFC01nsV1uy4zBwUHFYjFFo1HFYjENDg7mS0xXWyFlqn2byym3b/NMrDYDIFhkFnep/fbbT1dffbWWL1+eP+Z5ni699FJdc801dfV5wQUX6PTTT2/UEPM2bNigZcuWNbxfAAAAAGi26WbE5DRykhEAAKBZIpFI2UoqpmkqmUxqdHRU0vbnlFwFlFwpZkkaGRmpuHdwObmgaC5o24jFdrmA8HSUy7iupx3VZgA0A8HiLnbyySdr6dKleuSRR/LHVq5cWXd//f396u/vb8TQAAAAAGBGaFSZwEZOMgIAADRLLiO30mK5eDwu13XV19cn27bzWbqFtm7dKtM0K27TUUphUHTiojnP8+S6br5sdKn7lmo3XbmM61qC3xP3L86h2gyAZmi7YPHGjRv161//WnfddZcee+wxbdq0SZs3b9b4+LgMw2Az9gb74Ac/WBQsfvnll/X8889r0aJFAY4KAAAAADrfdMoETpwcbOQko+d5Ve2vBwAAUA/btkvu+Ts+Pi7f9xUOh9Xf318xEOz7vsbHxxWLxWq6d2FQNLdoznVdpdPpshnPuetyz0Y9PT013bOaZ6tyGdfl5PZtnohqMwCaoW2CxUNDQ/r617+uFStWKJ1OS6p9tctHP/pR3XbbbfnXZ599tr7+9a83dJwzzSGHHDLp2PDwMMFiAAAAAJimRpcJnO4ko+u6kyZtc2zbViQSqTl7BwAAoJRchnEukJrNZuU4jvr6+mSaZn5RXbks31ziWKlFdJUUBkVz7cplOWezWb3++uvKZrPq7e1VKBRSKBTSyMhIVc9GtTxbVZNxnZPbE7kUqs0AaIa2WDp8++23a/Hixbryyivzq4tyfyRyP9U455xzlEwm8z/XXnstG7dPYe7cuZOObdy4MYCRAAAAAMDM0ugygblJxmpMnGR0HEcjIyNlg81TnQcAAKhHbs/fnp4e2bYtz/M0OjqqkZERjY6OamxsrOh1rrKoZVnyfb/mSqOFQVHXdeW6bsn4QiaT0djYWL4sdSqVygeNpek/O5U6n8u4tm27ZJupzktvVJupRblqMwCQE/gnxNVXX60TTzxRW7duLQoQS8oHjat1yCGH6JBDDsm3f+211/Sb3/ymKeOeKUr9filJAQAAAADT14wygfVMMrquW1UWi+d52rx5s5LJpNLpNIuvAQBAw/i+L8dxlEgkKgZYJ54fHx/Pb9MxlYlB0VQqJcuy1NfXV/R8lc1m80lrhSzLmpTRm0gkJgWsq322KtU+t/hvcHBQsVhM0WhUsVhMg4ODFTOKC5UrUd2o6wF0n0DrS91555361Kc+Jc/zigLE8Xhc73znO7X77rvrJz/5iV577bWq+zzllFP0wAMP5Pu74447dOyxxzZl/DNBqd/tjjvuGMBIAAAAAGBmaVaZwIllHafaeziVSlXsz3VdjY+P5zNrMpmMotGoJMpTAwCAxshmsxodHa3quk2bNuUXvuVKWOdKVff29k56LvE8T67rKhwOK51O55+lckHnXBA5lUppfHxco6Ojymaz6unpyfcbDofl+37JstepVKqoustUz1YTTWwvvZFxXY9GlbQGgJzAMoszmYw+8YlP5MtA+L4vy7J0ySWX6NVXX9XPf/5zXXrppZo3b15N/Z588sn5D3Pf9/W73/2uGcOfMe6///5Jx3baaacARgIAAAAAM0uzywTmJhl7e3sVDodLtsvtB1iO4zhKJpP5oHPuWC57h/LUAACgEcqVgy6UyWQ0OjqqTCajdDoty7LU398vSfkFbclkMv9c4rquksmktm3bJklKp9NKJpPaunWrtmzZks/odV1X6XS66HWuxHVPT0++THbu3ESFz0ZTPVuVUm1mdC0aUdIaAHICW1Jy9dVX66WXXsoHim3b1i9/+Uu9613vmla/8+bN0z777KNnnnlGkrRmzRqNjY2pr6+vEcOeUXzf180331x0bKeddtLee+8d0IgAAAAAYGaJRCI1TSg2ukxgJpMpe851XY2NjZXcnsh13aLJxUQioYGBATJTAABAzXKZv5ZllX02yWazRRm7uczfXCZxKpVSKpXKB437+vqUyWQUCoUUi8UmPaM4jqNUKqVQKFT0LOb7flEVl1zGcyQSUSgUKrstZiaTUTgcrvhsVUmufSPVWm0GAMoJ7BPjhz/8oSTlP8AuvvjiaQeKc5YuXVr0oZ4LHKPYjTfeqMcff7zo2DHHHBPMYAAAAABgBspN4lWjGWUCy014Siq5V1+ldrWWXAQAAJDeWLzW29tbNrt44uI63/fV09NTlBVsWZYMw1Amk9GmTZvyWcGlnp8Mw5Drutq0aZOy2WxRv6WkUql8uetScu0qPVtVUm+7alRTbQYAKgnkU2PLli167LHH8h+8O+64o84777yG9b/ffvsVvX7++ecb1nc72bRpk9LpdF1tn3jiCZ1xxhlFxwzD0Pnnn9+AkQEAAAAAcoIsE1huwjOXgVJLu2aUUAQAADNfLlBqWZb6+vomPWfksoULRSIRZbNZJRKJfCA5lzWbS0DLZDJF5wtZlpU/XjiHXqkUtuM4ZRfu5dpNVUq7nHrbAUArBBIs/sMf/pD/A2EYht7znvc0tATDrFmzil5v2bKlYX23k3vvvVd77rmnLr/88qrfo+/7uv7663XYYYcpkUgUnfvoRz+qxYsXN2OoAAAAANDVchnGg4ODisViikajisViGhwcbEpGcU5hmcVCE/fjy03SOo6jTCZTNiOl3tKLAACgexUGSm3bViwWUygUyh8vfC6xLEvRaFSmaZasapIraZ3bc1iSRkdHS+41nItBuK6bX/CW25u4lErZv7lnqnLPVlOptx0AtEIgmw29+uqrkt4oQb1s2bKG9r/DDjtIeuOP0MSgaDM98sgjuummm6q+/ne/+53Gx8dLnhscHNQ//dM/VWw/PDys888/X5/5zGd01FFH6fDDD9dBBx2kPffcUwMDA+rr69PIyIjWrVune+65R9ddd52efvrpSf0sXrxYV1xxRdXjBgAAAADULlcmsJV835fjODIMQ5ZlyTTN/GRoNptVOp1WNpvNHwuFQkokErJte1Jpx2aWUGwE9uwDAKD9FAZKPc+T53kKhUL5Z4xcALenpyf/dzuVSpV8ZipXUjqdThc9s7iuq3A4nH/GyWazMk1TpmnKsqxJwWXDMBQOh+W67qRqL7Zt58dlmqZs2y6ZzVxOYXsAaEeBBIs3bdpU9HrOnDkN7X/iSudWfpldvXq1vvnNb1Z9/X333af77ruv5LnddtttymBxjuu6WrlypVauXFn1vXMWL16sX/3qV+rv76+5LQAAAACg/biuq1QqJcdxlM1mlUql8t+NbdvOl24stW9xboLUcRw5jqNoNJo/1q4lFAvf70S2bSsSiTQtexsAAFSWC9KWKxldeI20fT7f9/2SAdbC55bC5xLHcRSJRIr66OnpUW9v76TnnVxQuLCf3t5e9fT0lIwlRCKRSa9rCRZPbA8A7SaQ5SwTSz2UKhExHbmSzLkP9tmzZze0/5kiFArpwgsv1IMPPqidd9456OEAAAAAABrAcRyNjIzkJzEn7g/oOI6SyaSSyeSkCdFIJDLpO3thacd2LKE48f3Weh4AADRXbgFaue0sfN/X2NhY/nw2my1biaVw7+CJC8EmBoCl7c8ufX19RWWve3p6FIlE8n3kzhe2yym1XUhue5FqNHO7EQBolEA+pXbcccei143eU3himeWZGiw+/PDDdc011+jOO+/UH/7wB61duza/90Il++yzj5YvX66zzjqLIDEAAAAAzCCu65bciilX/nB8fFyu6yqTyeQnZHt6ehQKhWTbdtl9/NLptPr6+tquhGK591tKIpHQwMAAE7YAALRQ7m91Lig7NjY2abGaYRjq6elRKpWSaZqKRCJlA8uFJasnBnYL+y38e29ZVr6qZm6/48JFdLljhe2mqkxi27YGBgaobAJgRgjkk2ru3LmS3lil8+STTza0/1WrVskwjPwH/O67797Q/is57bTTdNppp7XkXoODg/r4xz+uj3/845KkZDKpZ599VuvWrdPLL7+s0dFROY6jWCymwcFBzZs3T8uWLdOsWbNaMj4AAAAAQGulUqmy5yzLUiwWk+u6chxH8XhcmUxG8Xh8yvLSmUym5XstV6PS+y13fbWZQAAAYPoK/1ZPXLw2sTS0YRj5BWzlgsWmaeavmajweaZwb2HLsvIL3krtR+x5nlzXzQeVQ6FQVQvkchnGnucpk8nkg9DVtm9HM+m9AKheIMHigw8+OP/B7fu+7rzzzob1fc899+jZZ5/N9z8wMKDFixc3rP92FovFtHTpUi1dujTooQAAAAAAWszzvKpKLXuep1AopFAoVFW2i2EY6uvrm5QFFPRkYrXvt5DjOPI8j0lPAABaoNTf6tzitVyANvccYVmWXNfV2NhYxb/ThmFohx12kOM4k55NJj7XhMNhZTIZ9fb2VhxnLrDczRVIXNclSxroYoH86549e7aWLl2qRx55RJK0du1a/f73v9dRRx01rX5939cXv/jF/GvDMHTYYYdNuUIaAAAAAIBOVy4DZ6LCidVQKKRwOFw0YZuTm7jt7e2VZVn5c+0ymVjt+y3Vrh2zpAEAmGkq/a3OBWgL5TKPe3p68lnBOROfSyzLKippnWtbyLIs/dVf/ZXS6fSUYy23t3DWy2pTalPJNq7rKj2e3v4+/+8RarB3UD1mT0cFWB3HqbitR27P6Xg8XjKjG0DnC+yT6v3vf78efvjhfLno//f//p8effTRaX14fuELX9Ddd9+d79MwDP3d3/1dA0cNAAAAAEB7mphdU87EBdU9PT3q6+srmeFTOOlqGEZbTSZW+34b1Q4AANSmnr+5lmUpGo2qv79fmzdvLvtcMrGk9cSFYIXB2t7e3roXum1KbdLpv/3EpONm1lTIDUkqfq665NB/1Zy+OR0TYM3tKV2NRCLR1dnXwEwWWN2lc889V7Nnz86/fvrpp/XhD39Y2Wy25r5c19XZZ5+tb37zm/kvvYZhaO+999bJJ5/csDEDAAAAANCuqq2qZVlW0bW5/89l+ITD4ZLZOYZh1DSZ6LpulSOvT71VxKg+BgBAa0znb7Vt25o9e3bZ5xLpjZLW8+fP1w477KBoNKpYLKbBwcGiTOHc3sKDg4OKxWJlr6t6fJ5RMlBcSiueiaajcE/pZlwPoDMEFiyOx+P653/+5/zKIN/39fOf/1zLli3TXXfdVVUfo6OjWrFihd70pjfpyiuvzK9Uyv33a1/7WtPGDwAAAABAOwmFQlVdZ5pm0aRoNROktm1XVcKxULMnE3PvN7cfYjqdzu9JXE07AADQXPX+zc21y+0jXC4zN3e+t7dX4XA4/99yex6bplnVdVOxspaqCRTntGuAtdSe0lOp5lkLQOcJtF7Aeeedp/vvv1833XRTPmD8+OOP68gjj9Tuu++uQw89VBs2bCgqV/Hd735Xf/nLX/Tkk0/qvvvuK9rIvrD89DnnnKOTTjopqLcGAAAAAEBL5TKDq5n06+3tleu6CoVCVU2UhsPhqrOKc3KTifVOxE4lN8E5Ojo66VwuQ3piILxcZhIAAGi8Wp5Ncib+rc5lBXuep0wmk5//r/YZpuF8yfR6amrS7GeielXaU3qqdhPLfgPobIEXl7/uuuu0YcMG3XvvvfmyFL7v689//rP+8pe/FF3r+77OP//8otfS5HIWxxxzjL797W83d+AAAAAAALSZSCRS1YSsZVnq6+tTT8/Uk53xeLzufX6bNZmY2zvZNM38wvGJ5x3HUTQaLcpGikQiDR8LAAAor9pnk8LrJZUMDrdDgNL06gv4tmOAtd7nu3rbAWhfgS9lCYfD+t///V+de+65RcHf3Je9iR88uWO5PxKFAWbf93Xuuefql7/8ZVVfeAEAAAAAmEly2TfVmD17tmbNmjVlaUfbtttqMtF13XyWcy7oXW5PxNHR0fw+gfXsSQgAAKanlmeT3HWJREJbt25VMpnU6Oioksmktm7d2hb7/xo1lJ8u1I4B1unsKQ1gZgk8WCxt/4Nx+eWX69e//rXe+ta3FgWJcwHhUj/SG0HiAw88ULfddpsuv/zytivnAAAAAABAq1S7v59t2/kJ3MHBQcViMUWjUcViMQ0ODhYFV9tpMnHivn+2bSsWiykUCk26n2EY8jyv4u8DAAA0V7XPJp7naePGjUokEiX3xnUcRyMjIzXvs9tIvuoL+rZjgHW6e0oDmDnaakntMccco2OOOUb33Xefbr75Zt1111168skny26YvnDhQr3rXe/SiSeeqPe+970tHi0AAAAAAO2p1v39TNOsWBqxXSYTc/sUT2RZlmKxmDzPk+u6+fdrWZZM02RROQAAAav0bOJ5nhKJhLZs2TIpA9e2bYXD4aLqIIlEQgMDA4FUDPFMT5Iv1Zhh3I4B1kbsKQ1gZmirYHHO2972Nr3tbW+TJCWTSW3YsEGbN2/W1q1bFYlENGfOHP3VX/2Vdtxxx4BHCgAAAABA+5oqCFxLP+0wmZjJZCqez42zVLt22ycQAIBuNPHZxHEcJRIJJZPJkqWaHceR4ziKRqNFf+NTqVTZ8tbVLpari7E9YGx61W+D2c4B1nr3lAYws7RlsLhQLBbTokWLtGjRoqCHAgAAAABAzSZOWPb09CibzTZnArOJ2mEysZ32TgYAANPjuq4SiUT+WamS0dFRmaaZzybOlakufIZyXVepVKrk84pt24pEIg3JRnZ7XNmeqWqzi9s5wJrL+E4kElNeW7hFCYCZhX/ZAAAAAAA0wcQJS9d1NT4+Ltd1FQqFikoqNnICs1naYTKxnfZOBgAA05NKpSRtf0aqRjqdLnq+KKwckstQLieXoRyPx8vunVwt3/SVsTIKuSFNFTCu95moqdnRE+T2jG5FoB1Ae+JfNwAAAAAADTZxwtJxHI2NjeUzXCeWVGzkBGYzBT2Z2C57JwMAgOnxPC//LFFtBRDHcRSJRPJB01y7XIZyNard7zjtjuvu4bt16ws/Lz3+Hk+O4cjKWjILsoy//8T3dNRu79KhCw7VDvHBmp+JWpUdPVGlPaU7oQIOgOkxfGoxoc0NDw9rwYIFk44PDQ1p/vz5AYwIAAAAAMpzXVcjIyNFr8vtwydNzjipZgKzHQQ1mZhIJGreO7ncnoYAACAY6XRayWRS0vYg8OjoaFXtCvcujsViCofDDX02yHpZ3br2F7rpuRuVzCSr69CXTM+UIUO+fHmmp5gd0/K9P6wT9jxRPWZ1+xtPlR2d0+6LCwF0nvb/9gkAAAAAQAfJlVTMGR8fr5gxM7GkYiqV6ojgpmma+dKPrdTsvZPJqAEAoPkKn40sy5JhGFVlGBdeEwqFijKUq1Vqv2NJWp9Yp8sfvVTPbX2upv5kbM80LpTMJLXi6R/qvpfv1XlLztcu8V0rdtGM7GgAqFZgnya+7+sDH/iAtm3bJmn7/kErVqzQrrtW/tCs5KWXXtInPvGJ/B+MefPm6b//+78bMl4AAAAAAKYyccIyF3isZGJJxXITmJ2uUUHYZu2dHFTZRwAAupFhvLHXr2masixrymemwna2bcs0TaXT6bruX7jfsSTdtX6VvvPYZcp4U4+hFs9tfVbn3/lpffqg83X4LkeUvW7iYsOpdMriQgCdIbBvOXfccYduvfXW/If72972tmkFiiVpt912k+u6uvfee/NfPs866ywddthhjRgyAAAAAAAVTZzkdF23qnau6xaVE5w4gdnJmhGEbfTeyVOVfeyUPaUBAOgUoVCo6HVvb69c150yuzj3tz1XOaTeXTYL293xl1/r+098r65+qpHxMvrWI/+fUtmUjl143KTzjcyOBoB6BPZJksv4zX0on3322Q3p91Of+lQ+UCxJ119/fUP6BQAAAABgKhMnLKudwKy3XbtzHEcjIyNlJ0CnOl9JLsN4cHBQsVhM0WhUsVhMg4ODNWcU11L2sdoFAAAAoDzTNIsWYFmWpb6+vqKM44ly2cSFf+crXV9Jrt1d61c1NVBc6PuPf093rV816Xg1GdWl1NsOACYKLFj8u9/9Lv+B3Nvbq/e9730N6ff4449XX1+fpO1fru+4446G9AsAAAAAwFQmTlhWO4FZb7t21qogbG7v5N7eXoXD4ZozbOop+wgAAKYvlx2cY9u2YrGYQqFQyWejeDyugYGBoiDzxAzlaoVCIa1PrNN3Hrusrvb1+s5jl2l9Yl3RsUZkRwPAdAQSLP7zn/+sV199VdL2D/lDDjlE0Wi0IX339fXpbW97W/6Dcv369RoaGmpI3wAAAAAAVDJxwtKyrKoCvxOzYOud+GwnnRCEnU7ZRwAAUB3P85ROpzU+Pq50Op3/O5qrElLIsizFYjH19/crGo2qr69P0WhU8+fP1+Dg4KRnpokZytWwbVu+fF3+6KUN36N4Khkvo8sfvUxZP5s/Nt3s6InK/b4BoJxAgsVr1qwpen3wwQc3tP8lS5ZUvB8AAAAAAM0wccLSNM0pyyHnSiqWe92JOiUIS9lHAACaJ1dlZOvWrUomkxodHVUymdTWrVvzVUVs256ULSy98UwVj8e14447qre3t+x9JmYoTyUSiejWtb/Qc1ufq+t9TddzW5/VbWtvzb+eTnZ0oWp+3wBQSiDfPtevXy/pjTIJe+yxR0P733333Ytev/jiiw3tHwAAAACAciZOWPb29lbMGAmHwxXbdxrP85RMJpVOp2sOADcqCFttRg1lHwEAaA7HcTQyMlJ28Vjh+VyG8eDgoGKxmKLRqGKxmAYHB4v2Jy6nVIZyOfF4XFm5uum5G2t+TzXzJTNrqifbIzNrSgWPDz999idKu+OS6s+OLlxcWMvvGwAmqvwp2yTbtm0rej04ONjQ/nfYYQdJb5RhqHaPJAAAAAAApis3YZn7LmpZlvr6+jQ2NjYpyBiNRosmQKuZEG1XrusqlUrJcRyl02mNjY1J2v7d3LIs9fb2TvnephuELRzDRLZtKxKJFI2h0WUfAQDAGxmu1UgkEhoYGJBlWTJNc9IiumrlMpSreQ747Uu/UTKTrOs+1TA8Q1bWkumZkgqfGXx5pie3x1Uyk9Q9w/foXbsdLWn7YsFaArmFiwvr/X0DQE4gmcUTv/w1unzTxHIK6XS6of0DAAAAAFDJxJKKtm0rFospFArJMIx8WcXC86VKMHaKidkqhcFU3/eVyWSUTCannASdThC2noyaRpV9BAAAb0ilUk29vpxqM5R//ZfbG3K/UsysKTtjy/R6VBwoliRDptez/XzW1K8KxlFNdnRum49QKKRsNpuvnBLU7xvAzBHI8pE5c+YUvd64cWND+9+0aZOk7V9IDcNoeOYyAAAAAABTyU36eZ6nTCYj3/e1ww47qKenR9lsNv+dNRQKdfQexaWyWUplq/i+r7GxsYr7ONcbhJ1OBpNt2zVl8syEPaUBAGiWXECzFrltKxr197VShvKro6/qhddfaMh9JjI8QyE3pMlB4klXKuSGtHbLC3pt7DXN7ZsrqXx2tOu6Gh8fl2EYCofDymQy+QQ8y7I0Pj5eU6Zwo3/fADpfIJ8Gs2fPlvTGiuHVq1c3tP+J/U0MTgMAAAAA0Cq5Ccve3l6Fw2FZllX0utMn6kplp5Tbe8/3fY2Pj5fsZzpB2Olk1NS6R3Sn7ykNAEAz1VtFtNHVR8t5buuzTevbylqaOlCcs71U9cTxTMyODoVC8jxPfX19k7YvkaSxsTElEomaA/St+n0D6AyBfCNdtGhR/v9939dvfvObhva/cuXKotJVCxcubGj/AAAAAACgcvZQuYwe13XzZRML1RuEnU4Gk1Rd2cecTt5TGgCAVpi4BWWz29WqWVnF8vV/paerZ3qmnt/yXOlzpqmenh5lMpmKC+pyv7fR0dFJ23NWHG6Lft8AOkMgweL99ttPc+fOzb8eHh7WzTff3JC+b775Zg0NDeVfDwwMaOnSpQ3pGwAAAAAAvKFSVoplWYpGo5OO+74/aTJzOkHYRmQwTbVndKfvKQ0AQKsUJnG1ol2tXtr2YlP6Nb16Qi2GXtr6Utmz1VROKfy9pdNpSW8spEun00UL5Mq1A4DAal0deeSR+f2ZfN/X5z73OY2MjEyrz5GREX3uc5/L92kYho488kg++AAAAAAAaIKpslJs21Y8Hp8UZM21a0QQtlEZTBPLPkajUcViMQ0ODpJRDABAlUKhUEvb1SrhJJrSr1F1+eliSSdZ8ni1lVMsy8rHP1KplBKJhLZt26bR0VGNjY1pdHRU27ZtUzKZLFqs16rfN4DOEFiw+Kyzzip6/ec//1knnXRSzfsM5aRSKb3//e/X2rVri46feeaZdY8RAAAAAACUV83i7FyG8cDAgKLRqPr6+hoahG10BtPEPaY7fU9pAABayTTNmheBVSqz3GiuN0VFEl8ys6Z6sj0ys6ZU5Zo0v9oLJ8iUGU+1lVNM05RlWcpkMhodHVUqlZq0IM73fWUyGSWTSTmO09LfN4DOENgnwmGHHaYjjjiiKLt41apVWrp0qR566KGa+vrjH/+oJUuW6O677y7KKn7729+uo48+uknvAAAAAACA7lZLVkpu8jgcDisWizVskrLdM5gAAOg2kUikqddPh2WW/vtveIZCmZDCTlgh15blhhRy7e2vMyEZXuXFaZ7pqerIcp6vUKj0orlaKqdYlqXx8fEp2/m+r7GxMZ6BAEwS6PKRSy+9VH19fZKUD/I+88wzeutb36ojjjhCP/zhD/XMM8+UbLtmzRpdffXVOvzww3XooYfq2WefLfogjEQiuvzyy1vyPgAAAAAA6EbNzh7yPE/pdFrj4+NKp9Ml99xr9wwmAAC6TW5rh2q0equHuD15XGbWlJ2xZXo90qRy0oZMr2f7+WyFZwcjFzCunmd6ioVL/55qqZziuq56e3tlGMaU7fr6+qrOWgbQPQLdcGfx4sX64Q9/qFNOOSX/Qeb7vnzf1z333KN77rlHktTT06MddthBsVhMyWRSr7/+urLZbL6fXJA41940Ta1YsUIHHnhgEG8LAAAAAICuEYlEqtpTr/D6qbiuq1QqVbJf27YViUSKJpabMQYAAFA/27Y1MDBQ09/zVtitf6Eefe2R/GvDMxRyQ5ocJJ5o+3WO4cg3S2fvuj2ubM+soi9J8uX2uFo4sLDk2Wqzfz3PUyaTUSgUym+lUbg3cU6uuotlWXIcR57nsXAOQF6gwWJJ+vCHP6zXX39d5513njKZTH7lS2GWsOu62rRpkzZt2lSyj8I24XBY3/ve97R8+fLmDx4AAAAAgC6Xyx5KJBJTXltN9pDjOBX7chxHjuMoHo/nM4obPQYAADB9ub/PuYBmbvvIXGAzCHvtsFfxGLOWqgvuSpIhK2spY5bOzPVNXxkrU0Xweft1vulrrx0WlbwiVzllqsVwhYHhSCSiaDQqz/Pkum7+921Z1qTfdyaTUTgcrtg3gO7RFktHzjzzTN15551asGBBUZZwtT/S9kDxHnvsoXvvvVef/OQng3w7AAAAAAB0lVz2ULly0FOdz3Fdt6qAryQlEomiCdJGjQEAADRWLuO1t7dX4XA40IzWfWa96Y0Xvv6v9HT1TM+suDWx1+PJCTnyzKwmX+jLM7Pbz/dsL1m99+A+ZfuqphJKYdJdLvibCzSHw+GyW2/UsicygJmvLYLFknTIIYfohRde0JVXXqk99tgjX4668EdSyeN77723rrnmGj3zzDNaunRpwO8EAAAAAIDuk8seGhwcVCwWUzQaVSwW0+DgYNXZvKlUqqZ7Try+EWMAAAAz19y+ufnsYtOrJzxiTNnON31lQhml7bQyliPXyihjOdtfhzL5MtZ77bBIc/vmlu2nmr2fc8l00Wi0puecWvZEBjDzGX6bLiH505/+pFWrVumBBx7Qq6++qi1btmjbtm3q7+/X7NmzNW/ePB1yyCE64ogj9KY3vWnqDtGxhoeHtWDBgknHh4aGNH/+/ABGBAAAAABoNM/ztHXr1prbDQ4OsuceAACo2m9f+o2++9jl6sn2yHKr2xu4kGtllO3JTnscnz7ofL1rt6Onvp/rlt372bIspdNp9fTUliHN8xOAQm0bLAZyCBYDAAAAwMyXTqeVTCZrbheLxdhzDwAAVC3tjuvjK0/V2PiYQm7t21NkrDfKSNcrHorrmmOuVdjqrbpNub2fE4nElHsbF7Jte8qMZQDdhaUjAAAAAAAgcPWuZWcNPAAAqEXY6tXyvT8sz/RUcQPikvz/azc9y/f5cE2BYqn83s/V7G1cqNbrAcx8BIsBAAAAAEDg6t07jz33AABArU7Y80TtPWvvmgO/nulJ03z02HtwHx2/5wnT6yQ3Hs9TNptVKBSS4zjyvMrvJx6P17S3MYDuQLAYAAAAAAAELhSqfc/A6bQDAADdq8fs0XlL/p+MkKHqs4t9uT3utO4bMkM6b8n56jFq22N4Itd1lUgktHXrViWTSWUyGZmmqbGxMY2Ojsp1i8dp27YGBgZk27WX3QYw8xEsBgAAAABgBvI8T+l0WuPj40qn01NmmgTNNM2aJzBt286XYAQAAKjFLvFdde7S85SxMpo6YOwrY2Xkm9Pb/uLTB52vXeK7TqsPx3E0MjIyaZ9iy7IUi8UUiUTkeZ5CoZBisZgGBwfJKAZQEZ8OAAAAAADMIK7rKpVKTZpAlLYHVyORSNtOFkYikZLjrnQ9AABAvQ7f5Qil3JR+8NgVsrKWTM9UcZ3p7XsUuz3utALFhgyddeDZOnyXI6Y13lxGcSW5BXiZTEZ9fX0srAMwpfb8dvh/xsbGNDIyokwmM61+dt11eit1AACoh+d5ymQy8n1fhmEoFArxgA4AQBdrxbOB4zgVJxAdx5HjOIrH421ZhtCyLMXj8SknQSX23AMAoB114lzIsbsfp4gV0Xceu0zpbFqmZ8qQIf//AsXT3aM4ZIb06YPOn3agWJJSqVTN18fj8WnfF8DM1jbfqtLptH72s59p5cqVeuSRR/Tcc88pm81Ou1/DMCbV5wcAoJk6OZsHAAA0XqueDarJNMlJJBIaGBgI7Jmk0kRybk89nqcAAOgcnT4XcvguR2iPHfbQ5Y9eque2Ptewfvce3EfnLZl+6Wlp+/NTLRVYpO0LBT3Pa/uAPYBgGb7vT6/I/jT5vq9LL71UX/va1/T666/njzWKYRgNCTojOMPDw1qwYMGk40NDQ5o/f34AIwKA8qbK5slp12weAADQWK18NkgkEjVNINq2rXg83tIMoFonkjsxOwkAgG4zk+ZCsl5Wt/35Vv302Z8omUnW3U88FNfyfT6s4/c8QT1GT0PGlk6nlUzWPqZYLKZwONyQMQCYmQINFo+Njem9732v7r777qIAsWFMs67D/8l9mSRY3NkIFgPoFK7ramRkpOrrg8zmAQAAzdfKZwPP87R169aa2riuq97e3pLVuJqRATSTJpIBAMB2M3UuJO2O657/n707D5flquv9/6nu6up5d3bOCZkOSSSEeTCEQBiFKAI/IoPMv4thVC8C3ktEwEcG4YLK1QD6I+pVIogXRAkzGgVBgpgAiQwJQiAkgeScDGTYZ+8eq3p11e+Pk6p09+6hurt6d/fe79fz7IfT3VXVq3cedq9a3/X9fg/9uz79o0/pJ9Ufxz7v5PIpesa9n6nHnfg4Ze1comNqtVqq1+sTn1csFpXLJTsWALvLQv8q//Iv/7IuueQSSb0B4gUnOwMAVsgyZZvQNwYAgL1r0JxkJ+cG7XZ7ouM9z1Oj0ZDv+wMDs0n3Nl6lEtkAACC+3boWkrVz+oWTn6QH73+IfvULL4t93pvOeouOLR47lzFNm2SXVHIegN1rYXdeH/nIR/T5z39+YJD4YQ97mB7xiEfo1FNPVaVSUSaTWdQwAQBLKuleOLMGnekbAwDA3jRsTuL7vhqNhnK5XOw5ySxzg0k2XRtj1Gg0FATB2POSCtzOeyF5mTYQAgCwV7AWsrOmjZMQXwEwzsKCxb//+78f/Tu8OX3yk5+sd7/73br//e+/qGEBAFbAuBKGk2TCJBV0njSbp/s8+sYAALCaRs1JjDFqt9syxqhQKMTOzp12bjBJxkir1Yruw+OcN2sG0DwXkpPeQAgAAOJjLWRnpVIpOY4z0bzKcRwC8wDGWshfiRtuuEHf+973ZFlWtOv3xS9+sS6++GICxQCAkSYtYTioB1/I8zxtbm4OnWSPe73btC0UaL0AAMBqGjcnCb/jgyBQo9EYOScZdN6k4maMhBm4oTiB1DBwO61ZFpJHSXIuBwAAJsdayM7L5/NzPR7A3rSQYPHXv/71nsfHHnusLrjggkUMBQCwYqYpYThIkkFnib4xAADsNePmJP0tl1qtVqzrTjs3CDNNpLszeV3X3Rbo7Z7TTJJpMm3AV5rPQnLSczkAADA51kJ2nm3bsSu+lMtlKqwAiGUhfyl++tOfRv+2LEvPfvazVSgUFjEUAMAKSbKEYdJ98+gbAwDA3hFnTtK/MGeMiVVWeZa5QSaT0Z133iljTE+g1bIs2batXC7X8/yg8o++70fnh+elUqmZMoDmsZA87x7IAABgPNZCFsNxHFUqFVpxAEjMQv5abG5uSlJ083n66acvYhgAgBWTVC+cefTNo28MAAB7R5w5Sf/cIAgCGWNG9i6eZW7geZ7q9bocx9k2viAIov7J4aJhsVjsWUA0xkSZyIPGlcvlphqXlPxC8jx7IAMAgPhYCxktbP8RxkEymUxinz3MMJ7newDYOxYSLC6VSj2PK5XKIoYBAFgxSZUwTCro3C+fz090g0TfGAAAVlPcOUk2m+2ZG4w7b9q5QXdJ5nABdlDgNwgCBUGgQqHQE7QOA83DtNttNRoNZTKZkcHuYZJeSJ7XXA4AAEyOtZDtjDE7lvWbSqWY3wCY2UKCxfe61716Ht95552LGAYAYMUkVcJwHn3zpLt3dcbpn0ffGAAAVlfcOYlt2yoWi6rX61F2b3h+WN45NMvcoL8ks23bsm1b+Xx+YEnp7oVLY8zIQHF4vVQqpWq1qkqlMtU4k1xITnouR0YOAADTYy2kV9tra7O1OfR1z/PkeZ7K5fJUm/AAYB4W8pf5rLPO6ul5dPXVVy9iGACAFZNUCcN59M0L0TcGAIDdb5I5SSqVUiqVigKy3VmxjuOoXC7PtHA6qiRzmNE76PmwJLPruiOvb1lWTwnqaXv/JrmQnNRcbiezfgAA2M3mvRayKhu7LN9SvV6PlT09yyY8AEjaQv4S7d+/X2effbb+9V//VZJ08cUX6/zzz1/EUAAAKySpEoZJ983rN6hvTLhByrIsdTqdaOEYAACsnrhzku7yzmtrayoUCtsyfX3fl+/7U49lmpLMtm3LcRy1Wq2Rn8GyLBUKhZ5FzFl6/ya1kNw/J/N9f2AGdf/z6XS653OMClyT9QMAwGTm0UN31TZ22R1bmqAAyrSb8AAgaVYwbf2mGX35y1/W2WefHe3sveiii/SsZz1rEUPBkjt06JAOHDiw7fmDBw/qxBNPXMCIACySMUabm8PL+fQbtkuzWq1OHHSeZgK/ajc2AAAgnnFzku4+wpZlqVQqjfzOnzazpNVqjS0jPUixWFSn09Htt98eBVRDYcA1l8sNHFOpVJq5N96sC8nValWNRkOtVmvb+DudjnzfVzqdjq7pOI6KxaIcx1Emk5nod0bWDwAAO2/cxq7QvDd2dfyObm/ePvY43/e1dXhL67l1pVPpsceH1tfXSSYAsHALCxZL0q/+6q/qwgsvlGVZOu644/T1r399YFAQexvBYgD9krhhSCroPMqy3NgAAID5GPVdX6/X5XlelJ077rt+2o1pruuqVqtJGp5hO0ipVFIQBKrX6xOdJx0JNHeXpl6ERqOhm2++eVsf4na7rVarFT2fz+eVyWR6SlvX63VlMpnY869p/9sAAIDp7MSaTdK652STSGITHgDMaqFbVi644AI94QlPUBAEuvnmm3X22Wfr29/+9iKHBABYAWEJw2ELfONel+4ujxTHNH0Eu7OJxqlWqzLGTHR9AACweMPmHGHWbCaTUalUihWUDMs7TyqTyajT6aher2tzc1P1el2NRqPn8aB5RiaTiSp9hWW1s9nswBYe/abtGZyUsHJLoVDoeb7T6fQEiqUj5R2z2Ww0lwt7PDcajdjzr2n/2wAAgOk0m825Hj8P0+bkLTCXDwAiCw0WO46jiy++WC984QslST/60Y901lln6eUvf7kuu+wydTqdRQ4PALDEwmDv+vq6SqWSisWiSqWS1tfXYwd3kwg6D9N9oxIuSrquO3SxcRlubAAAwOQGzUmy2azW1tbGlp7uN2n/Yd/3Va/Xdfjw4ShDuF+Y/dzdEiMMCPf3/o1r2vOSEs6bwozfcK7mum7Pgmsmk1GxWOz5vYQB4iAI1Gq1Yr/nNL2hAQDA5MI1lEksw8auaTfTLXoTHgBI0sJqM5x99tk9j3O5XLSI/sEPflAf/OAHlc/ndfLJJ+voo4+e+mbUsix98YtfTGLIAIAllEqlZirXEy7wzto3r1t4Y2OMib7b+oXZO+ECcnhjQ58aAABWU/+cZJrgYtzMkjCzttlsamtrKwp8BkEg27aVzWaVTvf2yqvX60qlUrJtW/l8Phqz4zgTLcjGyTyep3Ce1V06O5PJKJPJqN1uy7btqJR2uPhqjInmWd2/4+7nxyHrBwCAnTHJHKp7PlCr1VQqlRY2T1nVTXgAIC0wWPzlL3954K4Zy7Kim7BGo6Hvf//7U++uCRf8AQAYZ9agc7d2uy3P81Sv14ce43mePM9TsViMsmHa7TZ9agAA2AXmmVnS3Sc5zIxNp9PK5XJqtVoyxsgYE/Xq7ea6rtbX13uynfP5/ETB4jDQvCjNZjPqB92t3W7LGCPHcbYFyoMgiF7r/h13Pz8OawsAAOyMTqcjz/OitX3btrcFgI0x0byne0NXu92W4zjK5/M73sN4FTfhAUBosV3f79If1OUmDACwytrt9shAcbfuLB8yVgAA2B3mlVlijIkCxf0lGsOqKK7rqtPpqNlsKpVKKZ1ORwut3VVNQmGVlfC6o8Rt9TEvnudpc3Nz4CJsEARqt9tqt9sDA+XhPKt//HHnX2T9AAAwX2HllFqt1rOmEs5jcrmcbNuW53lqNBrbvsPDmEK4Ob+7VcVOWbVNeAAQWniwOPyjzgI5AGC3mKT/nXQky6e7VCIAAFht88osCXv1Snf33u2WTqdVKBSijNlUKqVisdiTkTOokonjOKpUKmo2m0PbZywiQ6dbGCgfNl/qfr47UN7/ev9/mzjzL7J+AACYr+7KKYM2doUVRLLZrFzXHRhL6D+vWq2qUqns6PxllTbhAUC3hf01evzjH8+iOABg1/F9P6qYEXcjlOd5AzNgAADA6ko6s6Q/k3jUPMOyLGUymYGlG4edFy5u+r6vdrsdzWfCjOVFCwPl4Qa7/s/R/3w4v5LuzkgKZbNZeZ637flhyPoBAGB+uiunSMM33QVBoI2NjYEtJ4Zt7Go2myqXy/MZeJ/uOVQul4tag/Rbhk14/ZZ1/gdg5yy0ZzEAALtNu92Oykq32+3Y51mWxUQcAIBdJOnMkv55RZzN14N68o47L5VKbcs8XrTuQPmweZZlWUqn09GibLvdVi6XGxgwt21bxWJRnueNnX+R9QMAwHx1V04JhRu7uoUZxkEQqFAobDt+EM/z5Pv+XNdbwvLZgzYJ2rYt27ajtiDLFoQdNfZlDGoDmJ/l+csEAMAuEGazhIuTcViWpVwuN89hAQCABQjLOw/rlzfu9W6DMmnj6D9vFSuZ9AeGh82zstlsz/PGmKHzLMdxdOyxxyby3wYAAEynv3JKKNzY1S3cEGaMke/70fNhy41hJtnIPynP87S5uTm0mowxRq1WK9qMt0yB4nFjH/c6gN2FbSEAACQoXKC0bVuFQkGNRmNsmchCobCSC7cAAGC8pMo79wdH4/ZF7j5v0t67puPrp1tu7OPvsZaVnU5+EbR7LuX7vnzfl23bajabUaaOdKRncy6XU6vVis4pFAoDF5DL5bIcx1Eul6P0IgAACzIqkBvOW1zXled5PfOBTqejXC6nbDY7dgNd3BZhk+ovnz3KIvonj7LKYwcwH/w/HACABHUHfcMbm1arJWNMzw1KWBIxl8vJtm2CxQAA7HKzlnceNFcYVKKxW39P3ji9d7sDp7ccbumFf/41Bbo74GwpUFqd6HFH6ej1T/zPx+uE9eT7+1qWFWXmdM+pLMtSq9WSpKh/YRjo9X1fpVJpW2bwoJKKy1h6GwCAvWBcIDcs45zP59VoNCQd+f4vl8ux5jXh8fMwqHz2uON3qn/yOKs8dgDzQbAYAIAE9Wf52LatUqkk3/ejxc3+3nmTZvkAAIC9Z1AmcViisV6vDzyne74xrvfuoJ51jUZLebXUUVodpZSW3xMoPqKtjtJqz3F5IQgC1Wq1bQvK6XRa+Xxevu+r0+kom81GGUapVEqVSkWdToeMYQAAllTcQG4qlVKhUIgykdPpdOz3mMfm/GHls0fZif7JcYRjH7VO1W9Zxg5gfggWAwCQsHw+v+2mIVzgHXZ8HJRIBABgbxs0x+gv0RgKe/UOyqTt53neyFKEGXkqychTRh1tn3uk7wontz1PUrKZxcYY1et1ZTKZoYuyqVRKqVRKnU4n+rfjOFE2EgAAWE6TBHLD7/d2ux37+31em/On7YPcbrcXXs2k2WyqVquNrYDXbxnGDmB+uGsCACBhYW/COP1fxmX5SIMzfUJxFoABAMDuMGyO0V2iMVz4K5fLKhaLYxdIx/Wss+QrKyNJctSWq4z8AQFjSWo0ajKmmOi8JCyTOK7ktnQkA7nVaqlUKsXejAcAABZnUOWUUbLZrIIgiB0Antd8YNo+yPPqnxyX53na3NwcGOwOgkDtdlvGGBUKhW0JD4seO4D5Ih0JAIA5cBxHlUplaDbxuNdD4UR+2I3TuNcBAMDuMmoOkUqlVCqVdI973EPlcjnWQuq4nnWZvrLT9rYy1HcLgsl74I3SXeIxLLk9jjFGxWKyAWsAADA/kwR0bdvWMcccE+vYOJvzpzVtH+R59U+OI9wgOG4MQRCo0WjIGNPz/CLHDmD+lvbuqdPp6NZbb9Xhw4eH7naJ6/GPf3yCIwMAIJ4w+2fa8tHjMn26VatVVSoVFkYBANgDZp1jhMb12/N9X2n5Pc+l5ctSoECDFwyT7GnXvw4wrOR29+vZbJbFTAAAVsik1dkcx5HjOAutwDZtH+R59E+OK9zQF+f30l2tJbTIsQOYv6VaUf7hD3+ov/7rv9ZXv/pVffOb35TrujNf07KsbbtgAADYSalUaqq+LpNm5jSbTZXL5YnfBwAArKZp5xihcZuyO0PupdPyZZQeed0ketoNKnc4qOR22GMvDFBTJhEAgNUSVk6JGwBOauPctCYtny3Nr39yHN0bBOOO3RgTbQBc5NgB7IylCBYfOnRIr3zlK/VP//RP0U0dN3cAgL1sXKbPIElm8gAAgN1v3H13oMX24xuVIRwuXE56HgAAWE7TBIBn3Tg3i3w+P9G6zbhy2/MMfPdvEMxms2PHHgSBjDFRoB7A7rbwYPGXvvQlveAFL9Add9wR3VBalpXIzR0BZwDAqpq2/UJSmTwAAGD3G3ffbQ0pNT3rdeNaxRKPAABgNosMAE9i0vLZw8o/G2PmXlK7P05i27aKxaLq9frY8+bZ+xnA8ljo/8u/973v6ZnPfKZqtZqkIzeUQRBMFOTtvgklOAwASMqiShmFpv1O47sQAADENS6omh6yMNjR3XMiS0HU17jtefJ9J7Fg7aqVeAQAAHvLpOWz+3meNzLY7HmePM+LejVPa9BGvnDO5Lru0LFXKpWZ3hfA6lhYsDgIAj33uc9VrVaL/lgFQaAzzzxTv/Irv6LTTjtNr371q3XddddFC/Vf+tKX1Gw2deedd+q6667TZZddpn/7t39Tq9WKrlGpVPSud71L973vfRf10QAAK2wndnTGMW1GDmUXAQBYLYvcoDYsGOt6Hf3HNbfpc98+pI5SUTBYOhIoDmQpJV+2Oj2v/X8XX6mzH3SinvSwjNYrpUTmTEmXeAQAAEjStP2TjTGxspIlqVqtqlKpTD23GraRz7Zt2batfD4vY0w0dtu2lUqlmFcBe4gVLCgF6aKLLtLznve8KJvYsiy99a1v1Vve8pbomNNPP11XXnll9Hqn09l2nTvuuEPve9/79Id/+IfyPE9BEKhYLOqiiy7Sk5/85J38SJiTQ4cO6cCBA9ueP3jwoE488cQFjAjAbjVuR2do1h2dcfi+r42NjYnPW19fJ5sGAIAVsCwb1Iwx2tzcPPLvjq9/+vZN+uQVN6rmGkmSJV853d0ew1VGliRHg1tmtJRRMevoWWeepOc/9j4q5HMzj3GZ5mgAAABJqFarE1dPKZfLK/N+AFbLwlaT3/e+90lSFAh+4Qtf2BMojmvfvn1661vfqiuuuEKnnHKKLMtSvV7XM57xDP3Hf/xH0sMGAOxSk+7oNMbI9325rqtWqyXXdeX7/viTYwozfSZB2UUAAFaD53na3NwcumA37vUkhdkwB+9s6M0XXam//Y/ro0CxJAVKyb2rKJmnI1kpwwLFrmwFSqnmGv3tV6/Taz/4H/rRzYdnHuO4MoiUSQQAAKvE9/2J53me58207jRpljBZxcDespDMYtd1ValUorIM6XRa1113ne55z3v2HBcns7jbj3/8Yz360Y/WrbfeqiAIdODAAX3/+99XsVic58fBnJFZDGAnTLLDMgwUD1qQTDITqDvTJ45ZShIBAICdsYzf7/9y5U36g09dpaDjKa3t990dpaNy1Hm1ekpPH3k9pbbSCgbsR0+lM/rtZ56uJz/khETGusiy3QAAAElwXVe1Wm3i80qlkrLZ7NTvS7UWAMMs5I7q8ssvjxbkLcvSYx7zmG2B4mmccsopOv/886ObxkOHDulP//RPZ74uAGB3m2RHp+d5qtVqqtfrA3d0JpkJFGb6xFEulwkUAwCwAprN5lyPn9QnL79Rb/34VWp1JFeOmsrJUyb6aSonV46M7Lues3t+mnLkKTMwUCxJfqet3/v4lfrUFTcmMt5UKqVsNqtcLqdsNkugGAAArJxp8/dmzfujWguAYRZyV3XDDTf0PD7rrLNindduDy511e2FL3yhTj31VElH/nj+1V/91eQDBADsKXG+X6QjmUCNRiOanBtjhh4blqqeFRN5AAB2j0WUHBzlX668Se/63Pd6ngtkyciOfgJZ0WtHso6tuzKNj/yo6/Vh0uroDz/7Pf3LlTcl/AkAAABWj2XdPX8K54eu646d93WfN60wMWF9fV2lUknFYlGlUknr6+skIgB72EKCxXfeeaeku3fCnHbaaQOP698h3Gq1Yl3/6U9/enTtn/zkJ7rmmmumHSoAYA+IuzOz1Wr1HDvuvKQygZjIAwCwO8TdoJbUeaNcf1tN7/z0fyV+3VHe+en/0vW3TV5yEQAAYDfJZDIyxqhWq2lra0v1el2NRkP1el1bW1uq1WoDExAymUxiY6BaC4BuC/kLsLW11fN4bW1t4HHFYrFnIT5OPX1Juu9979vz+Morr5xwhACAvSTOzsywP94k5yWdCcREHgCA1baokoP9TMfX//rkd+WZ+WQsD+MZX+/41HfV8ZP9PAAAAKvEGCPXddVut7fN84IgULvdVq1W66lI4ziOUqmUfN+X67pqtVpyXXduFWgA7C0LWWXO5/M9j4cttvcHkQ8ePBjr+kcffXTPdeOeBwDYm+LszBy0ozNORu88MoHG4cYBAIDlFLd0YH85wqSDxX//tRv0vUObE593pOz05LrP+6+Dm/r7r/1kqusAAACsOmOMqtWqstnsyOOCIFCj0YjWozKZjKrVqjY2NlSr1VSv11Wr1bSxsZFYKzQAe9dC6lZWKpWex/2ZxqF9+/b1PL722mv1iEc8Yuz1a7Xeslb1en3CEe4Od955py677DJde+210RfQCSecoNNPP133v//9Fz08AFgaqVRKjuOM7CHYv0gb7ugcJ+nF3VGMMWo2mwM/h+M4yufzlKwGAGCBxm1Q8zxP9Xo92mxm27Ysy5Jt2zLGJPJd3vI6+pt/v3aqc4O7+hUf6V0cT0fpnr7HkvTBr1yrX374PZVzpgs+AwAArKqwZZlt2yoWiyNjF0EQqNVqad++fSOP8zxPnuepXC7LcZzExwxg91vIivEpp5wi6e5d1XfcccfA4x7wgAf0HHfppZfqhS984djrh2WngyCQZVkqFouzDnkqd9xxh6644gpdfvnl+sY3vqHLL79ct9xyS88xb33rW/V7v/d7ib7vV7/6Vb3zne/UF77wBXU6g2/i733ve+s1r3mNXvnKVyba6wAAuoWlm8O/x5lMZmlLJ+fz+ZHB4v5MoHE7QIedNy+e541s18CNAwAAizdsg1qYYVKtVns2mlmWpVwuJ9/31Wq1VKvVVCwWlc1mp55XfeG7N2urOX3mSVv2RMHi9oBlh62m0b/+1y065/QTpx4HAADAqgmrx4TCRISwmkw/x3Fk27aazWaseV+1WlWlUiFRAMDEFvJX4373u1/P46uvvnrgcQ95yEOifwdBoE9/+tP6kz/5k5F/GDudji666CJZlhXdZB9zzDEJjDqed7/73br88st1+eWX69prp9utPa12u63Xvva1uuCCC8Ye+6Mf/Uj/43/8D73//e/Xxz/+cZ122mk7MEIAe8UqZrjatq1yuTw04Bpm9gRBoGKxGHv8O7EhJ1xgjoMbBwAAFqt/g1q44au/QpZ05D44CALdeuut0WJho9FQqVSSbdtTzas+fvmNM43fV0quHGU1fJNdyJUjf0j3q49/4waCxQAAYE8Z1KrMtm3Ztq18Pi9jTJRwYdu2UqmU6vW6LMuKvfG/2WyqXC4nPXQAu9xC0rtOOOEEHXvssdHj//qv/xp43OMf//ie/saHDh0aGwh929vetq1HcZzS1Un5rd/6LX30ox/d8UCxMUbPec5zYgWKu1111VV69KMfre9///tzGhmAvcbzPG1ubg7N0h33+iI5jqNKpTJwAp5KpVQoFCbKzI1bqnpWYQmjeR0PAACSE25Qk47cxzUaDbVarYHHZjIZua4bHdfpdKJyhNLk86qbNpq6+qbBbaAm0VFaLWWH9jAe97okff+mLd18uCnf9+W6rlqtllzXle/7M48PAABgGY1qVRZWoMlms9F6UpiJPEmLM8/zmE8BmNjCaoH+3M/9XLRL+pvf/ObAjKhisahf+qVfinbTBEGg173udfqTP/mTbQ3bm82m3vjGN+qd73xnT8nPe93rXrr3ve8998+zaL/zO7+jz3zmMz3P7d+/X29729v07W9/W3feeaeuueYa/d3f/d224Pntt9+uX/qlXxraOxoA4po0w7X/b/kyCBdw19fXVSqVVCwWVSqVtL6+rmOOOWaizJ3uDU/z0l/CKA5uHAAAWKxwg5rv++p0OtvmRJlMRrlcLsouCYXf+caYnu/yuPOq/zp0OJkPoLszjJvKyVMm+mkqNzKjOJSSr29ec5M2NjZUq9VUr9dVq9W0sbGxtPNEAACAWUzaqiycD0163qAMZgAYZWHB4l/4hV+I/t3pdPSlL31p4HGvf/3ro6wsy7LUbrd13nnn6bjjjtPTnvY0/cqv/Iqe+tSn6rjjjtMf/dEfRTfSYYD5vPPOm/+HGaFUKunxj398lHE8D1deeaXOP//8nuce+MAH6tvf/rbe8pa36KEPfajW19d173vfWy94wQv0ta99Tf/zf/7PnuOvvfZavf3tb5/L+ADsHbspwzWVSimbzSqXyymbzSqVSvVkAo1TLpd3pNRz2Ncm/N+4QWBuHAAAWKwwe6RYLCqfzyuXyymfz6tcLveUIezWbrejTdeDNlCPk0RWcb9Alozs6CfQ+MXMtDrKydWPbrpz4OvLXIkGAABgWpO2KusuST3peQAwiYUFi5/1rGdF/R8l6cMf/vDA4x72sIfpv//3/x79gQszjO+880798z//sz7ykY/o85//vKrVavTHMzzurLPO0q/92q/tzAe6y5lnnqnf+I3f0Ac+8AF997vf1ebmpi655BL98R//sZ7//OfP5T3f9KY39XwBlMtl/fM//7NOPHFw/yfLsvSe97xHz3jGM3qe/7M/+zPddNNNcxkjgN1vr2S4jipVHef1pIRZ3BsbG6rX62o0GqrX69ra2lKtVhubjcONAwAAixVu9ArnT7ZtK5PJRPe8w77Lw+f7v8vjzKuuvfVIX2RLQVd418jSzs0LUvKjfsc/ub0x8lgyjAEAwG4SbhaMq7t38SQmzUQGgPmnPA2xb98+Pec5z9Fll10m6Uh2bLVaHZix9d73vlcHDx7UZz7zGVmW1fPHrjuI3P3c/e53P1100UVKp4f3SJqHb3zjGzv6ft/+9rf12c9+tue5t7/97Tpw4MDYc//8z/9cn//856Md6M1mU3/0R3+k97znPXMZK4DdbdpM1Xa7rWw2m/Bo5ivMMPZ9P8rwsSxLmUxmR3oUe54XlfvuvwEIgkDtdlvGGBUKhaE3Idw4AACwGMYYNZtNVatVNRoNtdvt6J7Mtm1ls9mRQd9B98ChcfOqrUZTWXlKq9N/pjpKqy17bPnoWWV0d/C35o4PBDebzdiVXQAAAJZdPp+PnWwxTaBYmjyDGQAWllksSR/5yEd0/fXX6/rrr9fVV1899AbQtm1ddNFFevvb3658Ph+V3erOJO5+fO655+prX/uajj/++J38OAvxD//wDz2Pi8WiXv7yl8c69/jjj9ezn/3snucuuuiixMYGYG+ZNlN1lTNcB5Wqnrf+vtDDShEFQaBGozE0G4cbBwAAdl53eeXwXra74pYxRvV6feQmvHAD9aA5wKh5led5ktccECg+IiwNPez1JFgKeq5vOuMrzMxaicb3fbmuq1arJdd1V66qDQAA2F0maXFWqVRUKBQmur7jOCPXp5gbARhkYZnFk7JtW29605v067/+6/rMZz6jL3zhC7rxxht1++23q1gs6vjjj9fjHvc4PfvZz9Zpp5226OHumE9/+tM9j3/5l395ol3XL3nJS/R//+//jR4fPHhQ//mf/6kzzjgjsTEC2BumzVQlw3Uy3f0Ifd+P+hkaY3oWm6UjC8atVkulUqnnGuNuHAAAQPKGbfiyLEvpdLpng1er1Yqe72fb9tAsk2HzqvC97fRdbZsUKK27FwY7SkW9hrPy1FJ2LhnG/YFoOx3vPaapRBNmcA/K3HEcR/l8fuL+fwAAAEkIW5jFmaukUqmJ2r7l8/mBzzM3AjDKyv2//5hjjtHLX/7y2Nmzu9kNN9yg733vez3PPeEJT5joGo9+9KOVyWR6dq7/4z/+I8FiABObNlOVDNf4wr7Qxpioz2H4fLPZjBaVs9lstLhsjJHv+z0LysNuHAAAwPx0b/iS7u5Z53mestmsOp1OlBmcTqfled62YHHY8iKXyw18j2HzqvC9S05ajto9gWJJyuhIwNgoLV8pZWTkKn4/vWmVsvGWJCatRNPdsmPY657nqVwuT9Q3EAAAIClxW5yFx42a24TK5fLAgC9zIwDjkFa0wq688sptzz3mMY+Z6Br5fF4Pe9jDep676qqrZhoXgL0pXPCcBBmuvcaVAmq329EEv3snaDqdjto0GGOi/oeSoudCw24cAADA/IQbvvqF2bLpdFq5XC7KDLYsS0EQbJsLOI6jQqEw8Lt82LwqfG/P83Ri2doWKA6l5St7VyA5rY4szb9VyMn745VVnKQSTX8G9yjVanVoyw4AAICdEKfFWZiJPGzdbdTrzI0AxMFq8Qq7+uqrex7btj1VCe773//++vrXvz70ugAQVz6fT6Q0zl4TtxRQu91WvV4feI1w56nneWq322q1WkqlUkqn0wqCgJJCAAAs0LAexLZtq1gsql6vR9/lruuq0+kok8n0VAdZW1sbuelr2Lyq3W5HvZDvuW98cNZRW64ySqsjk/CSQUdpSXf/Lu51j3gtlCapRNOfwR3n+ElaOQEAACxC3EzkfsyNAMTBivEK+/73v9/z+MQTT5wqQ++e97xnz+NrrrlGnU5nYH8sABglidI4e80kpYBardbIa4UZxrlcTsYYpVIpFYtFHXXUUQTmAQBYoFFllMOM4LDFRKFQiCqDpNPp6Pt8VAWXUfOqIAjkuq4k6ZRjSrHGa/f1Fk5KIEsdpaPexfc+bvxC5CSVaIZlcI/ied62lh0AAADLKsxEjoO5EYC4WKVfYTfddFPP4/6gb1wnnXRSz2PXdXXHHXfoHve4x0TX2drail3SYhI333xz4tcEMD9h6Zs4mbJ73SSlgDY3N2WMicpSjhLuLJWOBPDj3kQAAID5GFdG2bZt2batfD4vY0yUKXLUUUcpk8nMNK8KgiA69+iio3vuK+jGOxojx3OkVPV8ylC3ZSutjk69R0n3WBvce7nbJBvehmVwxzmP+RIAANhtmBsBiIuV+hVWq9V6Hq+trU11nUHn1Wq1iYPF7373u/W2t71tqjEA2F2mLY2z10xSCsgYI8/zonLUcVmWxe8cAIAFi1tGOZVK9WQQh33rZp1XdW82e+x9jtHfXfaT8efEuvLkfKXkytGTH3LC2GMnrUQzbkNd0ucBAAAsM+ZGAOJi9XiF9QeLpy0xOui8/msDwDTC0ji5XC5a7MQRk5YCCstROo4zNjspZFmWcrnxGTsAAGC++oPAcfSXX552XmVZVk/A9WEnH62CM7rlUEcpBXMLF0vFfE5POePUob+TsFLNpL+zuHOkpM4DAABYZsyNAMSVaGbxhz70oSQvl5hzzz130UOYi3q93vN42oAAwWIA2HmTlgLqzggqFApqNBpDd3oGQaBOp6N8Pi/f9+k1AwDAEsjn8xNtFJt2M3C/cPNYWN7ayaT0pAcdr09/86CkQCn50bG+UpIstTU6mDyrlzz+XioVspKyiVaiiZvBndR5AAAAy2zYHMf3/Z7WJ7Zt98y/mBsBe0+iweKXvOQlS7nrZLcGi/uDBNP+7gcFG5bxvyMA7CaTlvQJM4KCIIiyiVqtVjS5l6ROpyPP86JjjDFyXVftdpte0QAALFjYpqNarY49dtLyy6NkMhnZtt2z2eyxpx2t71x/q27Z6N2AHKijlo5k83bmFDB+4IGKnn/WydHjMGM6CWEG9yRB+f4MbgAAsLpoh9arf25kjNm2liTdXYkml8upUCjs6d8ZsFfNZcV4mWra7+agZ6lU6nk8Se/Lbq1Wa9tzxWJxqmsBAOKZ9PspnOCH59m2rVKpFO0GDYPC3WUpu3eGep4nz/NULpcnLukIAACm179oWS6X5bruwIDmPDZ3dZfATqVSqlarct2WnnH6cXr/l69Vx5cCSb4sGaVlScqoo5T8xAPGjp3Sm575IKVT87tPX1QGNwAAWBxjjJrN5o7Nr1ZJODfyPG9olbogCNRut2WMUblcXsAoASzaXP5CLkuAdpmC1vOQVLB40Hn9147jvPPO06/+6q9ONYZRbr75Zp155pmJXxcAFmmakj65XG7bd2wqlVIqlZIxpueaw/oVV6tVVSqVPXuTBADAThm3aFkulxUEwY5kvnQHUC3LUrFYVC6X0zPP/Bn93ddviMpPR2NXWll5ail712vJ+N1nPFA/c8zk95qTWFQGNwAAWAzP80Z+7+/1zfO2bSufz+vw4cNj4yWFQkHNZlOO4zBHAvaYxP8fv9sDtMukP6C7tbU11XUGnTdNsHhtbU1ra2tTjQEA9pppyiTm83lls9ltN0Gu6/Y8tixLhUJh6MS+2WyyUxQAgDmaZNEyqRLMo4QB1JtvvllBEESbzR5xn+NkgrT+/hs33D02ZaIAcUZGrrYvqloKlFYnetxRWoGGbxq3LOkN5zxAT37ICQl+quEcx1GlUiHDCACAXc4YE2uDmDSfzfOrUva60+moVCqNrG6TzWaj3w3rRsDek+id0fXXX5/k5TDGCSf03mjfeOONU12n/7xsNqt9+/ZNPS4AGGdVJtPzNk2ZRNu2exY/fd/vyRQKe8yMuvkJz9uLv3MAAOZt0KJl2DYinPuErSJ2suJHOEewLKtn/vHo+x6jrJPW/730RjV9qyeTOK2OLAVRIDglXxmZnkDxEW11lFZb9rZMZMdO6Xef8cAdCxSHwgA5804AAFbbqO/ySStt1ut15XK5mecFq1T2Olw3sm07yjIeNC/txroRsPck+hfr5JNPTvJyGON+97tfz+NDhw5N9Uf8hhtu6Hl82mmnKZ1OtjcVAEirNZneCdOWSexe/KzVaioUCkMn+MOE/Y0BAECyuhctjTFjMzh2KnOj3W4PXSQ8+2crut8px+mCL1yjH93aOy9JqyMjW2l1lNXwTW5pdZRWR66cqNfxAw9U9KZnPmjupadHSaVSY+c8BJQBAFg+49aQstls7A34xhi1Wi0ZY7S2ttbzPT/petSqlb1ut9s9j8NKd3HOY90I2Dv2zor8LnT/+9+/57ExRtdcc43ue9/7TnSdq6++uudxfxAaAOIatdDWP5nuz7AJdzouy2R6p8xSJjGc4E8zeadtBAAAyeuu+OF5nur1+tBjw4XEIAhULBbnHpzs/u4ftEh44Oii/tdzHqKLv3OTPnH5jaq55u7j5Y8MFHfLylMmV9KLf+7eev5ZJyudGl6eetHYyAgAwHKKE5Ct1WqSNHYNyfM8NRqNaC5kjOk5Z5Lg7qLLXsfVvT7nuu5UCWasGwF7C3c9K+whD3nItucuvfTSiYLFrVZL3/zmN3uee/CDHzzz2ADsLeMW2jKZTLRY2r2bs3viGWbGGmO0b9++PbUwN0uZRMuabgF22vMAAMBwYeaGMWZkoLhbrVZTuVxWsVic59Bifffb6ZR+6WEH9IsPOl6X/uh2fe5bB/WjO9rKyIw9V5JO2lfQOacf0M894AQds++oGUc8X6uWFQQAwF4RNyAbBIGazaZSqdTQNSRjTE+gODxvkDjB3UnLXu90799B63NhsDxO27JurBsBewt1lVbYSSedpAc84AE9z335y1+e6BqXXnrptuDO0572tFmHBmAP8TxPm5ubQ0v/eJ6nW2+9NVpwq9VqUUC0WxAEarfbqtVq2tzc3ImhL52wTGIul1M2m4216zOTyUz1XtOeBwAAhgvnN67rTnReo9GYx3B6pNNpeZ4XlcX2fX/osVknrSc+4Fi94ZceKF+pAT2KB3v9OQ/UEx9wrFLqjLz+ok2aFWRMvGA5AACYXdyArGVZCoJArVZr6DGtVmvb+tOoIOio9+6uIBPXuDlXkoatz9m23bPmFvczsG4E7C0Ei1fcM57xjJ7Hn/jEJ6ISHHH8zd/8Tc/jAwcO6IwzzkhkbAB2vzgLbWG27NbWlra2tsaWsQmCQIcPH554Ar6sfN+X67pqtVpR6Z8kxe01081xHPrwAQAwB92tNSZhjJnbQmI4XwsXDxuNhur1ujY3N1Wv10cGQm07o5SmG1d/f7xlMk1WEAAAmL9J5lFhhuyweVS4HjXsvEFGBXenndvsxJxo1Ppc97pREARqNBpjN8KxbgTsPfw/fsU997nP7Xlcq9X013/917HOveWWW/Sxj32s57nnPOc5iY0NwO4XZ+EsnICGWSxxBEGgra2tmca2aOFEfWNjQ7VaTfV6XbVaTRsbG4lnqOTz+bkeDwAA4slkMhN/x4etOGZZSBy2Oa0/wySXy/Vk04SlmIfN0bK56ecMy9rnbtmzggAA2MsmmQ+FQdAgCAbOvwY9FycIOmwM085tdmJONG59LpvNRv8el40tsW4E7EUEi1fc6aefrnPOOafnube85S06dOjQ2HNf9apX9XyR5HI5/fZv/3biYwSwO8VdaAuCQL7vyxgzsPz0MKu8KBenNPeo1ycV9jyOo1wu76l+0AAA7KRRPfOGsW1bqVRqqoXEUZvTwp/+98rlcmq32/I8T+12W77vD8wwnnXOsAx97gYF0Zc5KwgAgL1u0vlQGAQddN6g57qDppOOYdq5zbznRHHW52zbVrFYjB6PqmrDuhGwNxEs3gXe8Y539HzpbG5u6qlPfapuuummgccHQaDXve51+sQnPtHz/Kte9SqdcMIJcx0rgN0j7oKZZVnqdO7ucxc328ayrJVclFtUDzzHcVSpVIaWpB73OgAASEahUIi9KGhZlnK5XPTvSYzbfFatVnv60hljVKvVokySZrOparWqw4cPR4FmafucoaP0ROMKLarPXRj8vu2223Trrbdqa2urJ4i+tbU11fxrWTOlAQDYTSadD4VB0EHn9T9XLBZjBUGHjWHauc2850Rx184cx1G5XB6ajc26EbC3LeUWkR/96Ef62te+phtuuEGHDx/W5ubm1AEDy7J04YUXJjzC4f7zP/9zW2nnUf71X/91aNmH9fV1veENbxh7jYc+9KE677zzdP7550fPXXXVVfrZn/1Z/eZv/qae/vSn6573vKc2NjZ0xRVX6N3vfre+/vWv91zj1FNP1Vve8pbY4waAuAtm/RPxSc4bdGyYERIEgSzLUiaTWao+KtP0wIubFTxOmGG87L8jAAB2s3w+r0KhoEajMXLeY1mWCoVCNFcKFxLjfI+P25zWnWHSaDTU6XTkuq6MMXJdV51OR5ZlKZ1Oq9PpyPM8HT58WPv37982LwlkqaO00uoMequBFtHnzhijZrMZBYZDYZnvXC4n27ZljFGj0VChUJhoMXQZMqUBAFg1k65PTBNYDYOg/e3PbNuO3jObzcbOlh02hrDs9SRV4nZiTjTJhjbbtmXbtvL5vBzHUTabZd0IgCTJCpZke+zNN9+sCy64QBdeeKF++tOfJnLN8EuoO6Nt3j74wQ/qpS99aSLXOvnkk/XjH/841rHGGP3yL/+yPvvZz078Pvv379cll1yiBzzgAROfuxMOHTqkAwcObHv+4MGDOvHEExcwIgDSkR7E3Qtxo9x5553RgmY+nx87+XccR8ViUaVSKSoRFC4ADpqUO46jfD6/8DI5vu9vK/cYx/r6OpNyAAB2kWq1qkajoVarJWNMzyJef/BSunsuE3euM6rPsHQk6zjMFA6DwbZtq9VqjVxQLBQKOumkk1QoFCRJN2009cvv/YpS8pWTO/Zzv+/FZ+rYSk6VSmVH52Vh7+VRQfTu4Pzm5qYsy1KpVIo9TuZrAADEN8sazrh5zqDrhZvd+oPT4VxsmmsNYozR5uZm7OvtxJxokvW5bt1rbgCwFHc6f/EXf6FTTz1Vf/AHf6Bbb71VQRDM/LPX2Latj3/84/qN3/iNic570IMepEsvvXRpA8UAltckuz1LpVKUjRFnkhxOVsP32OkewNOiBx4AAJAULYCWSiWtra2pWCyqUCioWCxqbW1tW5AynU7HnuvE6UvXfU/suq5c140yncOyg+12e1sg2/d93XbbbdsWVX2l5Gp8Fq5l7Xyfu+4AsesOD2gHQaBGoyHf96Pyi8OqfPVbRKY0AACratY1nHw+P9H7dR+fSqWUzWaVy+WUzWZVLBajuVOYeTysV2+c9w4rusWxU3OiOOtzg34Hi2oZAmA5Lfxu51WvepVe9apXRTucLcua6Wcvy2QyuuCCC/SVr3xFT37yk0fezN7rXvfSe9/7Xn3zm9/UaaedtoOjBLBbhOV34gh3ZmYymbF/q8MeMuGi3KJ6AE9j2s1Ke3GTEwAAu1n3QmI4Z8pmswODjmFGcRzVajXWseF8y/f9qPS053lqNptRxrPrumq1Wmo0Gmo2m1FpamNMlJXcraO0WsoO7WHcUVrF0tqO97kLfx9xg+itVquncs2oBePQpIvWAADsVUms4SQVkA2zm8MWFI1GQ/V6XZubm6rX69veO25wd1xv353u/TtqfS6c14WfOfwdhP+7yDU0AMtloWWo/+zP/kyvfvWrjwzkrpvZMGB8j3vcQ3feeWe009myLJ100klqNpva2NjoycLqDjwUCgXt37+/532uv/76Hfg0y+eOO+7QZZddpmuvvVbValWO4+iEE07Qwx72sJXKJKYMNbC8Jim/Y4xRp9ORMWZoGaLuHjJhqZ5Zyg/tNEr/AACAbnFKMA57fRjf98dmufq+r83NTbXbbdXr9WjRNp0eHOiVjtxX79u3L2oHcuyxx8oPpJ9ubc/W9X1fpt1WoECWLNl39bm7x1pWdnrn9qR3twDpLr09imVZWltbixZPi8XiyMXccrm84wFwAABWVZJrOLOUsg5bVHRfa1B7kFKppGKxOHVrs0l7Ms/LoPW5YXOj/lYczHUASNLCmjvecccdev3rX98TJF5bW9Pv//7v60UvepHW1tZ0+umn68orr4zO6Q76Hjx4UJdddpn+/u//Xp/+9KejvsSe5+kVr3iFfvd3f3dnP9AS2rdvn84555xFDwPALhbu9oyza3R9fV3SkRuHfD7fsxnItu2eyXS4mzNOhki/sJzOIibn05bwofQPAAC7UzhXGraQOM1cxxizbe7UL8ww8TxP7XZbruuO3ZiWTqfVarWUTqcVBIHa7bay2axOWF/erNruTeRx98GHZbjDLO9hv8dxi9AAAKBX0ms44+ZRwwzKbg7bg4RVV8JrpdPpmb7vw7LXi9a/PjesUoxlWSoUCj2ft1qt7khvZQDLbWF/Af70T/9UjUZDlmUpCAJVKhV95Stf0YMf/OBY5x84cEDPfe5z9dznPlfXXnutXvayl+nf//3fZYzRW97yFl1zzTX64Ac/ON8PAQCIyuvE3e05ybGz9ABexGS9e2E2LnrgAQCw+w1bSJxmrmPbdhTsHCWbzaper8t1XVmWNXa+EW5e8zwvuk9fdt1jnKQtVXheuHCcyWSWIisIAIBVNq81nEkDst0tKgYlKvTPoZrN5sIq1CWpe32uP1Acfv5cLjcwKLxbfgcAprewYPFHPvKR6AbUsiy94x3viB0o7nfqqafqy1/+sn7t135NF154oSTpb//2b3XSSSfp7W9/e5LDBgAMMMluz0mO7V+kHDbR77fIxc18Pj9RsJgeeAAA7F3TzFlSqVSszI8wEHrzzTfLsqyRwdRcLheVqG6320qlUhMFXxele4yTZMN0nxfOQZchKwgAgFU27VpMkms4vu+r0WjIdd1YLdCkxVaoS5pt2yoWi2q1WspkMmPXz0K76XcAYDoL+X//rbfeqmuvvTZ6XKlU9Gu/9mszXdOyLP3lX/6lfuEXfkHSkS+ZP/zDP9RVV10103UBAPGFC225XE7ZbHZsecRxx4YLeWH5nM3NTdXrdTUajZ7HxpiB5y1CGAyPIyy3DQAA9qZp5yyFQqHncVj2MVwY9X1f0pF5yfr6+rbjQ7Ztbyu9GLYCWYU2Gd1jHJQpNEi4YCpR4QUAgCRNO69Jcg2nXq+P7Jsc9jLuf33arOhlFG78CwPjcec7u+l3AGByC7kruuKKK6J/W5alJz/5yYnciFqWpfe9732ybVuWZanT6eiP/uiPZr4uAGAxwpKAk070F724GZb+GbZgOe51AACwN0w7Z8nn8yqXy+p0OmM31O3fv1+VSkXFYjHapJfL5aLHYUZxKMy2WYUgan+AOE52cPdno8ILAADJmXZek9QazqBexcP0Jx6sQvuNuJYhwxvA6lnI3d9Pf/rTnsc/+7M/G+u8Vqs19pj73Oc+etzjHqcgCBQEgT75yU+yKwYAVpTv+3JdN9ax4UR/WTJEwgzj9fV1lUolFYtFlUolra+vk1EMAAAkxc+G7dY91wnve/szcrp7DofZxWH56kwmE22w7hdmGQ/LRF5G3QHfsPTiMJZlKZfLSaLCCwAASZt1XjOrZrM5UZZy93pT/3nhelSr1ZLrulHVllWwDBneAFbPQlbTNzY2JN29W+WEE04YeFz/rqK4AYMnPelJ0b8bjYYuv/zyaYYJAFiwZrOpXC4Xe8Lquu7SZYhMUpobAADsPZPOXfL5fJQ5E/YlXltbU7FYVKFQULFY1NramkqlknK5nBqNhjKZjPbv3z80cycMsjqOo0KhsHTzqVH6W4A4jqNyubxtsdqyLBUKBRUKBSq8AAAwJ9PMa5IQtuQYtiFukO7WHeEcKZxjbWxsqFarqV6vq1araWNjQ9VqdVsbtGW06AxvAKtpIdto+4O+pVJp4HFra2s95Q9uu+02VSqVsdc/8cQTex7/4Ac/0KMf/egpRgoAmITv+2q321GGSyaTmTo42j3RLxQKajQaI0vizPp+AAAAixAGOzc3N2WMieZRg0pBh9mw/SUWh2XyhNnErutGweBGo6FWqxW9TzqdVjqdlm3byuVyKhQKKzefClt8NJvNaP4Y9mM2xkTzyXw+v3KfDQCAVRLOa+KUg06yykdYWbR77tPpdHrmO4PmAMYYlUolpVKpqM3ZMJ7nyfO8gZvSlkH3mlz4E3fesyxV+gAszkKCxd27fqUjmWNxjrvxxht173vfe+z1w7JS4S6i22+/fZphAgBiMsZEi3P9HMeJShpOoruFQDhpbbVa0SJqKFxMzeVysm1b7XY7Vr86AACAZWCMkeu6CoJA7XY7mk91z3HCQKdt29GGurhyuZxqtZp835dt21HW8bDA9CplFXcLF6eT3LwIAAAm17+Ja9Dr06wTjRKuExlj1Ol0VK/XtyUc2LatbDardDrdc1531ZY4qtWqKpXK0rSzGLQm1+l0VKvVlMlklM1mx451Ved/AJKzkL9o+/bt63k87A/xgQMHeh5fddVVeuITnzj2+rfccoskRTeHq1AeAgBW1bx2Xg6a1JdKJfm+PzLrZlT2MQAAwDLpnkel02kVi8VowTKc64QtLcJFvu4NdXGEWbXGmGguNiwTeTf08Q1/XwAAYHF2ehOXZVnyPC+qSpfL5aJKKiFjjIwxyufzymQysixraNWWcZrN5rZEt0UYtibXXaXP87yowswgu2H+B2B2C9lee5/73EfS3Zm/Bw8eHHjcgx/84J7jvvKVr8S6/le/+tWex+vr61ONEwAw2qQ7LyfZvDOsx0y4uBkumobZOGGvmbi9aQAAABZp2Dyqe64TVlfpnkdNszFuWB/f7tfp4wsAAJIWbuLK5XLKZrNzq/ZhWVZP+7JMJqNCoTCwh3Gr1ZJlWSqVSioWixNXbZF6+x0vyrg1OcdxVCqVlMlk1Gg0tq3JMf8D0G0hW0bud7/79fyR/t73vjfwuDPOOCP6dxAE+tznPqdbb71Vxx577NBr33DDDfr0pz8ty7KiL4eTTjopoZEDALoNayMw6vi4Oy8zmczQ17oDxN0sy5LjOFHfvaRQzhAAACRt2nnUtBvjwjKEzGsAAMBu47quMplMzzpROp1WoVBQEATbKtSFmbepVEqu6071notugxZnLtldpc+yLBWLReZ/AAZayF+EYrGoBz/4wVGj9W9961sDjzvjjDN0yimnRI/b7bZe/vKXq9PpDDy+VqvpBS94Qc+XQiqV0mMf+9hExw8A0Nx3Xg4rjxiW2Bn03mGm8ebm5sRjGyTcpbmxsaFaraZ6va5araaNjY2JM6UBAABCs8yjRm2oGyU8b6cyfAAAAHZCOK8aFrgNg6OO40Tlp40x0fHTtjNbZBu0SeeSqVQqSrBg/gdgkIX9VXjCE54Q/fsnP/mJrr322oHHvehFL4p2/QRBoIsvvlhnnXWWPvnJT+q2225Tp9PRrbfeqr/927/VGWecoa9//evRsZZl6clPfrLW1tZ26FMBwN4xab+8ac7L5/M9j40xqtfrA4+1LEu5XC56HDeY6/u+XNdVq9WS67pRMNvzvJFB53GvAwAADDPLPGrYhrpRwnLWAAAAu004r7JtW8ViMdY5YcaxNLwN2jiLbIO2E2tyAPaWhd0tPu1pT5N09x/Viy++eOBxr3vd66Ky02EQ+D//8z/1nOc8R8cdd5wcx9EJJ5ygl7zkJbrmmmt6dvRYlqU3velNc/4kALA37cTOS9u2e8pWDysNZFlW1Ium26iSPKOyhsOfOMgwBgAAk5p1HtW/oW6cSY8HAABYFd3zKsdxVC6Xh26s6369u7/xNKY9LwmrmA0NYLktLFh89tlna//+/VEp6ve///0Dj1tbW9Nf/MVfRLugw+ByeF73j2VZ0euWZel3f/d3ddZZZ+3MBwKAPWZeOy/7M31t21alUpFt29t2QIalhEql0tCS1d1lr8Nrb21t6bbbblOr1Ro4hmq1qlqtFjtreNKegztlWNY0AABYrFnnUf0b6kYpl8vbNtTFsdfmEXvt8wIAsFv0z6vCDONKpaJisahCodDzOJwXheetYtWWVcyGBrDcJr9jTEg6ndYFF1yg733ve9Fz1Wp14A3vM57xDH3oQx/Sy172MrmuO/KPWrg75o1vfKPe9ra3JT9wAICk5HdeGmPUbDYHBmgdx5Ft21pbW5MxJtogZNv22Ml5u91WOp2Orh1mFEuKrpHL5aKbhe6+L41GQ6lUauwCaxiUXpbyjuN+l/l8fqpFYwAAMJzv+2q329E8JZPJDJ0bJDGPchxHlUol8e/8vTaP2GufFwCA3WbYvGpcELj7vHw+P1GbsUVXbVnFbGgAy80KVqj2wHXXXac3vOEN+tznPje0FOljH/tYve1tb9MTn/jEHR4d5uXQoUM6cODAtucPHjyoE088cQEjAhCqVqsTTabDcj/9PM+LArjDhJuFJt3tmclkejKS6/X6tjGHZawdx5HneT19kcPM5XFKpVL0XnEWieclzu9S0siyTAAAIL5pg41JzaOk0YHqSYLYe20esdc+LwAAu1US86pVmxckOZcEgJXaHnuve91LH/vYx9RoNPSVr3xFN954o26//XYVi0Udf/zxetzjHqfjjjtu0cMEgD0jiZ2X3Zm+o1iWpXq9HivTt/vanudFk/jurOFuQRBEWcT9e6iMMWOzho0x2traGnjMTmakxP1dSkduKsLy3gAAYDrjFhU9z5PneQMXFZPMYEmlUspmsz3PTRrE3mvziL32eQEA2M2SmFfNq2rLvKxaNjSA5bYcf9kmVCgU9JSnPGXRwwCAPS/slxd35+WgCXXcfr+2bcuyrKiPcRytVkuFQiF6bIwZemwQBGq1WtsWcoMgkDFm6K5Rz/PUaDSizORBrw9bJE7apL2Tm80mu0oBAJjSrMHGJOZRw0wTxF71eUSYQd3pdGSMkW3bSqfTQzOpV/3zAgCAuyU1rwqvM0lllkWZ51wSwN7DXwgAwExm2Xk5LNN3kDCj2PM85fP5sZN03/dlWVbPceM6LxhjlMvltj0/7DxjjBqNhoIgGDvpnndGyiS/y9Cy9VoGAGCVJBFsnEcGyzRB7FQqtbLziDCDutFoqNVqyRgTzd0cx1Eul1M+n+/5PTJvAgBgvhYRbE1yXjWoassyWrVsaADLi78SAICZTbvzsruXcBy5XE7GmJGZviFjzLaJvWVZI88JgkC+70e9i8ed12q1FASBHMeJddMzz4yUSX+X3eetwg0QAADLJMlgY9IZLNMEsaetfrLoeUSYQR1Weunf4BdmUHc6nZ5MauZNAADMx6RtMJK2SpnBSdmLnxlA8ggWAwASM+nOy3GZvv1s21ahUNh2nu/7URaJZVmybVvFYnHbQmCcG5IgCJTNZqMbm/B6/cJJuKTYn3meGSmT/i5nPQ8AgL1sHsHGJDJYpg1ip9Ppqd5vkfOIMIO6u9LLMPV6XalUKsqkZt4EAEDy+ttg9K/VhPOUnWjTtSqZwUnai58ZQHIIFgMAFmZcpu8gYTlB3/fVbDbVarW2BXbDUoqdTqcn0JtKpbZlDQ8aUxhsrtfr0fX6hf2Pi8XiRLti55WRMs3vcpbzAADYy5Y12DhtEDuc10xqkfOIMIM6rPQyjuu6sm17pkxq5k0AAAzW3QbDGLOtNYR093qLMUb79u2jNDIALBH+IgMAFiaTyUx1Xj6fl+d52traku/7sm1bmUympxy07/uq1WoqFAo9C4LdWcP9urOIHcdROp1WJpOR7/vbjg3L/Ex6czOvReJpf5fTngcAwF62rJu0pp1n2LY9VaB5UfOIMDOpu9LLOJ7nRXPIfD4/1fsybwIAYLBwE9ew1hDSkXlKu92WMUa2bWvfvn07PUwAwBArEyyu1Wr60Ic+pH/5l3/Rd77zHd1+++1Kp9M67rjjdP/7319Pf/rT9exnP1uVSmXRQwUAxBQn03fQOZubm7rzzjt7bj46nY6MMcrlclE2sG3bUdnBMKjbnTXcrz+L+KijjpLjOAP7vrTbbdVqtYk/87wWiaf5XcbttQwAAHot6yataecZ6XR6peYRYYB40oxoY4wcx1Gn01mpzwsAwDILN3HFaQ0hHQkaHz58eEfKUQMA4tnRYPH3v/99fetb39Itt9wi3/d1zDHH6Gd/9mf10Ic+dOR5f/3Xf63Xve512tzclNS7W7parepHP/qRPvvZz+qNb3yj3vWud+mlL33pXD8HACA5YYZHHGFPvUHlBrt3qIbZxLlcTsaYqOxgKFzsc123p4R1LpeLXs/n89E5g/q+LOMi8SS/y/B4AAAwuWXdpDXL/CSdTq/MPCKcB06aSd19HvMmAACSEW7iitsaQjryXby1taX9+/fPc2gAgJh2JFj8iU98Qm9605v0gx/8YODrP/MzP6Pf/d3fHRjkffWrX60///M/39bfoFv42u23365XvOIV+u53v6vzzz8/wU8AAJiXsJxz2NtmGGOMLMuSZVkjF/aCIFCj0YiyiQuFghqNhnzf71mgtW1btm0rn8/LGKNisahsNqtMJhNrIXcZF4nj/i4lTVVCGwAA3G0Zg42zzE9SqdTKzCPCNYFJM6m7z2PeBABAMoIgmKg1RChsKUHlDgBYvLn+JQ6CQC9/+cv13Oc+V1dffbWCIBj4c9111+kVr3iFzj333J6g8B/8wR/oz/7sz6Kyn+FPv+7XgiDQe9/7Xr3rXe+a50cDACTIcRxVKpWh5Yccx5HjOMpkMrHKDQZBoFarFZ1bKpWGLibmcjkdc8wxWltbUzabnegmZdJF351YJI7zuxz1OgAAiCcMNsaxk8HGWeYnqzKPCDOobdueKGAc/jcIz1+VzwsAwDKzLGvi1hDheZMGmAEA82EFk9ZtmsBv/uZv6n3ve9+RNxpzAxcGhN/5znfqjW98o66++mo99KEP7fmiGTXU7usHQaBcLqcrr7xS9773vWf8FFi0Q4cO6cCBA9ueP3jwoE488cQFjAjAOIN6/MYNwg46V5I2NjYkSa7rqtFojL2OZVlaW1uL3rdYLMpxnKnHNYznebEzUnZ6oXGW/w4AACAeY4yazebAbN7+1hY7JYn5SRLziHnORarVqjzPU61Wi7XQ7DhONB8cFORn3gQAwHR839ctt9wSa62mW6VSUblcjlqCAQAWZ27B4q9+9at6/OMfP7RkdDSAviBvsVjUoUOH9NrXvlYf+MAHoteDINBjHvMYnXPOOTrttNO0tramzc1NXX311frc5z6nr3/96z3HWpalF7zgBfrwhz88j4+HHUSwGFgd81osdV1XtVpN0pHFz3q9Huu8cEFQkkql0ra+w0lZxkViAACwsxYVbBz2voucn+zEextjtLm5KWOMarXa2B6JYXZ3pVJhXgYAQMJuv/12HT58OPbx4Sauea7VAADim1uw+LGPfawuvfTSbQHcM888U2eeeabW1tZ0++2369///d919dVXRyWkLcvSBRdcoNe97nVqNpsKgkCVSkV/93d/p6c85SlD3+8zn/mMzj333Gj3dBAEyufzuvnmm7W2tjaPj4gdQrAYWA3zzLBttVpRgNj3fW1ubsY6r1AoRKWrK5WK0un0XBduyUgBAAA7JW5AdqfnJztZdSV8L8/z1Gg0hgaMuzOKKSkNAEDyPM/TjTfeOHbzVijcxLW+vs66CQAsgbkEi6+99lqddtppPQHgU045RR/96Ed15plnbjv+U5/6lF7ykpdEN5SnnHKKrr/+eklSOp3Wl7/8ZT3mMY8Z+75f/vKX9fM///OS7g5O/83f/I1e9KIXJfjpsNMIFgPLL8zsiGvSjI7uzGJJqtfrAxdGu3U6HaXT6WhRtFgsRq+R7QsAAFbZsrbBmPeccNh7NptNNRoNtVotGWOihWrHcZTL5ZTP55n7AQAwZ3fccUfUQmyUcBPXsNYQAICdN5dtO5/61Kd6HheLRX3pS18aGCiWpGc+85n6+Mc/Ht3Q/fjHP5akqJR0nECxJD3hCU/Q8573vJ4dTFdcccXkHwAAMJFmsznX48O+xaFxJYra7XaUXRIEwbbjPc/T5ubm2IAzAADAsjHGxAoUS0f6+hpj5jyiu817TjiIbdsql8s65phjdNxxx+n444/XPe5xD51wwgk69thjtX///ih7CQAAzE+lUtHa2trQjWr9VT7y+fxODg8AMMJcgsXf+ta3JN2d3fua17xGJ5988shzfv7nf15Pe9rTtpWqePGLXzzRe7/0pS+VdHcv5HAsAID58H1/4qCr53nyfT/28alUqudmw7btnkzhbp1OR81mM8oqLhaLQxcHd3oBFQAA7F6+78t1XbVaLTWbTTWbTbVaLbmuO9G8Z5xFBGTj2Ik54SipVErZbFaFQkFra2sqFArKZrOUtgQAYIfYtq2jjjpKxWJRlUpFxWJRhUKh53G4PsNGLgBYLnP5i3zVVVdFJagl6QUveEGs857//OfrH//xH6PHlmXprLPOmui9H/WoR/X0Sb7xxhsnOh8AMJl2uz31eeMyhLvl8/meBUjHcZRKpeS6bs/zruvKsiyVSqWRgeJQs9mk7BEAAJhad+9gY0w0N7EsS7ZtK5fLybbtRNpgzBKQnXfQdKfmhAAAYHk5jqNKpRLNjQa9TmsIAFg+c/mrfPvtt0f/zmazeuADHxjrvDPOOKPn8bHHHqtSqTTRe5fLZR133HG65ZZbJElbW1sTnQ8AmEx/RYh5nReWGOwuu2jbtmzbVj6flzFGnU5H7XZb+/fvj73ouFMLqMvA93212+2o8kcmk9kTnxsAgHnp7h3seZ7q9Xr0WhAEarfbMsaoUChEx8zSR3iZA7I7NSecFfMhAADmK1y/4TsXAFbHXILF3QHa4447LvaXwIEDB3oer62tTfX+a2trUbA4bi8nAMB0wmoOO3HesB2qYZnqIAiUyWQm3qG62zNaujOe+rGrFwCA6XT3DjbG9ASKuwVBoEajoVQqJdu2Va1WValUpvruXeaA7E7OCafBfAgAgJ0VtogAACy/udwJ1ev16IZvktKe/VnE0za5z+Vy0b/pRQkA85XJZHb0vFE7VPszeuLa6YyWndSd8TTs9VmznAAA2Iu6ewG7rjvy2CAI1Gq1onveadtgLHNAdqfnhJNgPgQAAAAAw8297kM6nY597E7tKAYAJCfM6p1E2G941vfNZrPK5XLKZrNKpVJLvYC6CN0ZT+NUq1U2WAEAEFN37+C4fYSNMfJ9X9LdbTAmtcwB2UXNCcdhPgQAAAAAo9EkAAAws0krQUxbOWKcZV5AXYTujKd5HA8AwF7V3Ts4bnAxCIKeY6fpP7ysAdnQsswJuzEfAgAAAIDRCBYDAGYWloaOo1wuz60f3LIvoO6kuFlO3abNcgIAYK/pbmExSTuLac/rtowB2dCyzAlDzIcAAAAAYLzdtzoOAFgIx3FUqVSGBmvHvZ6UZV5A3UnTZCvNch4AAHtJdwuLSdpZTHtet2ULyPZbljmhxHwIAAAAAOLY2btGAMCuFi5e+r6vdrutIAhkWZYymcyOZe+GY4jTm24RC6g7ZdpspWnPAwBgL+luYRF3LmFZVs+xs7TBCAOuzWZzYOas4zjK5/MLm+csw5xQYj4EAAAAAHHszhVyAMBCpVIpZbPZhb3/si+g7oRps5WmPQ8AgL0kbH3heV7Pv0exbTsKlCbRBmNZArKjLHpOyHwIAAAAAMbbvavkAIBdZdKF0FVYQJ2nabOVZslyAgBgL8nn81GAOJvNjgwWW5alXC7Xc25Sdiogu4pzKuZDAAAAADDe3IPF3/nOd5ROpyc6Jyz5NM25AIDdxRgzU4bwojNaFiVullO3JLKcAADYK7pbX9i2rWKxqHq9vu04y7JUKBSi+cqqtcGYdS62SMyHAAAAAGC8ud/RzdLrZ5ZzKRsFAKvP87yRvYc9z5PnedGia7vdVqfTkTFGtm0rnU6vRNbLvHRnPMU9HgAAxNfd+kI6Epx0XVee50U9inO5nGzbXvrA6iCTzMUcx9nBkcXHfAgAAAAARpvrXSoBWwDAtIwxIxcnu4+7+eablclkZIyJFgO7F2gLhcLKLc4moTvjaZxVy3ICAGBZDGp9EW58tixrZUo294s7F5OkarWqSqWylHMJ5kMAAAAAMBp3QQCApRRm6IzieZ4ajYY8z5MxpicTJAgCtdttGWPk+/7SZ73MS3fG0yqWjwQAYFXsttYXceZi/ceXy+U5jWY2zIcAAAAAYLi53AmddNJJZBUDAKZmjFGtVlMQBFGGcH82jjFGjUZDxhi1Wi0FQaBcLrft+ycIAjUaDaVSqaXOepmnQRlPq5rlBAAA5i/caDcJz/Pk+/7Szi2YDwEAAADAYHNZLf/xj388j8sCAHY5Y4yazaZqtZrq9Xr0fH/PP0lRgNh13ajUozFGmUxm23WDIFCr1VKpVFrqrJd5220ZTwAA7BU7HeBst9uxxmSM6dnc1263l36uwXwIAAAsEhvXACyjvZVaBQBYWp7nRb3kwuBvqLukdKFQiBYjgyCQMabnuGG6y1Evc9YLAABAKNxIt9Olk8fNqVzXHZp5vL6+vuequAAAAIyzqHkdAMTBSjkAYOGMMVGgWNLQVgZhSelWqxWd121UC4TuwHKcbBkAAIBF8jxPm5ubQ4Oy416fxbA5Vbi5b9h7GmPmNiYAAIBVtch5HQDEQbAYALBwzWaz5/GonZRBEETH92e9jNuBGR4/KlsGAABg0fo30o1SrVa3baCb1aC2HsaYnjYh/cJS1PMaEwAAwCpa9LwOAOIgWAwAWKiwNHS3VColx3GGntPpdKLeLqFMJjM2s7jdbkdlE33fn33wAAAAc9C/kS7p48cZNBdzXXfkObZt97T5SHpMAAAAq2jR8zoAiIMi+ACAhRpWEjqbzQ4tv5NOp9XpdGTbtizLUhAEQ4PLnU5Hruuq0+moWCyq3W4rk8mo3W7TEwYAACydQRvpxgk3wnUHa2eVz+ejcYwbk2VZyuVyE4/J93212+1oE2Amk0n0MwAAACzSsszrAGAcVscBAAs1rCS0bdsqFosDyx2mUilZliXLspROp5XJZJROp7cd12631Wq1FARBlO3iOE404fY8T57nqVwuj8xkBgAA2CnDNtLFOS+bzSY2Dtu2VS6Xx5ZDtCxLhUJh4Oa7YWMyxqjZbA5cPO3ezEcwGQAArLJlmdcBwDgEiwEACzWqdHQY2A1LR3fL5XIKgkCFQkGNRmPbuZ1OJwoUS4om2YMm29VqVZVKhQxjAACwcMM20s3rvFEcx1GlUtHGxkZUzSUU9ijO5XJD51CDxuR53si+fZ7nqdFoDL0mlWEAAEBS5r0xbZnmdQAwCndXAICFymQyI1+3bVu2bSufz8sYE03gjznmGPm+r2q1KsuytmUgu64bTa7z+bzS6bSKxeLQhcVms6lyuZzMhwIAAJjSqI108zhvHNu2tba2Jkk9c7H+HsVxxmSMGRkolu4OFgdBoHK5vG3uRmUYAAAwq7hVTma1bPM6ABiGYDEAYKHC0tDjeriEx0lHJu7hpL1SqajZbCqdTqvVasnzPAVBIGOMbNtWNptVPp9XNpsdOdGnJwwAAFgG4zbSJX1e3Gt3z8UmOa9bs9kcebwxJgoUS0c2/w2bv1EZBgAATCNOlZOkNqYt47wOAAbhrgoAkLhJy/jk8/mxweL+40NhP71isah2u61Op6N6vR5lE8fJegl194QJjFHn5ptjjyl9/PGyWKwEAAAziruRrlvYumOZx+T7/tjzu1uISEcWa/P5/NDPRmUYAAAwiThVTkJJbExbxnkdAAzCqjYAIDHTlvEJA75xJuyDyhFKRybgYaA3lUpNNbHuXpzs3Hyzbj3r0bHPPfZrl8q+5z0nfk8AAIB+s2ykm5dZx9Rut0ceH2427GeMGZrVQ2UYAAAwiXFVTgYdP+vGtGWc1wFAP+6oAACJ8DxPm5ubQyfA4153HEeVSmXoYuC417vREwYAAKyycCNdHMM20iVt1jF1b8obxBgz8Plx540LQgMAAEjxqpz0CzemzWIZ53UA0I+/PACAmSVVxiecQE9axrofPWEAAMCqCzfKTVO1ZRnHNG5T3rCg8LTnAQAAdJt2g1l3y7JpLeO8DgC68dcHADCzpMv4dJeUngY9YSbvGw0AAOZn2u/lpDbSJWnaMY3blDcsKDxu0ZTKMAAAII5pN5gltTEtXKtKp9Myxsi2baXTadZrACwFgsUAgJnMUsZnnpPhvdoTZtq+0QAAIHlJfS/PupFuHiYd07jNfLZty7KsngXZOJv5qAwDAADiWFTLsmHzwXa7HQWPCRYDWDT+CgEAZjJLGZ95mrYnjN9sqv7Rj+qOl7x0ove74yUvVf2jH5U/YZZ1kmbtGw0AAJLD9/J2ozbnpVKpbYHzccHo3VYZBgAAzM8iWpYxHwSwKrirAgDMZNFlfEYJe8I4jjP29cAYVf/i/+iWh5+pw7/12zJX/2Ci9zJX/0CHf+u3dcvDz1T1L/6PAmOS+Ajx33/CvtFmh8cHAMBewvfyYOM28+VyuSh7p1gsjs263i2VYQAAwPyFVU4mMcvGNOaDAFYJdSgBADNZVBkfKV7/vzh99drXXKON156n9re+PfOYgsOb2vpf71Dzc/+o9fecr8xpp818zTiS7hsNAACmx/fycOFmvUHlGG3b1lFHHaVOp6N0Oj3yOt2VYQAAwGqLs76ThJ1sWcZ8EMAq4c4KADCTRZTxmab/37C+eo1PflIbv/XbkutOPZ5B2t/6ln765Kdq/fw/UuFZz0r02v2WtW80AAB7Ed/L443bzDdqrmfbtmzblu/7cl13bovJAABg/qZZ35lFOAeJk/E7y8Y05oMAVg3BYgDATMIyPpNMgmcp4+N53shJved58jxP5XJ5bHmh+t/+Xx1+4+9MNY5hfMuSsW0FliXL93XHa/6HgnpDxRf9t0Tfp9ssfaPH9QIEAACT4Xs5vmGb+QYFkzudjowx0U83x3GUzWYVBMHcM5IAAEAyklzfmcSoKifh67MGqZkPAlg1BIsBADPbqTI+k/Z7qVQqQyf3jU9+MtFAsUmn5WazMrYtdVfYDqTm296u4/I5rT372Ym9X7dl7hsNAMBew/dycsJgsud5qtfrA48xxqhWq8kYo0Kh0LOYPI+MJAAAMLsk13emEadl2SyYDwJYNWyzBQDMLJxkx1EsFtXpdNRqteS6rnzfj/0+0/R7GaR9zTVHSk8npG3bqheLMpm+QLEkWZLJ2Dr49neo/r3vJfaePW+xwL7RAACgF9/LyRq1mOx5nmq1WrTIW6/Xe7KOPc/T5ubmxGUgAQDAfCW1vjOrcGNaLpdTNptNrCoJ80EAq4ZgMQAgEWEZn2GlgVKplFKplOr1umq1WvS/Gxsbqlar28oJ9pul30u3wBhtvPa8xHoUm3RajUJhe5C4X9vToTe/Ve2EeyNLi+kbDQAABluG7+Wwn+80m/OWzbDFYWOMGo3Gtgwcd8BcK85cEwAA7Iyk1neW2TLMBwFgEgSLAQCJCTOM19fXVSqVVCwWo//1fX/oxD5O1scs/V661d5/odrf+vZU1xrEzWbHB4rvYr7/Pd1+4V8n9t6hsG/0JGbpGw0AAIZb5PdymIW7sbEx1ea8ZTNqMbnVag0s1ThsMXleGUkAAGAySa3vLDPWaQCsmkQb97zsZS9L8nKJsCxLF1544aKHAQB7SljGRzqyaLm5uRnrvFF9aJLo9+I3m6r+f//fVNcZxLesI6WnJ3D4b/5Gx7z4XNnFYmLjkHaubzQAABhvEd/LnueN7P3neZ48z1O5XJ548XJRhi0Kh/0FhzHGbPuMYRCZRVgAABZrr/TzZZ0GwCpJNFj8wQ9+cKnq6oeN6QkWA8DiTNOHZlD/4yT6vTQ//WkFh+MFruMwA4La4wTVqrY+/Wkd/f/+v4mNQ7o7q3vUInGoXC4PDMgDAIBk7PT38qi+vv1Gbc5bNsMWhcdlSA87r91uRxsaAQDAYuyVfr6s0wBYJXPZUhsEwcJ/AACLl2Qfmmn6toSlr8N+fdW/+dDE1xglmPJGpf53H010HKFxfaPHvQ4AAJKzk9/L02zOWwXDFoXH3fNPex4AAJi/vdTPl3UaAKtiLttVVm2XDwBgPmbpQ9Of9RH2e4kTfDbGqNVqybKsqNSguflm3fnjn8guFJR1XdmdzlRj62ZNueBorvquzMGDsg8cmHkM/cKdq2F5xrDKRiaToewiAAA7bCe+l2fZnLfsc4Nhi8Lj1hyGZeawVgEAwOJNsr4TWuV+vqzTAFgFiQaLTzrpJG6+AACRSbI3fN+XMUZBEMi27YGT5jj9XjzPU6PRUBAEPeWs2//1PcmSTMaWsW0VGg1lxpQwHMc2RgokTfLVFxw5z/vmt+YSLA51940GAACLNc/v5SQ35y2bYYvJtm3LsqyBc81Ri8mrmJEEAMButBf7+bJOA2CZJRos/vGPf5zk5QAAKy7OBqIwCzgMFIfneZ4ny7KUy+WUyWSUyWTG9nsxxkSB4mKx2JNVYn74w66BSY1CQcV6faYM41QQyDZGJhP/69Q2RqkgUPuqq6Sn/9LU7w0AACBNX1p5VUoyD1pMTqVSsm17YKB82CLsKmckAQCw29DPFwCWC39lAQBzEfYLdl1XlmXJtu1tC3TdWcDd57muq3q9LulI4LhQKMhxHDmOo3w+r0qlomazuW3hsNVqKZPJKJvNbruRMNdd1ztAS3KzWdmNxkyfM+u6MrYdL7s4OHK8JLW///2Z3hcAACyfRZQXnLa616pUBRu2mJzL5Xo2G0ratlmw227ISAIAYDcJ+/UOWt8JX8/n87s2UExZagDLZHf+pQUALIwxpmeib4yJsoRt21Yul5Nt2z1ZwKF2u612u90zOQ6CQI1GI3rO8zyVy+Vt/V6CIBjZe8/f2tw+VtuWb1lKBYF8y5KxbQWWJeuujOFUjIwbu9NRodFQo1AYHTAOpEKjEWUy+4cPj732LMLfb/g7KRQKu/YGCwCAReuf/3Sb90LnsNLK3S0+Bm3cW6WSzIMWk23bVqFQUKPRGLpZMERGEgAAy2kv9vNd5LwRAIbhrw4AIDGe523L+shms/I8T0EQqN1uyxijQqEQPRfqdDpqtVoqFArbrhsEgVqtlkqlkiSpWq2qUqnItu2o1KDruqNvJLwB/YktqZXNKkiltmcH39VbOOu6Y0tVZ4xRsV6Xm83Gv44bvzfPJFqtljY2NrYF4sMM7fX1deVyubm8NwAAe9Gg+U//6+FmN8dxEn///r6+g1p8SOrZuFcoFFZuAXbQYnKpVNK+ffvkui4LrgAArLC90s930fNGABiGOyYAQCKMMQMnvLZtq1gsRmWlgyBQrVaT7/tKp9PRcZ7nKZfL9TzXf/3uzOFms6lyuRy9PrbvnrP9K6+dtuUVM3LM9n53siSTsWVsW4VGQxkzINjc/Tk7HdmNRvwM5Wzyk/5araZbb7114O8iCALV63U1Gg0de+yxUeAdAABMb9j8Z5DuzW5JC/v6DmrxEereuNc9h1o1gxaTHcfZUxlJAABg9SzLvBEABuHOCQCQiGazOfQ1x3F6dkUaY+Te1btXOhJQdhxnZDnEIAhkugK2nufJ9/3o8bi+e6m1Ss9jk0qrlc/J0pggsyU1CgWZIUHsbe8TBHLabWU9T067PbSUdeqoo2JdL65WqzU0UNwtCALdeuutarVaib4/AAB70aj5TxLHx2XbtvL5/NBAcbdCoaBms9kzr9oNwiByLpdTNpslUAwAAJbKsswbAWAQ7p4AADPzfX9g6b9uYYZxpVKJygGm02nlcjlZlqVUKhVlvHieF2WGdOt/3G7fnRE8ru+efa979Tz27gpcp8eUmJYkWZKbcDmkzP3vn+j1NjY2xmdX3yUIAm1sbCT6/gAA7DVx5j/9+je7JanT6ahUKg0tWdi/eY8FSAAAgJ2xbPNGAOhHHQMAwMy6g7bj+L4f9dKzLEudTkfNZlPValVBEMhxnJ5S1JlMJnquP3u4Ozja36+vn32f+9w9BstSx04PLxE9gLFt+ZYV+/hxMg9+cCLXkY5kaodlvuNqNBoyxlDSCACAKU0y/+k/L+mefOECpG3bUZZx2LM47FXcn2kbLkCSgQsAADBfyzRvBIBBuCsEAMwsbkar53mqVqvRzsgwkzgshdjpdNRqtXrKIrbbbdXr9YGBzf7gcT6fH/remQc9MPp3J33kOs4kuzqtIwHjpDgPOz2xazUajYnPCYJgqvMAAMARcec/SZ03Sv8CZLiJLpvNynGcoQHhaRcuAQAAEN9Ozht935frumq1WnJdl+xkALEsXTrR1Vdfra9+9av62te+phtuuEGHDx/W5ubm1DexlmXp2muvTXiUAIBu4/oFS73Zr6lUSrZtR1kw3QuYQRDIdV1ZltWTYTwo+6W/9LRt2yqXy6pWq9ve3z7uONn3va/MD36gQFK+1VK6a8LsW5Y66bQCy5IVBEp3OtuyiIMYnzOOzEMfIvvAgUSuJWnqiT83DAAATC/O/CfJ80ZZpsA1AAAAeu3EvNEYo2azObDinuM4UUs4ABhkaf46fOITn9C73/1uXXbZZT3Pz3rzOo8bcQBAr3H9giXJdd2ex7lcTq1WS9KR4HE6nVbnrv7BQRDI87yeTOFsNivXdaOJ7bAsGcdxVKlUBk6QC896phr/651yXFfeXWV8OqmUPMcZmDVsGyPH86KgspXQgmrxxecmcp3QtOUjKTsJAMD04sx/kjxvlGUKXAMAAKDXvOeNYSW/Ua97nqdyuSzHcaYaC4DdbeGrxLVaTS94wQv03Oc+V5dddpmCIOj5kY7cwE7zAwDYGWGpw2HCDOJujuP0THr7z/d9P/oeyOfzSqfTUXZx+NwwYYbx+vq6SqWSisWiSqWSjnv2s1VyMsq6nhQcKSvdKBSGlpfueT04EjzuGaNlyctk5DqOvExGfozvHuuoo5R/+tPHHjeJQqEw8feeZVkqFAqJjgMAgL1k3PxnkFEloWcx7wVIyhkCAABMb57zRmPMyEBxt2q12tP6DQBCCw0We56nX/iFX9DHPvaxnsBwt+7H/UHkQeIcsxtNG1Dv/nn4wx++6I8BYIWNCt72T0TDEtOZTEbFYlG2bSudTiuXy0XHBEEgy7JULBZ7FjKNMSqXy7FK56RSKWWzWeVyOWWzWdnFosqveY1SQSDL99Xser9RmrmcLN+PylKbdFr1QkHVclnNQl6tfE7NQl7Vcln1QkGmq3x2v/JvvkapEb+radi2PXHgt1AoUH4IAIAZjZr/JHF8XPNagAwXHzc2NlSr1VSv11Wr1bSxscFiIwAAwATmNW9sNpsTXXfS4wHsDQtdJX71q1+tb3zjG1GwMgzwPuxhD9Npp52mz3/+8zp8+HAUMHjxi1+sZrOpO++8U9ddd52uu+46SXcHlIMgUKVS0TOe8QwyiwFgh43qF9y9gSfMaA2fS6fTKhQK8n1fnU5H+XxenucpCALlcrmob7FlWdF7zFIyp/SKl6v5uc9JP/rRZCfe9bXSvivbWIO+ZizJZGwZ21ah0VCmbwE1c/rpKr3i5T3P+b6vdrsdfddlMpmpMo7W19fVaDRibZayLEvr6+sTvwcAAOg1av7TL+5mt2mFc6hJjh+FcoYAAADJmce8cVAlv3HCqn20JgPQbWHB4u9///u68MILoyCxZVk6/fTT9aEPfUgPfOADJUmnn366Dh8+HJ3zgQ98oOcat912mz760Y/qfe97n6655hpZlqWtrS3ddNNN+tjHPqZKpbKTHwkA9rxh/YLDTUG2bSuXy8m27W2T2VQqpVQqpUwmo3w+L9/3lc1mlclkonPD12dh2bYq5/+xbn/+C5RrttTKj88uzjVbCqyUPNtWc1iguOdNpEahoGK9LvuuPszKZrX+nvNl3RX8NsYM7KssHfk95vP5iRaUc7mcjj32WN16660jA8aWZenYY4/tyeIGAADTGzb/6X590u/1aSS5ADlpOcNKpULFEgAAgDGSnje22+2pxtFut5XNZqc6F8DutLC7uT/+4z+OgsSSdNppp+lLX/rSRAHeY445Rq95zWv0yle+Ur/3e7+nP/zDP1QQBPriF7+on/u5n9NXvvIVra2tzesjLLX//t//+8TB8gMHDsxpNAD2knChsjtjNix53L1rcdzEN8w47t/pOGuwWJJ0yilae+MbtPX2/yWr0ZTnOOrY20tHp01HjufJ9jtHAsDFwtg4ccSS3GxWdqMhSVo//4+UOe00SfPL1CmVSrJtWxsbG9uyjMOM7vX1dQLFAAAkbND8Z5aKIdNKagFymnKG5XJ5onMAAAD2oiTnjdO24txrLTwBjLewYPHnPve5nqzi9773vVNnAtu2rXe84x069dRT9YpXvEKSdNVVV+ncc8/Vpz71qQRHvTre8IY36JRTTln0MADsYWG/4JAxpmfRMuytN6xcTn9wWYrXWy+OIAiUf9KTFNQbqp5/vuxWU75lqZO2FViSFUjpjol6FEuSb1kyti1ngl2bxrblp1I6+g9+X4VnPevIc3PO1Mnlcjr++ONljFGj0YhKC9GjGACA+euf/yzCrAuQlDMEAACYvyTmjdO24qSFJ4B+C7mT++EPf6jbbrstenzSSSfpKU95yszXfelLX6pXv/rVCoJAQRDos5/9rP7xH/9x5usCAGY3qC/esEmxZVkDs1/H9daTjixwuq6rVqsl13Xl+/7A60tS4ZnP0Npb3iw5jlJBoIxpy2m3lTHtnkCxJHXStqxJd15mHZXec76KL/pv0VPTZOpMw7Ztra2t6aijjtLa2hqBYgAA9phwATKXyymbzcYO5M5SzhAAAAA7Z9rqe4lU7QOwqywkWHzVVVdF/7YsS7/4i78Y67w45RHe/va3q1QqRYGA97znPdMNEgCQqDDLpf+5YrHY81xYLrk/uBm3t97GxoZqtZrq9bpqtZo2NjZUrVZljImO7Z4U55/0JB194ftl3//+I8cfSEqH/YdjsO//AB194fuVP+ec6LlZMnUAAAB2AuUMAQAAVkNYtW8SSVXtA7C7LOSvwp133inp7pvJBz7wgQOP6y+HECe7qlKp6KlPfWqUXXzJJZfo8OHDsw0YAJCIsI9e90TWcZyoN28mk1GpVNr2ev85/TzP0+bm5tBAbP/r/ZPpzCmn6Og/u0ClV71KGtJvL9Penm08UHlNpVe9Skf/+QXKnHJKz3cZmToAAGDZUc4QAABgdcSpwjfL8QD2hoXUpAyDxaH9+/cPPC6bzfbsTm42myoUCmOv/+hHP1of+9jHJB3J4rr88sv1pCc9aYYRAwCSMqqPnqSxvfX6z7Msa6oewPl8vie4bNm2ii94vvLPfIZaX/qSGv/wD+pce92RFwOp0GioWShIQ9ZB06feS4XnPU+5s89WqquEdncWM5k6AABg2VHOEAAAYHWE62xx1sbGVe0DsHctxV+GYbtZ1tbWeh7ffPPN2rdv39jrHXfccT2Pr732WoLFALBkwj56/Yb1MTbGqNlsbssertVqsixL2Ww21oS32WxGk+NBk+lULqfC//P/yDn9dN3xvOdHgeKMMWobI5MZ/B5H/cEfyD7++J7n+kv7kKkDAACWXViBZZLWGaPKGQ7aIEjpQwAAsCi7cW4SVuUbtG4Wvp7P5wkUAxhqIX8d+oPAtVot1nE33nijHvSgB429ftjbMVxcpww1AKw2z/MG7pAMJ/jhMcVicWyvlrAHcLgQOmwybUmy20ZZ15V9V6/irOvK2PbQ7OJ+/ZuhyNQBAACroL8CS5zj+w3b6CexYAkAAHbebp+bjKrkt+rBcADzt5C/fv2Zv1tbWwOPO/XUU3seX3HFFXrqU5869vo//vGPJSn6g7gX/xi6rqv/+I//0He/+13ddttt6nQ62rdvn/bv368zzjhDp5122qKHCACxGGOGltIxxvQ8rtfrSqVSYyf37XY7ymAeNpm2ymW1G42e8+xOR4VGQ40R5ahDg0r7JJ2pAwAAMA+zljMcttGv+3XP81Qul8du9AMAAJjVXpqbDKvkBwCjLCRYfL/73U/S3Zm/11577cDjHvKQh/Qc94UvfEFvfvObx17/X/7lX3oexyldvds86EEP2hZE6Xb88cfruc99rn7rt35LJ510UiLvubW1Fbtv6CRuvvnmxK8JYHU0m82hrw3q5eu67thg8aDz+ifTZkiANmOMivW63Gx2YJbxuN2oSWTqAAAAzNu05QxHbfTrV61WValUVjqLBwAALDfmJgAwnhUMWjGfs3a7rbW1teiG8xd/8Rd18cUXbzvuuuuu073vfW9ZlhVlel1xxRU6/fTTh177kksu0ROf+MSecy655BI99rGPndvnWQbT9rPMZDI677zz9I53vGPmL8Hf+73f09ve9raZrjGJgwcP6sQTT9yx9wOw83zf18bGxtDXPc9TvV7f9nylUhmZjVsqlcbusgyMUWfMZhXf99U2RkEQyD7+eDn5fKws4HE7WkO7YUcrAABYfZOUM6xWqxNXUSmXy0kNFQAAoAdzEwAYbyF1LTOZjB75yEcqCAIFQaDLL7984HH3ute9dOaZZ0pSFPx9wQteoBtvvHHg8VdddZVe+MIX9gRO8/m8HvnIRyb/IXaJdrutd73rXTr77LO1ubm56OEAQI+wH/Ewtm0P3CwzqrKCFK8HsGXbsu95z5E/zsknq3jqqSrd+97KFYuxy0WHmTrDAsHjXgcAANhJYQWWXC6nbDY7dM7j+/5Ei7HSkU10vu8nMUwAAIAezE0AIJ6F1VN44hOfqK985SuSpI2NDV1xxRV6+MMfvu24V7ziFbr88suP9I+0LF1zzTV68IMfrHPPPVePe9zjdPTRR+v222/X5z//eX34wx+W53k9WcXnnnturKDAbpBKpfSIRzxCT3va0/Twhz9c97///bVv3z5ls1ltbGzouuuu0yWXXKILL7xQ11xzTc+5//7v/67nPOc5uvjiiymzAWBpjCt+EfYn7g8qjzpvWXoAD+uVPCpTBwAAYJmN2+g36jx66wEAgKQxNwGAeBZShlqSvvOd7+j000+PMsJ+53d+R+94xzu2HRcEgc444wx95zvfiR5Lg8suhwvt4b8rlYquvPJK3fOe95zXx1gar3/96/XKV75SP/MzPzP2WN/39Rd/8Rc677zz5Lpuz2tvfvOb9fa3v32qMVCGGkDSXNdVrVYbeYwxRrVarSdAXCwWh2blxuk9QwAXAABgcq1Wa2CLkHGKxaJyudwcRgQAAPYy5iYAEM/CVr4f+tCH6rTTTotKUX/gAx8YWN7Bsix9+MMf1v79+6PHYeZw/093oDidTuuDH/zgnggUS9L//t//O1agWDqSifcbv/Ebuvjii7dlXb/73e/WT3/603kMEQAmFqcyhG3bKhQKPZuIhgWDy+XyyECxMUbValUbGxuq1Wqq1+uq1Wra2NhQtVodW94aAABgLxu0qXue5wEAAIzC3AQA4llYZrEk/eAHP9Att9wSPX7kIx85dMfOd7/7XT3vec/T1VdfLWn4H+wgCHTUUUfpwx/+sJ761KcmP+hd5o//+I/127/92z3Pve1tb9Nb3vKWia+1tbWlarWa1NAiN998c9S7uhuZxcDeUK1WY/WXMcao1WrJsiwVi8We1xzHUT6fHxko9jwv1t+wcrlML2EAAIABfN/XxsbGxOetr69TxQUAACSOuQkAxLPQYPGkjDH6P//n/+ijH/2oLrvssm2ZyPe5z330vOc9T6997Wu1vr6+oFGuFtd1da973Us33XRT9NyjHvUoXXrppQscVa9Dhw7pwIED254nWAzsXt1loDudjhqNRuxJerlc7qk4EaeEtDFGm5ubsccXp5Q1AADAXhR3o1/IcRyVy+U5jggAAOxlzE0AYLyVChZ3q9fruummm3T77berWCzq+OOP1zHHHLPoYa2kX//1X9df/uVfRo/T6bSq1ary+fwCR3U3gsXA3mGMUbPZ3DaJb7fbcl1XuVxuZJB22qxfbhwAAACSwSY8AACwTJibAMB4K1tLoVgs6rTTTtOjHvUoPeQhDyFQPINHPepRPY87nY5uvfXWBY0GwF7leZ42NzcHBm0zmYxyuZxc1x34uuM4qlQqUwWKfd+fKFAcjrW/ukUSfN+X67pqtVpyXXcu7wEAAFbXKswVbNuOvamuXC6zGAsAAOaKuQkAjMdfPuge97jHtuduu+02nXLKKTs/GAB7kjFmbL9g27Zl27Z831cul1M6nY5dZnqUdrs99XnZbDbWsd1ltQeNeVhGtRSv3zIAANjdVm2uEG7kW6UxAwCA3Yu5CQCMxl8/aFAlcsuyFjASAHtVs9mMfWwqlZLv+yoWi4m897TdGOKc53meDh8+rEajIelIhrTjOEqlUlHwu9PpqF6vy7btgUFvz/PkeV7sEtvjAtMAAGC1eJ43clPdpHOFnRJm8TA3AQAAy4C5CQAMR7AY+ulPf7rtOcp6A9gps5SBTmIyP+3mmFHnGWN0xx136Kc//amMMT2B5XQ6rXQ6rUwmI+nI589kMrIsS7ZtD+3LXK1WR/bNWbWMIwAAMF6c6iuhcXOFRUmlUrGrsQAAAMwbcxMA2G657iKxEJdeemnP43Q6PbA0NQDMw06UgR4lDNomdZ7nebr11lt1++23b8s+NsaoXq8rCIIoeBsEgVKplNLptNrttowxKhQKAzODms3mwD47q5pxBAAARpuk+kp4fNyefAAAAAAASBL1Ffa4Vqulz33ucz3PnXnmmcrn8wsaEYC9Zp5loONIpVITB1DDUtL9jDHa2NjQ4cOHt42v0+nIdd3o+Uajoc3Nzej5UBAEajQaMsZsu36YUd3/npNkHA26LgAAWD6zVF8BAAAAACCupcss9jxPV155pX7wgx9oc3NTm5ubU2edhd7ylrckNLrd573vfa9uueWWnuee8pSnLGg0APaieZSBnlQ+n59oMXbYhppms6lGozHwe8vzvJ4Asu/7MsbI8zyl0+mestpBEKjVaqlUKm27Tn9GNRlHAADsTouuvgIAAAAA2BuWIljs+74uuugivf/979cll1ySeNbTbg4W33LLLTrmmGOUTqcnPvfzn/+83vzmN/c8VygU9Ou//utJDQ8Axkq6DPQ0bNtWuVyOlaFbLpcH9gL0fV+tVkutVmvba0EQqNPpDHzOGCPf99XpdHqylcPn+zOY+wPOi+z3DAAA5mfR1VcAAAAAAHvDwleKr7zySp155pl64QtfqC9+8Ytqt9sKgiCxn93uox/9qB7wgAfoAx/4gGq1WqxzjDF6z3veo3POOWdbYP68887TcccdN4+hAsBASZaBnoXjOKpUKkPHMu71sN/woO+e/kCxdHdmtO/78n1/23lBEAzcPNWdUT1LxhEAAFhuy1B9BQAAAACw+y00s/jrX/+6nvSkJ6ler0eL5Ene2O6FYLEk/fCHP9TLXvYyvepVr9JTnvIUPeYxj9Hpp5+uk08+WZVKRblcThsbG7ruuuv05S9/WR/4wAf0k5/8ZNt1fvEXf3FXZ2EDWF5JlYGeVZhh7Pt+tHnJsixlMpmxwelwk9Kg77FB30epVEqWZU18XndGNRlHAADsXklWX5lmbgMAAAAA2BsWFiy+8847dc4556hWq8myrGiRnAXs6TWbTX3yk5/UJz/5yYnPPfvss3XRRRclWtYVwN4yyyJkEmWgk5RKpSbu9Rd+lw1qCzAoEBweP8l5/RnVZBwBALB7hdVXJtlQ1z9XMMao2WwOvIbjOMrn83OfVwEAAAAAltvC7grf8Y536I477uhZsA6CQI94xCP0ohe9SI94xCN06qmnam1tjQDmHBUKBb31rW/V6173OnaWA5hKUouQYZnnVV3QzGQysm1b6XRatm33lJBOp9NRFnH/OeFCcP/fYMuytn3W/ozqpPs9k3UEAMBymaX6iud5IzfieZ4nz/NULpcnbgkCAAAAANg9FrLi7vu+PvjBD/ZkE+dyOV144YV64QtfuIghraznP//5ymaz+rd/+zd94xvfGFheul8qldKDH/xg/bf/9t/0ile8Quvr6zswUgC7UdKLkLOUgU7CLO+bSqWUy+XUaDSUzWZ7gsWWZSmVSm3rXZzNZpXL5QaW1bZtu+e9B2VUJ5FxJJF1BADAspq2+ooxJtY5klStVlWpVPiuBwAAAIA9ygoWUPf5a1/7mh796EdHWVaWZekf/uEf9OxnP3unh7LrHD58WFdffbVuvPFG3XLLLarX6zLGaG1tTevr6zpw4IAe/vCHq1wuL3qosR06dEgHDhzY9vzBgwd14oknLmBEAKQji5Cbm5uxj1/mRcikgqXGGN1xxx2q1WryPE/NZjN6rdPpqNVq9WQXFwoFHXfcccpkMnJdN3p/y7JUKpVk2/bY95/1v8O4gH+IrCMAABZn0rlKtVqdeDPZKt0jAgAAAACSs5BV+x/+8IfRvy3L0iMf+UgCxQk56qijdNZZZ+mss85a9FAA7HLdgdC4xy/jImSS2dG2bWt9fV2+70s6kvnruq6MMUqn08pms3JdV0EQqFwua//+/VFWsW3byufzMsaoWCwqm83Gymyepd8zWUcAAKyGSaqv+L4/UaBYOjLf8X2f9hMAAAAAsActZMX3tttuk6ToBvecc85ZxDAAAFPaLYuQ8wiWOo6jY445RtVqVVtbW7JtW51OR51OR0EQqFKpKJfLKZfLbbtWWJJ60oDstP2ed0vAHwCAvSKVSimbzY48pt1uT3Xtdrs99toAAAAAgN1nIcHi/pvXU045ZRHDAABMKYlFyEX1Je42r2BpmGFcqVR6yks7jqNsNqtUKpX455+03/NuCfgDAIBe03aaWkCHKgAAAADAElhIsHj//v09j1l0BoDVMssiZFL9gWe1E8HSVCqlfD4flZruf20e2Ttxr0vWEQAAu5NlWTt6HgAAAABgtS0kWPyABzxA0t03oz/96U8XMQwAwJSmXUxst9uq1+tDX5+kP/Cs+oOlvu/LGBNl5Nq2PTAovFuCpWQdAQCwO2UymR09DwAAAACw2haS0vuIRzxClUolenzppZcuYhgAgClNs5hojFGr1Yp1bLValTFm4veYRBj0NMaoVqtpa2tL9XpdjUZD9XpdW1tbqtVq28axW4KlZB0BALA7pVKpiTfdOY5DxS8AAAAA2KMWcjdo27Ze/OIXKwgCBUGgz3/+89ra2lrEUAAAU5hmEXLSXreT9hOelGVZ8jxPtVot6vHbLQgCtdtt1Wq1nnLVuyVYStYRAAC716AWGEkeDwAAAADYPRa2dfh3fud3dNRRR8myLG1ubuqd73znooYCAJjCJIuKkwaKpbv7A8+LZVlqNBpjM4WDIFCj0YgyjHdLsJSsIwAAdi/btlUul2MdWy6XZdsL6VAFAAAAAFgCC1vxPfbYY/VXf/VX0ePzzz9fH/nIRxY1HADAhCZZhMzlclMtQvb3FU6S67qxA79BEKjVai11sNT3fbmuq1arJdd1YwXayToCAGD3chxHlUpl6Oawca8DAAAAAPaGha54P/vZz9YFF1wgy7Lk+77OPfdcvf71r1etVlvksAAAMcVdhJw2G3de/YF935fnecpms7HPMcZsO74/QGuMmThgOytjjKrVqjY2NlSr1VSv11Wr1bSxsTG29zNZRwAA7G7hd/36+rpKpZKKxaJKpZLW19f5bgcAAAAASJKsYF4r8WPccMMN0b//6Z/+Seedd55arZYsy1K5XNbzn/98/dzP/ZxOO+00HX300TOV/TzppJOSGDIW5NChQzpw4MC25w8ePKgTTzxxASMCMIjv+1HvX8uylMlkoixc13Wn2ghUKpUmCujGHWOr1VKj0ZBt2zLGqF6vjz23WCzq6KOPVjablTFGzWYz6mUcBonb7bZs2+7JpHYcR/l8fi6LsZ7nqVqtjj2uXC6PzBrq/zzd5jl+AAAAAAAAAMBiLSxYnEqlZFnWtufD4Qx6bRqWZY3MqsLyI1gMrD7f97WxsTHxeevr64mUfe4Phrquq0ajIcuyZNu2bNtWp9MZGizNZrOybVvFYlGpVKonQOt53rZgs2VZKhQKPQHacQHbaT7T5uZm7OMrlcrYgO+ogD8AAAAAAAAAYPdZaJpQf5zasqwoSLygGDYAYA5SqZRs21aj0YgCkbZtjwxEJtUfeFD2bfd3TbvdljFGhUJB+XxexpihY+x0Oj2B4WFZyUEQqNFoRJ9bkqrVaqyAbVzNZnPi48eVnE6lUolm+ZMrKAAAWmtJREFUcgMAAAAAAAAAlttCg8WjsoeTyCwm4AwAixdm9bqu2xNYDYOx3SWbu+Xz+UTee1CZ5v73C4O7pVJpbLnmbq7rDj02CAK1Wi2VSqXouTgB2zjCnsuT8DxPvu+TKQwAAAAAAAAAiCx0xTgIgrn+AAAWy/M8bW5uyvM8pdNpFYvF6LUwq7dWq20LfJbL5UQycIdl36ZSqW1B4TC4O0zY3zgUJ2BrjJHv+9HjMGA7q3a7vaPnAQAAAAAAAAB2p4VlFn/gAx9Y1FsDAHbAoKzesLS067pRoLW7ZHNYCjqJQPG4YG42m41e931fnU5H7XZbtm0PLIHdHyzuzzIeJAgCGWN6AtPtdnvmUs/TbohiIxUAAAAAAAAAoNvCgsUvfvGLF/XWAIAdMCyr17Zt2ba9rT9wLpdLpERzaFwWrW3bymaz2tjY2Bb4dRynp0R2uVzelhEcN/Daf1wSAdtpWzUk0eIBAAAAAAAAALB7LLRnMQBgd4pTorm/FHRYsnnSnrq+76vdbkdB50wmo1QqNTYo63mePM9TNpuVZVlRcDlsZdBut2VZlsrlshzH2dafOG7gtf+4JAK2mUxmR88DAAAAAAAAAOxOBIsBAImbpadu3BLNxhg1m82BQelBZaT7z200GgqCQOl0Wvl8XrlcTsYY5fN5ZbNZ2batVCqlZrMpx3G2BVrjlMq2LGvbcUkEbMNA+7iAfLdxvxMAAAAAAAAAwN7DqjEAIHHz7qnreZ42NzeHBks9z1Oj0Rj6eqvV2vZeYVZysVjcFlhtNpvbMqH7Hw8SBpxDSQZs8/n8XI8HAAAAAAAAAOx+BIsBAImbZ09dY4yq1erY41KplNrt9rZ+xGHZ6kGGBXM9z5Pv+9sCrplMRu12W57nRaWwuz9LLpfrOT7JgG3YSzmOcrkcKxMaAADMxvd9ua6rVqsl13Xl+/6ihwQAAAAAwEisHAMAEjfPnrrNZjP29bLZrFqtlkqlUvRcf/C4//hhwhLZ5XJZhw8fVqvVijKXXdeNAsWZTEaO42htba0nQDuPgK3jOKpUKiPLcefzeQLFAADM2bj2GHwfAwAAAACWFXerAIDEzaunru/7E13Ttm1ls1n5vh9de1ip62KxOHIRt/u8IAgUBEFUujqVSsl1XXU6nW3Xn/cCcZhhHGZM948LAADMl+d5I6ueeJ4nz/NULpfHtrAAAAAAAGCnESwGAMxFPp+fKLAbp0TzsPLRo2QyGeVyuSjQ3F/q2nEcZbPZscFcy7KiEti2batUKsn3fRljFASB1tbWlEql5Pt+FDDeyUXhVCo1MjMaAAAkL257DEmqVquqVCpkGAMAAAAAlkqid6kf+tCHBj5/7rnnxj52Hga9PwBgvsKM1zgLqHFLNA/LCh4nnU6rWCxGfQTD7Fvbtkdm33YHgwuFglqtVs/rYQb1MK7rkkEEAMAuNkl7jPD4crk8p9HMx6pVL1m18QIAAADAolnBtCvvA6RSqW0ZW5LU6XRiHzsPg94fq+PQoUM6cODAtucPHjyoE088cQEjAjCJuD384izsua6rWq028RhKpVJP1m21Wh2Z9WyMUavVigLF4Ti3trZk27ZyuVzsrKD19XUWKAEA2IV839fGxsbE563K3GDV+jCv2ngBAAAAYFnM5U6pO/48LiCcYKx6oJ0KSAMABhvXUzcs3xhnYS+TyUw1hv7zRpXI9jxPjUaj5/spm81GgeN2uy1jjAqFQqys4Xa7TXloAAB2oWnaY4TnLfvcYNX6MK/aeAEAAABgmcxlO7NlWbGDtOGx8/gBACyPsKduLpdTNptVKpWS53na3NwcGbjtfn1c2edBHMfZlr0TBrD7GWO2BYqLxaJs2+55LggCNRoNGWPGvv+8N0UBAIDFmPY7ftnnBpP2YY4zH5qnVRsvAAAAACybxIPFQRBEP5McO48fAMDy6l7Y831fnufJdV15niff93uO7V7Yy+fzsc4Jhcf3cxxHlUqlJ/jcarWi7w/HcXqyT/o3IQVBsK2H8SBsXgIAYHea9jt+2ecG0/RhXqRVGy8AAAAALJtEy1Bff/31czkWALD7NJvNbb2BQ5ZlbesN3Gw2e7KBt7a2tm0MchxH2Ww2OqdcLo/sTdddItt1XbmuK8dxZNv2wGzkfsYY+b4/su/gtKWzAQDAckuqPcYyCTfjTSLctLeIPsyrNl4AAAAAWEaJBotPPvnkuRwLANhdfN9XrVbbVvI5NKg3sOd5arVaqtfrkqRSqbQt0Ox5ntrtto466ihVKpWRgeJuqVQqKpM96phwHN3jNMYMLY09qAQ2AADYHQbNDcZZ9rnBqvVhXrXxAgAAAMAySjRYDABAHM1mc2iguFvYGzhcVN3Y2IgCs7Ztq1Qqyff9KGAcZiRPI077gmw2u21BeNR5w0pgj+L7vtrtdvR5MpnMUi8qAwCwl+Xz+YmCxdPMDXbSqvVhXrXxAgAAAMAyIlgMANhxcQLFoe7ewIPKNoZZPf36y1aPE6d/oG3bKhaLUXbzqPPGlcDuZ4xRs9kcuODsOI7y+fzUgXAAADAfYUuLarU69thJ5waLsGp9mFdtvAAAAACwjOZyp/qwhz0s+vf97nc/feQjH5nH2wAAVlCYCTyJMIA6rNzzsHMm6UcXt39gWD7SdV212+1ti77TBHY9zxu5yOx5njzPU7lcnuh3AAAA5s9xHFUqlV2x6WvV+jCv2ngBAAAAYBnN5W7129/+tizLmqq00ze/+U3VarXo8eMf//gkhwYAWLBBAdZxwuDypOdN0o9ukr6Dtm1HP7lcbqaS0caYWNlIklStVsf2YqaMNQAAOy/MMF717+FV68O8auMFAAAAgGW0dFubX/7yl+vKK6+UdKQ01KTZZwCA5RYEwcQLe0EQTLXYOummpXF9B/v7IyeR6dtsNic+flB5bcpYAwCweKlUKvZGtWW1an2YV228AAAAALBslnI7bRAE0Q8AYHcJe8RNspBqWZZyudzU7xVXmBXUzxijer2uzc1N1ev1KMBbrVZVrVan3tjk+/5Ei5vS3eW1+5/b3Nwceq1xrwMAAISGzYcGWYY+zKs2XgAAAABYNksZLJ50cR8AsDrCHnG2batYLMY6p1KpTBUsnqYfXdh3MMwYDvsJe54XlZMslUo9r08biG232xOf03/epGWsqdgBAADG6Z8PTfr6Tlu18QIAAADAMmFLLQBgR3WXoA57xrmuO7R8cjabVaFQkKQd60cXZqh4nqc77rhDhUJBlmXJtu2h14zTT7jftBU0us9Lqow1AABAt1Xrw7xq4wUAAACAZUGwGACw47p7y9m2Ldu2lc/ne/oBdwdmw95yO92PznXdiTJQJg3ETltJIzxvljLWLJoCAIA4Vq0P86qNFwAAAAAWjZViAMCOG9RbLsw4zmazPVnBYW+5ne5Hl1Q/4VGmKZPdfV4SZawBAAAAAAAAAHsXwWIAwEJM01tuJ/vR7UQgNgyQT6I7kJ5EGWsAAAAAAAAAwN5FGWoAwMJM01tup/rR7VQgtrskd9zjQ7OWsQYAAAAAAAAA7G0EiwEACzdNb7l596PbqUBsGPyuVqtjj+0vrz1rGWsAAAAAAAAAwN5GGWoAAAbYyUDstOW1Zy1jDQAAAAAAAADY28gsBgBggDAQO0mJ6FkCsdOW156ljDUAAAAAAAAAYG8jtQgAgCEmDawmEYgNy2vncjlls9mxwecwyBxHfxlrAAAAAAAAAMDeRrAYAIA+vu/LdV0ZY+Q4jnzfH3vOIgOx05axBgAAAAAAAADsbaQXAQBwF2OMms3mtrLOvu/LGKN0Oq10Ot3zmuM4yufzC8/YnbaMNQAAAAAAAABg75r7yvaPfvQjnX322RMd322ScwexLEtf/OIXZ7oGAGD38zxP1Wp14GthINj3fTmOo0wms7SB2LCMNQAAAAAAAAAA41hBEARJXzSVSsmyrCiraVLdQ5rm/O7rWJalTqcz9TWweIcOHdKBAwe2PX/w4EGdeOKJCxgRgFU0KuPWGKPNzc3Y16pUKgvPJAYAAAAAAAAAYFZzX+meNRY97fmzBJkBALvHsNLS0t0lpJvN5kTXbDabKpfLSQ0RAAAAAAAAAICFmGuwmIAtAGCRRpWWDl9vtVoyxshxnImu6/v+0pWgBgAAAAAAAABgEnMLFs+hujUAALEZY0YGikOe52lra0vFYlGZTEa2bccKArfbbXoDAwAAAAAAAABW2lyCxddff/08LgsAQGzjSksbY9RqtdRoNNRsNtVut1UoFGRZlmzbVi6XG9mXmE1RAAAAAAAAAIBVN5dg8cknnzyPywIAEIvv+wN7FIc8z1Oj0egJ+HY6nehxu92WMUaFQmFoeWpaLQAAAAAAAAAAVh3NFgEAu0673R76mjGmJ1AcZg8HQSBjTHRcEARqNBo9z3XLZDIJjhgAAAAAAAAAgJ1HsBgAsOuMKhHdarV6XrcsKwr89p8XBIFarda2aziOE6uvMQAAAAAAAAAAy2wuZagBAFikYSWifd8fmHXsOI7a7fbA84wx8n2/Jzicz+eTGywAAAAAAMAeFq7XBEEQbepnkz4A7ByCxQCAXWdYiehhJaXT6bQKhYLS6fS218Ly1GHv4nK5HJWuBgAAAAAAwHSMMWo2m/I8b9trjuMon8+zBgMAO4C/tACApZHUTtJUKiXHcbbdbIwqT10oFJTNZuW67sDzuEkBAAAAAABIhud5qlarI1/3PE/lcjnawA8AmA9WvAEACzePnaT5fH7b9YaVp5akbDYr27Zl27by+byMMVHQ+qijjqL0NAAAwIJQmhIAgN3FGDMyUNytWq2qUqmweR8A5oi/sACAhZrXTlLbtlUul3uubdu2LMvalmFcLBZ7bjrCzORQNpuN/b6LwAIqAADYjShNCQDA7tRsNic+vlwuz2k0AADuqgAACzPvnaSO46hSqUSLjKlUSrZtq91uR6+HGcWjrrGsgVcWUAEAwG5FaUoAAHYn3/cHrmOM4nmefN9f2vUZAFh1rCADABZmJ3aShhnGYfZtNptVtVqVbduxbjKWtfw0C6gAAGC3ojQlAAC7V7iBf5rzdqLyG9XbAOxF3E0BABZip3eSplIpZbNZZbNZOY4TawGyXC4v5cIjC6gAAGA3ozQlAAC7V39rsHmfFxfV2wDsZWyJAQAsxCw7SWcVlqcelnE77vVFm2YBFQAAYBXMsqEQAAAsP8uydvS8ODzP0+bm5tA5yLjXAWDVsRUGALAQi95J2l+eelXKC9HbBwAA7GbLXpoSAADMJpPJ7Oh541C9DQDILAYALMiy7CQNy1Pncjlls9mlD6guMiMbAABg3ha9oRAAAMxXKpWauJKb4zhzW6+hehsAkFkMAFiQZdtJuirmuYC6alnWAABg91mWDYUAAGB+8vn8RFXT8vn8XMZB9TYAOIJgMQBgIcKdpJNMyue5k3RVzGMB1RijZrM58L+F4zjK5/OUWAIAADuCDYUAAOx+YWuwOOWfy+Xy3NYkaH8BAEfs7RV3AMBCTbozdF47SVdJ0guonudpc3NzaNB+3OsAAABJWrbSlAAAYD4cx1GlUhn6vT/u9STQ/gIAjiBNCACwMMuyk3SVJJmRbYyJ9buXpGq1qkqlwn8DAAAwd8tSmhIAAMxXuC60qLZYtL8AgCPYegsAWKhl2Ek6iu/7cl1XrVZLruvK9/2FjKNbUhnZzWZzoutMejwAAMA0woXjONhQCADA6kulUspms8rlcspmsztWMYT2FwBwBHdUAICFi7OTdKd3mS5zH98kMrJ935+4tLTnefJ9nzKPAABgZuPmduGGwWWdjwEAgNWXZPU2AFhl3FUBAJZGuJO02yKCtp7njQzEep4nz/NULpd7Mp53KqDt+76CIFA2m1Wr1VIQBNveZ9zvpt1uT/Xe7XZ7238jAACAuCaZ2y26NCUAANj9aH8BAASLAQBLbNqg7Sym6ePr+762trbkeZ6s/7+9+4yPutj7///eTW+EIhAIJLQgoNK7gKCgCFJUFC6k6bFj+yly9FiwXUfBho2jqAcRUJCmokgnNIk0BSGgAQlIEkQwvSe7/xv+k4tvNmV3s8km2dfz8ciNmZ22C0km8/nOjMkkb2/v4gVMVwa0S1tcNZlMslqtslqt8vf3l4+Pj10LqFar1akxOFsPAADA2bldaQ8UAgAAuIIrTm8DgNqOn2wAgBrJmaCtKybsjtzLW1BQoISEBBUUFBiCqEUBY39/f0lySUC7vMXVosBwbm6u3cchWa1W5eXlFe/QuTjAXR6TyeTYwAEAAOS+uR0AAEBFuP4CgKfjpxsAoEZyJGhbVD4kJKRSfTpyj29eXp7S0tKUlZWl4OBgQxDVarUqPz9fBQUFCgwMlK+vb6UWPV25uFq0OzknJ0dZWVmGILevr6/8/PzKHaOPj49jgwcAAJB75nYAAAD24voLAJ6Mn3IAgBrHkaBtkby8PFkslkr1a+89vgUFBcrKylJubq6sVqsKCgpKLWe1WpWVlVX8uqOLpEWcWVwtTV5enlJTU5WXlyez2WwTFC7avVzWZ2/vrmUAAICLuWtuBwAA4Kii6y/8/f3l5+fHOggAj8BPOgBAjWNv0NZV9YrYex9vTk6OLBZLcRC4vHpWq1U5OTmSnFv0dNXiamm7k/39/Us9VjozM7PUAHhAQIBD4wAAAJDcN7cDAAAAAFSMYDEAoMaxN2jrqnpF7LmPt+g4oouDqRXVKygoKA7eOrro6arF1dJ2G3t7eyswMLDU8efm5hrSISEh3M0DAACc4q65HQAAAACgYgSLAQA1jj1BW1fWK2LPfbyl7SauKIh68VHVji56umJxtbzdyb6+vgoODpaPj4/h8yvanezr66vQ0FD5+vo6NQ4AAAB3ze0AAAAAABVjixAAoMaxJ2jrynpFzGazfH19yz32uSgIW7R4WTLIam89e7licbWi3cne3t4KDg4uPlrbarXKZDIpODiYo6cBAECluWtuBwAAAACoGDuLAQA1TlHQ1hG+vr4ymyv/a62i4GhRENbb21smk8nucV4cXHaEKxZX7d2dXPS5+/n5ydfXl908AADAJdw5twMAAAAAlI+/vAAANZKjO1pdtQPW29tbISEh5b5uMplkMpkUEhIiLy+vCts0mUzy9vZ2atHTFYurHP0IAADczV1zOwAAAABA+QgWAwBqpIqCthcLCQmp8N5gR5R3T6/ZbFZgYKBCQkLsHp+3t7fMZrPTi56VXVzl6EcAAOBu7pzbAQAAAADKxl9fAIAaqyhom52dXeo9wr6+vgoICKiSxcSiBU2LxaL8/Pzie3x9fHxksViUmpoqSQoKClJmZmaZ7ZhMJvn7+1dq0bNoLOnp6RWWLa0fe+5iLomjHwEAgKu5c24HAAAAACgdf4EBAGq08oK21RHMNJvN8vPzs8krCt4WBVVzc3NtFj1NJpPq16+v0NDQSi96VnZxNSAgwKFgMUc/AgCAquDuuR0AAAAAwIhgcR2WlJSkH374QSdPnlRmZqYCAgIUERGhnj17qnXr1u4eHgA4pLSgrTtdHLyV/l74DAgIUEFBgaxWq3x9fVWvXj2H7xsuT2UWVyu7OxkAAAAAAAAAUPewElwHrVmzRrNnz9b3338vq9VaapkuXbro0Ucf1eTJk2Uymap5hABQN7hrZ4yzgXOOfgQAAO5WUFDAXAQAAMBJnM4CoCqYrGVFE1HrZGRkaNq0aVq5cqXdda666iotW7ZMTZs2rcKRVU5CQoJatGhhk3/mzBmFh4e7YUQAUPvxxwUAAKhueXl5dp9y4srTWQAAAGo7HrgDUJVYFa4j0tPTNXToUIcCxZK0bds2DRgwQElJSVU0MgCwn8ViUW5urnJycpSbmyuLxeLuIdVZRbuT/f395efnR6AYAABUqYKCArsCxdLff98WFBRU8YgAAABqh7y8PKWmppYaKLbndQCoCCvDdcQdd9yhH374wZAXERGhuXPn6ueff1ZycrJiY2P14YcfqmPHjoZyx48f180338wf4wDcpmjxMDk5WRkZGcrMzFRGRoaSk5NZLAQAAKgDsrOzq7Q8AABAXcQDdwCqA8dQ1wFr1qzR6NGjDXlXXXWVvvrqK4WGhtqUz83N1eTJk7V8+XJD/jvvvKMHHnigSsfqDI6hBuo2jiMEAACo2ywWi5KTkx2u16BBA04/AQAAHi09Pd2hHcO+vr4KCQmpwhEBqIsIFtdyVqtV3bp108GDB4vzIiIidOTIEQUHB5dZr7CwUH369NH+/fuL88LCwnTixAkFBgZW6ZgdRbAYqLsKCgqUmppqd/nQ0FDuXwEAAKhlcnNzlZGR4XC94OBg+fn5VcGIAAAAaj4euANQXfiJUct99dVXhkCxJL311lvlBoolycvLSx9++KEh7+zZszZ5AFCVOI4QAACg7nP2GXWebQcAAJ4sPz+/WusB8FwEi2u5L774wpBu1aqVzZHUZenWrZsGDBhgyCt5NDUAVBWLxeLQMTrS30dWWyyWKhoRAAAAqoLJZKrWegAAwH0sFotyc3OVk5Oj3Nxc1nEqgQfuAFQXgsW1WH5+vr777jtD3uTJkx06YmLatGmG9O7du3Xu3DlXDA8AysXTkQAAAJ7Bx8enWusBAIDqV1BQoPT0dCUnJysjI0OZmZnKyMhQcnKy0tPTVVBQ4O4h1jo8cAeguhAsrsV2796tlJQUQ97gwYMdaqNkeYvFonXr1lVuYABgB56O/D88dQsAAOoys9ksX19fh+r4+vpy1x4AALVEXl6eUlNTyzxBrqLXUToeuANQXbzdPQA479ChQ4a0l5eX+vTp41Abbdu2VdOmTfXHH38U5/38888uGR8AlIenI/9+6jY7O7vUP5Z8fX0VEBAgb29+VQMAgNovICDAoQXigICAKhwNAABwlaIdxfZIT09XaGgoax12KnrgzpE5FA/cAXAGPzVqsWPHjhnSERERCgoKcridjh07ltsuAFQFT386kqduAQCAJ/H29lZISIhdZUNCQlhEBgCglsjOzq7S8p7O0QfoeOAOgDMIFtdiR48eNaQjIiKcaqdly5aGNMFiANXBk48jdPSpW+71AQAAdYGvr69CQ0PLnANW9DoAAKhZLBaLww+55+Xlcf2WA3jgDkB14CdHLZaYmGhIlwz62qtkkDkhIcGpdtLS0uwOfjgiKSnJ5W0CqBk89ThCZ566tfcPAwAAgJqsaMHTYrEoPz9fVqtVJpNJPj4+deKhQAAAPEl+fr7T9fz8/Fw8mrqr6IE6rjIDUFX46VGLZWRkGNL16tVzqp2S9bKzs2WxWBz+Q/2NN97Q888/79QYAHimosVCex40qStPR1bmqVsWUAEAQF1hNptZJAYAoJazWq3VWs+T8cAdgKrET5FarGSw2Nkdd6XVK9k2AFQVTzuOsDJP3QIAAAAAANQUJpOpWuvh/x648/f3l5+fH4FiAC5R+7doebDMzExD2t/f36l2ygoWO7tTGQAc5UlPR/LULQAAAAAAqAt8fHyqtR4AoGoQLK5DnH0iq7QABE93AXAHTziOkKduAQAAAABAXWA2m+Xr6+vQdVu+vr51bmMAANR2/FSuxYKCggzp7Oxsp9rJycmpsG0AgGvw1C0AAAAAAKgrHL0a0dmrFAEAVYedxbVYcHCwUlJSitPOBotLqxccHOxwO48++qjuuusup8ZQnqSkJPXq1cvl7QKAO/DULQAAAAAAqCuKrhZLT0+vsGxISIi8vQlJAEBNw0/mWqxkQDctLc2pdkrWCwgIcCooUa9ePe45BgA7BAQEOBQs5qlbAAAAAABQU/n6+io0NFTZ2dmlrnf4+voqICCAQDEA1FD8dK7FmjdvrmPHjhWnf//9d6faKVmvefPmlRoXAKB8PHULAAAAAADqkqK1DovFovz8fFmtVplMJvn4+HBaGgDUcPyUrsU6dOhgSJ8+fdqpdkrW69ixo9NjAgDYp+ipW19fX6deBwAAAAAAqGnMZrP8/Pzk7+8vPz8/AsUAUAuwVakWKxnUPX36tDIzMxUUFORQOxfvTpZsg9AAgKrBU7cAAAAAAAAAAHdiJboW69y5syFdWFioPXv2ONTGiRMndPbsWUPeFVdcUemxAQDsx1O3AAAAAAAAAAB3YDW6FuvXr5/q169vyIuOjnaojW3bthnSZrNZw4cPr+TIAAAAAAAAAAAAANR0BItrMR8fH11//fWGvEWLFslqtdrdxsKFCw3pfv36qUmTJi4ZHwAAAAAAAAAAAICai2BxLXfrrbca0idPntSaNWvsqnvw4EFt377dkHfLLbe4bGwAAAAAAAAAAAAAai6CxbXcmDFj1KVLF0PeQw89pIyMjHLrFRYW6q677jLkhYWF2eQBAAAAAAAAAAAAqJsIFtdyJpNJL774oiHv1KlTGj16tNLS0kqtk5eXp0mTJmnv3r2G/KeeekqBgYFVNlYAAAAAAAAAAAAANQfB4jpg1KhRuvnmmw15W7duVefOnfXOO+8oNjZWKSkp+uWXX/Tf//5X3bp109KlSw3l+/Xrp3vvvbc6hw0AAAAAAAAAAADAjUxWq9Xq7kGg8tLT0zV06FDt2bPH4bpt27bVjh071KxZsyoYWeUlJCSoRYsWNvlnzpxReHi4G0YEAAAAAAAAAAAA1H7sLK4jQkJCtGnTJt10000O1Rs0aJB27dpVYwPFAAAAAAAAAAAAAKoGweI6JCQkRCtXrtRXX32l/v37l1u2c+fO+uSTTxQdHa2mTZtW0wgBAAAAAAAAAAAA1BQcQ12HJSYmKiYmRvHx8crMzFRAQIBatmypXr16qU2bNu4ent04hhoAAAAAAAAAAABwPW93DwBVp3nz5g4fSw0AAAAAAAAAAADAM3AMNQAAAAAAAAAAAAB4IILFAAAAAAAAAAAAAOCBCBYDAAAAAAAAAAAAgAciWAwAAAAAAAAAAAAAHohgMQAAAAAAAAAAAAB4IILFAAAAAAAAAAAAAOCBCBYDAAAAAAAAAAAAgAciWAwAAAAAAAAAAAAAHohgMQAAAAAAAAAAAAB4IILFAAAAAAAAAAAAAOCBCBYDAAAAAAAAAAAAgAfydvcAgIoUFhaWmp+UlFTNIwEAAAAAAAAAAABqjrCwMHl5eTldn2Axarxz586Vmt+rV69qHgkAAAAAAAAAAABQc5w5c0bh4eFO1+cYagAAAAAAAAAAAADwQASLAQAAAAAAAAAAAMADESwGAAAAAAAAAAAAAA9EsBgAAAAAAAAAAAAAPJDJarVa3T0IoDx5eXk6dOiQTX6TJk3k5eXlhhEB8DRJSUnq1auXTf7evXvVrFkzN4wIAACgejEfAgAAno75EICaKiwsrFLxMm8XjgWoEr6+vurZs6e7hwEANpo1a6bw8HB3DwMAAMBtmA8BAABPx3wIQG3HMdQAAAAAAAAAAAAA4IEIFgMAAAAAAAAAAACAByJYDAAAAAAAAAAAAAAeiGAxAAAAAAAAAAAAAHgggsUAAAAAAAAAAAAA4IEIFgMAAAAAAAAAAACAByJYDAAAAAAAAAAAAAAeiGAxAAAAAAAAAAAAAHgggsUAAAAAAAAAAAAA4IEIFgMAAAAAAAAAAACAByJYDAAAAAAAAAAAAAAeiGAxAAAAAAAAAAAAAHgggsUAAAAAAAAAAAAA4IEIFgMAAAAAAAAAAACAByJYDAAAAAAAAAAAAAAeiGAxAAAAAAAAAAAAAHgggsUAAAAAAAAAAAAA4IEIFgMAAAAAAAAAAACAByJYDAAAAAAAAAAAAAAeiGAxAAAAAAAAAAAAAHggb3cPAACAmi4kJESzZs0qNR8AAMATMB8CAACejvkQgLrKZLVare4eBAAAAAAAAAAAAACgenEMNQAAAAAAAAAAAAB4IILFAAAAAAAAAAAAAOCBCBYDAAAAAAAAAAAAgAciWAwAAAAAAAAAAAAAHohgMQAAAAAAAAAAAAB4IILFAAAAAAAAAAAAAOCBCBYDAAAAAAAAAAAAgAciWAwAAAAAAAAAAAAAHohgMQAAAAAAAAAAAAB4IILFAIAap1WrVjKZTMVf0dHR7h5SjRIfH2/4fEwmk7uHBAAAgP/fc889Z5inTZs2zd1DAgAAKBYdHW2Yq7Rq1crdQwLgZgSLAQAAAAAAAAAAAMADebt7AAAAAAAAoG6Ijo42nArTtWtXjR071m3jAQAAAACUj2AxAAAAAABwiejoaD3//PPF6alTpxIsBgAAAIAajGOoAQAAAAAAAAAAAMADESwGAAAAAAAAAAAAAA9EsBgAAAAAAAAAAAAAPBDBYgAAAAAAAAAAAADwQASLAQAAAAAAAAAAAMADebt7AAAAOOPXX3/Vvn37lJCQoMLCQjVr1kxt27ZVv3795OXlVen2f//9dx09elTx8fFKTU1Vfn6+GjRooEaNGqlbt26KiopywbswOnDggI4eParExERZLBY1bdpU3bp1U5cuXVzeFwAAsE9iYqJ2796t+Ph45ebmqlGjRoqIiNCgQYMUFBTksn7++OMP7d27V3/88Yf+/PNP+fn5qUmTJoqKilLPnj1lNvOsd0np6emKiYnR8ePHlZKSIpPJpKZNm2rSpEny8fEpt6475noAAOD/FBYW6vvvv9eJEyd09uxZeXl5qXnz5urZs6cuvfTSKukzKytLu3fv1pkzZ/Tnn39Kkpo0aaLw8HD1799fAQEBtbY/i8WiH374QXFxcUpMTJSXl5fCw8PVo0ePKvs8AdQhVgAAapjIyEirpOKvrVu3Fr/22WefWS+//HLD6xd/NWnSxDpz5kxrenq6Q31mZGRYP/vsM+ttt91mbd68eZntF32FhYVZZ86caT179myl3mtBQYF17ty51rZt25bZV6tWrazvvvuutbCw0Gq1Wq0nT560KQMAABxX3pxj+/bt1iFDhlhNJlOpv599fX2tt912mzU+Pt7p/rOzs62vvfaatVu3bmX2I8naqFEj67333mtNSEhw2fuzV8mxnDx50qbMrFmzKpw7lfdVWptTp041lJk1a1bxawcOHLDedNNNVh8fn1LbS05OtmmvOud6JT+PqVOnOtwGAAB1VWpqqvWxxx6zXnLJJWX+Hr7sssusixcvLq6zdetWw+uRkZEO9bllyxbrddddZ/Xz8yuzT39/f+vw4cOt0dHRlX6P1dlfdna29dlnny13fnPZZZdZP/vss+I6lf08AdQ9PJoMAKgVsrOzNW7cOE2cOFGHDx8us9y5c+c0Z84cXXbZZYqJibGr7ZiYGDVp0kQTJ07UkiVLlJiYWGGds2fPas6cOWrdurU+//xzu9/HxX7//Xf17dtXjzzyiE6cOFFmufj4eD3wwAMaPHiwLly44FRfAADAPhaLRTNnztRVV12lrVu3ymq1llouLy9PS5Ys0RVXXKHo6GiH+1m9erWioqI0Y8YM/fjjj2X2I0kXLlzQ+++/r6ioKM2bN8/hvuqSf//73+rVq5dWrVql/Px8u+q4a64HAACMduzYoY4dO+r111/X+fPnyyx35MgRTZo0STfddJOys7Od7i85OVmjR4/W1VdfrfXr1ys3N7fMsjk5OVq3bp0GDx6ssWPHKiUlpcb3d+jQIXXu3FkvvPBCufObI0eOaOLEiRo3blylPk8AdRfBYgBAjWexWDR+/HitXLnS7jqnT5/Wddddpx9++KHCsikpKcrKynJqbNnZ2Zo4caLeeecdh+olJibq6quv1r59++yus2PHDg0fPpyJPQAAVeiee+7Rq6++Wm7w9mLp6em6/vrrdezYMbv7mDNnjm6++WadOXPGobFlZWVp+vTpeuKJJxyqV1c8//zzeuqpp1RYWOhQPXfM9QAAgNHOnTt1/fXX2/XQVpHVq1frlltukcVicbi/33//XQMGDNCaNWscrvvVV19p4MCBSkhIqLH9HTlyRNdcc43i4uLsrrNy5UqNHz/eqc8TQN3GncUAgBpv7ty5xZNts9msyZMna+LEierUqZOCg4OVmJioDRs26L333tPx48eL66WlpemGG25QbGysGjduXGE/Xl5e6tWrl4YNG6bOnTurQ4cOatSokUJCQpSXl6fz58/r8OHD+vbbb7V06VLDouNjjz2mPn36qHfv3hX2U1hYqLFjxxrGKknNmjXTAw88oJEjR6ply5bKzc1VXFycli9frvnz5ysvL0/79u3z2AViAACq2jvvvKNVq1ZJkvz9/fWPf/xDY8eOVYcOHRQaGqrz589rx44devXVVw0nneTk5Oiuu+7Sjh07Kuxj7ty5+uc//2nI8/Pz08SJEzVy5Eh17dpVl1xyifLy8hQfH6/169frnXfe0blz54rLz549W506ddKUKVNc9M4rZ8CAAcXvaefOndq1a1fxa5dffrlGjhxZbv3Q0NAK+4iOjtb27duL0yNGjNDEiRPVp08fNW7cWKmpqTp+/LiWLVsmb+/Slzqqa64HAACMzp07pzFjxigzM9OQ37lzZ913330aPHiwmjVrpoyMDP3yyy9avny5Pv74Y+Xn5+vbb7+V2ezYnre8vDyNGjVKsbGxhvyGDRvq/vvv1+jRoxUZGSmz2az4+Hh9/fXXeu+99/TXX38Vlz18+LBGjx6tmJgY+fj41Kj+MjIyNHLkSJvd2VFRUZo+fbqGDRum5s2bKz09XbGxsfrss8+0ePFiWSwWrVmzRiaTqdz2AXggNx+DDQCAjZL36xV9NWzY0Lpr164y62VlZVmnTJliU2/ChAnl9rdnzx7rSy+9ZE1KSrJ7jL///rt1wIABhn4GDx5sV93XXnvNZozXX399qffrFTl8+HCZnwu/zgEAcE5Zv1u7dOlS7l3EeXl51htvvNGm3t69e8vtb8+ePTb37A4aNMh66tSpcuulpaVZR40aZagXHBxs/f333x16f1V1Z/HFXHVfb8k7i4u+AgMDrWvWrHGoreqe63FnMQAARrfccovN7/SZM2da8/Pzy6zz888/W1u2bFnqfKCiO3Yff/xxmzpXXXWV9ezZs2XWSUpKsg4cONCm3pNPPlnh+6vu/h544AGberfffrs1Ozu7zDrbt2+3NmjQwKnPE0DdxzHUAIBawdvbW2vXrlX//v3LLBMQEKAFCxbY7F5ZunSpDh06VGa9Xr166amnnlJYWJjd42nRooXWrVundu3aFedFR0eX24/091GGL730kiGvd+/eWrlyperXr19mvcsuu0wbN25UvXr17B4jAABwXJs2bbRt2zZFRkaWWcbHx0cLFixQ06ZNDflLliwpt+3777/fcM/u4MGDtWHDBkVERJRbLyQkRKtWrdLAgQOL8zIyMvTWW2+VW6+uMZlMWr16tW644QaH6lXnXA8AABgdOXJEy5cvN+Tdfffdmj17dpmngUh/n06yadMmBQUFOdTfH3/8YTNH6tq1q7755hubudvFwsLC9M033+jyyy835L/xxhuGE17c3d+ZM2f0n//8x5A3ZswYffTRR/L39y+z3sCBA7VmzRp5eXmVWQaA5yJYDACoFR566CH16dOnwnJms1nvv/++zR8TH3zwgcvHFBQUpBkzZhjyvv3223LrLFu2TCkpKcVps9msDz74QAEBARX2FxUVpeeee86ZoQIAADt99NFHdh2LHBoaqmnTphnyfvjhhzLLb926Vfv27StOBwUFafHixfLz87NrXN7e3vrggw8MxzB++OGHys3Ntat+XTB16lRde+211dafM3M9AABgVHI9pmnTpnr11Vftqtu+fXs988wzDvX3/vvvKy8vrzhtNpv14YcfKjg4uMK69erV0/z58w3HNOfm5pa7plTd/X300UcqLCwsTgcHB2vevHl2HdV95ZVXavr06RWWA+B5CBYDAGo8s9msxx57zO7yLVq00MSJEw15S5culdVqdfXQbALYMTEx5ZZfunSpIX3ttdeqa9eudvd33333sbsYAIAq0rVrVw0ZMsTu8iUDlwcPHiyz7Pz58w3padOmKTw83KHxdezYUYMGDSpOp6amau/evQ61UZs99NBD1d6no3M9AABgtGrVKkP6H//4h0PrGvfee2+5O2ZL+uKLLwzpa6+9Vj179rS7fr9+/XT11Vcb8pYtW1Zj+iu5rjRp0iQ1b97c7v4ef/xxh++ABlD3lX3OAwAANcSgQYMcmvhK0v/8z//oww8/LE7/9ddfiouLU/v27e2qn52drcOHDys2NlZ//fWX0tLSlJOTYxNwTk1NNaSPHj1aZptWq1V79uwx5E2YMMGu8RTx9/fX2LFj9emnnzpUDwAAVGz48OEOle/YsaMhnZWVpezs7FJPDImOjjakb775ZofHJ0kDBgwwtLVz504NGDDAqbZqk4iICHXr1s1l7VXFXA8AABglJCQoISHBkDdu3DiH2ggNDdWwYcO0Zs2aCssmJyfb/K4uuZnAHpMnT9bmzZuL07GxsUpJSbG5Pswd/f3666+GPEfXlVq0aKEBAwZo+/btDo8TQN1FsBgAUOPZc/x0Sb169ZLZbJbFYinO27NnT7nBYovFoqVLl+rTTz/Vpk2bDMf62OviI6ZLOn78uJKTkw15zry3Pn36ECwGAKAKdOnSxaHyJRfwpL+DiyWDxXFxcTp79qwhz5GTRS7WrFkzQ/rEiRNOtVPb9OjRo9JtVPVcDwAAGB04cMCQ9vPzs7mj1x49evSwK1i8d+9emwe/+vfv73B//fr1M6StVqv27dunoUOHurW/ffv2Gfozm80O7WIu0qdPH4LFAAwIFgMAarxOnTo5XCc4OFgRERGKj48vzktMTCyz/OHDhzVt2jTt37/fmSEWK28BseTTtN7e3nbvdL7YZZdd5nAdAABQsYYNGzpUvrQdxDk5OTZ5v/32W6X7Kstff/3lknZqOkeP7C6pOuZ6AADA6Ny5c4Z0q1at5OPj43A7UVFRdpVLSkoypAMCAtSmTRun+vP39zfM60q27Y7+Sq4rRUZGKigoyOH+WFcCUBLBYgBAjdegQQOn6pV2XE9pDh48qKuvvtoli635+fllvlZycbFevXpO3RNT2i4mAABQeb6+vlXS7oULF6qkXclzgpehoaFO162uuR4AADAquQ7jyF3FF7N3HlByXlS/fn2ZTCaH+zOZTKpfv77hZJjS1pTc3Z+r1ssAgGAxAKDGCwwMdKpeyacrMzIybMrk5+fr1ltvtVk8jIiI0C233KL+/furTZs2Cg8PV2BgoAICAgwB3vj4eLVu3dqu8ZTs31XvCwAA1GxVGdB15ijl2sjb27nli+qc6wEAAKPc3FxD2tkH8/z8/Owql56ebkhXZv2kZN2SbbujP9aVAFQVgsUAgBovKyvLqXqZmZmGdHBwsE2Zjz/+WL/++qsh74UXXtC//vUveXl5uXRsJft31fsCAAA1W8njqkNCQnT//fe7pG1njjr0JNU51wMAAEYldwSXFgC1R1paml3lQkJCDOnKrJ+UrFuybXf0x7oSgKpCsBgAUOOVdXx0Rew5nmfFihWG9KRJk/TMM89UydhKHvOTlpYmi8Xi8FHUnnLcJAAAdcUll1xiSOfm5urf//63U9dRVKeSu4Fqo+qc6wEAAKOS6yAl7zC2l731SvaXkpIiq9Xq8NHQVqvVrjUld/fnqvUyAKjZf5kCACApNjbW4TqZmZk6ffq0Ia958+Y25Xbt2mVIO7rL5+jRo3aXDQ8PN6QLCgpsdrrY48iRIw7XAQAA7lNyDpKXl6cTJ05Ueb8lj2x0NPhblXctV5fqnOsBAACjdu3aGdJnz551KmB88OBBu8o1a9bMkM7OztZvv/3mcH9xcXHKyckpt2139FdyXenUqVNO7S5mXQlASQSLAQA13g8//OBwnb1798pisRjyevfubUinpqbaTMYvv/xyh/rZuXOn3WXbtWtn8xSoM+9tz549DtcBAADu06VLF9WrV8+Qt27duirvt2Sfju4+OXTokMN9OrqTpipV91wPAAAYdevWzeae4q1btzrcTnR0tF3levXqZTMXiYmJcbi/3bt3G9Imk0k9e/Z0e389e/Y09GexWLR3716H+2NdCUBJBIsBADXejh07dPbsWYfqfP7554Z0w4YNFRUVZcgr7Y4WHx8fu/tIS0vTypUr7S5vMpnUp08fQ94XX3xhd31JysnJ0ZdffulQHQAA4F7e3t666qqrDHkLFiyQ1Wqt0n5LHn/t6C7Z9evXO9xnyd3MeXl5DrfhKtU91wMAAEZ+fn42D+5/+umnDrWxZ88eHTt2zK6yDRo0UMeOHQ15n332mUP9SdKSJUsM6U6dOtk8/O+u/tq3b2/Ic3RdKSEhQTt27HB4jADqNoLFAIAar7CwUK+//rrd5RMSEmwm5xMmTLB52rNRo0Y2dX/55Re7+5kzZ44yMjLsLl80joutX7/eoV078+fPV2pqqkN9AgAA97vjjjsM6R9//NGpxURHdOnSxZDeuHGj3XWTk5P13//+1+E+S+5mPn/+vMNtuIo75noAAMCo5Bxo7dq1du8UlqSZM2c61N/48eMN6XXr1unHH3+0u/4PP/ygTZs2GfJKruW4s7+Sry1atMihDRavv/66zUl8AECwGABQK7z11lt2Ha1jsVh0//332yzs3XPPPTZl/fz81Lp1a0OevYui27Zt0+zZs+0qe7Hx48cbng4tLCzUPffcY9cdgidOnNCzzz7rcJ8AAMD9xowZo65duxry7rnnHh04cMDpNiu6869fv36G9O7du+26AsNqtequu+5SWlqaw2OKjIw0pH/66Se3LUi6Y64HAACMJkyYoMaNGxvyJk+erPj4+ArrPv3009q2bZtD/d1zzz2Go68tFovuuusuu+72zcjI0N133204/cXPz6/UNSV39XfnnXfKy8urOJ2enq7p06fbdWJNTEyM3nnnnQrLAfA8BIsBALVCfn6+RowYUe7dLzk5Obrzzjv19ddfG/InTJigzp07l1pn+PDhhvR7771X4RE+q1ev1ogRI1RQUGDn6P9PQECAnn76aUNeTEyMbr755nJ3DB89elRDhw5lVzEAALWUyWTSu+++azgGOTMzU4MGDdKCBQvsDqgWFBRow4YNGjVqlG644YZyyw4fPlwNGzY05E2ZMkVJSUll1snKytKkSZOcPn65e/fuhvSff/6pN99806m2XKG653oAAMAoICBAc+fONeSdOXNGV155pVauXFlqkDMpKUmTJ0/W//7v/0qSzXymPE2bNtXDDz9syNu/f7/GjBlT7okn586d0w033GBz+tujjz5qE+x2Z38tWrTQfffdZ8hbtWqV7r77buXk5JRZb9euXRo5ciTzGwClMlmr+pIkAAAc1KpVK506dao4PWrUKK1Zs0aSZDabNXXqVE2cOFEdO3ZUcHCwEhMTtXHjRr377ruKi4sztNWoUSMdPXq0zIl2XFycOnbsqMLCQkP+//zP/2jatGnq0qWLAgMDde7cOcXExOjTTz/Vhg0bisvdfvvtWrBggaFuRb9aCwsL1a9fP5ud0s2bN9eDDz6oESNGqGXLlsrNzVVcXJyWL1+u+fPnF+8+Hj16tE1AnF/nAAA4ruScY+vWrRo8eLBDbZS85uLkyZNq1apVmeXnz59f6m6RqKgoTZ48WQMHDlSbNm3UoEED5efnKyUlRWfOnNFPP/2kPXv2aO3atUpOTpYk9ejRQ/v27St3fM8++6xefPFFQ17jxo01c+ZMjRgxQuHh4crNzdWpU6e0fv16vffee8VHGY4bN04rVqxw6P1J0sCBA7Vz505DXseOHdWnTx81atRI3t7ehtf++c9/qkGDBoa8adOmaeHChcXpWbNm6bnnniu339K4Y6733HPP6fnnny9OT506VZ988onDYwcAoC6ZMGGCli1bZpMfHh6uQYMGqWnTpsrMzNSvv/6qnTt3Fv/uDgoK0uuvv6577723uE5kZGS5O5Pz8vLUu3dvHTx40JB/ySWXaPr06Ro1alTxaSinTp3S119/rffee08XLlwwlO/evbtiYmIMD/vVhP4yMjJ02WWX6fTp04b89u3b64EHHtDQoUPVvHlzZWRkKDY2VkuWLNGiRYuKH04sua5U0ecJwANYAQCoYSIjI62Sir82b95sveGGGwx59nyFhIRYd+/eXWF/L774osNtS7LecMMN1uPHj9vk2+PMmTPWtm3bOtxnjx49rEeOHHGqTwAAYFRyzrF161aH2yj5O/nkyZMV1vnPf/5j9fX1dWr+UXJeUJGcnBxrp06dHG67e/fu1rS0NKfe35YtW6xms9nuvkprc+rUqYYys2bNqrDfslT3XG/WrFmG8lOnTnV67AAA1BV5eXnWMWPGOPS72M/Pz/rNN99Yt2zZYsiPioqqsL/Tp09bO3bs6PQ86/LLL7eeOXPG7vdX3f39/PPP1ksuucSp+c3mzZsNeZGRkXb3C6Bu4hhqAECNZzab9cUXX2js2LF214mIiND69evVt2/fCss+/fTTeuyxxxwa02233aYVK1YY7olxRHh4uLZs2aKePXvaXad///5av369AgMDneoTAADUDPfee6+io6N1xRVXON2Gv7+/Bg0aVGE5Pz8/bdiwQZ06dbK77aFDh2rTpk0KCQlxamxDhgzRwoULFRwc7FR9V3PHXA8AABj5+PhoxYoVmj17tl3rGpdeeqmio6M1cuRIpaenG14LDQ2tsH7Lli21c+fOCq/tKM3o0aO1Y8cOhYeH212nuvu7/PLLtXnzZrVr187uOmPHjtUXX3whs5mwEAAjfioAAGqFgIAArV69Wp9++qk6duxYZrkmTZro8ccf15EjR9SvXz+723/ttdf07bffqlevXuWW69+/v9asWaPFixfLz8/P7vZLExERoZiYGL355ptq06ZNmeVatmypuXPnavv27WrUqFGl+gQAADVDv379dPDgQa1evVrXXXedgoKCKqzTqFEjjRs3Th9++KGSkpL0xhtv2NVXeHi49uzZo1mzZtkc93yxtm3b6sMPP9SGDRvKLWePSZMmKT4+Xm+//bZuvPFGtW/fXg0aNLA5grq6uGOuBwAAjLy9vTVz5kwdP35cb775pgYPHqyIiAj5+fkpICBAbdu21fjx47Vs2TIdOXKkeANA0RUcRewJFkt/33W8Zs0abd68Wdddd125v9v9/Pw0fPhwbd26VV999ZXq16/v8Pur7v46d+6sn3/+Wc8884yaNWtWZrkOHTro008/1erVqxUQEOBwPwDqPu4sBgDUSseOHdP+/fuVkJCgwsJChYWFqV27durfv3+ld4DEx8fr+++/19mzZ5WVlaXg4GC1bt1affr0UVhYmIvega39+/crNjZWSUlJslgsatq0qbp27aquXbva3IcIAADqlvz8fO3bt0/x8fG6cOGCUlNT5e/vr3r16qlly5bq2LGjIiIiKj0nKCws1J49exQbG6vz58/LarWqadOm6tGjhzp37uyid1OzuWuuBwAAnPP444/rtddeK05PmjRJixYtcridrKwsff/99zpz5ozOnTsnk8mkxo0bq0WLFurfv7/LT3Krzv4sFot2796tuLg4nT17VmazWc2bN1ePHj3K3XQBABLBYgAAAAAAAAAAUEP1799fu3fvLk6/+eabeuSRR9w3IACoYziGGgAAAAAAAAAA1DixsbGGQLGkCq+VAAA4hmAxAAAAAAAAAACocR5//HFDukWLFsV3GQMAXINgMQAAAAAAAAAAqDJ79uxRUlKS3eWtVqv++c9/au3atYb8u+66S15eXq4eHgB4NILFAAAAAAAAAACgymzYsEFt27bVfffdp++//77csjExMbr22ms1Z84cQ354eLgefPDBqhwmAHgkb3cPAAAAAAAAAAAA1G3Z2dl6//339f7776thw4bq0aOHIiMjFRoaqqysLP3xxx+KiYlRYmKiTV2z2awFCxaoQYMGbhg5ANRtBIsBAAAAAAAAAEC1+euvv7Rx40a7ygYGBuqzzz7TsGHDqnhUAOCZOIYaAAAAAAAAAABUmaioKId3BZtMJo0ZM0Z79uzRmDFjqmhkAACT1Wq1unsQAAAAAAAAAACg7srPz9f27du1Y8cO7d+/XydPnlRSUpIyMzNVWFio+vXrq2HDhmrfvr0GDx6sESNGqGPHju4eNgDUeQSLAQAAAAAAAAAAAMADcQw1AAAAAAAAAAAAAHgggsUAAAAAAAAAAAAA4IEIFgMAAAAAAAAAAACAByJYDAAAAAAAAAAAAAAeiGAxAAAAAAAAAAAAAHgggsUAAAAAAAAAAAAA4IEIFgMAAAAAAAAAAACAByJYDAAAAAAAAAAAAAAeiGAxAAAAAAAAAAAAAHgggsUAAAAAAAAAAAAA4IEIFgMAAAAAPMpzzz0nk8lk+ALgnPj4eJvvp08++cTdwwIAAABgJ4LFAAAAAAAAAAAAAOCBCBYDAAAAAErdHVjeV0BAgMLCwnTppZdq1KhReu6557R582ZZLBZ3vxXUYIMHD7b5vxQfH++Stlu1asWOcQAAAABwkLe7BwAAAAAAqH1ycnKUk5OjP/74Q7/++qu++eYbSX8H7B544AE9/PDD8vbmT04AAAAAAGoydhYDAAAAAFwmPj5eM2bMUN++fRUXF+fu4QAAAAAAgHLwmDcAAAAAoFRBQUFq165dqa9lZWXp/PnzSk5OLvX1/fv3a+jQodq1a5datGhRlcMEAAAAAABOIlgMAAAAAChVz549FR0dXW6ZEydOaOnSpZo7d67Onz9veO306dO65ZZbtHv37iocJQAAAAAAcBbHUAMAAAAAnNa2bVs99dRT+vnnn9W7d2+b12NiYrR8+XI3jAwAAAAAAFSEYDEAAAAAoNLCwsL0zTffKCwszOa1Dz74wA0jAgAAAAAAFSFYDAAAAABwicaNG2vmzJk2+Tt37lRWVpYbRgQAAAAAAMrDncUAAAAAAJe56aab9OijjxrycnNzdeTIEfXq1cvudn799VfFxsbq3LlzunDhgoKCgtSkSRO1bNlSvXv3lo+Pj6uH7hbZ2dnas2ePkpKSdO7cOWVkZKhRo0Zq3LixunTporZt21b5GFJSUrR3716dOHFCKSkpslgsatiwoa6//npFRkZWef81UWFhoX777TcdO3ZMCQkJSktLU2FhoRo0aKAGDRqoQ4cOuuKKK2Q2V88z+HFxcdq/f78SEhKUm5urRo0aqXnz5howYIAaNGjg8v4OHz6s2NhYJSYmKisrS/Xr11f79u3Vt29fBQcHu7w/AAAAAO5DsBgAAAAA4DKRkZEKCgpSZmamIf/PP/+ssG5iYqLmzJmjr7/+WidPniyzXEhIiK655ho9/PDDGjx4cGWH7JQdO3Zo7Nix+uuvvwz5jzzyiF5//fVyg4gWi0VLlizRokWLtGPHDuXk5JRZtnXr1rr11ls1Y8YMXXLJJQ6Ncdq0aVq4cGFxOjIyUvHx8cXp7777Tm+88Ya2bt2qwsJCm/oLFizQtGnTHOqzNouLi9OqVau0ZcsW7dq1y+b/cEmhoaEaNmyYZsyYoT59+jjVp8lkMqRnzZql5557TtLf/08WLlyoN954Q4cPHy61vpeXlwYPHqyXXnpJffv2dWoMRfLz8/XWW2/p448/1rFjx0ot4+vrq9GjR+uZZ55R586dK9UfAAAAgJqBY6gBAAAAAC4VGhpqk5eSklJm+cLCQj377LOKiorSW2+9VW6gWJLS09P15ZdfasiQIRo5cqROnz5d2SE75PPPP9ewYcMMgWKz2ay3335bb775ZrmB4nXr1umKK67QlClTtHHjxnIDxZJ08uRJzZ49W23atNFbb73lkvFnZGRo3LhxGjFihDZt2lRqoNiTXLhwQd27d1f79u31xBNPaMOGDRUGiiUpNTVVK1asUN++fTVmzJhy/4876syZMxowYIDuuOOOMgPF0t/fO5s3b1a/fv301FNPOd3fjz/+qO7du+vxxx8vM1AsSXl5eVqxYoV69Oihl19+2en+AAAAANQcBIsBAAAAAC6Vmppqk1e/fv1Sy2ZlZenGG2/Uiy++6NS9xmvXrlW/fv106NAhh+s64+WXX9Ztt92m3Nzc4rzAwECtWrVKDz74YLl1X3vtNY0cOVKxsbEO95uenq5HHnlEd955pwoKChyuXyQzM1PXXHONVq5c6XQbdU16erp+/PHHSrXx9ddfq3fv3jpz5kylx/Pbb7+pb9++2r17t0P1/v3vf+vpp592uL+9e/dqyJAh5QalSyooKNC//vUvPfHEEw73BwAAAKBm4RhqAAAAAIDLnDp1qtRdmY0bN7bJs1gsGjNmjDZt2mTzWkhIiEaNGqXevXsrLCxMaWlpiouL0+rVq3X8+HFD2cTERA0aNEj79u1Tu3btXPdmLlJQUKD77rtPH330kSG/adOmWrNmTYX3MT/xxBOaPXu2TX7Dhg01bNgw9ejRQ02aNFFgYKBSUlJ05MgRrVu3Tr/88ouh/Mcff6z69evrtddec+p93H333dqzZ09xunnz5hoxYoQ6d+6sJk2aKC0tTadOndLXX3/tVPt1QXBwsHr16qWOHTsqKipKoaGhCgkJUV5enpKTkxUbG6utW7fq6NGjhnpxcXEaP368tm3bJm9v55Zb0tPTdf311yshIUHS38dU9+/fX0OHDlVERISCg4P1559/ateuXVq9erXNzvSXX35Zo0aNsvtY7N9++03XXnttqQ94dO7cWWPGjFGrVq0UEBCgxMRERUdHa8OGDcrLy5MkzZ49u9TvbQAAAAC1B8FiAAAAAIDLrFq1yibP19dXnTp1ssmfM2dOqYHiu+66S6+++mqpx1nPmTNHCxYs0KOPPmo49jc1NVUTJ07Url275OPjU7k3UUJ6errGjRunDRs2GPI7dOigtWvXqnXr1uXWX716tU2guEGDBnrllVc0ZcoU+fv7l1rParXqyy+/1L333qtz584V57/++usaNGiQRo8e7dD7OHPmjD777DNJUkBAgF5++WXdf//9pX5eL730UoVHZNcl9evX16RJkzRu3Dj179/frv9D33//vR5++GHt27fPkDd37lzNmDHDqXHMmzev+HPv06eP5s2bp+7du9uUmz59uuLj43XzzTfrwIEDxfkWi0WzZs3SunXrKuzLarXqzjvvtDk+u1mzZvrggw80atQomzqPPfaYTp06pTvvvLP4e/eZZ55x5C0CAAAAqGE4hhoAAAAA4BLnz5/XnDlzbPIHDBigoKAgQ158fLyeffZZm7IvvfSS5s+fX2qguMjtt9+uTZs2qV69eob8vXv36u2333Zy9KVLSEjQgAEDbALFgwYN0vfff19hoPjcuXO6/fbbDXlRUVE6dOiQ7r777jIDxdLfu0pvvPFG7du3Ty1atDC89uSTT8pqtTr0XoruJg4KCtK6dev08MMPlxsULW9sdUnz5s2VmJiod955R1dddZXdDxv0799fO3bs0PDhww35b7/9ttNHhRcFim+44QZFR0eXGigu0qpVK23cuFFNmzY15G/cuNGue7wXLVqkrVu3GvLCwsK0ffv2UgPFRSIjI7Vu3TrddNNNkqTs7OwK+wIAAABQc7GzGAAAAABQaefOndPYsWN19uxZm9fuuusum7x3331X+fn5hrybbrpJTz31lF399ejRQ/Pnz9eECRMM+W+//bYeeeQReXl5OTD60h08eFAjR44sPhK4yMSJE7VgwQL5+vpW2MZbb71lOOI3MDBQ69atswn+lqdly5ZaunSpBgwYUJwXGxurr7/+WmPGjLG7nSKvvPKKBg0a5HC9qjJixAi7PsuKJCYmOlWvMn37+/tr4cKFat26dfGd27///rs2bNigESNGONVmq1attHjxYruC9Q0bNtSsWbN0//33F+dZLBZt3LhR//jHP8qt+9Zbb9nkLV682K6j3L28vLR48WJddtllOnnyZIXlAQAAANRc7CwGAAAAADjtt99+0yuvvKIrrrhCu3fvtnm9V69eGj9+vCEvJydHH3/8sSHP19fX4V3B48eP1+DBgw15p0+f1ldffeVQO6VZt26dBg4caBMofvLJJ7V48WK7AowZGRmaN2+eIe+xxx5TmzZtHB7PlVdeqWuuucaQt3r1aofbadu2raZPn+5wvap09OhRHTx4sNJfJR8+qC5NmjSx2V28c+dOp9ubNWtWuTvrS5owYYLNwxH79+8vt87evXsNx1dL0o033mjzf6w8AQEBTt+dDQAAAKDmYGcxAAAAAKBU+/btU9euXUt9LTs7W+fPn9dff/1VZv3w8HAtX75cJpPJkL93716be1JHjx6t8PBwh8d4//33Kzo62pC3cePG4iNynTF//nxNnz7dcJSwt7e35s2bV+ou6bJs2rTJ5n1WtNuzPCNHjtTmzZuL09u2bXO4jdtvv93m3wOVFxUVZUjHxMQ41U5QUJAmTpzoUJ0GDRooKipKx44dK8775Zdfyq3z3Xff2eQ58n+7yJgxYxQWFlbqiQIAAAAAageCxQAAAACAUmVmZurgwYNO1e3atauWLl2qyMhIm9d27dplkzdu3Din+hkzZoz8/PyUm5tbbvv2sFqt+te//qVXXnnFkB8SEqIvvvjCZvdoRUoGc8PDw0v9POxV8n7k+Ph4paSkqH79+na3MWTIEKf79yQJCQn6/vvvdejQIf36669KTU1VWlqasrOzS70rumSw1J47g0vTt29fp47Fbtu2rSFYfPHR56UpGcwODg7Wtdde63C/Xl5eGj16tObPn+9wXQAAAAA1A8FiAAAAAIDLREREaPr06fp//+//ycfHp9QyJY+/laSePXs61Z+vr686d+6svXv3FucdOXJEubm58vPzs7ud3NxcTZ06VcuWLTPkh4eH69tvv1WXLl0cHlvJoHVycnKZO7XtkZGRYZN3/vx5u4PFJpOpUv1XlZMnT6pVq1aVbqdVq1Y6depUpdpYsWKF5s2bp23btslisTjdTskd5fYquUPZXiWPra4oWFzymOouXbo4fc93jx49nKoHAAAAoGYgWAwAAAAAcJifn5/q1aun+vXrq3379urRo4cGDRqkIUOGyGw2l1v3/PnzhrSvr6/atm3r9Fg6depkCBZbLBYlJycrLCzM7jaGDh1qc8/sFVdcobVr16pFixZOjevMmTOGdFZWltM7tcty4cIFtWvXzq6ywcHBCgwMdGn/dUViYqImT56sLVu2uKS9ioK1ZWnYsKFT9Uo+mFHe/c1Wq9Xme/DSSy91ql9J6tChg9N1AQAAALgfwWIAAAAAQKmuuuoqm/uAXSE5OdmQLrkr0lENGjSwyfvrr78cChaXDBRHRERo586dqlevntPjKu8+Z1fJzs62u2xl3ktdlpCQoCFDhiguLs5lbV5837UjytqN70ppaWk2u6Yr8z1Y2e9fAAAAAO5V/uPeAAAAAAC4WHp6uiEdFBRUqfZKq1+yj4p4exufpT59+rSef/55p8eUlZVluEe5Jij5HvG3adOmlRoo7tq1q5588kmtXr1aBw4c0NmzZ5WWlqa8vDxZrVbD16xZs9wwcueU9r1Rme/Byn7/AgAAAHAv/lIEAAAAAFSrkJAQQzozM7NS7ZVWv2QfFVm5cqVuvfVWQ4D3jTfeUEZGhv7zn/9UeLR2Sf7+/jKbzYYdnGPHjtXq1asdagdV69tvv9WmTZsMeU2aNNGnn36q6667zu52HNnh7W6lfW9U5nuwst+/AAAAANyLncUAAAAAgGpV8thoZ+93LZKSkmKT5+jdr6NHj9Y333xjc6fv/PnzNWXKFIePFTabzapfv74h7+TJkw61gar3+eefG9JeXl5as2aNQ4FiqXqOHHeVevXq2Tz8UJnvwcp+/wIAAABwL4LFAAAAAIBq1bhxY0M6Ly9PJ06ccLq92NhYQ9psNjscLJakoUOHasOGDTZ3sC5ZskS33HKL8vLyHGqvadOmhvSvv/5a446m9nQbN240pIcPH67evXs73M5vv/3mqiFVOZPJpEsuucSQ98svvzjd3rFjxyo7JAAAAABuRLAYAAAAAFCtunfvbpO3b98+p9rKy8vToUOHDHmXX365fH19nWrvyiuv1JYtW2yCaV9++aVGjRqlrKwsu9sqGXTMzs5WdHS0U+OC6+Xl5encuXOGvIEDBzrcTmFhofbs2eOqYVWLHj16GNIHDx5UYWGhU23t37/fFUMCAAAA4CYEiwEAAAAA1ap///42eStWrHCqrTVr1ignJ6fC9h3RvXt3bdu2Tc2aNTPkb9iwQcOHD1daWppd7QwbNswmb/HixZUaG1zn/PnzNnnO7Ehfu3atMjIyXDGkatO3b19DOiMjw2aXtT0KCwv19ddfu2pYAAAAANyAYDEAAAAAoFr17t3b5j7fNWvWKDEx0eG25s2bZ5N37bXXOju0Yp06ddKOHTvUqlUrQ/6OHTs0dOhQu+6ove666+Tv72/I+/zzzyt15C9cJygoyCavtAByRd544w1XDKdaXX/99TZ5H374ocPtrFmzRmfPnnXFkAAAAAC4CcFiAAAAAEC18vPz05133mnIy83N1SOPPOJQOytWrNCWLVsMeZGRkRo9enRlhyhJatu2rXbs2KFLL73UkL93714NHjxYf/zxR7n1L7nkEt19992GvMLCQk2cOFHZ2dkuGSOcFxoaqsDAQEPehg0bHGrjo48+qpVHi/fq1cvmOPhVq1Zp69atdreRk5OjGTNmuHpoAAAAAKoZwWIAAAAAQLV74IEH5OPjY8hbvny5Xn31Vbvq//jjjzYBZ0l6+OGH5eXl5ZIxSlKLFi20fft2de7c2ZD/888/a+DAgfr999/Lrf/kk0/a7GA9cOCAbrzxRiUnJzs1plOnTunBBx/U4cOHnaqP/zNgwABDOjo6WmvXrrWr7rp16/TQQw9VxbCqxcMPP2yTN2nSJP32228V1i0sLNSUKVN04sSJqhgaAAAAgGpEsBgAAAAAUO0iIyP10ksv2eTPnDlT06dPL/de4E8//VTXXHONUlNTDfm9e/fWgw8+6PKxNmnSRNHR0erTp48hPy4uTgMHDiw3YBYWFqaFCxfKZDIZ8tevX68ePXpo8eLFKigoqHAMmZmZWrZsmW666Sa1a9dO7777rs1dzXDcrbfeapM3fvz4cu/QzsnJ0QsvvKAxY8YU7xCvV69elY2xqkyePFlDhgwx5CUmJmrQoEH69ttvy6x3+vRpjRw5UsuXL5ckBQQEVOk4AQAAAFQtb3cPAAAAAADgmWbMmKGNGzdq06ZNhvx58+ZpyZIlGj16tHr16qWmTZsqLS1Nx48f16pVqxQXF2fTVmhoqJYsWSJv76r5M7dBgwbatGmTRo0aZTh2+NSpUxo4cKA2btyoyy67rNS6N998s1544QU988wzhvyTJ09q8uTJmjFjhgYPHqyePXuqcePGCgoKUlpamlJSUnT8+HHt27dPhw4dUm5ubpW8N082ZcoUvfzyy4aAf0ZGhm655RZ1795do0aNUrt27eTj46Nz585p//79+uabb3ThwoXi8p06ddKoUaM0e/Zsd7wFp5lMJn300Ufq0aOHUlJSivMTEhJ0ww03qGvXrho9erRat24tPz8/JSUladu2bVq/fr3h/+ILL7ygxx9/3A3vAAAAAIArECwGAAAAALiF2WzWV199pfHjx+ubb74xvJaamqpFixZp0aJFFbbTvHlzrV27Vu3atauqoUqSgoOD9d133+nmm282HFWclJSkwYMHa/369Tb3wBZ5+umn1bx5c02fPt1mR/Aff/yhZcuWadmyZVU6ftjy8fHR8uXLNWDAAGVlZRleO3DggA4cOFBu/fDwcH377bf65JNPqnCUVadNmzbasGGDhg0bZrNT/6efftJPP/1Ubv2ZM2dq3LhxBIsBAACAWoxjqAEAAAAAbhMYGKgvv/xSTz/9tFPH2Q4fPly7d+9Wly5dqmB0tvz9/fXll19q3Lhxhvzz58/r6quv1q5du8qse8cdd2j37t26+uqrKz2GCRMmKCIiolLt4G/dunXT+vXr1axZM4fq9e3bVzExMWrVqlXVDKya9OrVS1u2bClzZ3xpvLy89OKLL9a63dQAAAAAbBEsBgAAAAC4VVHgKS4uTg899FCFwbfg4GCNGTNGW7Zs0XfffVftQVMfHx8tXbpU06ZNM+SnpqbquuuuszlW+2Jdu3bV5s2bFRMToylTpqhFixZ29dmsWTNNmjRJCxcu1NmzZ/X555+rSZMmlXkbuMiAAQN08OBBzZw5U/Xr1y+3bM+ePbVw4ULt2rXL7n+/mq579+768ccfNWfOHLVv377Mcj4+Prrxxhu1d+9ePf3009U4QgAAAABVxWS1Wq3uHgQAAAAAABf75ZdfdOTIEf3555+6cOGCgoKC1LhxY0VERKh3797y9fV19xBd5vjx44qNjdWFCxd04cIF5eXlKTg4WKGhoWrdurU6dOhAYLgaFRYWat++fTpy5IjOnz+vgoIChYSEqHXr1urZs6fCwsLcPcQq9/PPPys2NlaJiYnKzs5WaGiooqKi1LdvX9WrV8/dwwMAAADgQgSLAQAAAAAAAAAAAMADcQw1AAAAAAAAAAAAAHgggsUAAAAAAAAAAAAA4IEIFgMAAAAAAAAAAACAByJYDAAAAAAAAAAAAAAeiGAxAAAAAAAAAAAAAHgggsUAAAAAAAAAAAAA4IEIFgMAAAAAAAAAAACAByJYDAAAAAAAAAAAAAAeiGAxAAAAAAAAAAAAAHgggsUAAAAAAAAAAAAA4IEIFgMAAAAAAAAAAACAByJYDAAAAAAAAAAAAAAeiGAxAAAAAAAAAAAAAHgggsUAAAAAAAAAAAAA4IEIFgMAAAAAAAAAAACAByJYDAAAAAAAAAAAAAAeiGAxAAAAAAAAAAAAAHgggsUAAAAAAAAAAAAA4IEIFgMAAAAAAAAAAACAByJYDAAAAAAAAAAAAAAeiGAxAAAAAAAAAAAAAHgggsUAAAAAAAAAAAAA4IEIFgMAAAAAAAAAAACAByJYDAAAAAAAAAAAAAAeiGAxAAAAAAAAAAAAAHgggsUAAAAAAAAAAAAA4IEIFgMAAAAAAAAAAACAB/r/ACkYr3qpZfqIAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 465, "width": 965 } }, "output_type": "display_data" } ], "source": [ "# Solution\n", "order = ['bad', 'neutral', 'good']\n", "with sns.plotting_context('talk'):\n", " grid = sns.FacetGrid(data=df, height=5, aspect=2)\n", " grid = grid.map(sns.stripplot, 'hand', 'balance', order=order, alpha=0.15, color='gray')\n", " grid.map_dataframe(sns.pointplot, 'hand', 'balance', hue='hand', order=order, hue_order=order, palette='Set1')\n", " grid.set_axis_labels('Poker Hand', 'Final Balance (in Euros)');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Challenge: Worth it?\n", "\n", "Like previous notebooks start by defining a *compact* model and an *augmented* model and then comparing them to see whether adding `hand` to a model reduces enough error to be worth it:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Your code here" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
df_residssrdf_diffss_diffFPr(>F)
0299.07579.9846250.0NaNNaNNaN
1297.05020.5832232.02559.40140275.7025812.699281e-27
\n", "
" ], "text/plain": [ " df_resid ssr df_diff ss_diff F Pr(>F)\n", "0 299.0 7579.984625 0.0 NaN NaN NaN\n", "1 297.0 5020.583223 2.0 2559.401402 75.702581 2.699281e-27" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Solution\n", "# Compact\n", "model_c = ols('balance ~ 1', data=df.to_pandas())\n", "results_c = model_c.fit()\n", "\n", "# Augmented\n", "model_a = ols('balance ~ C(hand)', data=df.to_pandas())\n", "results_a = model_a.fit()\n", "\n", "# Worth it?\n", "anova_lm(results_c, results_a)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Use `anova_lm` with just your augmented model and the argument `type=3` to generate a One-way ANOVA table. How does this compare to model comparison you just did?" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
dfsum_sqmean_sqFPR(>F)
C(hand)2.02559.4014021279.70070175.7025812.699281e-27
Residual297.05020.58322316.904321NaNNaN
\n", "
" ], "text/plain": [ " df sum_sq mean_sq F PR(>F)\n", "C(hand) 2.0 2559.401402 1279.700701 75.702581 2.699281e-27\n", "Residual 297.0 5020.583223 16.904321 NaN NaN" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Solution\n", "anova_lm(results_a, type=3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Interpreting Parameters\n", "\n", "Let's try to understand how the GLM represented the levels of `hand`\n", "\n", "Remember that the default for `C()` is to represent our categorical variable using **treatment/dummy codes** - with the reference level being the *alphabetically* first level in the data.\n", "\n", "Using our helper plottign function we can visualize the **design matrix** for our model and see that it created **2 additional columns** to represent `hand`. In this case:\n", "- Intercept = mean of `hand = 'bad'`\n", "- $\\beta_1$ = difference between `hand = 'good'` and `hand = 'bad'`\n", "- $\\beta_2$ = difference between `hand = 'neutral'` and `hand = 'bad'`" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABOsAAAOpCAYAAABLq6OtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AACoVElEQVR4nOzdd5hV1fk/7OcMvQiCSrWhoigoYuxS7LHELnaxRWNsMSr6S4yiadZojL2BooIKVuy994qAlSLSRASkwwyz3z98ma+HYWCGmTn74Lnv65rrcu+z91rP4Ij68FlrZZIkSQIAAAAASF1R2gUAAAAAAD/TrAMAAACAPKFZBwAAAAB5QrMOAAAAAPKEZh0AAAAA5AnNOgAAAADIE5p1AAAAAJAnNOsAAAAAIE9o1gEAAABAntCsAwAAAIA8oVkHAAAAAHlCsw4AAAAA8oRmHQAAAADkCc06AAAAAMgTmnUAAAAAkCc06wAAAAAgT2jWAQAAAECe0KwDAAAAgDyhWQcAAAAAeUKzDgAAyGsPPvhgZDKZyGQyUadOnRgxYkTaJRWUcePGlf36ZzKZWH/99dMuCWpMvv58z549O1q3bl1WV9++fdMuiRzSrAOogiRJYtddd836F/raa68dP/30U7XGLSkpiW7dumWNu+mmm8bChQtrqHIACsmCBQuiU6dOWf9e6dq1axQXF6/0mIceemjWeC1btozJkyfXYNXLNnfu3Dj33HPLro8//vjo0qXLct85/vjjs2pd1ldRUVE0atQoWrRoERtttFHstNNO0adPn7jsssvi5Zdfjnnz5tX2t0YBWrox9Muvc845p1pjf/HFFxWOfckll9TMN0DOrLbaanHxxReXXV933XXx+eefp1gRuaRZB1AFmUwm7rzzzmjSpEnZvYkTJ1b7P64uv/zy+OSTT8qui4qKYsCAAdGgQYNqjQtAYWrYsGH0798/ior+7z/3hw8fHv/+979XarwhQ4bEQw89lHXv2muvjbZt21arzsr45z//GRMmTIiIiAYNGsTf//73Ghk3SZJYsGBBzJw5M0aPHh1vvfVW3HPPPfHXv/41dt1111hjjTXi4IMPjmHDhkWSJDUyJyzPfffdFyUlJSv9/t13312D1dSuu+66Ky655JKyr3HjxqVdUl465ZRTYsMNN4yIiOLi4jjrrLNSrohc0awDqKIOHTrE5ZdfnnWvf//+8eyzz67UeKNGjYp//OMfWffOOeec2H777Ve6RgDYcccd44wzzsi6969//Ss+++yzKo0zbdq0cuPstddecdxxx1W7xhWZNGlSXHfddWXXJ5xwQrRv377W5434OZ34yCOPxP777x9dunSJ559/PifzUrimTp0azzzzzEq9W1paGvfee28NV1R77rrrrrj00kvLvjTrlq1evXpx/vnnl12/8MIL8eKLL6ZYEblSN+0CAFZFp59+egwdOjReffXVsnunnHJKjBgxIlZbbbVKj7N48eI48cQTY9GiRWX3Nt544xpLDQBQ2C677LJ44oknYsyYMRHxczLjxBNPjHfeeSfq1KlTqTHOPPPMmDp1atl1s2bN4rbbbquVepf297//PebPnx8REXXq1FnpPZs6duy4zBT8woULY8aMGTFz5swYP358vPvuuzFp0qRyz40aNSr23HPPOO200+K///1v1KtXb6XqgBUZOHBg/O53v6vyey+88EJZApVfl+OOOy4uvfTSst+bLrzwwthtt91SroraplkHsBKWLIfdYostyva0GT9+fPTt2zduueWWSo9z7bXXxrvvvlt2vWT5a6NGjWq8ZgAKT+PGjeP222+P3XffvWwp5wcffBBXX311XHDBBSt8/9FHH437778/696VV14Z66yzTq3U+0sTJ06M/v37l13vv//+scEGG6zUWO3atYtTTz21Us+OHz8+7r333rjxxhvLNe5uuummmDBhQgwdOrSgGnbrr7++pcC1aPPNNy9LvD7++OMxc+bMWH311as0xi+XwGYymejcubODWCop33++GzRoEKeeemrZ/nXvvvtuPPfcc7HnnnumXBm1yTJYgJW04YYbltv757bbbouXXnqpUu9/8803WZvGRkT86U9/ih133LHGagSAXXfdNU4++eSse5dcckl8+eWXy31vxowZ8cc//jHr3i677BKnnHJKjde4LNdff33WgRi5mnfdddeNv/71rzFu3Ljo169f1r5/ET83U/785z/npBYKwy+XlC9cuDAeeOCBKr0/a9aseOSRR8qud95551hvvfVqrD7Sd9JJJ2Wloa+55poUqyEXNOsAquHMM8+M7t27l10nSRK///3vY+7cuct9L0mSOOmkk8qW9kREbLTRRvGvf/2r1moFoHBdddVVWWm4BQsWxIknnhilpaUVvvOnP/0ppkyZUnbduHHjuOOOOyKTydRqrRER8+fPj1tvvbXseu211855iqRevXpxySWXxBNPPFHuwKcbb7zRHnbUmIMOOihrG5WqHhTx4IMPZv03ZS72kyS32rVrF3vvvXfZ9bPPPutk2F85zTqAaigqKor+/ftnLVsdO3Zs/L//9/+W+96NN94Yr732Wtl1JpMpNw4A1JRmzZplNb8iIt566624/vrrl/n8k08+Gffcc0/Wvcsuu2yll6FW1cMPPxwzZ84suz7kkEPKJdxyZe+9915miuWcc87J66VzrDoaN24cvXv3Lrt+++234+uvv670+79s7jVp0iQOOeSQGq2P/PDLn5GIiAEDBqRUCblgzzqAaurYsWP885//jHPPPbfs3o033hi9e/eOnj17lnv+22+/jb/85S9Z984888zo0aNHrdcKQOHae++9o0+fPjFw4MCyexdeeGHst99+WU24n376Kf7whz9kvbvTTjuVOxG2Nv2yxoiIQw89NGdzL8tpp50Ww4YNyzqpc8SIEfHCCy/EHnvssVJjjhs3Lj7++OOYOnVq/Pjjj7HaaqtFq1atYsstt4xNNtmk2jUvWLAgRowYEaNGjYrp06fHnDlzon79+tG0adNo3759dOjQITbddNOc7r03e/bseO2112LChAkxbdq0aNKkSWy44Yax4447xhprrFHr83/55Zfx/vvvx6RJkyJJklhzzTVjs802i2233bbSB67Ulj59+mTt0Thw4MD4xz/+scL3Ro8eHW+88UbZ9cEHHxxNmzatkZpmz54do0aNii+//DJ+/PHHmDdvXqy22mrRsmXL2GSTTaJbt25Rt25+txQmTZoU7733XowbNy7mzJkTjRo1im222WaZ/42e7w444ICoX79+2cF09913X1x22WWp/+xSSxIAqm3x4sXJDjvskERE2ddGG22UzJ07t9yze+yxR9ZzG2ywQTJnzpwUqgag0EyfPj1p06ZN1r+Hdt1116S0tLTsmRNPPDHr84YNGyZffvllzmqcMWNGUqdOnbL5mzVrlpSUlFRpjOOOOy7re+jVq1e163rhhReyxoyI5JhjjqnSGD/99FNyySWXJBtvvHG5sX751aFDh+Tyyy9P5s2bV+U6hw8fnhx99NFJkyZNljtHRCSNGjVKevbsmVxzzTXJ9OnTKxxz7NixWe+tt956Vapp9OjRSe/evZOGDRsus446deokBxxwQDJixIiyd3r16pX1zMsvv7zcOZb3/JAhQ5Itttiiwl+Hli1bJv/6179W6te7qpb+tYyIZPLkyUlpaWnSoUOHrF/jX/5zWZGLLrooa6wXXnghSZIk2XfffbPu9+vXr1L1vfvuu0nfvn2TrbbaKikqKlruz0+TJk2So446Khk+fHilxl7671FVvgYMGFBuvH79+lX4PT755JPJjjvuuMyxDjjggKxxqvLzfe6552Y926BBg+TDDz+s1Pe/xAEHHJA1RqtWrZJJkyZV6t2ePXtmvfv6669XaW5WHZbBAtSAJae4NmzYsOzeN998ExdeeGHWc3fccUfWHjdLTpVt0qRJzmoFoHC1aNEibrrppqx7L730Utx2220REfHcc89lpXsiIi699NLYeOONc1bjc889F4sXLy677tGjR14kR3bbbbfo1KlT1r2nn356ufv+/dI999wTG2ywQVxyySXx1VdfLffZJVtqbLLJJvHhhx9WusZ//OMf0a1bt7jvvvtWuH9uxM97A7722mtxzjnnxKuvvlrpearizjvvjC5dusSQIUNiwYIFy3xm8eLF8dhjj8VWW21Vo0v75s+fH0ceeWT07t07hg8fXuFz06dPjwsvvDB69eoVP/74Y43NXxWZTCaOPfbYsutvv/12hX9PkiTJWq6+zjrrxC677LLSNRxxxBGx3XbbxVVXXRUfffTRCn+2586dG4MGDYquXbvGRRddlBfLwouLi+P3v/997LvvvvHWW2/V+PiXX3551mFwCxcujN69e8dPP/1UqfevueaaeOyxx8qui4qK4t577422bdtW6v2l//4++eSTlXqPVY9mHUAN2WSTTeLvf/971r3//e9/Zf+hMHHixDjvvPOyPj/ttNNi5513zlWJABAHHXRQub2Pzj///Bg1alS5U2O32WabrG0ecuG5557Luv7lQU5pW/rf2T/++GN88803y30nSZL429/+Fn369FlmI6hOnTrRsmXLcodYRER899130atXr3jxxRdXWNtll10WF198cVajc4m6detGixYtokWLFjltfN56661x8sknZx1+sESdOnWiRYsWWQeWLFq0KE466aQYMmRItecuKSmJgw8+OO6///6s+w0aNIjVV199me+8//77ccghh6TWdOrTp0/W9YoOmnj11Vdj3LhxZdfHHntstfZ2/OU+kb+UyWSiWbNmFf78JEkS//znP8stn0/DySefHHfeeWfWvWX9rK2sunXrxgMPPJC1bHvMmDFx4oknrvDdd955p9y+1hdeeGGVltIv/fvhs88+W+l3WbVo1gHUoHPOOSe22267suvS0tI48cQTY8GCBXHqqadm/anb+uuvH5dffnkaZQJQ4G644YZYc801y65nzZoV2267bYwfP77sXv369aN///45T7W9++67WddbbLFFTudfnu23377cvU8//XS571x99dXlTnvfYIMN4pprrolRo0ZFcXFx/Pjjj7FgwYIYO3ZsXHPNNdGmTZuyZ+fOnRuHH354TJgwocI5vv3227jkkkuy7m200UZx0003xTfffBMLFiyI6dOnx/Tp06OkpCQmTJgQzzzzTFxwwQWx2WabVeI7r7oPPvggTj/99KzGV7169eLPf/5zfPLJJ7Fo0aKYPn16LFq0KN5444047rjjIpPJRJIkcfLJJ2edRLwy+vXrV7bHYKdOnaJ///4xadKkWLBgQcyYMSNmz54dDz74YLnU6Kuvvhp33XVXteZeWRtuuGFWM2bo0KExb968Cp9fus6lm30ra9NNN43zzjsvhg0bFmPHjo3FixfHTz/9VPb36/PPP4/rrrsuOnbsmPXe7bffHoMGDapw3HPOOSduvvnmuPnmm8u9++c//7nss2V97bDDDiuse8iQIWUNzubNm8ff//73sn/Gpk+fHgsXLoz33nuv2ntgrr322nHPPfdkNf8efvjh+N///lfhO9OnT4/DDz88iouLy+7tsssu0a9fvyrN3bVr16zr4cOHL/dnhFVYiktwAX6VRo0alTRo0CBrP4ntt98+6zqTySQvvvhi2qUCUMDuu+++5e4Rdemll+a8pnnz5mXtVxcRyfjx46s8Tm3sWZckSfLRRx+V+3W66qqrKnz+7bffTurWrZv1/Omnn54sWLBgufP88MMPyU477ZT13r777lvh85dffnm5/+6oyn64r7/+ejJq1KgKP6/qnnUlJSVJly5dst5p0aJF8sEHHyz3vccffzypX7/+Mn8eq7pn3ZKvU045JSkuLq7wvRkzZiRdu3bNeqdbt27Lnas6Ktqzbonbb78967N77rlnmePMmTMnadq0adbf819amT3r/ve//yVvvfVWpb+XBQsWJCeffHLWPBtuuGGyePHiFb5b1T0Jl2XpPeuWfHXp0qXSe8AlycrvyfiXv/wl67369esn7733XrnnSktLy/39aN26ddbf96pYet/RN954Y6XGIb9J1gHUsE033bTcn26/8847Wdd/+MMfYtddd81hVQCQ7aijjor9999/mZ917dq13MnlufD1119nLeOsV69etG/fPud1VKRFixbl7i0vAda3b98oKSkpu/7DH/4QN9xwwzKXvP7SmmuuGY8//nist956ZfeefPLJ+Oyzz5b5/EcffZR1fckll1RpP9zu3bvHpptuWunnV+TJJ5+MESNGZN176KGH4je/+c1y39tvv/3ixhtvrLE69t9//7j11luXe2Lp6quvHnfccUfWvY8//jhGjx5dY3VUxWGHHRaNGjUqu65oKexDDz0Uc+bMKbs+7rjjqj33mWeeWakE2xINGjSIW2+9NWt5+OjRo7NOTc61Fi1axHPPPVfpPeCq4x//+Ef06tWr7HrRokVx2GGHlVtOfOWVV2btLVdUVBT33XdfVoK2KtZff/2s688//3ylxiG/adYB1IK+ffvGNttss8zP1l133bjyyitzXBEAlPfHP/5xmff79+8f9erVy3E1kbX/VkRE27Ztq7UHV01b1l5nFR3k8Pbbb8cbb7xRdt2+ffv4z3/+U+m5WrZsWe4P/26//fZlPjtjxoys6w4dOlR6ntqw5MCSJQ477LBKH3xw0kknxdZbb13tGurVq1fpxt/WW28dW221Vda9Dz74oNo1rIxmzZrFgQceWHb90ksvLXMJ9C+beA0aNIjDDz88F+WVk8lk4vzzz8+699JLL6VSS0TERRddlJNGXcTPe+ENHjw4WrVqVXZv3LhxccIJJ5Rdv/HGG/G3v/0t672LL744dtttt5Wed+211866Xvr3TX4d8ufffAC/InXq1IkBAwZE/fr1y312xx13xGqrrZZCVQDwf4qLi+OCCy5Y5mfLOzmzNk2aNCnr+pf/E5wPmjZtWu7eokWLlvns0nt3nXjiiVU+/f2QQw7JSoVVdDro0k3EtBpNET8f7LB0s+aUU06p9PuZTKZKz1dk3333LdfUWJ6ddtop6/qLL76odg0r65d7z5WWlsa9996b9fn48ePj5ZdfLrveb7/9lpn6zJWl93Jcet/JXKlXr16NJAyrom3btnHfffdl/aHCo48+Gtdee2388MMPccQRR2Sla3fddde46KKLqjXn0r8vLv37Jr8OFeeBAaiWzp07xyGHHBKDBw8uu7fDDjtU6cQnAKgt//73vytsyp1zzjmx9957R+vWrXNa0y+X9UVE1nLAfDB79uxy9ypa0rp0Y+23v/1tledbbbXVomPHjmXL3EaMGBFz5swp1zTcdttts05Q/fOf/xzt2rVL5cT5Tz/9NOv010aNGlW5jr333rvadfxyeWJlbLDBBlnXFZ2Mmgt77LFHtG3bNiZPnhwRP6fofnmK6MCBA7MO7qjNBtW8efNi5MiRMXny5Jg9e3bMnTs3SktLl/vOLw+qyaWuXbtGy5Ytcz7v7rvvHhdddFFceumlZfcuuOCCGDRoUEycOLHsXps2bWLQoEHVTgs3btw463rp3zf5ddCsA6hFSyfrlpW0A4BcGzFiRPz73/+u8PMZM2bE6aefHkOHDs1hVZHV5ImIaNiwYU7nX5Ffnuq+xNL/4xzx89LYpfdse/PNNyvcc255Fi5cWPbXpaWl8f3335dr1h177LHRr1+/slMhp06dGrvssktsu+220bt379hjjz1i8803z8mS4qUTaV26dKnyicJrr712rLnmmjFt2rSVrmPpfb1WZOlVD7NmzVrpuaurTp06ccwxx8RVV10VET//mr7//vtlW6wMHDiw7NlWrVrFXnvtVaPzT5w4MQYMGBAPPvhgjBw5coXNuaWl1ejcfPPNU5k34uelrW+88Ua8+OKLEfFzcvmXCdeioqIYNGhQjfwByNJ/iOE02F8nzToAACggixcvjhNOOCFr+WbHjh3jlFNOib59+5bde+ihh+KRRx6Jgw46KGe1Lb1P3i+Xj+WD6dOnl7u3rP2xpk6dmpV8iogKlxyvTA0bbrhh1r3WrVvHbbfdFn369MlqrLz33nvx3nvvRcTPS2W33Xbb6NmzZ+yyyy6x/fbb10rzbun981Z2/7A2bdpUq1nXvHnzKj2/dEPxlwedpOG4444ra9ZF/Jyu22abbeLNN9+Mr7/+uuz+0UcfvdwDNKoiSZK4/PLL45///Ge1GkDLSqDmQhqpuiWWHBrRrVu3skTkL11yySWV3rdxRYqLi7Ou09hflNpnzzoAACggV199dVbiI5PJxJ133hnnnntudO/ePevZ008/PacpmaVTaksn7dL26aeflrv3yxNbl1hWU6+mVNREOfroo+Opp54q18hbYubMmfHcc8/F3/72t9hpp51inXXWif/3//5fTJ06tUbrWzp9uLL79DZr1qxadWQymWq9n7bOnTtnnZ57//33x6JFi8qdDluTS2BPPvnk+Otf/1rtpNbSjepcWdaekrnUunXrOPPMM8vd33LLLePCCy+ssXmW/vtT1b0wWTVo1gEAQIH48ssvy50wetppp0WPHj0ik8nEHXfckbUH2+TJk+Pcc8/NWX1rrLFG1vWylp2maVkb52+55Zbl7lV06ERNWF4j5Le//W18/vnn8eCDD8ZBBx20zNNrl5g0aVJcccUVscEGG8Rdd91VY/UtvYffyv5a1Oav4aril424H3/8MYYOHRoPPvhg2b2uXbtG165da2SugQMHxp133pl1r2nTpnHiiSfG3XffHe+9915MnDgxZs+eHcXFxZEkSdYXEaNHj47LL7+83P3PPvss3nzzzRqbZ+kl2mkmCqk9mnUAAFAASktL46STTooFCxaU3VtvvfWy/udyk002iYsvvjjrvf79+5ftw1Tblk6p/XJz9nzwyxM4I37eL2xZSbal/+e5fv36sXjx4nINjpX5WtFhDfXq1YvevXvHww8/HD/++GN8/PHHcf3118fhhx++zCWpc+fOjRNOOCH69+9f9V+QZVi6QbiyDdd8a9Sm4cgjj8xa4njWWWdl/brUVKouSZJyJ5TuuuuuMW7cuLjzzjujT58+sc0220S7du2iadOm5ZbdOuDg570lDzvssGXudbh48eI48sgj44cffqiRuZb+fbGq+zOyatCsAwCAAvC///2vXLrjtttuK7d07Pzzz49u3bpl3Tv55JNzson50idyzpo1K9WN/n/p+eefj6+++irr3j777LPM5ZZrrbVW1vWiRYtiwoQJtVrfshQVFcWWW24ZZ5xxRtx///0xceLE+OCDD+KPf/xjuX2u/vznP9fI8t02bdpkXX/55ZdVHmPhwoUxbty4ateyqltzzTVjn332Kbv+8ccfy/66bt26cdRRR9XIPB9++GHWCa6rr756DB06tFzStSLV2Vvw1+Kcc86Jjz76qOy6SZMmWYdJTJw4MY499tgaSSEu/XvJ0r9v8uugWQcAAL9yY8aMKbdn0gknnBB77rlnuWfr1q0bd955Z1Z6ZuzYsfG3v/2t1uts165dtGrVKuve559/XuvzVsbVV19d7t7xxx+/zGdbtmwZ6667bta91157rTbKqpJMJhO/+c1v4qabbopXXnklq2E3a9asGDZsWLXnWHJi6RLffvttTJkypUpjfPTRR+U20S9UFaXnfvvb39bIyaIREcOHD8+63nfffaNFixaVfv/999+vkTpWVUOGDImbbrop695NN90UgwcPzjrE5dlnn13mMtmqWLRoUXzzzTdZ95b+wxV+HTTrAADgVyxJkvj973+flYxr27ZtXHPNNRW+061btzjvvPOy7l133XXL3LOtpv1yU/2I8o2ENNx4443x3HPPZd3baqutolevXhW+s/vuu2dd/3KvsXyw4447xsEHH5x1ryZ+rVu3bh0dOnTIunf//fdXaYxBgwZVu45fi9/97nfLTLjV5MESSx8ysnSjeUVWpsm79FLatE/fXVmjR4+O3//+91n3TjjhhOjTp0/ssssu5bYVuOiii+L1119f6fk+//zzrEb2WmuttcxDblj1adYBAMCv2K233lpur7Wbb755uYcPRET069cvNtlkk7LrJXve1fbG/0s3wH55cm0annnmmXKHbGQymeU2OyMiDj300KzrYcOG5V0Caemm2ty5c2tk3KWXZ15zzTWVHvu7776r0QMvVnX16tWLSy+9NA4//PCyr6OOOir233//Gpujfv36WddVOQH6u+++iwceeKDKcy59SnC+LHevioULF0bv3r2zau/SpUvccMMNZdcXXXRRVuN+yf51K7t0+MMPP8y67tmz50qNQ/7TrAMAgF+p7777Ls4///yse4cffngccMABK3y3YcOGcccdd2TtyTZy5Mj497//XeN1/tLee++ddb10ozFXiouL49JLL4199903Fi5cmPXZueeeu9xUXcTP38fSS0KPOuqorH3Hqqqi/a5KSkpWarwvvvgi63rp/eZW1imnnBJ16tQpu/7uu+/i9NNPX+F+XQsWLIjjjjvOgQVLOf300+P+++8v+7rvvvvKnbpbHWuvvXbW9bPPPluppNvixYujT58+K9XAX3oJb74sd6+Ks88+Oz7++OOy6yZNmsSDDz4YjRs3LrtXVFQU9957b9Y/W9XZv27p3w9/uachvy6adQAA8Ct1yimnxOzZs8uu11xzzbj++usr/X737t3jtNNOy7p32WWXxciRI2usxqVtscUWWcu6vv766/juu+9qbb6lfffdd3HZZZfF+uuvH5dcckmUlpZmfX7YYYdVet+pq6++Omu53zfffBPdu3ev0nLTJEni5ZdfjgMOOCAeffTRZT6z+eabxz//+c9yyxmX56mnniq3fHGXXXap9PvLs+6665ZbRn333XfH4YcfXmGNo0ePjr322qusGdGwYcMaqYUV69WrV1ZTfsyYMeVOh13a3Llz45BDDolXXnllpeZcep+1gQMH1liyMxcefPDBuOWWW7Lu3XzzzbHpppuWe7Z169YxePDgrAb2M888E1dccUWV5/1ls66oqEiz7les7oofAQAAVjV33XVXPPPMM1n3/ve//5U7qXRFLr/88hg2bFjZaZGLFi2Kk046Kd56662szdNr0lFHHRWXXXZZ2fVjjz0WZ5xxxkqPN2nSpHL/Yx3x8zK2mTNnxsyZM+O7776Ld955JyZOnFjhOOedd15cfvnlWf/TvTw9e/aMa665Js4666yye1988UVstdVWcdBBB8VRRx0VO+20U9ahGsXFxTFmzJj49NNP47XXXotHH320rKZjjz12mfNMnjw5LrroorjkkkuiZ8+esd9++8XWW28dm2++edZy57lz58aHH34Y99xzTwwYMCArPdWtW7caXVJ36aWXxtNPP53VmBwyZEg88cQTsddee8WWW24ZLVq0iGnTpsU777wTL7/8ctleXHvvvXfMmzcvXn311bJ3l3XqLjWjdevWceCBB8YjjzxSdm9JU/68886L7bffvuwwkm+//TYee+yxuPLKK8t+Lnv27FnlA1T22WefKCoqKmuGf/nll9GpU6c44IADYsMNN4xGjRplPb/LLrtkLctP09dff11un7qTTjqpwn8+IyJ23nnn6NevX9YedhdddFF07949unfvXql533vvvazfn3bfffcaS8OShxIAas1xxx2XRETZV69evdIuCYACMHny5KRFixZZ/w7ab7/9Vnq8p59+OmusiEiuueaaGqw42+eff16tf38u/e/f6n517do1efXVV1f6+7n88suTOnXqVDh+vXr1kjXWWCNp3LjxcusYMmTIMsdv3rz5csdec801k2bNmlX4TIsWLZIRI0ZUWP/YsWOznl9vvfUq9X1///33SefOnav0a7355psn06dPT3r27Jl1/5133lnuXL169cp6/uWXX65UjUsMGDAg6/3jjjuuSu9X1tK/lhGRTJ48ucbn2XfffbPm6Nev33Kf//rrr5PVV199mX9P6tatm6yxxhpJ/fr1y33Wvn375Lvvvit3vzKOP/74Sv9cDBgwoNz7/fr1q9L3WJGq/HwvWLAg2XLLLbOe79KlSzJv3rwVzrN48eJkjz32yHp37bXXTn744YdK1dm3b9+sd++9997KfousgiyDBQCAX5k//vGPMWPGjLLr5s2bLzNZVll77bVXudTI3/72txg7duxKj7k8nTp1ip133rns+vXXXy9L9uVKo0aN4tBDD42nnnoqPvnkk2qlzi644IJ45plnyh3osERxcXH8+OOPWSf2Lm2ttdaK9u3bL/Oz5aXOiouLY9q0aRVu4N+lS5d48803o3Pnzsv5DlZOq1at4vXXX4+TTjqpUsm4ww47LF5//fVo0aJFuXpXdCAK1bPRRhvFY489tsyTZ0tKSuLHH38stzddp06d4pVXXim3511l3XDDDZXaPzOf/OlPf4pPPvmk7LpJkyYxZMiQcknAZVmyf13btm3L7k2YMCH69Omzwv3rSktLsw7yWGutteKQQw6p+jfAKkOzDgAAfkXuv//+cnub/ec//4l27dpVa9z//ve/WZvCz5s3L04++eRqjbk8vzyBtbS0NO68884aHT+TyUSDBg2iefPmscEGG8SOO+4Yxx57bFx22WXx8ssvx/Tp02PIkCHlDrxYWbvvvnt89dVXcffdd0f37t3LlhUuz3rrrRcnnnhiPPbYYzFp0qTYYYcdlvncF198EXfeeWf07t27Un+fM5lM7LTTTnHHHXfEJ598ssx9tmpKixYt4o477ohPP/00/vKXv8RvfvObaN26ddStWzeaNWsWW265ZZx55pnxwQcfxAMPPBDNmzePiCi3t12LFi1qrUZ+1rNnz/j444/j+OOPX+7PZ7t27eJf//pXfPzxx7HRRhut9HxNmjSJRx99NF5//fU444wzYocddohWrVpVqvGVhgceeCBuvfXWrHu33HJLdOrUqdJjtGrVKgYNGpS1lP7pp59e4f51Tz/9dNYfWJx22mn2dfyVyyQrauECAADkWJIk0aVLlxg1alRERLRv3z7Gjh1bqSbXqmDevHnx7rvvxoQJE+LHH3+MOXPmRJMmTaJ58+bRoUOH2HTTTVd6P6oJEybEV199FWPHjo2ZM2fGvHnzolGjRtG8efPYaKONomvXrtGyZcsa/o5qzuTJk7OajmussUZMmzYtxYoKz+zZs+PNN9+M0aNHx8yZM6NevXrRpk2b2GKLLaJr1672EMyx/fbbL5544omIiGjcuHGMHTs2a69Lfn0cMAEAAOSdTCYTf//73+PQQw+NiIiJEyfGoEGD4rjjjku5sprRuHHjGjt9dWlrr732Si9NzAdLJ0O32WabdAopYKuttlrstddeaZdBRIwcOTKefPLJsuuzzjpLo64AWAYLAADkpUMOOSS23nrrsusrrrhihXs7sWqbP39+XHPNNVn3dt9995SqgfRdfvnlZb/vNW/ePM4///yUKyIXNOsAAIC89cvGzeeffx73339/itVQFUsfSLAiixcvjpNPPjm++eabsnsNGzaM448/voYrg1XDF198EYMHDy677tevn/0bC4RmHQAAkLd69OiRdRLthRdeWOUmEOn4y1/+Eoccckg8//zzUVxcvNxnP/zww9htt93ivvvuy7p/6qmnLvOEUigEF1xwQSxevDgiIjp37hxnnnlmyhWRK/asAwAA8tpVV10VG2ywQdn1uHHjYuONN06xIipj8eLF8fDDD8fDDz8cq6++emy//fbRpUuXaNWqVTRu3DhmzZoV48ePjzfffDM+++yzcu937tw5LrvsshQqh/TNmTMnttpqq+jWrVtE/HzIRN26WjiFwmmwAAAA1Lizzz47rrvuupV6d8stt4zHH3881llnnRquCiD/WQYLAABAjdtggw2iQYMGVXpntdVWiwsuuCDeeOMNjTqgYEnWAQAAUCtmzZoVzz77bNlS13HjxsW0adNi3rx5Ubdu3WjRokWsueaa8Zvf/CZ69eoVBxxwgA30gYKnWQcAAAAAecIyWAAAAADIE5p1AAAAAJAnNOsAAAAAIE9o1gEAAABAntCsAwAAAIA8oVkHAAAAAHlCsw4AAAAA8kTdtAvIpe3b7Zx2CQAAOfXOpFdSmbd42phU5oW0NWrXI+0SAEhByaKJNTZWQTXrWtdtmnYJAAAAAFAhy2ABAAAAIE8UVLKuR6yedgkAAAAAUCHJOgAAAADIEwWVrBtdtCjtEgAAAACgQpJ1AAAAAJAnCipZ932yIO0SAAAAAKBCknUAAAAAkCcKKlm3KFmcdgkAAAAAUCHJOgAAAADIEwWVrNuyqHnaJQAAAABAhSTrAAAAACBPFFSy7sXiyWmXAACQU/9MuwAAAKpEsg4AAAAA8kRBJeuaFTVMuwQAAAAAqJBkHQAAAADkiYJK1rUsapB2CQAAAABQIck6AAAAAMgTBZWsq5+pk3YJAAAAAFAhyToAAAAAyBMFlazbqrRR2iUAAAAAQIUKqlnXYnHaFQAAAABAxSyDBQAAAIA8UVDJur/N/zTtEgAAcqpP2gUAAFAlknUAAAAAkCcKKll34mpbpF0CAAAAAFRIsg4AAAAA8kRBJetKMknaJQAAAABAhSTrAAAAACBPFFSy7vsoTrsEAAAAAKiQZB0AAAAA5ImCStbtVNwg7RIAAAAAoEKSdQAAAACQJwoqWVfPYbAAAAAA5DHJOgAAAADIEwWVrJunNQkAAABAHtO+AgAAAIA8UVDJuuJM2hUAAAAAQMUk6wAAAAAgTxRUsu76hV+lXQIAQE6dlnYBAABUiWQdAAAAAOSJgkrWHdx4o7RLAAAAAIAKSdYBAAAAQJ7QrAMAAACAPFFQy2CnRXHaJQAAAABAhSTrAAAAACBPFFSybkrp/LRLAAAAAIAKSdYBAAAAQJ4oqGTdZkXN0i4BAAAAACokWQcAAAAAeSKTJEmSdhG5Ur/B2mmXAACQU4sWTkhl3uJpY1KZF9LWqF2PtEsAIAUliybW2FiSdQAAAACQJwpqz7pBLXulXQIAAAAAVEiyDgAAAADyREEl626u80PaJQAA5NShaRcAAECVSNYBAAAAQJ4oqGRd3+KWaZcAAAAAABWSrAMAAACAPFFQybqBDRemXQIAQE7tlXYBAABUiWQdAAAAAOSJgkrWzShdkHYJAAAAAFAhyToAAAAAyBMFlaybtnhu2iUAAAAAQIUKqln31ayJaZcAAAAAABWyDBYAAAAA8kRBJesubrlD2iUAAAAAQIUk6wAAAAAgTxRUsu7jzLy0SwAAAACACknWAQAAAECeKKhkXf2M3iQAAAAA+Uv3CgAAAADyREEl69aMemmXAAAAAAAVkqwDAAAAgDxRUMm6u2d8nHYJAAA5dWXaBQAAUCWSdQAAAACQJwoqWbdek9ZplwAAAAAAFZKsAwAAAIA8UVDJurXrNU+7BAAAAACokGQdAAAAAOSJgkrWfbVgatolAAAAAECFJOsAAAAAIE8UVLLuiuiQdgkAAAAAUKGCatYVZzJplwAAAAAAFbIMFgAAAADyREEl6+onpWmXAAAAAAAVkqwDAAAAgDxRUMm6UQ0K6tsFAIh90i4AAIAqkawDAAAAgDxRUFGz5rasAwAAACCPSdYBAAAAQJ4oqGTdU0U/pV0CAEBOnZx2AQAAVIlkHQAAAADkiYJK1t3eeVbaJQAAAABAhSTrAAAAACBPFFSy7s2P26ddAgBATh2QdgEAFIz5k15PuwT4VZCsAwAAAIA8UVDJuon19CYBAAAAyF+6VwAAAACQJwoqWTcvk3YFAAAAAFAxyToAAAAAyBMFlaz7sag07RIAAAAAoEKSdQAAAACQJwoqWTcumZd2CQAAAABQoYJq1h2yqEnaJQAAAABAhSyDBQAAAIA8UVDJukalDpgAAAAAIH9J1gEAAABAniioZN3IhnXSLgEAIKf2TbsAAACqRLIOAAAAAPJEQSXrui+an3YJAAAAAFAhyToAAAAAyBMFlaxr3/antEsAAAAAgApJ1gEAAABAniioZN3L37dJuwQAgJw6Pu0CAACoEsk6AAAAAMgTBZWs2zSZl3YJAAAAAFAhyToAAAAAyBMFlay7v379tEsAAMip7dIuAACAKpGsAwAAAIA8UVDJur3np10BAAAAAFRMsg4AAAAA8kRBJevmZPQmAQAAAMhfulcAAAAAkCcKKlk3tr7eJAAAAAD5q6CadXMzSdolAAAAAECFRM0AAAAAIE8UVLJuZMxNuwQAAAAAqJBkHQAAAADkiYJK1jXJFNS3CwAAAMAqRrIOAAAAAPJEQUXNNk4apl0CAAAAAFRIsg4AAAAA8oRmHQAAAADkCc06AAAAAMgTBbVn3acxJ+0SAAAAAKBCknUAAAAAkCcKKlm3d0nTtEsAAAAAgApJ1gEAAABAniioZN0jdX5KuwQAgJzqk3YBAABUiWQdAAAAAOSJgkrWHVHcLO0SAAAAAKBCknUAAAAAkCcKKlm3/z/bpl0CAAAAAFRIsg4AAAAA8kRBJeu2+esbaZcAAJBTI05KuwIAAKqioJp1uzVaP+0SAAAAAKBClsECAAAAQJ4oqGTdP/efk3YJAAAAAFAhyToAAAAAyBMFlaz79om0KwAAyK0u/0u7AgAAqkKyDgAAAADyREEl64YtXj3tEgAAcqpL2gUAAFAlknUAAAAAkCcKKlk3JVOSdgkAAAAAUCHJOgAAAADIEwWVrGuTFNS3CwAAAMAqRrIOAAAAAPJEQUXNDmowPe0SAAAAAKBCknUAAAAAkCcKKln38ZwWaZcAAJBTndIuAACAKpGsAwAAAIA8UVDJuhH1k7RLAAAAAIAKSdYBAAAAQJ4oqGTdheeunnYJAAAAAFAhyToAAAAAyBMFlaw76z9T0y4BACCn7jgz7QoAAKiKgmrW3fjc2WmXAAAAAAAVsgwWAAAAAPJEQSXrPtn5mrRLAADIqe0mdU+7BAAAqkCyDgAAAADyREEl62Ysrp92CQAAAABQIck6AAAAAMgTBZWsW7PegrRLAAAAAIAKSdYBAAAAQJ4oqGRdi9Xnp10CAAAAAFRIsg4AAAAA8kRBJeuar2PPOgAAAADyl2QdAAAAAOSJgkrWtX95TNolAADk1MK0CwAAoEok6wAAAAAgTxRUsu7sNt3TLgEAAAAAKiRZBwAAAAB5oqCSdUWRSbsEAAAAAKiQZB0AAAAA5ImCStY1SCTrAAAAAMhfknUAAAAAkCcKKlnXbWGSdgkAAAAAUKGCataNqS9ICAAAAED+0r0CAAAAgDxRUMm6NRanXQEAAPBrNn/S62mXAKlp1K5H2iVAakoWTayxsSTrAAAAACBPFFSybkxdB0wAAAAAkL8k6wAAAAAgTxRUsu7w+jPSLgEAAAAAKiRZBwAAAAB5oqCSdc8sbJl2CQAAObVp2gUAAFAlknUAAAAAkCfyMlk3evTomDZtWqy//vrRunXrGhu3gcNgAQAAAMhjOU3W/fDDD3HTTTfFTTfdFD/99FO5z7/55pv4zW9+ExtvvHHsuOOO0b59+zj00ENj5syZuSwTAAAAAFKR02TdQw89FGeccUZssskmcdppp2V9tnDhwth7771jzJgxkSQ/R+CSJIlHHnkkpk2bFq+88kq15++4qLjaYwAAAABAbclpsu65556LTCYThxxySLnP7rrrrhg9enREROy///5x3XXXxX777RdJksTrr78eDz74YC5LBQAAAICcy2my7ssvv4yIiG233bbcZ4MHD46IiF133TUeffTRiIg488wzY88994wXXnghBg8eHIcddli15h/QcFG13gcAWNXskXYBAABUSc73rIuIaNeuXdb9+fPnx9tvvx2ZTCZOOeWUrM9OPPHEiIj46KOPclMkAAAAAKQkp8m6JQdFFBVl9wjfeeedKC4ujqKioth9992zPuvQoUNEREydOrXa8/+5pNpDAAAAAECtyWmyrmnTphERMWXKlKz7Sw6P2GyzzaJFixZZn9WrVy8iIurWzWlfEQAAAAByLqcdsE6dOsW7774bzzzzTOyzzz5l9x966KHIZDLRq1evcu8saey1bt262vO3aD6v2mMAAAAAQG3JabNu3333jXfeeSduu+222HTTTaNHjx5x1113xahRoyKTycTBBx9c7p0le9WtvfbauSwVAAAAAHIup826M844I2666aaYPHlynHHGGVmf7bDDDrHLLruUe2fYsGGRyWSiR48e1Z7/1VlrVXsMAIBVyUZpFwAAQJXktFnXvHnzeOGFF+LYY4/NOt21R48eMXjw4HLPf/rpp/H+++9HJpOJPfbYo9rz79BgRrXHAAAAAIDakvNTGzbddNP44IMPYuzYsTFlypRo27ZtrL/++hU+P2DAgIiI2HHHHXNUIQAAAACkI5MkSZJ2Ebkyacfyy2wBAH7N2r31cirzFk8bk8q8AKSnUbvqb18Fq6qSRRNrbKyiGhsJAAAAAKiWnC+DTdOPk5umXQIAQE61S7sAAACqJJVmXUlJSTz55JPx+uuvx5gxY2L27NmxePHi5b6TyWTixRdfzFGFAAAAAJB7OW/WvfHGG3HsscfG+PHjy+4tb9u8TCYTSZJEJpOp9txfLGhW7TEAAFYlm6ddAAAAVZLTZt0XX3wRe+21V8yfPz+SJIn69etHx44do2XLllFUZPs8AAAAAApbTpt1//73v2PevHlRp06duPTSS+Oss86Kpk1zt49cSfXDeQAAAABQa3LarHvppZcik8nEn/70p/jrX/+ay6kBAAAAIO/ltFk3bdq0iIg46KCDcjltma2aTU9lXgAAAACojJxuFLfWWmtFRESjRo1yOS0AAAAArBJymqzr3r17PPjggzFixIjYaqutcjl1RERMm9kk53MCAKRpk7QLAACgSnKarDvnnHOiTp06cd1110VJSUkupwYAAACAvJfTZN0222wT11xzTfzpT3+Kgw8+OPr37x9rrrlmzuZ/qUGDnM0FAJAPdkq7AAAAqiSnzbq///3vERGx3XbbxRNPPBHrrbde7LHHHtGpU6do3LjxCt+/+OKLa7tEAAAAAEhNJkmSJFeTFRUVRSaTKbtOkiTrekUWL15crfmfaX1Etd4HAFjV7PX9/anMWzxtTCrzApCeRu16pF0CpKZk0cQaGyunybqInxt0y7sGAAAAgEKV02ZdaWlpLqcrp1X9+anODwAAAADLk/NkXZoWlBTUtwsAAADAKqYo7QIAAAAAgJ8VVNRsatIg7RIAAAAAoEKpNeumT58eAwYMiBdeeCFGjBgR06dPj4iIli1bRpcuXWL33XePE044IVq2bJlWiQAAAACQU5kkheNYb7311jjvvPNi3rx5EVH+RNhMJhMREY0bN47//Oc/ccopp9TIvF9svE+NjAMAsKro9NVTqcxbPG1MKvMCkJ5G7XqkXQKkpmTRxBobK+fJussvvzwuvPDCsgZd8+bNo1u3btGmTZtIkiS+//77+Pjjj+Onn36KuXPnxh//+MeYOXNmnH/++bkuFQAAAAByKqfJuhEjRkS3bt1i8eLF0bZt27jqqquid+/eUa9evaznSkpKYsiQIdG3b9+YNGlS1K1bNz7++OPo3LlzteZ/q+0h1XofAGBVs+Pkh1KZV7IOoPBI1lHIajJZl9PTYG+44YZYvHhxrLXWWvH222/HUUcdVa5RFxFRt27dOPLII+Ptt9+OVq1axeLFi+OGG27IZakAAAAAkHM5XQb70ksvRSaTib/85S+x7rrrrvD5ddZZJy644II499xz48UXX6z2/F8WNar2GAAAq5Id0y4AAIAqyWmybuLEnyOBO+5Y+f9s3GmnnSIiYtKkSbVSEwAAAADki5wm6+rUqRMRP+9JV1lLni0qqn5fcVLdnB98CwAAAACVltNk3ZKlr1VZ0rrk2cosmwUAAACAVVlOk3V77LFHjBo1Kq6++uo48MADY/PNN1/u88OHD4+rrroqMplM7LnnntWe//wP/1HtMQAAAACgtuQ0WXf22WdHgwYNYs6cOdG9e/e46qqrYtq0aeWemzZtWlx55ZXRs2fPmDNnTjRo0CDOPvvsXJYKAAAAADmXSZIkpxu5DRw4ME444YT/KyCTifXXXz9at24dmUwmpkyZEuPGjYskSSJJkshkMnHXXXfFscceW+25/77e0dUeAwBgVXLxt/elMm/xtDGpzAtAehq165F2CZCakkUTa2ysnC6DjYjo06dPrLHGGnHqqafGxIkTI0mSGDNmTIwdOzYiIn7ZO2zXrl3cdtttsc8+++S6TAAAAADIuZw36yIi9t133xg7dmw88sgj8cILL8SIESNi+vTpERHRsmXL6NKlS+y+++5x0EEHRd26NVfieRe2qrGxAAAAAKCmpdKsi4ioW7du9O7dO3r37p1WCQAAAACQV1Jr1qVh6k0j0i4BACCn1j8l7QoAAKiKnJ4GCwAAAABUrKCSdZminB58CwAAAABVUivNujp16kRERCaTiZKSknL3V8bSY62MQT+2qdb7AACrmr+kXQAAAFVSK826JFl2gq2i+wAAAABALTXr+vXrV6X7ufJy6bRU5wcAyDXJOgCAVUsmKaC4257r7JV2CQAAOfXcd8+kMm/xtDGpzAtAehq165F2CZCakkUTa2ysgjpg4u71FqZdAgAAAABUKKfNutdeey0iIrbZZpto1KhRpd5ZsGBBvPfeexER0bNnz1qrDQAAAADSltNm3c477xxFRUUxfPjw2GyzzSr1zsSJE8veq+5psAtmF1SQEAAAAIBVTFGuJ1zZLfIKaGs9AAAAAApU3kfNSktLIyKiTp061R7r2ymrV3sMAIBVSYe0CwAAoEpynqyrqnHjxkVERPPmzdMtBAAAAABqWa0m68aPH7/M+5MnT46mTZsu992FCxfG6NGj46KLLopMJhOdO3eudj2zM3kfJAQAAACggNVq96pDh/ILL5IkiT333LPKY/Xp06cmSgIAAACAvFWrzbqKDoWoymERDRs2jLPOOitOPPHEatfzRsNqDwEAsErZL+0CAACoklpt1g0YMCDr+oQTTohMJhP/+Mc/on379hW+l8lkomHDhtG2bdvo1q3bCpfMAgAAAMCvQSapSsytmoqKiiKTycRnn30Wm222Wa6mLbPfur/L+ZwAAGkaNv6JVOYtnjYmlXkBSE+jdj3SLgFSU7JoYo2NldMTF15++eWIWPZedgAAAABQ6HLarOvVq1cupytn91g91fkBAAAAYHmK0i4AAAAAAPhZTpN1v5QkSXzyySfx6aefxrRp02L+/PkrPCX24osvrtacE4sWV+t9AAAAAKhNqTTr7r777rj00kvj22+/rdJ71W3WAQAAAEA+y3mz7sILL4zLL798hSm6iIhMJlOp5yo9d4+pNTYWAAAAANS0nDbr3n333bjssssik8nEHnvsEVdddVWUlpbGVlttFZlMJkpKSmLGjBnxwQcfxM033xyPPfZYdO/ePYYMGRKtW7eu9vwl00tq4LsAAAAAgNqR0wMmbr755oiIWG+99eLJJ5+MLbbYIurVq1f2eSaTiZYtW8aee+4ZjzzySNx4443xxhtvxF577RWLFi3KZakAAAAAkHM5Tda99dZbkclk4qyzzoq6dVc89R//+Md46aWX4uGHH46bbropzj777GrNf9uIdar1PgDAquYvaRcAAECV5DRZN3ny5IiI6Ny58/8VUPR/JRQXF5d759hjj40kSeKBBx6o/QIBAAAAIEU5TdYtaca1atWq7F7Tpk3L/vqHH36Idu3aZb2zzjo/p+G++eabas9fr+bOqgAAAACAGpfTZN1aa60VERGzZs0qu9e6deuoU6dORER8/vnn5d5ZksabPXt2DioEAAAAgPTkNFnXuXPnmDRpUnzxxRfRo0ePiIioX79+dO7cOT777LN44IEHYrfddst657777ouIKJe4WxlvZWat+CEAAAAASElOk3U9evSIJEni5Zdfzrp/+OGHR5Ik0b9//7j44otj5MiR8f7778cZZ5wRgwcPjkwmE3vvvXcuSwUAAACAnMskSZKzndxGjhwZm2++eTRt2jQmTJgQzZo1i4iIefPmRZcuXWLcuHGRyWSy3kmSJFq2bBmffPJJrL322tWaf2jbo6v1PgDAqubQyfelMm/xtDGpzAtAehq165F2CZCakkUTa2ysnCbrOnfuHC+//HI88sgjUVJSUna/cePG8fLLL8dOO+0USZJkfXXp0iVefPHFajfqAAAAACDf5TRZVxlffvlljBw5MkpKSqJjx47RrVu3Ght7dJff1thYAACrgg1HPJvKvJJ1AIVHso5CVpPJupweMFEZm2yySWyyySZplwEAAAAAOZfTZl1paWkUFeV05W2We2avmdrcAABpuCTtAgAAqJKcds7at28ff/7zn+P999/P5bQAAAAAsErI6Z51RUVFZae9brjhhnHMMcfEkUceGR07dszJ/D+dsHtO5gEAyBfNB7yQyrz2rAMoPPaso5CtsqfB7rXXXlGnTp1IkiS++eabuPTSS6NTp06x3XbbxfXXXx/ff/99LssBAAAAgLyS89Ngf/zxx3jggQdi0KBB8dZbb/1cxP+ftisqKorddtstjj766DjooIOiadOmNTp3z/a71eh4AAD57rWJL6Yyr2QdhUqyCKAw1WSyLufNul/69ttvY9CgQXHffffFqFGjfi7o/2/cNWzYMPbff/84+uijY6+99oq6dat/FoZmHQBQaDTrILc06wAK06+mWfdLn376aQwaNCgGDx4cEyZMiIj/a9y1bNkyevfuHTfddFO15tiqbfdq1wkAsCr5aPIbqcyrWUeh0qwDKEy/ymbdL7366qtx3333xUMPPRQzZsyIiJ8bd4sXL67WuJp1AECh0ayD3NKsAyhMNdmsq/7a0lrQq1ev6NatW3Tr1i0uvPDCmDlzZo2M27H+mjUyDgAAAADUhrxq1i1atCieeOKJGDRoUDz11FOxcOHCGh3/+8VzanQ8AAAAAKhJedGse+mll+K+++6Lhx9+OGbNmhUREUtW52600UZx1FFHxdFHH51miQAAAABQ61Jr1n300Udx3333xQMPPBCTJ0+OiP9r0K211lpx+OGHx9FHHx3bbbddjc05a/GCGhsLAAAAAGpaTpt1o0ePjkGDBsV9990XX3/9dUT8X4OuSZMmccABB8QxxxwTe+yxR9SpUyeXpQEAAABA6nLarOvYsWNkMpmyBl3dunVjjz32iKOPPjoOPPDAaNy4ca3On4cH3wIAAABAmZwvg02SJLbbbrs4+uij4/DDD4+11lor1yUAAAAAQF7KabPukksuiWOOOSY22GCDXE5bZr+G66cyLwAAAABURlEuJ1t//fXjjTfeiHfffTeX0wIAAADAKiGnybrjjz8+MplMDB48uEZPea2seVGa8zkBAAAAoLJymqxr3rx5RPx80AQAAAAAkC2nyboOHTrEp59+GjNmzMjltGUWSdYBAAAAkMdymqw76KCDIkmSGDZsWC6nBQAAAIBVQiZJkiRXk82aNSu6du0akydPjqeeeip23XXXXE0dEREHrbtfTucDAEjbI+PT+UPS4mljUpkX0taoXY+0SwAgBSWLJtbYWDlN1jVr1iyef/756NSpU/z2t7+NU045JV555ZWYPn165LBnCAAAAAB5KafJujp16pT9dZIkkclkKv1uJpOJkpKSas1/8Hr7V+t9AIBVzcPfPp7KvJJ1FCrJOoDCVJPJupweMLF0X1CaDgAAAAD+T06bdf369cvldOVMXzwv1fkBAAAAYHkKqlkHAAAAAPksp826tH08c2zaJQAAAABAhXJ6GiwAAAAAULFUk3VjxoyJt99+O6ZMmRLz5s2LP/7xj7HmmmvW2nxdm69fa2MDAAAAQHWl0qz7+OOP4+yzz4433ngj6/4hhxyS1ay78cYb49JLL43mzZvHqFGjol69etWad07pwmq9DwAAAAC1KefLYJ988snYcccd44033ogkScq+luW4446L+fPnx5gxY+KJJ57IcaUAAAAAkFs5TdZNmTIljjzyyFi4cGF07tw5rr766ujevXusttpqy3y+adOmceCBB8agQYPi6aefjoMOOqha809dOLNa7wMAAABAbcppsu7aa6+NOXPmxHrrrRevv/56/Pa3v40mTZos952dd945kiSJDz/8MEdVAgAAAEA6cpqse/bZZyOTycS5554bq6++eqXe2WSTTSIiYty4cdWev1WDys0JAAAAAGnIabJu7NixERGx7bbbVvqdJUtk58yZUys1AQAAAEC+yGmyrri4OCKiSqe6zpw5MyJihctlK2N2yfxqjwEAAAAAtSWnybo2bdpExP8l7Crj7bffjoiItddeu1ZqAgAAAIB8kdNk3U477RTffvttPPLII3HwwQev8Pl58+bFLbfcEplMJnr27Fnt+etkctqbBAAAAIAqyWn36rjjjoskSWLw4MHx3HPPLffZOXPmxGGHHRbjx4+PiIiTTjopFyUCAAAAQGpymqzbfffd48ADD4xHH3009t9//zjzzDOjd+/eZZ9Pnz493n333XjuuefilltuiSlTpkQmk4k+ffpEt27dqj1/g6LK75UHAAAAALmWSZIkyeWE8+bNi9/97nfxyiuvRCaTqfC5JWXttttu8cQTT0SDBg2qPXfXNjtWewwAgFXJp1PeSmXe4mljUpkX0taoXY+0SwAgBSWLJtbYWDlN1kVENG7cOF544YW49tpr45prronJkycv87mWLVvGeeedF+eff34UFdXMat1DG3SokXEAAAAAoDbkvFkXEVFUVBTnnntu/OlPf4r33nsvPvjgg5g6dWosXrw41lhjjejWrVt07969RtJ0AAAAALCqSKVZVzZ53bqx4447xo475mZ5at2oeNktAAAAAKQtp6fBAgAAAAAVSzVZtyzff/99PPHEEzFt2rTo0KFD7LffftGoUaMaGXu10hoZBgAAAABqRU6bdZ9//nn069cvMplM3HrrrbH66qtnff7444/HUUcdFfPnzy+7t84668Tjjz8eW2yxRS5LBQAAAICcy2mz7tFHH42hQ4dGz549yzXqpk6dGsccc0zMmzcv6/748eNjv/32i1GjRkWTJk2qNf9lcz6u1vsAAKuaM9IuAACAKsnpnnUvvvhiZDKZ+N3vflfus5tuuinmzJkTdevWjWuuuSY+/fTTuPLKK6OoqCgmTJgQt99+ey5LBQAAAICcy2mybvz48RER0bVr13KfPfzww5HJZKJPnz5x9tlnR0TE5ptvHl9//XXcfvvt8fjjj5fdX1mHNd+8Wu8DAAAAQG3KabPuhx9+iIiItdZaK+v+tGnTYuTIkRERcdRRR2V9tv/++8ftt99e9nl19J/2frXHAABYlVybdgEAAFRJTpfBLtmPbsGCBVn333jjjUiSJOrXrx877bRT1mdt27aNiIiZM2fmpEYAAAAASEtOk3UtW7aMqVOnxvjx42P77bcvu//iiy9GRMTWW28dDRo0yHqnpKQkIiKaNm1a7fmPWHOrao8BAAAAALUlp8m6JXvVDRo0qOze/PnzY8iQIZHJZGLXXXct9863334bERGtW7fOTZEAAAAAkJKcJuuOOOKIeO6552LYsGFxxBFHRPfu3eOBBx6IqVOnRlFRURx55JHl3nn33XcjImKDDTao9vz3T/uo2mMAAKxKbk27AAAAqiSnybo+ffpE9+7dI0mSGDJkSPzpT3+Kt956KyIiTjjhhOjUqVO5d5acErus1B0AAAAA/JrkNFlXVFQUTz/9dPTr1y+GDBkSU6ZMibZt28Zxxx0XF110Ubnnhw0bFuPGjYtMJhN77LFHteevXyen3y4AAAAAVEkmSZIk7SIqMmPGjJg1a1ZERKy33nrVHm+t5ptUewwAgFXJDz99mcq8xdPGpDIvpK1Rux5plwBACkoWTayxsfI6ataiRYto0aJFjY13bItuNTYWAAAAANS0nO5ZBwAAAABULLVkXUlJSTz22GPxwgsvxIgRI2L69OkREdGyZcvo0qVL7L777nHAAQdE3bo1V+Lbxd/X2FgAAAAAUNNSadY9+uijceaZZ8akSZPK7i3ZOi+TycRbb70Vt912W7Rt2zZuuOGGOPDAA9MoEwAAAAByKufNumuvvTbOO++8iPi5QZfJZGL99deP1q1bR5IkMXXq1Bg3blwkSRKTJk2KQw45JP7zn//E2WefXe25D6rbvtpjAAAAAEBtyemede+880707ds3kiSJ1VZbLa644or4/vvvY/To0fHWW2/F22+/HaNHj47vv/8+rrjiimjevHkkSRJ9+/aNd999N5elAgAAAEDOZZIl609z4LDDDouhQ4dG8+bN480334zNNttsuc9//vnnseOOO8asWbPi0EMPjQceeKBa83dc6zfVeh8AYFXz9Q8fpjJv8bQxqcwLaWvUrkfaJQCQgpJFE2tsrJwm6954443IZDJxwQUXrLBRFxGx6aabxgUXXBBJksRrr72WgwoBAAAAID053bNuxowZERGxyy67VPqdJc/OnDmz2vMf1mSTao8BAAAAALUlp8m6tm3bpvIuAAAAAKwKcpqs23333ePOO++MV199NbbbbrtKvfPKK69ERMSuu+5a7flfL/6+2mMAAAAAQG3J6QETX375ZfzmN7+J+vXrxzvvvBMbb7zxcp//6quvYvvtt4/i4uL44IMPYpNNqreMtWf73ar1PgDAqua1iS+mMq8DJihUDpgAKEw1ecBETpN1m2yySQwdOjSOOuqo2H777ePiiy+OPn36RMuWLbOemzFjRgwcODD+8Y9/RETEgw8+WO1GXUTEJzPHVnsMAAAAAKgttZKsW9GS1YkTJ8bXX38dmUwmMplMdOjQIVq1ahWZTCa+//77GDt2bCwpq2PHjtGuXbvIZDLx4ovV+5NhyToAoNBI1kFuSdYBFKaaTNbVSrOuqKgoMplMLGvoTCYTEbHMz5ZlyTiZTCYWL15crbo06wCAQqNZB7mlWQdQmPJ+GWzPnj3LmnL5pGmdBmmXAAAAAAAVqpVm3ZITXAEAAACAysvpARNpa5wpqG8XAAAAgFVMat2rKVOmxI8//hizZs2KZs2axRprrBFt2rRJqxwAAAAASF1Om3VPPvlkDBgwIN5444344Ycfyn2+1lprRffu3eOEE06Ifffdt8bnf27aiBofEwAAAABqSq2cBru04cOHx7HHHhsjRvzcLFvelEsOpujcuXPcc8890bVr1xqro1mTDWpsLACAVcGsuemcyuo0WAqV02ABClPenwb7Sw899FAcc8wxsWjRorImXePGjaNr167RunXraNKkScyZMye+//77GD58eMybNy8iIkaMGBHbb7993HPPPXHooYfWSC1tGreskXEAAAAAoDbUarPuzTffjGOOOSYWLlwYERH77rtvnHXWWbHbbrtFUVFRuedLS0vj+eefj+uvvz6eeuqpWLhwYRx77LHRpk2b6N69e22WCgAAAACpq7VlsKWlpbHFFlvEqFGjokGDBnHXXXfF4YcfXun377///jj++ONj0aJFsdlmm8Xw4cOX2eCrik6ttqnW+wAAq5ovpr6fyryWwVKoLIMFKEw1uQy2et2v5Rg6dGiMGjUqMplMDBw4sEqNuoiII444IgYOHBgREZ9//nkMHTq0NsoEAAAAgLxRa8tgH3/88YiI2G233aJ3794rNcZhhx0Wt912W7z88svx2GOPxWGHHVatmupkaq03CQAAAADVVmvdq/fffz8ymUwceeSR1Rrn6KOPjiRJ4v3301nCAQAAAAC5UmvJuu+//z4iIjbZZJNqjdOpU6es8apDsg4AAACAfFZr3avi4uKIiKhfv361xqlXr15ERJSUlFS7JgAAAADIZ7WWrGvVqlWMHz8+vv3229h6661Xepxvv/02IiLWWmutatc0avr4ao8BAAAAALWl1pJ1m222WUREDBs2rFrjLDmoonPnztWuCQAAAADyWa0l6/bdd994+umnY/DgwXHeeedFly5dqjzG8OHDY/DgwZHJZGLfffetdk07rtWp2mMAAAAAQG2ptWTdMcccE2ussUaUlJTEfvvtF2PHjq3S+2PGjIn9998/SkpKomXLlnHMMcfUUqUAAAAAkB9qLVnXrFmzuOyyy+KUU06J8ePHx5ZbbhmXXHJJ/P73v4/VVlutwvdmz54dt99+e1x66aUxe/bsyGQy8a9//SuaNWtW7Zpa1W1S7TEAAAAAoLZkkiRJanOCvn37xn/+85/IZDIREdGoUaPo2bNnbLXVVtGmTZto0qRJzJkzJ6ZMmRIff/xxvPbaazF//vxYUtbZZ58d11xzTY3Ust+6v6uRcQAAVhXDxj+RyrzF08akMi+krVG7HmmXAEAKShZNrLGxar1ZFxFx4403Rt++fWPBggU/T/r/N+6WZUk5DRo0iCuvvDLOPPPMGqtDsw4AKDSadZBbmnUAhakmm3W1tgz2l04//fTYb7/94tprr4177rknpk+fXuGzLVu2jGOPPTb+9Kc/xfrrr1+jdeybrF6j4wEAAABATcpJsm5pI0eOjE8//TSmTZsWs2fPjtVWWy3WWGON6Nq160qdGltZt6zjkAoAoLCc+t29qcwrWUehkqwDKEyr3DLYfNFytY5plwAAkFPTZ3+dyryadRQqzTqAwlSTzbqiGhsJAAAAAKiWnOxZly/2abl52iUAAADAr9L8Sa+nXQL8KkjWAQAAAECeKKhk3f+rsyjtEgAAAACgQpJ1AAAAAJAnCipZN3beammXAACQU13SLgAAgCqRrAMAAACAPFFQybqRDeqkXQIAQE7tl3YBAABUiWQdAAAAAOSJgkrWdV64OO0SAAAAAKBCknUAAAAAkCcKKln3TX171gEAAACQvyTrAAAAACBPFFSybnjR/LRLAAAAAIAKFVSzrktpo7RLAAAAAIAKWQYLAAAAAHmioJJ1v1m4MO0SAAAAAKBCknUAAAAAkCcKKln37/qz0y4BACCndk67AAAAqkSyDgAAAADyREEl6/7lNFgAAAAA8phkHQAAAADkiYJK1n1Y1CTtEgAAcmqbtAsAAKBKJOsAAAAAIE8UVLKu+eIk7RIAAAAAoEKSdQAAAACQJwoqWTeivmQdAAAAAPlLsg4AAAAA8kRBJevaL9abBAAAACB/6V4BAAAAQJ4oqGTdN3VK0i4BAAAAACokWQcAAAAAeaKgknWblBTUtwsAAADAKkayDgAAAADyREFFzWbUSbsCAAAAAKhYQTXr1licdgUAAAAAUDHLYAEAAAAgTxRUsu6buqJ1AAAAAOQvyToAAAAAyBMFlaxrkThhAgAAAID8JVkHAAAAAHmioJJ1v01mp10CAAAAAFRIsg4AAAAA8kRBJetuLKqXdgkAADl1R9oFAABQJZJ1AAAAAJAnCipZV09vEgAAAIA8pnsFAAAAAHmioJJ1v11QUN8uAAAAAKsYyToAAAAAyBMFFTXr1WNS2iUAAAAAQIUk6wAAAAAgTxRUsq7f+63TLgEAIKf+l3YBAABUiWQdAAAAAOSJgkrWvTh/XNolAAAAAECFJOsAAAAAIE8UVLLu7Hod0y4BAAAAACpUUM267o2mp10CAAAAAFTIMlgAAAAAyBMFlazbeeqYtEsAAMip79MuAACAKpGsAwAAAIA8UVDJum2ab5h2CQAAAABQIck6AAAAAMgTBZWsO6C0RdolAAAAAECFJOsAAAAAIE8UVLLu6Tqz0i4BACCnTk67AAAAqkSyDgAAAADyREEl605Z0DjtEgAAAACgQpJ1AAAAAJAnCipZtyCjNwkAAABA/tK9AgAAAIA8UVDJuu03npR2CQAAAABQIck6AAAAAMgTBZWse+Pr9mmXAACQU4emXQAAAFUiWQcAAAAAeaKgknVbrP5j2iUAAAAAQIUk6wAAAAAgTxRUsu6lOWumXQIAQE5tnHYBAABUSUE1647oPjHtEgAAAACgQpbBAgAAAECeKKhk3XrDxqddAgBATv2UdgEAAFSJZB0AAAAA5ImCStY91bRb2iUAAAAAQIUk6wAAAAAgTxRUsu73pfasAwAKy+dpFwAAQJVI1gEAAABAniioZN1/MhukXQIAAAAAVEiyDgAAAADyREEl63QmAQAAAMhn+lcAAAAAkCcKKlnXvvHctEsAAAAAgApJ1gEAAABAniioZN0pi+akXQIAQE69nXYBAABUiWQdAAAAAOSJgkrWNcjUSbsEAAAAAKiQZB0AAAAA5ImCStb9r26jtEsAAAAAgApJ1gEAAABAniioZN26OzgNFgAAqD3zJ72edgmQmkbteqRdAqSmZNHEGhuroJp1w19eM+0SAAByqmfaBQAAUCWWwQIAAABAniioZN3qDRekXQIAAAAAVEiyDgAAAADyhGYdAAAAAOQJzToAAAAAyBMFtWddh98tTrsEAAAAAKiQZB0AAAAA5ImCStYlxZJ1AAAAAOQvyToAAAAAyBMFlawrnrAg7RIAAAAAoEKSdQAAAACQJwoqWTf+s9XTLgEAIKfWSLsAAACqRLIOAAAAAPJEQSXrWrScl3YJAAAAAFAhyToAAAAAyBMFlawrXZxJuwQAAAAAqJBkHQAAAADkiYJK1jVttTDtEgAAAACgQpJ1AAAAAJAnCipZ13irlmmXAAAAAAAVKqhm3dz3Z6RdAgBATjVNuwAAAKrEMlgAAAAAyBMFlax77cv2aZcAAJBTvdMuAACAKpGsAwAAAIA8UVDJum4tpqVdAgAAAABUSLIOAAAAAPJEQSXrSkrqpF0CAAAAAFRIsg4AAAAA8kRBJetWbzMv7RIAAAAAoEKSdQAAAACQJwoqWTdjcuO0SwAAyKk2aRcAAECVSNYBAAAAQJ4oqGRdmy3sWQcAAABA/pKsAwAAAIA8UVDJuu8/s2cdAFBYWqRdAAAAVSJZBwAAAAB5oqCSdS3az027BAAAAACokGQdAAAAAOSJgkrW1W+ZSbsEAAAAAKiQZB0AAAAA5ImCStbVbd807RIAAAAAoEIF1az76d15aZcAAJBTq6VdAAAAVWIZLAAAAADkiYJK1tVrVJp2CQAAAABQIck6AAAAAMgTBZWs++aLNdMuAQAgp1qnXQAAAFUiWQcAAAAAeaKgknXv1G+YdgkAADm1U9oFAABQJZJ1AAAAAJAnMkmSJGkXkSsNGq6TdgkAADm1cMF3qcxbPG1MKvMCkJ5G7XqkXQKkpmTRxBobS7IOAAAAAPJEQe1ZN36HDdIuAQAAAAAqJFkHAAAAAHmioJJ1c35wGiwAUFhap10AAABVIlkHAAAAAHmioJJ1/WY3SbsEAICcujftAgAAqBLJOgAAAADIEwWVrOuWNE67BAAAAACokGQdAAAAAOSJgkrWnXZNp7RLAAAAAIAKZZIkSdIuIlfarL5p2iUAAOTUlJmfpzJv8bQxqcwLQHoateuRdgmQmpJFE2tsLMtgAQAAACBPFNQy2G9OtgwWAAAAgPwlWQcAAAAAeaKgknVnD6mTdgkAADl1x1VpVwAAQFVI1gEAAABAniioZF2/tWakXQIAAAAAVEiyDgAAAADyREEl61ru2TLtEgAAAACgQpJ1AAAAAJAnCipZd8s9DdIuAQAgp879V9oVAABQFZJ1AAAAAJAnCipZd3jbSWmXAAAAAAAVkqwDAAAAgDxRUMm6d8a3TbsEAICcOjTtAgAAqBLJOgAAAADIEwWVrHuywYK0SwAAyCnJOgCAVYtkHQAAAADkiYJK1v2l0dy0SwAAAACACknWAQAAAECeKKhk3eISvUkAAAAA8ldBNetarm0ZLAAAAAD5S9QMAAAAAPJEQSXrmmy7RtolAAAAAECFJOsAAAAAIE8UVLLui/tK0y4BACCntr4i7QoAAKgKyToAAAAAyBMFlaxbf/MZaZcAAAAAABWSrAMAAACAPFFQybo2L36TdgkAADlVknYBAABUiWQdAAAAAOSJgkrWrd6wSdolAAAAAECFJOsAAAAAIE9kkiRJ0i4C4NdqwoQJsc4660RExHfffRdrr712yhUB8Gvl3zkUMj//FDI//78+knUAAAAAkCc06wAAAAAgT2jWAQAAAECe0KwDAAAAgDyhWQcAAAAAeUKzDgAAAADyhGYdAAAAAOQJzToAAAAAyBOadQAAAACQJzJJkiRpFwEAAAAASNYBAAAAQN7QrAMAAACAPKFZBwAAAAB5QrMOAAAAAPKEZh0AAAAA5AnNOgAAAADIE5p1AAAAAJAnNOsAAAAAIE9o1gF56ZJLLolMJhOZTCbVOnbeeefIZDKx8847p1oHAAAAhUGzDgAAAADyhGYdAAAAAOQJzToAAAAAyBOadQAAAACQJ+qmXQAAAFB1RUVFUVRUFMOHD4/NNtusUu+MHj06OnbsGEVFRVFSUlLLFQKwsl577bWczNOzZ8+czEPVaNYBq4SZM2fGtddeG0OHDo1vv/026tevH1tssUWcfPLJcfTRRy/znUWLFsWzzz4bzz77bLz77rvxzTffxJw5c6JZs2ax0UYbxd577x1nnHFGrLnmmitd14wZM+LRRx+NF198MT766KMYP358LFq0KFq2bBldu3aNQw45JI4//vioX7/+Mt8fN25cdOjQISIiBgwYEMcff3w8//zz8b///S/ef//9mDFjRrRr1y722muvuPDCC2PttddeYU1vvvlmDBgwIF5//fWYPHlylJaWxtprrx2dOnWKgw8+OA488MBo1qzZMt+dMGFC3HjjjfHss8/G2LFjY/78+dGqVavYYYcd4tRTT41ddtllpX+tAKh5SZLk9D3IpV133bXW58hkMvHiiy/W+jxQVTvvvHNkMplanSOTyfiDmzyVSfybGshDl1xySVx66aURETFmzJjYY489YvTo0ct89tBDD43BgwdH3brZf/5w/PHHx913373cedZYY4147LHHYqeddlrm5zvvvHO8+uqr0atXr3jllVfKfb7++uvHt99+u9w5unXrFk899VS0adOm3GdLN+u++OKLuOKKK5Y5zlprrRWvvvpqbLrppsv8fP78+XHSSSfF4MGDl1tPv3794pJLLil3/84774wzzzwz5s+fX+G7J510Utxyyy3lfq0ByL2ioqLIZDLx2WefVTpZ980338TGG28sWccqYcnPeG38L+uScTOZTCxevLjGx4fqqs2f/yX8/Ocv/7cF5L3DDz88xo4dG6eeemoceuih0bx58xg+fHhcccUV8dVXX8XQoUOjbdu28b///S/rvZKSkthggw3ioIMOim233TbWXXfdqFu3bnz77bfxwgsvRP/+/ePHH3+Mgw46KEaMGBGtWrWqcm2LFy+O7bbbLn73u99Ft27donXr1rFo0aIYO3Zs3HvvvfHMM8/Exx9/HEccccQym32/dPvtt8dbb70VvXr1ij/84Q+x8cYbx8yZM2PgwIExcODA+OGHH+LEE0+Mt99+u9y7paWlccABB8Tzzz8fEREdO3aM0047Lbbeeuto3LhxTJ48Od5666148MEHlzl3//794/e//31ERHTp0iX+8Ic/RLdu3aJx48YxduzYuPPOO+Opp56KO++8M5o3bx7/+c9/qvxrBUD6fvzxx4iIaNKkScqVQOVtvfXWNf4zO3fu3Pjggw9qdEyoDf379y/7w/2aMnbs2DjxxBNrdExqWAKQh/r165dERNnXoEGDyj0za9aspGvXrklEJEVFRcnw4cOzPv/mm2+S0tLSCucYPnx40rRp0yQikr/97W/LfKZXr15JRCS9evVa5udfffXVcr+P/v37l30PL7zwQrnPx44dm/V9nnzyycus+fe//33ZMx999FG5z//73/+WfX7QQQclCxYsWGY9ixcvTiZOnJh1b/z48Unjxo2TiEiOO+64pLi4eJnv/vWvfy37tf7yyy+X+30DUPsymUxSVFSUjBo1qlLPz5kzJzn66KOTTCaTdOvWrZarg+pb8jM+cuTIGh97xIgRZeNDPvLzX9icBgvkvd/97ndx5JFHlru/2mqrxW233RYRPyfLbrnllqzPN9xww+Xu87D55puXpckeffTRlaqtY8eOy/38hBNOiG7dulVqjrZt28b111+/zJrPO++8sr9+/fXXsz4rLS2Nq666KiIi2rdvHwMHDowGDRosc46ioqJo165d1r3rrrsu5s2bF+3atVvuEtdLL7002rdvH6WlpTFw4MDlfi8A1LwNNtgg62uJPffcs9xnS3+1b98+Vl999Rg8eHBkMpnYb7/9UvxOAIDlsQwWyHsnnHBChZ9tu+220blz5xg5cmS88MILyx1nxowZMX369FiwYEHZ3g+rr756RESMGjUqiouLo169eitdZ5Ik8f3338esWbNi0aJFZffbtWsXH3/8cXz66afLff/QQw+tsMm2ySabRNOmTWPOnDkxZsyYrM8++eSTmDhxYkREnHzyydG0adMq1f3YY49FRMR+++0XDRs2rPC5unXrxg477BBDhw5d5lJcAGrXuHHjyt1LkqTs3wGVtf3228f5559fQ1UBUBv69esXEbFSW/WsSKtWrcrGJz9p1gF5b5tttlnu59tuu22MHDkyvv7661i0aFHWyaufffZZXHvttfH000/HlClTKhyjtLQ0ZsyYsVL/MnzyySfj5ptvjtdeey1mz55d4XPTpk1b7jidOnVa7uctWrSIOXPmlJvj448/Lvvrqh69/tNPP8U333wTERG33npr3HrrrZV6b3m/lgDUjuOOOy7r+u67745MJhP7779/2R8+LUsmk4mGDRtG27ZtY8cdd4xdd9211k8YhJpQWlpaa2N37ty5VseH6qrNZtpaa62lWZfnNOuAvLeiBlrr1q0j4ud0wYwZM8qu77zzzjj11FMrfdrd8k5BXZYkSeLkk0+OO++8s0bGb9y48XI/Lyr6eeeCpU9s+mUTsG3btpWqZYmpU6dW6fkl5s2bt1LvAbDyBgwYkHW95MTzf/3rX5U+DRYAyH+adUDeW9Gf/ifLOM78iy++KGvUtWrVKvr27Ru77rprrL/++rHaaquVLXft379/nHTSSRWOszz9+/cva9RtueWWcfbZZ8d2220X7du3j8aNG0edOnUiIqJPnz5xzz331Oqx60tUNSnxy8bf2WefXfZrsSK/TC8CkI7aXCIFAKRHsw7Ie99//32ss846FX6+JB2WyWSiRYsWERFx1113RUlJSdSpUydeeeWV2HTTTZf57owZM1a6rttvvz0ifj7I4q233opGjRrV+ByVseaaa5b99aRJk2KTTTap9LtrrLFG2V/PmzcvunTpUqO1AVB7LGECgF8nzTog773//vvLbda9//77EfHzyaxLEl8jR46MiIiuXbtW2KiLiPjggw9Wuq4lcxxwwAEVNuqSJImPPvpopeeojK222qrsr1977bXYZZddKv3uWmutFe3bt4+JEyfGCy+8EEmS2McIYBWWJEmMGTMmpk+fHhERLVu2jA022MDv7QCrmPHjx9fKuOuuu26tjEvN0qwD8t7dd98dBx988DI/++CDD2LEiBEREbH77ruX3V+yT93y9labMmVK2UmoK6Myczz++OMxadKklZ6jMrp27RrrrLNOfPfdd3HHHXfEueeeW6UTYffff/+4+eabY8yYMTF06NDo3bt3LVYLQG14+umn46abbopXXnml3L+XGjduHDvvvHOcdtppsffee6dUIVTdrrvuWuNjZjKZePHFF2t8XKhpHTp0qPExM5lMpffzJl2adUDee/zxx+PBBx+Mww47LOv+nDlz4pRTTomInw9f+MMf/lD2WceOHeOZZ56Jr776Kt55553Yfvvts96dN29eHHXUUVU+VOKXOnbsGJ999lkMGzYs/v3vf5ctwV1i9OjRcdppp630+JVVVFQUffv2jbPOOismTJgQffr0ifvvv3+Z+8qVlpbGlClTol27dmX3+vbtG/3794+FCxfGqaeeGh06dIitt966wvmeeuqpWHvttWOLLbaole8HgMqbO3duHH300TFs2LCIWPb+q3Pnzo2nnnoqnnrqqdh///3j3nvvjSZNmuS6VKiyV155JTKZzHL3/V06Nbrk2creh3yVi/2uyV+adUDe23rrreOoo46KV199NQ499NBo1qxZDB8+PK644or48ssvIyLi9NNPz2oeHXvssXH99ddHaWlp7LPPPnH++efHjjvuGA0bNowPP/wwrr322vj6669jp512ijfffHOl6urTp0/07ds3Jk6cGDvuuGOcf/750blz51iwYEG89NJL8d///jcWLlwYW221Va0vhT399NNj2LBh8fzzz8cjjzwSm2++eZx22mmx9dZbR+PGjWPKlCnxzjvvxODBg+Ooo46KSy65pOzdDh06xC233BInnHBCTJ8+PXbaaac49thj43e/+12su+66UVJSEhMmTIj33nsvhg4dGqNHj45hw4Zp1gGkrLS0NPbee+948803I0mSqFevXuy5556x7bbbRuvWrSNJkpg6dWq8//778dxzz8WiRYvi8ccfj3322aesCQL5rGfPnsv9OZ00aVJ8/fXXEfFzE2799dfP+tkfN25c2RYfG2+8cbRt2zZXpUO1LX0COAUmAchD/fr1SyIiiYhkzJgxSYcOHcqul/465JBDkuLi4nJjXHrppRW+ExHJueeemwwYMKDseuzYseXG6NWrVxIRSa9evcp9tmjRomTPPfescPxGjRolDz74YHLcccclEZGst9565cYYO3Zs2fMDBgxY7q/Jeuutl0REctxxxy3z87lz5yaHHnrocr/niEj69eu3zPfvv//+pFmzZit8v6ioKHnppZeWWysAte/GG29MMplMUlRUlOy1117JhAkTKnx2woQJyd577132/E033ZTDSqHmPf3000mLFi2S5s2bJ1deeWXyww8/lHvmhx9+SK688spk9dVXT1q0aJE8/fTTKVQKUHVFtdMCBKg5HTp0iA8//DD++te/xqabbhqNGzeO5s2bR8+ePePee++NoUOHRt265YPCF198cTz55JOx5557RosWLaJ+/fqx9tprx8EHHxzPPfdcXH311dWqq169evHkk0/G//73v7IEW6NGjWKjjTaKU089NT766KOc7v/WuHHjGDJkSLz00ktx7LHHRocOHaJRo0ax2mqrRadOneLggw+OQYMGRd++fZf5/uGHHx7jxo2Lyy+/PHbeeedo1apV1KtXLxo3bhwbbLBB7LfffnHNNdfEuHHjqnSIBQC1Y+DAgRERsc0228STTz4Z7du3r/DZ9u3bx7Bhw2LbbbeNJEni7rvvzlWZUOO++uqr6N27dyRJEm+++Wb07ds31lxzzXLPrbnmmtG3b9+y9Olhhx0WX331VQoVA1RNJkkshAYAgFVN8+bNY86cOTFo0KA4/PDDK/XOgw8+GEcccUSsttpq8dNPP9VyhVA7/vCHP8Ttt98e//rXv+Ivf/lLpd657LLL4sILL4zf//73cdttt9VyhQDVI1kHAACroCV7eW288caVfqdjx45Z78Kq6Pnnn49MJlOl02KXrAp44YUXaqssgBrjgAkAAFgFbbjhhvHJJ5/E1KlTK/3Okmc33HDD2ioLat3kyZOr/M6SBvWUKVNquhxITZIk8cknn8Snn34a06ZNi/nz56/wFNmLL744R9VRHZp1AACwCjryyCPj448/joEDB8Zvf/vbSr0zcODAyGQylV42C/lo9dVXj6lTp8arr74a2223XaXeeeWVVyLi5+Xj8Gtw9913x6WXXhrffvttld7TrFs1WAYLAACroLPOOiu22mqruP/+++PKK69c4fNXXXVVDB48OLp16xZnn3127RcItaR79+6RJElcfvnllTow4quvvoorrrgiMplMdO/ePQcVQu268MIL48QTT4xx48ZFkiTL/YqIctfkPwdMAADAKmj8+PExffr0+MMf/hAffPBBbLHFFnHcccfFNttsE61atYpMJhPff/99vP/++3HPPffEJ598EltvvXXcdttt0aJFiwrHXXfddXP4XUDVvf3229GjR49IkiSaN28eF198cfTp0ydatmyZ9dyMGTNi4MCB8Y9//COmT58ederUiddffz223377lCqH6nv33Xdjhx12iEwmE7vvvntcddVVUVpaGltttVVkMpkoKSmJGTNmxAcffBA333xzPPbYY9G9e/cYMmRItG7dOu3yqSTNOgAAWAUVFRXV+EERS/5HD/Ldf/7zn+jbt2/ZPwOZTCY6dOiQ1ageO3ZsVpro6quvjnPOOSfNsqHajj/++Bg4cGCsv/768dVXX0XdunVj5MiRsfnmm0cmk4nFixdnPX/zzTfH6aefHl27do1333036tevn1LlVIVlsAAAsIpa0fKnlfmCVcG5554bQ4YMiTZt2kSSJFFaWhqjR4+Od955J95+++0YPXp0lJaWRpIk0bZt2xg6dKhGHb8Kb731VmQymTjrrLOibt0VH0Pwxz/+MQ455JAYPnx43HTTTTmokJrggAkAAFgFDRgwIO0SIFWHHHJI7L///vHoo4/GCy+8EJ999lnMmDEjkiSJli1bxuabbx677757HHjggVGvXr20y4UaseQ05M6dO5fdKyr6vxxWcXFxuZ/3Y489Nh566KF44IEH7Fm6irAMFgAAAGAV0LBhwyguLo6PPvoounbtGhER3333Xay33nqRyWTiu+++i3bt2mW98/HHH8dvfvObWGONNeKHH35Io2yqyDJYAAAAgFXAWmutFRERs2bNKrvXunXrqFOnTkREfP755+XeWZLGmz17dg4qpCZo1gEAALDKKykpiR9++CF++OEHB6Xwq7Vk+esXX3xRdq9+/fpl9x944IFy79x3330REeUSd+QvzToAAFjFlZaWxksvvRT/+te/4swzz4yTTjqpLEmxxKJFi2LevHmxcOHClKqEmvf555/HmWeeGZtuumk0bNgw2rRpE23atImGDRvGpptuGmeddVaMGjUq7TKhxvTo0SOSJImXX3456/7hhx8eSZJE//794+KLL46RI0fG+++/H2eccUYMHjw4MplM7L333ilVTVXZsw4AAFZhTz75ZJx11lkxbty4rPufffZZbLbZZmXXN998c5xxxhnRtGnTmDRpUjRp0iTHlULN+stf/hJXX3112amvy5LJZKKoqCj69u0b//73v3NcIdS8kSNHxuabbx5NmzaNCRMmRLNmzSIiYt68edGlS5cYN25cZDKZrHeWHLryySefxNprr51G2VSRZh0AAKyi7rjjjvjDH/5Q1qhYc801Y9q0aZHJZMo16xYtWhRt27aNmTNnxt133x3HHHNMWmVDtZ155plx0003lf3sb7rpprHddttFmzZtIkmS+P777+O9994rS9VlMpk444wz4rrrrkuzbKgRr776apSUlES3bt2iZcuWZfe//fbbOOaYY+LNN9/Mer5Lly5xzz33lB1IQf7TrAMAgFXQN998E507d46SkpLYZZdd4oYbbohOnTpFUVHRMpt1ERGnnHJK3HHHHXHMMcfEwIEDU6ocqufNN9+MHj16RCaTiU033TRuu+222HHHHZf57Ntvvx2nnnpqfPbZZ5HJZOL111+v8Fn4tfjyyy9j5MiRUVJSEh07doxu3bqlXRJVVDftAgAAgKr773//G8XFxdGlS5d46qmnon79+it8p0ePHnHHHXfEJ598UvsFQi259dZbIyKiQ4cO8eabb0bz5s0rfHaHHXaI1157LX7zm9/E2LFj45ZbbtGs41dvk002iU022STtMqgGB0wAAMAq6MUXX4xMJhNnn312pRp1EREbbrhhRESMHz++NkuDWvX6669HJpOJ//f//t9yG3VLNG/ePC644IJIkiRef/31HFQItWeDDTaIDTbYIG644Ya0S6EWSdYBAMAq6LvvvouIiC233LLS7yw5VGLevHm1URLkxJQpUyIiqrS0b6uttoqIiO+//75WaoJcmTBhQixevLhKv/ez6pGsAwCAVdCS0/6qsgX1Dz/8EBFRdnogrIoaNmwYERFz586t9Dtz5syJiIgGDRrUSk2QK23atImIiEaNGqVcCbVJsw4AAFZB7dq1i4iIr776qtLvvPrqqxERsf7669dGSZATHTp0iIiIxx9/vNLvDBs2LCJ+XkIIq7LtttsuIiJGjhyZciXUJs06AABYBfXs2TOSJIlBgwZV6vlp06bFrbfeGplMJnbddddarg5qzz777BNJksQNN9wQL7744gqff/HFF+P666+PTCYT++yzTw4qhNrzxz/+MZIkiWuvvTaKi4vTLodaolkHAACroFNOOSUiIp566qkYMGDAcp+dMGFC7LPPPjFt2rSoU6dO2buwKjr77LOjWbNmUVxcHHvvvXecfvrp8eGHH0ZpaWnZM6WlpfHhhx/GaaedFnvvvXcUFxdHs2bN4uyzz06vcKgBu+66a/zlL3+JTz/9NH73u9+V7V/Kr0smqcomFwAAQN447bTT4pZbbolMJhMHH3xw9O7dO4444ojIZDJx3333RSaTieeeey7uv//+WLBgQUREnH/++XHZZZelXDlUz3PPPRf7779/LFq0qGz/xvr160fLli0jk8nEjz/+GIsWLYqIn/d1rF+/fjzxxBOx++67p1k2VNvf//73iIh4+OGHY/jw4VGnTp3YaaedYosttogWLVpEnTp1lvv+xRdfnIsyqSbNOgAAWEUtXrw4TjzxxLjnnnvKGhbLsuQ/+Y8//vi48847l/ssrCo++eSTOOWUU+KDDz5Y7nPbbLNN3HbbbdG1a9ccVQa1p+j/a+/Oo6osFz2O/56NehAkggTDSi1DkWQlommGQ2RqYqc0tbKBstupmyeO1alsndSG1Wg2nTRPXeeybGkq15xDQLuaqGWmpoipmcNG3E6AKdv3/uGCc705MOy93/3a97MWax027/Oc315LNH48g8t12t/hlmVV6+90r9frj1jwMco6AAAAwOFmzpyp1157TWvXrj3j1xMTE/X888/rrrvuCnAywP/y8/O1ZMkS/fjjjzpw4IAkKTo6Wq1bt1b37t3Vvn17mxMCvuNy1e40s/+7XRzBi7IOAAAAuEDs3r1bq1evltvtltfr1SWXXKLk5GQ1b97c7mgAAKCKKOsAAAAAAACAIFHH7gAAAAAAANSGZVnatm3badtgr7zyylpvGQQAO/A3FwAAAOBAXq9XeXl5ysvL06FDh877/MGDByufBy4UCxcu1K233qqLLrpILVq0UMeOHdWxY0e1aNFCkZGR+vOf/6xFixbZHRPwmSuvvFLNmzfX1q1bqzxm586duuqqqzgSwUHYBgsAAAA40MKFC3XLLbfokksu0c6dO1W/fv1zPl9aWqqmTZvqwIEDWrJkiW688cYAJQV87/jx48rIyNAXX3wh6d83Hv9/Fbdk3nnnnZo0aZLq1asXsIyAP1TcBrt+/XolJiZWaUxhYaHi4+NljOE2WIdgGywAAADgQBUlxYABA85b1ElSWFiY7rzzTo0dO1bTp0+nrIOjDRo0SLNmzZJlWapTp45uvvlmdejQQZdeeqksy9K+ffu0atUqLV68WCdOnND06dNVXl5e+X0DAMGMsg4AAABwoDVr1sgYo7S0tCqPufHGGzV27FitWrXKj8kA//rqq6/05ZdfyhijG2+8URMmTFDTpk3P+OzOnTs1ePBgZWdna+bMmZo3b5569+4d4MSAvSqOSggLC7M5CaqKM+sAAAAAB9q1a5ekU+cXVVWzZs0kSb/++qs/IgEBMWnSJEnStddeqwULFpy1qJOkJk2aaP78+WrTpo0kaeLEiQFICASXTz75RJLO+b2C4MLKOgAAAMCBSktLJZ39rK4zqXj28OHDfskEBMLKlStljNFTTz2lunXrnvf5unXr6u9//7vuvfderVy5MgAJAd852+rpBx98UOHh4ecc+9tvv2nbtm1yu90yxqhHjx7+iAg/oKwDAAAAHCgmJka7du3STz/9pHbt2lVpzE8//SRJuuSSS/wZDfCroqIiSary4fqSlJCQIEnav3+/XzIB/pKTkyNjzGm/mLEsS/n5+dWa56qrrtJzzz3n63jwE8o6AAAAwIHat2+vX375RVOmTNG9995bpTGTJk2SMUZt27b1czrAf8LDw3Xw4EEVFxdXecyBAwckcWYXnKdLly6VtxpLUm5urowxSklJOefKOmOMQkNDFRcXp06dOumuu+4670o8BA/KOgAAAMCB+vfvry+//FJff/21Ro8eraeeeuqcz48ePVrZ2dkyxmjAgAEBSgn4XsuWLfXtt99q+vTp6t69e5XGfP7555VjASfJyck57XOX69TVA5MmTarW6lI4CxdMAAAAAA5055136tprr5VlWXrmmWd0xx13aNmyZTpx4kTlM+Xl5Vq2bJn69eunZ555RsYYtW7dusor8YBg9Oc//1mWZWnixImVl02cy6RJkzRx4kQZY3T77bf7PR/gT/fff7/uv/9+RUVF2R0FfmSs6pxICwAAACBobN++XTfccIP27NlTuU2qbt26io6OljFGxcXFleWdZVlq3Lixli9fXnkrLOBEJSUlatGihfbu3StJ6tWrlwYPHqwOHTqoUaNGkqR9+/bp22+/1fjx47Vw4UJZlqXLLrtMmzdvZissgKBHWQcAAAA4mNvt1iOPPKKsrKyz3gxrjFHfvn01duxYxcbGBjgh4HvfffedunfvLo/Hc9p5XmdiWZaioqKUnZ2ta6+9NkAJAaDmKOsAAACAC8DmzZs1b948fffdd5U3XjZs2FBt27ZVenq64uPjbU4I+Nbu3bv1t7/9TbNnz5bX6z3jMyEhIerbt6/eeecdXXbZZQFOCPjezp07azW+SZMmPkoCf6KsAwAAABwoLy9PkhQXF0cRhz+0vXv3aunSpfrxxx8rb32Njo5W69at1a1bN8XFxdmcEPCdkJCQGo81xqi8vNyHaeAvlHUAAACAA7lcLhljNH78eD3wwAN2xwEABEDFbbA1YYw56ypUBJc6dgcAAAAAUH0NGjRQSUmJkpKS7I4CAAiQiRMnnveZkpISbd68WTNnztTu3bvVqVMnPfzwwwFIB19hZR0AAADgQK1bt9amTZuUk5Ojzp072x0HABBkTpw4oczMTH300Ud66qmn9Oabb9odCVXEyjoAAADAgdLT07Vp0yYtWbKEsg5/KFOmTKn2GGOMQkNDFRkZqfj4eF155ZV+SAYEl7p16+rDDz/UTz/9pNGjR+umm25Sz5497Y6FKmBlHQAAAOBAe/fuVVJSko4fP65vvvlGrVu3tjsSEBAV5zXWRkxMjDIyMvTss88qOjraR8mA4PTFF1/orrvuUu/evTV37ly746AKan4yIQAAAADbXHrppZo7d64iIiJ0ww036NVXX9X27dvtjgUEhGVZtfpwu9166623lJSUpB9++MHutwP4VcWN4atXr7Y5CaqKlXUAAACAA1111VWSpKNHj2r//v2VK40aNGigiy++WCEhIWcda4xRYWFhQHICvrZjxw4dPHhQjz76qL799lu1bdtW9913n9q1a6eYmBhJUlFRkVavXq2pU6dq7dq16tChg8aOHSuXy6Uff/xRn332mebNmydJuuyyy/TTTz8pPDzczrcF+E1OTo7S0tL0pz/9SWVlZXbHQRVQ1gEAAAAO5HLVfJOMMUZer9eHaYDAOXHihDp37qz8/Hy99dZbeuKJJ875/OjRo/X0008rJSVF33zzjerVqydJGj9+vB5++GEZYzRq1Cg9+eSTgYgPBNyDDz6oyZMnq1mzZtq2bZvdcVAFXDABAAAAOFBGRobdEQBbjBkzRqtWrdK999573qJOkp566il9//33mjZtmt577z09/fTTkqSHHnpIc+fO1Zw5c5SVlUVZhwtOQUGBRo8ercmTJ8sYo969e9sdCVXEyjoAAAAAgGO0b99ea9eu1fz589WjR48qjVm0aJF69eql5ORkrVmzpvL16dOn6+6771ZMTIz27dvnr8iAz1QcgXAuJ0+e1MGDB3XkyBFJp854bNSokdauXau4uDh/R4QPsLIOAAAAAOAYW7dulaTK8+mqouLZ/39WY/PmzSVJBw8e9E04wM9qcpFQx44dNXHiRIo6B6GsAwAAAAA4RsV5iwUFBUpOTq7SmIqC7/9vLKs4+zEiIsKHCQH/qcoRCC6XSxEREbryyivVtWtXtWnTxv/B4FOUdQAAAMAF4NixY1qzZo327t2r0tJS3XbbbbrooovsjgX4XEJCgtasWaN//vOfGjBgQOVNyGdz8uRJvfvuu5Kkli1bnva1HTt2SKreKj3AThMnTrQ7AgKg5ldIAQAAALDdL7/8ooyMDF188cXq0qWLBg4cqAceeEC7du067bnx48fruuuu08033/y71UWAk9xzzz2yLEv/8z//o/79+6uoqOiszxYVFal///5asWKFjDG67777Tvt6Tk6OJKlVq1b+jAwA1cIFEwAAAIBDrVq1Sr1795bH4zmtgDPGaP369UpMTKx8raioSFdccYVOnDihefPmqWfPnnZEBmqtvLxcN9xwg/Lz82WMUWhoqHr16qWUlBTFxsZKktxut1avXq2FCxfq2LFjsixLHTp00PLlyxUSEiLp1GrUpk2bav/+/frwww/1l7/8xc63BQCVKOsAAAAABzp06JASEhK0b98+xcXFafjw4ercubOSkpLOWNZJUt++fZWVlaUhQ4bo/ffftyk5UHuHDh3SnXfeqUWLFknSWbfCVvy426NHD02fPl2RkZGVX9u9e7cWL14sSbr11lsVHR3t59SA723btk0rVqyoPALhP//zP9WwYUO7Y6GWOLMOAAAAcKB//vOf2rdvnxo2bKgVK1aoSZMm5x1z8803a86cOVq1alUAEgL+ExkZqQULFmjWrFn66KOPlJeXp7KystOeCQ0NVZcuXfTII4+ob9++v5ujcePGVTqsHwhG3333nYYOHarly5ef9vodd9xxWlk3ZswYvfjii4qMjNTGjRtVt27dQEdFDVDWAQAAAA703//93zLG6Mknn6xSUSdJ11xzjSSpsLDQn9GAgOnbt6/69u0rr9erwsJCeTweSVJUVJSaN29eueUVuJB89dVX6t+/v44fP/67IxD+v4yMDA0bNkzFxcWaO3fuGYtrBB8umAAAAAAcqKCgQJLUpUuXKo+5+OKLJUmHDx/2RyTANiEhIWrRooU6dOigDh06qEWLFhR1uCDt3btXd999t3777TclJiZq/vz5OnLkyFmfb9CggW6//XZJ0vz58wOUErVFWQcAAAA4UMWWv/Dw8CqPOXr0qKRT2wMBAM7zzjvv6OjRo2ratKmWLVumnj17nvffgW7dusmyLK1ZsyZAKVFblHUAAACAA8XExEiSfvnllyqPqfhBLS4uzi+ZAAD+tXDhQhlj9NRTT1Wulj6fli1bSpK2b9/uv2DwKco6AAAAwIGuu+46SVXf1uT1evXRRx/JGKPU1FR/RgOCSl5e3mkfgJP9/PPPkv79b0BVRERESPr36moEPy6YAAAAABzo7rvv1pdffqkJEyboP/7jP5ScnHzWZ0+ePKlHH31UGzdulDFG9957bwCTAvbq1q1b5cH7xhiVl5fbnAiouRMnTkhStW51PXjwoKTqHZsAe7GyDgAAAHCgO+64Q506ddJvv/2mm266SWPGjJHb7a78ujFG+/bt09SpU9WuXTtNmDBBxhj16tVL3bp1sy84YAPLsio/ACe79NJLJf17hV1VrFixQpJ0+eWX+yUTfI+VdQAAAIBDzZ49W126dNFPP/2kzMxMZWZmVq4gatu2rY4fP175rGVZSkpK0qeffmpXXKDa0tLSZIzRhAkT1LRp0xrNkZGR4eNUgH1uuOEG7dixQ7NmzVK/fv3O+3xpaanGjRsnY0y1bg+HvYzFrxYAAAAAxyotLdWzzz6r8ePH69ixY2d8pm7dunrwwQc1evRotkHBUVwul4wxWr9+vRITE+2OA9huyZIl6tGjh1wul+bNm6cePXpIOvP3ytGjR3XXXXdp3rx5MsZo9erV5zwyAcGDsg4AAAC4ABQXF2vhwoVavXq13G63vF6vLrnkEiUnJ+uWW25R48aN7Y4IVBtlHfB7/fr10+zZs1WvXj09/vjjGjBggDp27ChjjHJzc1W3bl0tWrRI48aN0969eyVJ999/vyZOnGhzclQVZR0AAAAAIChR1gG/V1paqj59+ignJ6fy6IMzqah7brrpJs2dO1d/+tOfAhURtcQFEwAAAIAD7dy5Uzt37pTX663ymJMnT1aOAwA4U1hYmJYsWaJRo0bp0ksvPe0Clf/7ER0drVdffVULFy6kqHMYVtYBAAAADuRyueRyufTDDz9UecVRYWGh4uPj5XK5VF5e7ueEQO2xsg44t/Lycq1ateqMRyCkpqZS0jkUt8ECAAAADlXT37vz+3oAuDDUqVNHnTp1UqdOneyOAh+irAMAAAD+ICpKOpeL03DgLM8//7wuvvjiWs9jjNH48eNrHwgA/IiyDgAAAPiD2LNnjyQpIiLC5iRA9cyZM8dnc1HWAQh2lHUAAACAg53rJsAKJ06cUGFhoV555RVJUsuWLf0dC/ApX23drsr3C+AUxcXFWrFihbZt26YjR45U6cKhESNGBCAZaouyDgAAAHCAkJCQ371mWZZat25drXmMMerfv7+vYgEBsWjRIsXHx9sdAwgKbrdbTzzxhGbMmFHty4Io65yBsg4AAABwgLOtLKruiqOBAwdq6NChPkgEBE7jxo3VtGlTu2MAtvN4PEpNTVVhYSGXBV3AKOsAAAAABxg5cuRpn7/44osyxujRRx9VbGzsWccZYxQaGqq4uDh16tRJzZs393dUAICfvP7669q6daskqUePHnryySeVkpKi6OhotnlfQIxFFQsAAAA4jsvlkjFG69evV2Jiot1xAL/gzzlwuoSEBBUUFCg9PV1ZWVl2x4GfsLIOAAAAcKCJEydKki6//HKbkwAAAmXnzp2SpCFDhticBP5EWQcAAAA4UEZGht0RAAAB1qBBA/32229q1KiR3VHgRy67AwAAAAAAAOD8kpKSJEk7duywOQn8iZV1AAAAgMMVFxdrxYoV2rZtm44cOSKv13veMSNGjAhAMqB22O4NnO6RRx7R0qVLNXXqVN122212x4GfcMEEAAAA4FBut1tPPPGEZsyYofLy8mqNrUqhBwAIPvfcc48+//xzvfLKKxo2bJjdceAHlHUAAACAA3k8HnXo0EGFhYWqyX/Snzx50g+pAAD+lJeXJ6/Xq+HDh2vFihVKSUnRoEGDlJCQoLCwsPOO79KlSwBSorYo6wAAAAAHevbZZzVq1ChJUo8ePfTkk08qJSVF0dHRMsbYnA6oPZfLJZfLpR9++EGJiYk+nXvDhg1KSkqSy+Wq9qpUwE4ul6vGf8cbY/jz7hCcWQcAAAA40Jw5c2SMUXp6urKysuyOA/iFv9eWsHYFTsSf2wsfZR0AAADgQDt37pQkDRkyxOYkAIBAWbp0qd0REACUdQAAAIADNWjQQL/99psaNWpkdxTArx588EGFh4f7dM6SkhKfzgcESteuXe2OgACgrAMAAAAcKCkpSTk5OdqxY4fatGljdxzAb/Lz8+2OAAABRVkHAAAAONAjjzyipUuXaurUqbrtttvsjgP4XJcuXbgsBcAfErfBAgAAAA51zz336PPPP9crr7yiYcOG2R0HAAD4AGUdAAAA4EB5eXnyer0aPny4VqxYoZSUFA0aNEgJCQkKCws77/guXboEICUAwE55eXmnfc7f/c5AWQcAAAA4kMvlqvEWQWOMysvLfZwIABBs/u+/Ffzd7xycWQcAAAA4FL93BwCcD/9WOA9lHQAAAOBAS5cutTsCYCuv16vvv/9eu3btUlFRkYqLi1W/fn3FxMQoJiZGSUlJatSokd0xgRpLS0uTMUYTJkxQ06ZNazRHRkaGj1MhENgGCwAAAABwhIKCAk2fPl05OTlauXKlysrKzvl88+bN1blzZ6Wnp6tPnz6qV69egJICtVexhXX9+vVKTEy0Ow4CiLIOAAAAABDUZs6cqffee0/ffPONpOpt66s4rysyMlIPPfSQHn/8cTVp0sQvOQFfoqz746KsAwAAAAAEpVmzZmn48OHatGlTZUEXGhqqNm3a6LrrrlNKSopiY2MVHR2tqKgolZWV6cCBA/J4PNqyZYvy8/O1atUq/fLLL5JOFXd169bV4MGDNXLkSLbJIqhR1v1xUdYBAAAAQe6ll17y+ZwjRozw+ZyAL6WlpSk3N1eWZSk0NFS9e/fWPffco/T09GpvZ926daumTZumzz77TJs3b5YxRhEREfrkk0/Up08fP70DoHYo6/64KOsAAACAIFfxA5sveb1en84H+JrL5VLDhg31xBNPaMiQIbrooot8Mu/y5cv18ssva/HixXrhhRcorhG0KOv+uLgNFgAAAHAAX/6O3dfFH+APb7zxhoYMGaKwsDCfzpuamqqFCxcqPz9f+/fv9+ncAOALrKwDAAAAglxubq7P5+zatavP5wQA+E7FyrrbbrtNF198ca3nM8Zo/PjxtQ8Gv6OsAwAAAAAACDIcgfDHxTZYAAAAAACAIOWrNVYcgeAclHUAAAAAAABBatGiRYqPj7c7BgKIsg4AAAAAEHQGDx7s8zk5swtO1LhxYzVt2tTuGAggzqwDAAAAAAQdX5/XZVmWjDGc2QXHqPgeWL9+vRITE+2OgwBiZR0AAAAAIOg0adLknGVdaWmpioqKKj+vV6+eoqOjZVmWPB6Pjh8/LunUarqGDRsqLCzM75kBwBco6wAAAAAAQWf79u1n/dratWvVv39/eTwePfzwwxo8eLDatGmjkJAQSaduvFy3bp3Gjx+vjz/+WOHh4ZoxY4batm0boPQAUHNsgwUAAAAAOMaePXuUnJysQ4cOad68ebrxxhvP+Xxubq569eqlyMhIfffdd4qLiwtQUqB22Ab7x+WyOwAAAAAAAFX11ltvye12a+jQoect6iSpa9euGjp0qNxut0aNGhWAhABQO5R1AAAAAADHmDt3rowxSk9Pr/KYime/+uorf8UCfG7ixImaMGGCLr/8crujIMA4sw4AAAAA4Bi7du2SJIWGhlZ5TMWzFWMBJ8jIyLA7AmzCyjoAAAAAgGOEh4dLkvLz86s8ZtWqVZLEjbAAHIGyDgAAAADgGO3atZNlWXr11VdVVFR03ufdbrdee+01GWPUvn37ACQEas/lcqlOnTrauHGjz+fesGFD5fwITpR1AAAAAADH+Otf/ypJ2r17tzp06KDZs2fr5MmTv3vu5MmTmjNnjq6//nr9+uuvkqTMzMyAZgVqw7IsR8+PmqNGBQAAAAA4Ru/evZWZman3339fO3bs0B133KGoqCglJycrNjZWxhjt27dP33//vQ4cOFBZSGRmZqpXr142pweA8zMWVSoAAAAAwGFGjx6tkSNHqrS0VJJkjDnt6xU/6tavX18vv/yynnzyyYBnBGrK5XLJGKN27dpVntPoKyUlJcrPz5cxRl6v16dzwzco6wAAAAAAjuR2uzV58mQtWbJE69evl8fjkSRFRUUpKSlJ3bt3V0ZGhmJjY21OClRPRVnnz8qGsi54UdYBAAAAAAAEkW7duv1utag/LF261O//H6g+yjoAAAAAAAAgSHAbLAAAAAAAABAkuA0WAAAAAOBohw8f1pEjR6p0/laTJk0CkAgAao6yDgAAAADgOIsXL9bYsWO1bNmyyoslzscYo/Lycj8nA4DaoawDAAAAADhKZmamxowZI0l+vS0TCFZer1fff/+9du3apaKiIhUXF6t+/fqKiYlRTEyMkpKS1KhRI7tjooYo6wAAAAAAjjFt2jR98MEHkqTQ0FDdfvvtSklJUXR0tFwujmXHhaugoEDTp09XTk6OVq5cqbKysnM+37x5c3Xu3Fnp6enq06eP6tWrF6CkqC1ugwUAAAAAOEbXrl21bNkyXXHFFcrOzlbz5s3tjgT41cyZM/Xee+/pm2++kVS91aTGGElSZGSkHnroIT3++OOc2+gAlHUAAAAAAMeIiorS4cOH9fHHH2vw4MF2xwH8ZtasWRo+fLg2bdpUWdCFhoaqTZs2uu6665SSkqLY2FhFR0crKipKZWVlOnDggDwej7Zs2aL8/HytWrVKv/zyi6RTxV3dunU1ePBgjRw5km2yQYyyDgAAAADgGA0aNFBZWZlWr16t5ORku+MAfpGWlqbc3FxZlqXQ0FD17t1b99xzj9LT06u9nXXr1q2aNm2aPvvsM23evFnGGEVEROiTTz5Rnz59/PQOUBts6AcAAAAAOEazZs0kSUePHrU3COBHOTk5uuSSS/TKK69o7969mjFjhvr27Vujc+euvvpqjRgxQps2bVJeXp66d++uw4cPa+3atX5IDl+grAMAAAAAOEa/fv0kSV9//bXNSQD/eeONN7R9+3Y999xzuuiii3w2b2pqqhYuXKhvv/1W7du399m88C22wQIAAAAAHOPQoUNq06aNPB6PVq5cqYSEBLsjAYBPsbIOAAAAAOAYkZGRWrBggRo1aqQbbrhBY8eOlcfjsTsWAPgMK+sAAAAAAI5x1VVXSZJKS0vldrtljJExRg0bNlRYWNg5xxpjVFhYGIiYAFBjlHUAAAAAAMdwuWq+QcwYI6/X68M0AOB7dewOAAAAAABAVWVkZNgdAfC7wYMH+3xOY4zGjx/v83nhe6ysAwAAAAAACCIul0vGGJ/NZ1kWK0sdhJV1AAAAAAAAQaRJkybnLOtKS0tVVFRU+Xm9evUUHR0ty7Lk8Xh0/PhxSaryeY4ILqysAwAAAAAAcIi1a9eqf//+2rVrlx5++GENHjxYbdq0UUhIiCTJ6/Vq3bp1Gj9+vD7++GNdfvnlmjFjhtq2bWtzclQVZR0AAAAAAIAD7NmzR8nJyTp06JDmzZunG2+88ZzP5+bmqlevXoqMjNR3332nuLi4ACVFbbANFgAAAADgWB6PR+vWrdP+/ftVVlam861Huf/++wOUDPC9t956S263W88+++x5izpJ6tq1q4YOHao33nhDo0aN0ttvvx2AlKgtVtYBAAAAABwnJydHI0eO1PLly6s8xhij8vJyP6YC/Ktly5baunWrcnNzlZqaWqUxy5cvV5cuXRQfH6/Nmzf7OSF8gZV1AAAAAABH+fDDD/X444/LsqzzrqQDLiS7du2SJIWGhlZ5TMWzFWMR/Fx2BwAAAAAAoKo2bdqkzMxMWZalpKQkzZ49W1999ZWkUyvnCgsLtXr1ao0bN67yQP3U1FRt2LBB27ZtszM6UGvh4eGSpPz8/CqPWbVqlSRxI6yDsA0WAAAAAOAYjz32mMaNG6eYmBht3bpVERER2rBhg5KSkmSMkdfrrXzWsiwNGzZMo0aNUlpampYsWWJjcqD2evfurQULFuiyyy7T2rVrFRMTc87n3W63UlJStHv3bvXs2VPz5s0LUFLUBivrAAAAAACOkZubK2OMMjMzFRERcc5njTF64403lJaWpqVLl2rChAkBSgn4x1//+ldJ0u7du9WhQwfNnj1bJ0+e/N1zJ0+e1Jw5c3T99dfr119/lSRlZmYGNCtqjpV1AAAAAADHiIyM1NGjRzV37lzdcsstkqSNGzeqdevWMsbo2LFjqlu37mljvvjiC911113q1q2bsrOz7YgN+MzQoUP1/vvvyxgjSYqKilJycrJiY2NljNG+ffv0/fff68CBA5VnOv7tb3/TO++8Y2dsVAMXTAAAAAAAHOPYsWOSpMaNG1e+VnGOlyR5PB7FxsaeNubqq6+WdKrUA5zu3Xff1RVXXKGRI0eqtLRUBw4c+F0JXVHS1a9fXy+//LKefPJJO6KihijrAAAAAACOER0dLbfbrZKSksrXYmJiKlcZbdmy5Xdl3f79+yVJBw8eDFhOwJ+eeuop3XfffZo8ebKWLFmi9evXy+PxSDq10i4pKUndu3dXRkbG774fEPwo6wAAAAAAjpGQkCC3262CggJ16tRJ0qlbLuPj41VQUKCsrCylpqaeNiYrK0uSznsYP+AksbGxevrpp/X000/bHQU+xgUTAAAAAADHSE1NlWVZysvLO+31fv36ybIsvf/++5owYYJKSkpUVFSkt956Sx999JGMMUpLS7MpNQBUHRdMAAAAAAAc49tvv9X111+v6Oho7dq1S6GhoZKk4uJitWzZsnIr4P9lWZbq16+v1atXq1WrVoGODADVQlkHAAAAAHCUyZMnq7y8XL1791ZcXFzl62vWrNHAgQP1888/n/Z8bGyspkyZoh49egQ6KuB3hw8f1pEjR+T1es/7bJMmTQKQCLVFWQcAAAAAuGCcOHFC2dnZ2rBhg8rLyxUfH6+ePXsqLCzM7miAzyxevFhjx47VsmXLzria9EyMMSovL/dzMvgCZR0AAAAAAIBDZGZmasyYMZJObfGuKmNMlVbfwX7cBgsAAAAAAOAA06ZN0wcffCBJCg0N1e23366UlBRFR0fL5eIO0QsFZR0AAAAAAIAD/Otf/5IkXXHFFcrOzlbz5s1tTgR/oKwDAAAAADhScXGxVqxYoW3btlX5gP0RI0YEIBngHz/88IOMMRo5ciRF3QWMM+sAAAAAAI7idrv1xBNPaMaMGdU+MJ8zu+BkDRo0UFlZmVavXq3k5GS748BPWFkHAAAAAHAMj8ej1NRUFRYWVutwfeBC0KxZM23atElHjx61Owr8iNMHAQAAAACO8frrr2vr1q2yLEs9evTQggULVFRUJK/Xq5MnT573A3Cyfv36SZK+/vprm5PAn9gGCwAAAABwjISEBBUUFCg9PV1ZWVl2xwEC6tChQ2rTpo08Ho9WrlyphIQEuyPBD1hZBwAAAABwjJ07d0qShgwZYnMSIPAiIyO1YMECNWrUSDfccIPGjh0rj8djdyz4GCvrAAAAAACOERsbq+LiYq1Zs0Zt2rSxOw4QUFdddZUkqbS0VG63W8YYGWPUsGFDhYWFnXOsMUaFhYWBiIla4oIJAAAAAIBjJCUlKScnRzt27KCswx/O9u3bT/vcsixZliW3233escYYP6WCr1HWAQAAAAAc45FHHtHSpUs1depU3XbbbXbHAQIqIyPD7ggIALbBAgAAAAAc5Z577tHnn3+uV155RcOGDbM7DgD4FGUdAAAAACDo5OXlnfVr5eXlGjFihFasWKGUlBQNGjRICQkJ5z2zS5K6dOniy5gA4HOUdQAAAACAoONyuXx+xpYxRuXl5T6dEwB8jTPrAAAAAABBibUlAP6IKOsAAAAAAEFn6dKldkcAgp7H49G6deu0f/9+lZWVnbfgvv/++wOUDLXBNlgAAAAAAAAHycnJ0ciRI7V8+fIqj2EbuHOwsg4AAAAAAMAhPvzwQz3++OOyLIut4hcol90BAAAAAAAAcH6bNm1SZmamLMtSUlKSZs+era+++krSqZVzhYWFWr16tcaNG6e2bdtKklJTU7VhwwZt27bNzuioBrbBAgAAAAAAOMBjjz2mcePGKSYmRlu3blVERIQ2bNigpKQkGWPk9Xorn7UsS8OGDdOoUaOUlpamJUuW2Jgc1cHKOgAAAABA0ElPT1d+fr5f5i4tLdWbb76psWPH+mV+wF9yc3NljFFmZqYiIiLO+awxRm+88YbS0tK0dOlSTZgwIUApUVuUdQAAAACAoDN//nx17NhR6enpys7O9smce/bs0auvvqpmzZrpueee0/79+30yLxAou3btkqTKLa7SqVKuwokTJ3435i9/+Yssy9Inn3zi/4DwCco6AAAAAEDQGTlypEJDQzV//nzdfPPNuvzyy/XMM89o5cqVOn78eJXn2bFjhyZMmKDu3burSZMmGj58uPbv368OHTqof//+fnwHgO8dO3ZMktS4cePK18LDwyv/t8fj+d2Yq6++WpK0ceNGP6eDr3BmHQAAAAAgKP3666966aWXNGnSJJ04caJyBVHdunWVlJSk5ORkxcbGKioqSlFRUSorK9OBAwfk8Xi0ZcsW5efnV66eq/jRt1WrVnrhhRc0YMAA294XUFNxcXFyu91atmyZOnXqJOnUtu6KLbG5ublKTU09bcyiRYvUq1cv1atXr7LsQ3CrY3cAAAAAAADO5LLLLtO//vUvjRw5UmPGjNHkyZO1e/duHT9+XGvWrNHatWvPOb6ioAsJCVH37t01ZMgQpaenn7ZtEHCShIQEud1uFRQUVJZ1YWFhio+PV0FBgbKysn5X1mVlZUmSYmJiAp4XNcM2WAAAAABAUGvcuLFeeeUV/fLLL8rNzdULL7ygm266SWFhYbIs64wfV199tQYPHqyJEydq165dmj9/vvr06UNRB0dLTU2VZVnKy8s77fV+/frJsiy9//77mjBhgkpKSlRUVKS33npLH330kYwxSktLsyk1qottsAAAAAAAx/J4PCoqKtKBAwcUGhqqmJgYxcTEqF69enZHA3zu22+/1fXXX6/o6Gjt2rVLoaGhkqTi4mK1bNnyjGfWWZal+vXra/Xq1WrVqlWgI6MGKOsAAAAAAAAcYvLkySovL1fv3r0VFxdX+fqaNWs0cOBA/fzzz6c9HxsbqylTpqhHjx6BjooaoqwDAAAAAAC4AJw4cULZ2dnasGGDysvLFR8fr549eyosLMzuaKgGyjoAAAAAQNCaP3++/vGPf0iS/v73v2vQoEFVHvvpp59q9OjRkqQ333xT3bt390tGAPAlyjoAAAAAQFCyLEutWrVSQUGB0tLStHjx4mqP79Gjh77++mslJSVp3bp1fkoKAL7DbbAAAAAAgKCUnZ2tLVu2yOVy6d133632eGOM3nvvPYWEhOjHH39UTk6OzzMCgK/VsTsAAAAAAABnMnPmTEnSzTffrGuuuaZGcyQmJqpnz56aP3++Zs6cqW7duvkwIWCf4uJirVixQtu2bdORI0fk9XrPO2bEiBEBSIbaoqwDAAAAAASlVatWyRijW2+9tVbz9OnTR/PmzdPKlSt9lAywj9vt1hNPPKEZM2aovLy8WmMp65yBsg4AAAAAEJR27NghSWrZsmWt5mnRooUkafv27bWNBNjK4/EoNTVVhYWF4gqCCxdn1gEAAAAAgtKhQ4ckSdHR0bWap2L84cOHa50JsNPrr7+urVu3Vl6esmDBAhUVFcnr9erkyZPn/YAzsLIOAAAAABCULrroInk8Hh08eLBW81SMj4iIqH0owEZz5syRMUbp6enKysqyOw78hJV1AAAAAICgFBsbK0nauHFjrebZtGnTafMBTrVz505J0pAhQ2xOAn+irAMAAAAABKXrrrtOlmXVegVRxWqk9u3b+ygZYI8GDRpIkho1amRzEvgTZR0AAAAAICjdcsstkqTFixcrLy+vRnPk5eVp0aJFp80HOFVSUpKkf1++ggsTZR0AAAAAICjdcccduuqqq2RZlgYOHKjNmzdXa/yWLVs0cOBAGWPUrFkz9e/f309JgcB45JFHZFmWpk6dancU+BFlHQAAAAAgKNWpU0ejR4+WMUZFRUVq166d3nnnHR09evSc444ePap3331X7dq1k9vtliSNHj1adepwxyKcbeDAgbr77rs1a9Ysvf7663bHgZ8Yy7Isu0MAAAAAAHA2r732mv7xj3/IGCNJCg8PV+fOndW2bVs1atRI4eHhKikp0b59+7R27VotW7ZMJSUlqvhx96WXXtLzzz9v51sAquVc277Ly8s1YsQIrVixQikpKRo0aJASEhIUFhZ23nm7dOniy5jwE8o6AAAAAEDQmzp1qh577DGVlJRIUmVxdyYVP+aGhYXpgw8+0AMPPBCIiIDPuFyuc/4ZrwljjMrLy306J/yDsg4AAAAA4Ah79uzR22+/rSlTpqioqOiszzVs2FAPPPCAhg4dqsaNGwcwIeAbLpfvTy0zxsjr9fp8XvgeZR0AAAAAwHE2btyodevWaf/+/Tpy5IgiIiLUsGFDXXvttUpMTLQ7HlArubm5fpm3a9eufpkXvkVZBwAAAAAAAAQJboMFAAAAAAAAggRlHQAAAAAAABAkKOsAAAAAAACAIEFZBwAAAAAAEETS09OVn5/vl7lLS0v15ptvauzYsX6ZH7VHWQcAAAAAABBE5s+fr44dOyo9PV3Z2dk+mXPPnj169dVX1axZMz333HPav3+/T+aF73EbLAAAAAAAQBB58cUX9eabb6qsrEzGGMXFxWnQoEHq16+f2rZtq3r16lVpnh07dujrr7/WtGnTlJubq5MnT8qyLHXs2FH/9V//pcTERD+/E9QEZR0AAAAAAECQ+fXXX/XSSy9p0qRJOnHihIwxkqS6desqKSlJycnJio2NVVRUlKKiolRWVqYDBw7I4/Foy5Ytys/Pr1w9V1H9tGrVSi+88IIGDBhg2/vC+VHWAQAAAAAABKndu3drzJgxmjx5snbv3l35ekV5dzYVdU9ISIi6d++uIUOGKD09/bzjYD/KOgAAAAAAgCBnWZaWL1+upUuXatmyZVq5cqVKSkrO+Gx8fLw6d+6szp07q1evXmrUqFGA06I2KOsAAAAAAAAcyOPxqKioSAcOHFBoaKhiYmIUExNT5TPtEJwo6wAAAAAAAIAg4bI7AAAAAAAAAIBTKOsAAAAAAACC0Pz589W2bVu1bdtW06ZNq9bYTz/9tHLskiVL/JQQ/sA2WAAAAAAAgCBjWZZatWqlgoICpaWlafHixdUe36NHD3399ddKSkrSunXr/JQUvsbKOgAAAAAAgCCTnZ2tLVu2yOVy6d133632eGOM3nvvPYWEhOjHH39UTk6OzzPCPyjrAAAAAAAAgszMmTMlSTfffLOuueaaGs2RmJionj17njYfgh9lHQAAAAAAQJBZtWqVjDG69dZbazVPnz59ZFmWVq5c6aNk8DfKOgAAAAAAgCCzY8cOSVLLli1rNU+LFi0kSdu3b69tJAQIZR0AAAAAAECQOXTokCQpOjq6VvNUjD98+HCtMyEwKOsAAAAAAACCzEUXXSRJOnjwYK3mqRgfERFRy0QIFMo6AAAAAACAIBMbGytJ2rhxY63m2bRp02nzIfhR1gEAAAAAAASZ6667TpZlKSsrq1bzzJkzR8YYtW/f3kfJ4G+UdQAAAAAAAEHmlltukSQtXrxYeXl5NZojLy9PixYtOm0+BD9jWZZldwgAAAAAAAD8W3l5uRISErRt2zbFxsYqNze3WjfDbtmyRV26dFFRUZGaNWumzZs3q06dOn5MDF9hZR0AAAAAAECQqVOnjkaPHi1jjIqKitSuXTu98847Onr06DnHHT16VO+++67atWsnt9stSRo9ejRFnYOwsg4AAAAAACBIvfbaa/rHP/4hY4wkKTw8XJ07d1bbtm3VqFEjhYeHq6SkRPv27dPatWu1bNkylZSUqKLueemll/T888/b+RZQTZR1AAAAAAAAQWzq1Kl67LHHVFJSIkmVxd2ZVNQ8YWFh+uCDD/TAAw8EIiJ8iLIOAAAAAAAgyO3Zs0dvv/22pkyZoqKiorM+17BhQz3wwAMaOnSoGjduHMCE8BXKOgAAAAAAAAfZuHGj1q1bp/379+vIkSOKiIhQw4YNde211yoxMdHueKglyjoAAAAAAAAgSHAbLAAAAAAAABAkKOsAAAAAAACAIEFZBwAAAAAAAAQJyjoAAAAAAAAgSFDWAQAAAAAAAEGCsg4AAAAAAAAIEpR1AAAAAAAAQJCgrAMAAAAAAACCBGUdAAAAAAAAECQo6wAAAAAAAIAgQVkHAAAAAAAABAnKOgAAAAAAACBIUNYBAAAAAAAAQYKyDgAAAAAAAAgSlHUAAAAAAABAkKCsAwAAAAAAAIIEZR0AAAAAAAAQJCjrAAAAAAAAgCDxv3hpY8rm0YISAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 468, "width": 629 } }, "output_type": "display_data" } ], "source": [ "from helpers import plot_design_matrix\n", "\n", "# In case you named your model something different above we redefine it here\n", "model_a = ols('balance ~ C(hand)', data=df.to_pandas())\n", "\n", "plot_design_matrix(model_a)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Challenge\n", "\n", "Use polars to calculate the mean for each level of `hand`. Then using the explanation of dummy-coding above, use the means to recreate what each parameter estimate represents.\n", "\n", "Use `print` in Python or a markdown cell to write out your explanation" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Intercept 5.9415\n", "C(hand)[T.good] 7.0849\n", "C(hand)[T.neutral] 4.4051\n", "dtype: float64" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Here are the parameters\n", "# Can you get these values by using the means of each level of hand?\n", "results_a.params" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Your code here" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Intercept = Bad hand: 5.941\n", "B1 = Good - Bad: 7.085\n", "B2 = Neutral - Bad: 4.405\n" ] } ], "source": [ "# Solution\n", "hand_means = df.group_by('hand', maintain_order=True).agg(col('balance').mean())\n", "bad = hand_means[0,1]\n", "neutral = hand_means[1,1]\n", "good = hand_means[2,1]\n", "\n", "print(f'Intercept = Bad hand: {bad:.3f}') \n", "print(f\"B1 = Good - Bad: {good - bad:.3f}\")\n", "print(f\"B2 = Neutral - Bad: {neutral - bad:.3f}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Additional Coding Systems for Categorical Variables\n", "\n", "What if we want to represent the levels of our categorical variable in different way? We already saw how to change the **reference** level when using treatment/dummy codes - but we can also use an entirely different approach.\n", "\n", "In this section we'll cover the 2 additional common ways to *encode* categorical variables:\n", "1. Deviation (Sum) Coding\n", "2. Orthogonal Polynomial Coding\n", "\n", "The reason to understand these additional encoding schemes is that they provide **valid inferences** when we extend our model to include additional categorical or continuous predictors.\n", "\n", "Below we provide a brief overview of each coding scheme and how to use it but you should check-out the following resources as part of this lab as well:\n", "\n", "- [Coding Systems for Categorical Variables](https://stats.oarc.ucla.edu/spss/faq/coding-systems-for-categorical-variables-in-regression-analysis-2/#DEVIATION%20EFFECT%20CODING) *conceptual overview, but examples are in R*\n", "- [Contrasts in StatsModels](https://www.statsmodels.org/stable/contrasts.html) *Shorter Python version of the guide above*\n", "- [How to use different coding schemes in formulas](https://patsy.readthedocs.io/en/latest/API-reference.html#categorical-coding-ref)\n", "\n", "\n", "| Scheme Name | Intercept Interpretation | Other Parameters Interpretation | Formula Syntax | Affected by Unbalanced Designs? | Typical Usage | Additional Notes or Customizations | Interpretation Warnings and Guidance |\n", "|-----------------|------------------------------------|---------------------------------------------------------------|----------------------|--------------------------------|--------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|\n", "| Treatment (Dummy) | Baseline (reference) category | Difference from the reference category | `C(var, Treatment)` | Yes | Default; good for categorical predictors with a natural reference | Reference level can be set via `C(var, Treatment(reference=...)` | Be mindful of choosing a meaningful reference category |\n", "| Deviation (Sum) | Grand mean | Difference from grand mean | `C(var, Sum)` | No | ANOVA-style contrasts; balanced designs | Ensures sum of contrasts = 0 | In unbalanced designs, parameter estimates may not match simple group means |\n", "| Polynomial | Linear trend | Higher-order polynomial trends | `C(var, Poly, k)` | No | Modeling trends in ordered categories | Useful for variables with lots of levels | `k` determines the highest-order polynomial (e.g. linear, quadratic, etc) | \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Deviation (Sum/Contrast) Coding\n", "\n", "This form of coding uses the intercept to estimate the **grand-mean** (mean of means) of all levels and uses additional parameters to calculate the difference between each level and the grand-mean. This coding scheme is very useful when we have categorical variables with 3+ levels and **uneven group sizes** and want to perform valid F-tests (ANOVAs). \n", "\n", "*In the case of 2-levels $\\hat{\\beta_1}$ = 2x mean difference between levels* \n", "\n", "We can use this coding scheme with `C(hand, Sum)`\n", "\n", "We will have 2 columns in our **design matrix** but now they encode `good` and `neutral` using 1s and 0s and represent `bad` using -1s." ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [], "source": [ "# Estimate model\n", "model_sum = ols(\"balance ~ C(hand, Sum(omit='bad'))\", data=df.to_pandas())\n", "results_sum = model_sum.fit()" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 1., -1., -1.],\n", " [ 1., -1., -1.],\n", " [ 1., -1., -1.],\n", " [ 1., -1., -1.],\n", " [ 1., -1., -1.],\n", " [ 1., -1., -1.],\n", " [ 1., -1., -1.],\n", " [ 1., -1., -1.],\n", " [ 1., -1., -1.],\n", " [ 1., -1., -1.]])" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Print first 10 rows of the design matrix\n", "model_sum.exog[:10, :]" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABNIAAAOqCAYAAABZ2XjxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AAD3BElEQVR4nOzdd3TU1fb38c+kEkIIoVep0hWQJp0gIEqXJh1ErAhcEbyoCNhABbzoRS8dQSLFQlVAEBAUpIiEEpAWegs9vc3zB0/mx2RSJpmWZN6vtWatbzllJwSUzT7nGIxGo1EAAAAAAAAAMuTh6gAAAAAAAACA3IBEGgAAAAAAAGAFEmkAAAAAAACAFUikAQAAAAAAAFYgkQYAAAAAAABYgUQaAAAAAAAAYAUSaQAAAAAAAIAVSKQBAAAAAAAAViCRBgAAAAAAAFiBRBoAAAAAAABgBRJpAAAAAAAAgBVIpAEAAAAAAABWIJEGAAAAAAAAWIFEGgAAAAAAAGAFEmkAAAAAAACAFUikAQAAAAAAAFYgkQYAAAAAAABYgUQaAAAAAAAAYAUSaQAAAAAAAIAVSKQBAADAraxYsUIGg0EGg0Genp46fPiwq0NyK+Hh4abvv8FgUIUKFVwdEmA3OfXn+969eypRooQprrFjx7o6JCDXIpEGwC0YjUa1adPG7H9sypYtqzt37tg0bmJiourVq2c2bo0aNRQXF2enyAHA9WJjY1W9enWzP+vq1KmjhISEbI/Zs2dPs/EKFy6sy5cv2zHqtEVFRWnMmDGm+yFDhqh27doZ9hkyZIhZrGl9PDw85Ofnp6CgIFWpUkXNmjXToEGDNGXKFG3dulXR0dGO/tLghlInbR78vP766zaNfezYsXTHnjRpkn2+ADhNQECA3n33XdP9zJkzFRYW5sKIgNyLRBoAt2AwGDR//nz5+/ubnl28eNHm/8mcOnWq/v77b9O9h4eHFi5cKF9fX5vGBYCcJF++fFqwYIE8PP7vfx1DQ0P10UcfZWu8lStX6vvvvzd79tlnn6lUqVI2xWmNDz74QBcuXJAk+fr66r333rPLuEajUbGxsbp9+7ZOnTqlP/74Q0uWLNFbb72lNm3aqEiRInrmmWe0du1aGY1Gu8wJZGTp0qVKTEzMdv+vv/7ajtE41qJFizRp0iTTJzw83NUh5UgvvPCCKleuLElKSEjQyJEjXRwRkDuRSAPgNipWrKipU6eaPVuwYIE2btyYrfGOHj2q999/3+zZ66+/rscffzzbMQJATtW0aVONGDHC7NmHH36oQ4cOZWmciIgIi3E6dOigwYMH2xxjZi5duqSZM2ea7ocOHaoyZco4fF7pflXfjz/+qC5duqh27dr65ZdfnDIv3Ne1a9e0YcOGbPVNTk7WN998Y+eIHGfRokWaPHmy6UMiLW3e3t4aN26c6X7z5s3asmWLCyMCcicvVwcAAM706quv6rvvvtP27dtNz1544QUdPnxYAQEBVo+TlJSk5557TvHx8aZnVatWtVtlAwDkRFOmTNG6det0+vRpSfcrGp577jnt3r1bnp6eVo3x2muv6dq1a6b7ggULas6cOQ6JN7X33ntPMTExkiRPT89s7xH08MMPp1nRHBcXp1u3bun27ds6d+6c/vzzT126dMmi3dGjR9W+fXu98sor+s9//iNvb+9sxQFkZvHixerUqVOW+23evNlUuYm8ZfDgwZo8ebLpz6a3335bTzzxhIujAnIXEmkA3ErKEs9HH33UtF/NuXPnNHbsWP3vf/+zepzPPvtMf/75p+k+ZUmnn5+f3WMGgJwif/78mjt3rtq2bWtanrhv3z5NmzZNb775Zqb9V61apWXLlpk9++STT1SuXDmHxPugixcvasGCBab7Ll26qFKlStkaq3Tp0nrppZesanvu3Dl98803mjVrlkVS7csvv9SFCxf03XffuVUyrUKFCixvdaBHHnnEVCm6Zs0a3b59W4UKFcrSGA8u6zQYDKpVqxaHclgpp/98+/r66qWXXjLtl/bnn39q06ZNat++vYsjA3IPlnYCcDuVK1e22Ndnzpw5+vXXX63qf/LkSbPNWiVp1KhRatq0qd1iBICcqk2bNho+fLjZs0mTJun48eMZ9rt165Zefvlls2fBwcF64YUX7B5jWr744guzwxGcNe9DDz2kt956S+Hh4Zo4caLZPnPS/UTHv/71L6fEAvfw4DLpuLg4LV++PEv97969qx9//NF037p1a5UvX95u8cH1hg0bZlZFPGPGDBdGA+Q+JNIAuKXXXntNzZs3N90bjUY9//zzioqKyrCf0WjUsGHDTEuDJKlKlSr68MMPHRYrAOQ0n376qVkVWWxsrJ577jklJyen22fUqFG6cuWK6T5//vyaN2+eDAaDQ2OVpJiYGM2ePdt0X7ZsWadXX3h7e2vSpElat26dxYE0s2bNYs802E337t3NtqvI6qEBK1asMPv/HGfsXwjnKl26tJ566inT/caNGznBE8gCEmkA3JKHh4cWLFhgthTzzJkz+ve//51hv1mzZum3334z3RsMBotxACCvK1iwoFliSpL++OMPffHFF2m2X79+vZYsWWL2bMqUKdleWplVP/zwg27fvm2679Gjh0VlmLM89dRTaVZ/vP766zl6ORhyj/z586tXr16m+127dunEiRNW938w8ebv768ePXrYNT7kDA/+jEjSwoULXRQJkPuwRxoAt/Xwww/rgw8+0JgxY0zPZs2apV69eqlly5YW7c+ePavx48ebPXvttdfUokULh8cKADnNU089pUGDBmnx4sWmZ2+//bY6d+5sliC7c+eOXnzxRbO+zZo1szi505EejFGSevbs6bS50/LKK69o7dq1ZicqHj58WJs3b1a7du2yNWZ4eLgOHDiga9eu6caNGwoICFDx4sVVt25dVatWzeaYY2NjdfjwYR09elQ3b95UZGSkfHx8VKBAAZUpU0YVK1ZUjRo1nLrX27179/Tbb7/pwoULioiIkL+/vypXrqymTZuqSJEiDp//+PHj2rt3ry5duiSj0aiiRYuqZs2aatSokdWHbzjKoEGDzPYEXLx4scVJ42k5deqUdu7cabp/5plnVKBAAbvEdO/ePR09elTHjx/XjRs3FB0drYCAABUuXFjVqlVTvXr15OWVs/96eunSJe3Zs0fh4eGKjIyUn5+fGjZsmOb/N+Z0Xbt2lY+Pj+ngrKVLl2rKlCku/9kFcgUjALixpKQkY5MmTYySTJ8qVaoYo6KiLNq2a9fOrF2lSpWMkZGRLogaAHKGmzdvGkuWLGn2Z2ObNm2MycnJpjbPPfec2ft8+fIZjx8/7rQYb926ZfT09DTNX7BgQWNiYmKWxhg8eLDZ19CqVSub49q8ebPZmJKMAwYMyNIYd+7cMU6aNMlYtWpVi7Ee/FSsWNE4depUY3R0dJbjDA0NNfbv39/o7++f4RySjH5+fsaWLVsaZ8yYYbx582a6Y545c8asX/ny5bMU06lTp4y9evUy5suXL804PD09jV27djUePnzY1KdVq1ZmbbZu3ZrhHBm1X7lypfHRRx9N9/tQuHBh44cffpit73dWpf5eSjJevnzZmJycbKxYsaLZ9/jB35fpmTBhgtlYmzdvNhqNRmPHjh3Nnk+cONGq+P7880/j2LFjjY899pjRw8Mjw58ff39/Y79+/YyhoaFWjZ361ygrn4ULF1qMN3HixHS/xvXr1xubNm2a5lhdu3Y1GycrP99jxowxa+vr62vcv3+/VV9/iq5du5qNUbx4ceOlS5es6tuyZUuzvjt27MjS3IC7YmknALeWctpmvnz5TM9Onjypt99+26zdvHnzzPavSTn909/f32mxAkBOExQUpC+//NLs2a+//qo5c+ZIkjZt2mRWFSNJkydPVtWqVZ0W46ZNm5SUlGS6b9GiRY6ouHjiiSdUvXp1s2c///xzhvvMPWjJkiWqVKmSJk2apH/++SfDtilbF1SrVk379++3Osb3339f9erV09KlSzPdQ1S6vxfdb7/9ptdff13bt2+3ep6smD9/vmrXrq2VK1cqNjY2zTZJSUlavXq1HnvsMbsuV4uJiVHfvn3Vq1cvhYaGptvu5s2bevvtt9WqVSvduHHDbvNnhcFg0MCBA033Z8+ezfTXxGg0mi3BLleunIKDg7Mdw7PPPqvGjRvr008/1V9//ZXpz3ZUVJRCQkJUp04dTZgwIUcsdU5ISNDzzz+vjh076o8//rD7+FOnTjU7rCouLk69evXSnTt3rOo/Y8YMrV692nTv4eGhb775RqVKlbKqf+pf3/Xr11vVD3B3JNIAuL1q1arpvffeM3v2+eefm/6H6eLFi3rjjTfM3r/yyitq3bq1s0IEgByre/fuFnvtjBs3TkePHrU43bNhw4Zmy+mdYdOmTWb3Dx4042qp/zty48YNnTx5MsM+RqNR77zzjgYNGpRmksbT01OFCxe2ONBAks6fP69WrVppy5YtmcY2ZcoUvfvuu2ZJyBReXl4KCgpSUFCQU5OSs2fP1vDhw802wk/h6empoKAgs8Mr4uPjNWzYMK1cudLmuRMTE/XMM89o2bJlZs99fX1VqFChNPvs3btXPXr0cFlCaNCgQWb3mR06sH37doWHh5vuBw4caNNegg/uS/ggg8GgggULpvvzYzQa9cEHH1gsCXeF4cOHa/78+WbP0vpZyy4vLy8tX77cbCny6dOn9dxzz2Xad/fu3RZ7+7799ttZWh6e+s/DjRs3Wt0XcGck0gBA9zd5bty4sek+OTlZzz33nGJjY/XSSy+Z/ctghQoVNHXqVFeECQA50n//+18VLVrUdH/37l01atRI586dMz3z8fHRggULnF4N9ueff5rdP/roo06dPyOPP/64xbODBw9m2GfatGkWJ0VXqlRJM2bM0NGjR5WQkKAbN24oNjZWZ86c0YwZM1SyZElT26ioKPXp00cXLlxId46zZ89q0qRJZs+qVKmiL7/8UidPnlRsbKxu3rypmzdvKjExURcuXNCGDRv05ptvqmbNmlZ85Vm3b98+vfrqq2ZJKW9vb/3rX//S33//rfj4eN28eVPx8fHauXOnBg8eLIPBIKPRqOHDh5udGJsdEydONO1pV716dS1YsECXLl1SbGysbt26pXv37mnFihUW1Zbbt2/XokWLbJo7uypXrmyWKPnuu+8UHR2dbvvUcaZOxGVXjRo19MYbb2jt2rU6c+aMkpKSdOfOHdOvV1hYmGbOnKmHH37YrN/cuXMVEhKS7rivv/66vvrqK3311VcWff/1r3+Z3qX1adKkSaZxr1y50pR8DAwM1HvvvWf6PXbz5k3FxcVpz549Nu+5WLZsWS1ZssQsMffDDz/o888/T7fPzZs31adPHyUkJJieBQcHa+LEiVmau06dOmb3oaGhGf6MAPj/XLisFABylKNHjxp9fX3N9op4/PHHze4NBoNxy5Ytrg4VAHKcpUuXZrgn0eTJk50eU3R0tNn+aJKM586dy/I4jtgjzWg0Gv/66y+L79Onn36abvtdu3YZvby8zNq/+uqrxtjY2AznuX79urFZs2Zm/Tp27Jhu+6lTp1r8tzAre4Lu2LHDePTo0XTfZ3WPtMTERGPt2rXN+gQFBRn37duXYb81a9YYfXx80vx5zOoeaSmfF154wZiQkJBuv1u3bhnr1Klj1qdevXoZzmWL9PZISzF37lyzd0uWLElznMjISGOBAgXMfs0flJ090j7//HPjH3/8YfXXEhsbaxw+fLjZPJUrVzYmJSVl2jere+ClJfUeaSmf2rVrW73nmNGY/T0Ax48fb9bPx8fHuGfPHot2ycnJFr8eJUqUMPt1z4rU+1zu3LkzW+MA7oSKNAD4/2rUqGHxL/C7d+82u3/xxRfVpk0bJ0YFALlDv3791KVLlzTf1alTx+LUY2c4ceKE2dJEb29vlSlTxulxpCcoKMjiWUaVU2PHjlViYqLp/sUXX9R///vfNJdxPqho0aJas2aNypcvb3q2fv16HTp0KM32f/31l9n9pEmTsrQnaPPmzVWjRg2r22dm/fr1Onz4sNmz77//XvXr18+wX+fOnTVr1iy7xdGlSxfNnj07w5MlCxUqpHnz5pk9O3DggE6dOmW3OLKid+/e8vPzM92nt7zz+++/V2RkpOl+8ODBNs/92muvWVX5lcLX11ezZ882W/J86tQps9NtnS0oKEibNm2yes8xW7z//vtq1aqV6T4+Pl69e/e2WCL7ySefmO1l5uHhoaVLl5pVnmZFhQoVzO7DwsKyNQ7gTkikAcADxo4dq4YNG6b57qGHHtInn3zi5IgAIPd4+eWX03y+YMECeXt7Ozkame33JEmlSpWyac8ne0trb630NvXftWuXdu7cabovU6aMpk+fbvVchQsXtvjHorlz56bZ9tatW2b3FStWtHoeR0g5vCJF7969rd4Ef9iwYWrQoIHNMXh7e1udlGvQoIEee+wxs2f79u2zOYbsKFiwoLp162a6//XXX9Nc1vtggs3X11d9+vRxRngWDAaDxo0bZ/bs119/dUkskjRhwgSnJNGk+3uvffvttypevLjpWXh4uIYOHWq637lzp9555x2zfu+++66eeOKJbM9btmxZs/vUf24CsJRz/k8CAHIAT09PLVy4UD4+Phbv5s2bp4CAABdEBQA5X0JCgt58880032V0wqEjXbp0yez+wb+g5gQFChSweBYfH59m29R7RT333HNZPjm6R48eZtVU6Z3imDrB56okkHR/k//UiZQXXnjB6v4GgyFL7dPTsWNHi4RDRpo1a2Z2f+zYMZtjyK4H9zpLTk7WN998Y/b+3Llz2rp1q+m+c+fOaVZLOkvqvQNT73PoLN7e3napzMuKUqVKaenSpWYJ/1WrVumzzz7T9evX9eyzz5pVpbZp00YTJkywac7Ufy6m/nMTgKX065IBwE3VqlVLPXr00Lfffmt61qRJkyydggQA7uajjz5KN2H2+uuv66mnnlKJEiWcGtODS9UkmS1xywnu3btn8Sy9ZZqpk15PPvlklucLCAjQww8/bFq6dfjwYUVGRlok9Bo1amR20uW//vUvlS5d2iWnVR88eNDslE4/P78sx/HUU0/ZHMeDS+6sUalSJbP79E6wdIZ27dqpVKlSunz5sqT71WcPnva4ePFis0McHJk8io6O1pEjR3T58mXdu3dPUVFRSk5OzrDPg4eWOFOdOnVUuHBhp8/btm1bTZgwQZMnTzY9e/PNNxUSEqKLFy+anpUsWVIhISE2V9nmz5/f7D71n5sALJFIA4A0pK5IS6tCDQBw3+HDh/XRRx+l+/7WrVt69dVX9d133zkxKpklYCQpX758Tp0/Mw+eCJ0i9V9qpfvLPVPvEfb777+nu8dZRuLi4kzXycnJunr1qkUibeDAgZo4caLp9L5r164pODhYjRo1Uq9evdSuXTs98sgjTlkmm7qSq3bt2lk++bVs2bIqWrSoIiIish1H6n2kMpO6gv3u3bvZnttWnp6eGjBggD799FNJ97+ne/fuNW1lsXjxYlPb4sWLq0OHDnad/+LFi1q4cKFWrFihI0eOZJo4S81VSchHHnnEJfNK95dr7ty5U1u2bJF0v+L3wcpQDw8PhYSE2OUfJ1L/AwOndgKZI5EGAACAbEtKStLQoUPNliQ+/PDDeuGFFzR27FjTs++//14//vijunfv7rTYUu/L9uCSqJzg5s2bFs/S2o/p2rVrZhVDktJdRpudGCpXrmz2rESJEpozZ44GDRpklvTYs2eP9uzZI+n+8s9GjRqpZcuWCg4O1uOPP+6QxFrq/dqyu19VyZIlbUqkBQYGZql96mTfg4deuMLgwYNNiTTpflVaw4YN9fvvv+vEiROm5/3798/wMIWsMBqNmjp1qj744AObkjNpVW46gyuq0VKkHCBQr149UyXhgyZNmmT1PoGZSUhIMLt3xX6WQG7DHmkAAADItmnTpplVShgMBs2fP19jxoxR8+bNzdq++uqrTq0uSV3dlbpCzdUOHjxo8ezBkzVTpJVws5f0Ehz9+/fXTz/9ZJFkS3H79m1t2rRJ77zzjpo1a6Zy5crp3//+t65du2bX+FJX7WV3r9KCBQvaFIfBYLCpv6vVqlXL7JTTZcuWKT4+3uIUT3su6xw+fLjeeustmyucUieRnSWtPQydqUSJEnrttdcsntetW1dvv/223eZJ/euT1b0XAXdEIg0AAADZcvz4cYuTIF955RW1aNFCBoNB8+bNM9vz6/LlyxozZozT4itSpIjZfVpLKV0prU3U69ata/EsvQMI7CGjJMWTTz6psLAwrVixQt27d0/zlNEUly5d0scff6xKlSpp0aJFdosv9Z5x2f1eOPJ7mFs8mCS7ceOGvvvuO61YscL0rE6dOqpTp45d5lq8eLHmz59v9qxAgQJ67rnn9PXXX2vPnj26ePGi7t27p4SEBBmNRrMPpFOnTmnq1KkWzw8dOqTff//dbvOkXnbsyko8ILcgkQYAAIAsS05O1rBhwxQbG2t6Vr58ebO/+FWrVk3vvvuuWb8FCxaY9v1xtNTVXQ9u1J0TPHhSonR/f6q0KsBS/8XWx8dHSUlJFsmH7Hwy27jf29tbvXr10g8//KAbN27owIED+uKLL9SnT580l1lGRUVp6NChWrBgQda/IWlInbzLbjI0pyVRXaFv375my/ZGjhxp9n2xVzWa0Wi0OEmyTZs2Cg8P1/z58zVo0CA1bNhQpUuXVoECBSyWkrLZ/f29DHv37p3m3npJSUnq27evrl+/bpe5Uv+5mNX9AAF3RCINAAAAWfb5559bVEXMmTPHYjnUuHHjVK9ePbNnw4cPd8qG1qlPTrx7965LN31/0C+//KJ//vnH7NnTTz+d5hLCYsWKmd3Hx8frwoULDo0vLR4eHqpbt65GjBihZcuW6eLFi9q3b59efvlli32V/vWvf9llSWrJkiXN7o8fP57lMeLi4hQeHm5zLLld0aJF9fTTT5vub9y4Ybr28vJSv3797DLP/v37zU7aLFSokL777juLCtH02LKXXV7x+uuv66+//jLd+/v7mx0scPHiRQ0cONAu1Xup/yxJ/ecmAEsk0gAAAJAlp0+fttijZ+jQoWrfvr1FWy8vL82fP9+s6uTMmTN65513HB5n6dKlVbx4cbNnYWFhDp/XGtOmTbN4NmTIkDTbFi5cWA899JDZs99++80RYWWJwWBQ/fr19eWXX2rbtm1mybS7d+9q7dq1Ns+RcrJkirNnz+rKlStZGuOvv/6y2FDdXaVXdfbkk0/a5QRISQoNDTW779ixo4KCgqzuv3fvXrvEkVutXLlSX375pdmzL7/8Ut9++63ZgR4bN25Mc+lnVsTHx+vkyZNmz1L/wwcASyTSAAAAYDWj0ajnn3/erKKsVKlSmjFjRrp96tWrpzfeeMPs2cyZM9PcI8zeHtxgXbL8S74rzJo1S5s2bTJ79thjj6lVq1bp9mnbtq3Z/YN7W+UETZs21TPPPGP2zB7f6xIlSqhixYpmz5YtW5alMUJCQmyOI6/o1KlTmpVh9jxkIPWBE6mTwJnJTgI29fJQV5+Sml2nTp3S888/b/Zs6NChGjRokIKDgy2Wyk+YMEE7duzI9nxhYWFmSeZixYqleeAJAHMk0gAAAGC12bNnW+zt9dVXX2W4Eb0kTZw4UdWqVTPdp+yx5uhN4FMnpx48YdQVNmzYYHHggsFgyDARKUk9e/Y0u1+7dm2Oq9xJnfCKioqyy7iplxzOmDHD6rHPnz9v18MPcjtvb29NnjxZffr0MX369eunLl262G0OHx8fs/usnNR7/vx5LV++PMtzpj7NNacs4c6KuLg49erVyyz22rVr67///a/pfsKECWZJ9ZT90rK7HHb//v1m9y1btszWOIC7IZEGAAAAq5w/f17jxo0ze9anTx917do107758uXTvHnzzPYAO3LkiD766CO7x/mgp556yuw+dRLQWRISEjR58mR17NhRcXFxZu/GjBmTYTWadP/rSL3MsV+/fmb7XGVVevsrJSYmZmu8Y8eOmd2n3t8su1544QV5enqa7s+fP69XX3010/2hYmNjNXjwYDavT+XVV1/VsmXLTJ+lS5danI5qi7Jly5rdb9y40aoKsaSkJA0aNChbyfXUy1JzyhLurBg9erQOHDhguvf399eKFSuUP39+0zMPDw998803Zr+3bNkvLfWfhw/uoQcgfSTSAAAAYJUXXnhB9+7dM90XLVpUX3zxhdX9mzdvrldeecXs2ZQpU3TkyBG7xZjao48+arZU6cSJEzp//rzD5kvt/PnzmjJliipUqKBJkyYpOTnZ7H3v3r2t3udo2rRpZkvYTp48qebNm2dpCaXRaNTWrVvVtWtXrVq1Ks02jzzyiD744AOLJXoZ+emnnyyW5AUHB1vdPyMPPfSQxdLgr7/+Wn369Ek3xlOnTqlDhw6mREG+fPnsEgsy16pVK7OE+enTpy1O8UwtKipKPXr00LZt27I1Z+p9vRYvXmy3ikhnWLFihf73v/+ZPfvqq69Uo0YNi7YlSpTQt99+a5Zc3rBhgz7++OMsz/tgIs3Dw4NEGmAlr8ybAAAAwN0tWrRIGzZsMHv2+eefW5womZmpU6dq7dq1plP94uPjNWzYMP3xxx9mG2nbU79+/TRlyhTT/erVqzVixIhsj3fp0iWLv/RK95dm3b59W7dv39b58+e1e/duXbx4Md1x3njjDU2dOtXsL8QZadmypWbMmKGRI0eanh07dkyPPfaYunfvrn79+qlZs2ZmBywkJCTo9OnTOnjwoH777TetWrXKFNPAgQPTnOfy5cuaMGGCJk2apJYtW6pz585q0KCBHnnkEbMlvFFRUdq/f7+WLFmihQsXmlUd1atXz67LxCZPnqyff/7ZLGm4cuVKrVu3Th06dFDdunUVFBSkiIgI7d69W1u3bjXt/fTUU08pOjpa27dvN/VN63RU2EeJEiXUrVs3/fjjj6ZnKQnzN954Q48//rjpYIqzZ89q9erV+uSTT0w/ly1btszyYRpPP/20PDw8TInq48ePq3r16uratasqV64sPz8/s/bBwcFmS81d6cSJExb7og0bNizd35+S1Lp1a02cONFsz7QJEyaoefPmat68uVXz7tmzx+zPp7Zt29qtihTI84wAAAuDBw82SjJ9WrVq5eqQAMBlLl++bAwKCjL7c7Fz587ZHu/nn382G0uSccaMGXaM2FxYWJhNf6an/m+CrZ86deoYt2/fnu2vZ+rUqUZPT890x/f29jYWKVLEmD9//gzjWLlyZZrjBwYGZjh20aJFjQULFky3TVBQkPHw4cPpxn/mzBmz9uXLl7fq67569aqxVq1aWfpeP/LII8abN28aW7ZsafZ89+7dGc7VqlUrs/Zbt261KsYUCxcuNOs/ePDgLPW3VurvpSTj5cuX7T5Px44dzeaYOHFihu1PnDhhLFSoUJq/Jl5eXsYiRYoYfXx8LN6VKVPGeP78eYvn1hgyZIjVPxcLFy606D9x4sQsfY3pycrPd2xsrLFu3bpm7WvXrm2Mjo7OdJ6kpCRju3btzPqWLVvWeP36daviHDt2rFnfb775xtovEXB7LO0EAABAhl5++WXdunXLdB8YGJhmRZa1OnToYFFt8c477+jMmTPZHjMj1atXV+vWrU33O3bsMFXEOYufn5969uypn376SX///bdN1VpvvvmmNmzYYLG5f4qEhATduHHD7GTV1IoVK6YyZcqk+S6jaq2EhARFRESku5l77dq19fvvv6tWrVoZfAXZU7x4ce3YsUPDhg2zqqKsd+/e2rFjh4KCgizizexwDNimSpUqWr16dZonhCYmJurGjRsWe6FVr15d27Zts9hjzVr//e9/rdqvMScZNWqU/v77b9O9v7+/Vq5caVFBl5aU/dJKlSplenbhwgUNGjQo0/3SkpOTzQ51KFasmHr06JH1LwBwUyTSAAAAkK5ly5ZZ7KU1ffp0lS5d2qZx//Of/5htEB4dHa3hw4fbNGZGHjwpMzk5WfPnz7fr+AaDQb6+vgoMDFSlSpXUtGlTDRw4UFOmTNHWrVt18+ZNrVy50uLwg+xq27at/vnnH3399ddq3ry5aalcRsqXL6/nnntOq1ev1qVLl9SkSZM02x07dkzz589Xr169rPp1NhgMatasmebNm6e///47zX2d7CUoKEjz5s3TwYMHNX78eNWvX18lSpSQl5eXChYsqLp16+q1117Tvn37tHz5cgUGBkqSxV5qQUFBDosR97Vs2VIHDhzQkCFDMvz5LF26tD788EMdOHBAVapUyfZ8/v7+WrVqlXbs2KERI0aoSZMmKl68uFVJKVdYvny5Zs+ebfbsf//7n6pXr271GMWLF1dISIjZ8vCff/450/3Sfv75Z7N/THjllVfYRxDIAoMxs3Q1AAAAkMsZjUbVrl1bR48elSSVKVNGZ86csSoBlRtER0frzz//1IULF3Tjxg1FRkbK399fgYGBqlixomrUqJHt/Y8uXLigf/75R2fOnNHt27cVHR0tPz8/BQYGqkqVKqpTp44KFy5s56/Ifi5fvmyWECxSpIgiIiJcGJH7uXfvnn7//XedOnVKt2/flre3t0qWLKlHH31UderUYc86J+vcubPWrVsnScqfP7/OnDljtrcigIxx2AAAAADyPIPBoPfee089e/aUJF28eFEhISEaPHiwiyOzj/z589vtlMzUypYtm+3ldjlB6orKhg0buiYQNxYQEKAOHTq4OgxIOnLkiNavX2+6HzlyJEk0IItY2gkAAAC30KNHDzVo0MB0//HHH2e6lxByt5iYGM2YMcPsWdu2bV0UDeB6U6dONf25FxgYqHHjxrk4IiD3IZEGAAAAt/FgUiUsLEzLli1zYTTIitSb02cmKSlJw4cP18mTJ03P8uXLpyFDhtg5MiB3OHbsmL799lvT/cSJE9kvEMgGEmkAAABwGy1atDA7MfTtt9/OcoIGrjF+/Hj16NFDv/zyixISEjJsu3//fj3xxBNaunSp2fOXXnopzZMkAXfw5ptvKikpSZJUq1Ytvfbaay6OCMid2CMNAAAAbuXTTz9VpUqVTPfh4eGqWrWqCyOCNZKSkvTDDz/ohx9+UKFChfT444+rdu3aKl68uPLnz6+7d+/q3Llz+v3333Xo0CGL/rVq1dKUKVNcEDngepGRkXrsscdUr149SfcPHPDyIh0AZAendgIAAADI8UaPHq2ZM2dmq2/dunW1Zs0alStXzs5RAQDcDUs7AQAAAOR4lSpVkq+vb5b6BAQE6M0339TOnTtJogHIda5du6Z169bp3Xff1VNPPaWiRYvKYDDIYDA4bL/HZcuW6cknn1SpUqWUL18+VahQQQMHDtTu3butHuPGjRuaOHGi6tSpo8DAQBUsWFB16tTRxIkTdePGDYfE7UxUpAEAAADIFe7evauNGzealm+Gh4crIiJC0dHR8vLyUlBQkIoWLar69eurVatW6tq1K5upA8i1DAZDuu8GDx6sRYsW2W2u2NhY9erVS+vWrUvzvYeHhyZNmqQJEyZkOM7evXvVtWtXXb58Oc33pUuX1urVq81O0c5tSKQBAAAAAADkMA8m0sqVK6caNWpo06ZNkuyfSOvfv79CQkIkScHBwRo1apRKly6tQ4cO6aOPPtKpU6ckSXPnztXzzz+f5hgXL15U/fr1dfXqVXl5een1119Xp06dJEnr1q3TjBkzlJiYqBIlSmj//v0qU6aM3eJ3JhJpAAAAAAAAOczEiRPVsGFDNWzYUCVKlFB4eLgqVqwoyb6JtO3bt6t169aS7h9E8eOPP8rT09P0PiIiQvXr19e5c+cUFBSk06dPq1ChQhbjDBkyRF9//bUkacWKFerVq5fZ+5UrV6p3796SpKFDh2rBggV2id/Z2CMNAAAAAAAgh5k8ebI6deqkEiVKOHSeTz75RJLk6empL7/80iyJJklFixbVxx9/LEm6deuW5s+fbzHG1atX9c0330iSnnzySYskmiT16tVLTz75pCRp8eLFunr1ql2/DmchkQYAAAAAAOCGIiMjtWXLFklSu3btVLZs2TTbPfPMMypYsKAk6YcffrB4v2bNGiUlJUm6X22WnpRDEpKSkrRmzRpbQncZEmkAAAAAAABuaM+ePYqLi5MktWrVKt12Pj4+evzxx019EhISzN7v2LHDdJ3ROA++27lzZ7ZidjUvVwcAAAAAAACQW124cMGqdulVe7lSWFiY6bp69eoZtq1evbo2bdqkxMREnThxQjVr1rQYJzAwUCVLlkx3jFKlSqlgwYK6e/eu2dy5CYk0AAAAAACAbCpXrpxV7XLiWY/nz583XWeW6Hvw6zx//rxZIi1lHGuSheXKldORI0fM5s5N3CqR9njp1q4OAQAA5GG7L21zybwJEaddMi9yP7/SLVwdAgA3lBh/0Wlz8d/IjN27d890XaBAgQzb+vv7m64jIyPTHCezMR4cJ/UYuYVbJdIAAAAAAADsKbdWVklSbGys6drHxyfDtr6+vqbrmJiYNMfJbIwHx0k9Rm7hVom0El6ZZ0YBAAAAAEAekZzk8Cly4t5n1sqXL5/pOj4+PsO2KYcSSJKfn5/FONHR0ZmO8eA4qcfILTi1EwAAAAAAwA0FBASYrjNbahkVFWW6Tr2EM2Uca5ZrpoxjzTLQnMitKtJaqJCrQwAAAAAAAM5iTHZ1BDnag9V0Fy5cUIMGDdJt++AS1tQHLJQtW1ZXr1616gTTlHGsPaQhp3GrRNopj8xLDAEAAAAAANzBgydvHjt2LMO2Ke+9vLxUpUoVi3H279+vO3fu6MqVKypZsmSaY1y+fFl3796VJNWoUcOW0F2GpZ0AAAAAACBvSk52/CcXa9iwoemAgO3bt6fbLj4+Xrt377bok6J58+am64zGefBds2bNshWzq7lVRdpVY2zmjQAAAAAAANxAQECAnnjiCf3888/avHmzLly4kObhCT/88IOpkqx79+4W77t06aKXX35ZycnJWrhwofr06ZPmfIsWLZIkeXh4qEuXLvb7QpyIijQAAAAAAJAnGY3JDv/kZIsWLZLBYJDBYNCkSZPSbPPGG29IkhITE/Xqq68qKcn8pNOIiAi9+eabkqRChQrp+eeftxijZMmS6t+/vyRp48aN+u677yzarFy5Uhs3bpQkDRw4MN3lnzmdW1WkxRsdf+wtAAAAAACArXbu3KmTJ0+a7iMiIkzXJ0+eNFV3pRgyZEi25mnTpo2effZZLVu2TGvWrFG7du00evRolS5dWocOHdKHH36oc+fOSZKmTp2qoKCgNMf58MMPtWHDBl2/fl19+/bVvn371KlTJ0nSunXrNH36dElSsWLF9MEHH2Qr1pzArRJpdT0CXR0CAAAAAABwlly8h9m8efP09ddfp/nu999/1++//272LLuJNElasGCB7t69q59++klbt27V1q1bzd57eHhowoQJevHFF9Mdo1y5clq7dq26deumK1eu6OOPP9bHH39s1qZkyZJatWpVmstHcwuWdgIAAAAAALgxPz8/rV+/XkuXLlW7du1UvHhx+fj4qFy5curXr5927tyZ7tLQBzVu3FiHDh3SO++8o9q1a6tAgQIqUKCAHnnkEb3zzjs6fPiwGjdu7PgvyIEMRqPR6OognKVJmWBXhwAAAPKwXRe3Zt7IARIiTrtkXuR+fqVbuDoEAG4oMf6i0+aKP3/Q4XP4lKvj8DmQc7jV0s6CHvlcHQIAAAAAAAByKbdKpAEAAAAAADeSzKGDsC+3SqQV9vB1dQgAAAAAAADIpdwqkQYAAAAAANyIMfee2omcya0SaT4GT1eHAAAAAAAAgFzKrRJpjyX7uToEAAAAAADgLMlUpMG+PFwdAAAAAAAAAJAbuFVFWhCHdQAAAAAA4DaM7JEGO3OrRBoAAAAAAHAjLO2EnblVIu2dmIOuDgEAAORhg1wdAAAAABzKrRJpzwU86uoQAAAAAACAs7C0E3bGYQMAAAAAAACAFdyqIi3RYHR1CAAAAAAAwFmSOXUQ9kVFGgAAAAAAAGAFt6pIu6oEV4cAAAAAAACchT3SYGdulUhrluDr6hAAAAAAAACQS7lVIg0AAAAAALiRZCrSYF9ulUjz5qwBAAAAAAAAZJNbJdKiOVoBAAAAAAD3wR5psDNSSwAAAAAAAIAV3KoiLcHg6ggAAAAAAIDTsEca7IyKNAAAAAAAAMAKblWR9kXcP64OAQAA5GGvuDoAAABgxmhMcnUIyGPcKpH2TP4qrg4BAAAAAAAAuZRbJdIAAAAAAIAb4dRO2Bl7pAEAAAAAAABWoCINAAAAAADkTZzaCTtzq0RahBJcHQIAAAAAAAByKbdKpF1JjnF1CAAAAAAAwFnYIw125laJNAAAAAAA4EaSk1wdAfIYt0qk1fQo6OoQAAAAAAAAkEu5VSJt+uXfXB0CAADIw6a4OgAAAGCOpZ2wMw9XBwAAAAAAAADkBm5VkRZSuJWrQwAAAAAAAM6STEUa7IuKNAAAAAAAAMAKblWR9pXndVeHAAAA8rCerg4AAACYY4802JlbJdLGJhR2dQgAAAAAAADIpdwqkQYAAAAAANwIe6TBztwqkbY4X5yrQwAAAHlYB1cHAAAAAIfisAEAAAAAAJA3JSc7/uME586d0xtvvKEaNWrI399fhQsXVqNGjTRt2jRFR0dne9xt27bJYDBk6dO6des0x6pQoYJV/StUqJDteHMCt6pIu5Uc6+oQAAAAAAAArLZ+/Xr1799fd+7cMT2Ljo7W3r17tXfvXs2bN08//fSTKlWq5JR4qlWr5pR5ciq3SqRFJEW5OgQAAAAAAOAkRmOSq0OwycGDB9W7d29FR0erQIECGj9+vIKDgxUTE6Nly5Zp7ty5On78uDp27Ki9e/eqQIECWRq/YcOGOnToUKbtRowYoe3bt0uSBg8enGHbrl276oMPPkj3vY+PT5ZizGncKpEGAAAAAACQW4wePVrR0dHy8vLSpk2b1KRJE9O7Nm3a6OGHH9a4ceN07NgxzZgxQ++++26Wxvf391ft2rUzbHP79m3t3r1bklSlShU1bdo0w/aFChXKdMzczK0Saf/cvejqEAAAAAAAgLPk4lM79+7dq23btkmShg0bZpZESzFmzBgtXLhQYWFh+s9//qPx48fL29vbrnEsX75ccXH3D28cOHCgXcfOjThsAAAAAAAAIIdZtWqV6Xro0KFptvHw8NCgQYMkSbdu3TIl3uxp8eLFkiSDwUAiTW5WkfZuYcvsLQAAAAAAyKOMubcibceOHZLuL7+sX79+uu1atWplut65c6fatWtntxhOnTqlP/74Q5LUokULVaxY0W5j51ZulUg7YMj+kbAAAAAAAADOEhYWJun+vmReXumnb6pXr27Rx15SqtGkzA8ZSPHbb7/p0Ucf1alTp2Q0GlWiRAk1atRIffv2VdeuXWUwGOwao7O5VSINAAAAAAC4ESfskXbhwgWr2pUtW9bqMWNjYxUREWFVv6CgIPn7+ysqKkrnz5+3eg5rfPPNN5IkPz8/9ezZ06o+Z86cMbsPDw9XeHi4VqxYoWbNmmn58uUqU6aMXeN0JrdKpPkY2BIOAAAAAADYT7ly5axqZzQarR7z3r17pusCBQpk2j4lkRYZGWn1HJnZsWOHTp8+LUnq3r27ChYsmGF7Hx8fdenSRe3bt1ft2rUVGBio27dva9euXfrqq690/vx5/f7772rXrp127dqlwMBAu8XqTG6VSCsq+55cAQAAAAAAcrBcukdabGys6drHxyfT9r6+vpKkmJgYu8WwZMkS03XKgQYZ2bNnjwoVKmTxvHXr1hoxYoR69uypTZs2KSwsTJMnT9aMGTPsFqszuVUiDQAAAAAAwJ7svZxSkvLly2e6jo+Pz7R9XFycpPtLMO0hLi5OK1eulCSVLl1abdu2zbRPWkm0FAEBAVqxYoUqV66sGzduaM6cOZo6dapVScKcxq0SaV/fOuDqEAAAQB72iasDAAAA5pywR1pW9j6zVkBAgOnamuWaUVFRkqxbBmqN1atX6/bt25Kk/v37y9PT0+YxAwMD9eyzz2rWrFmKiorSvn371LRpU5vHdTa3SqQBAAAAAAA3kkuXdubLl09FixZVREREpocZ3Lp1y5RIs3a/tsw8eFqnNcs6rVWzZk3T9cWLF+02rjO5VSKtvH8JV4cAAAAAAACQqRo1amjHjh06efKkEhMT5eWVdgrn2LFjZn1sde3aNW3cuFGS9Nhjj6l27do2j5kiKwcu5FRulUgr6507T4QAAAAAAADZ4ISlnY7SvHlz7dixQ1FRUdq/f78aN26cZrvt27ebrps1a2bzvCEhIUpMTJRk32o0STp69KjpunTp0nYd21k8XB0AAAAAAAAAzHXr1s10vXDhwjTbJCcnm5ZhFipUSMHBwTbPmzKel5eX+vXrZ/N4Ke7cuaPly5dLkvLnz68GDRrYbWxncquKtH9ir7k6BAAAAAAA4Cy5uCKtUaNGatGihXbs2KH58+dr8ODBatKkiVmb6dOnKywsTJI0atQoeXt7m71ftGiRhg4dKkmaOHGiJk2alOGcR44c0YED9w9qfOqpp1SsWDGrYt2wYYNatWqV7qmh9+7dU+/evXXjxg1J0rBhw+Tr62vV2DmNWyXSAAAAAAAAcouZM2eqWbNmiomJUfv27fXWW28pODhYMTExWrZsmebMmSNJqlq1qsaMGWPzfF9//bXpevDgwVb3mzp1qvr3769nnnlGzZs3V+XKlVWgQAHdvn1bu3bt0ldffaXz589LkqpVq5ZpQi8nc6tE2seq6OoQAAAAAACAs+TSUztT1KtXT8uXL9eAAQN09+5dvfXWWxZtqlatqvXr1ysgIMCmuZKTkxUSEiJJCgoKUqdOnbLU/+bNm5o3b57mzZuXbpuWLVsqJCREhQsXtilWV3KrRFqCweDqEAAAAAAAAKzWuXNnhYaGaubMmVq/fr0uXLggHx8fValSRb169dKIESOUP39+m+fZsmWLLl68KEnq06dPlpZeTps2TVu2bNGuXbt0/PhxRURE6Pbt28qfP79Kly6txo0bq2/fvmrfvr0MuTw3YzDmhbNHrbSqpP02yQMAAEit25UQl8ybEHHaJfMi9/Mr3cLVIQBwQ4nxF502V8yaaQ6fw6/LGw6fAzmHW1Wk+eTykk4AAAAAAAC4jlsl0o76utWXCwAAnOxpVwcAAADMUVADO/NwdQAAAAAAAABAbuBWJVqBJKIBAAAAAHAfySQCYF9UpAEAAAAAAABWcKuKtJ887rg6BAAAkIcNd3UAAADAHHukwc7cKpE2t9ZdV4cAAAAAAACAXMqtEmkAAAAAAMCNsEca7MytEmm/Hyjj6hAAAEAe1tXVAQBZtLt4Q1eHgFyszt8zXB0CADidWyXSAAAAAACAG6EiDXbmVom0i94cUgoAAAAAAIDscatEWrTB1REAAAAAAACnMRpdHQHyGLdKpAEAAAAAADfC0k7YmVsl0m548BsIAAAAAAAA2eNWiTQAAAAAAOBGqEiDnblVIi3cGO3qEAAAAAAAAJBLuVUirUe8v6tDAAAAAAAAzmKkIg325eHqAAAAAAAAAIDcwK0q0vxYGw0AAAAAgPsgDwA7c6tE2pF8nq4OAQAA5GEdXR0AAAAAHMqtEmkAAAAAAMCNGI2ujgB5jFsl0prHx7g6BAAAAAAAAORSbpVIAwAAAAAAboQ90mBnbpVIK1PqjqtDAAAAAAAAQC7lVom0rVdLujoEAACQhw1xdQAAAMAcFWmwMw9XBwAAAAAAAADkBm5VkVbDGO3qEAAAAAAAgLMYqUiDfVGRBgAAAAAAAFjBrSrSlvn4uDoEAACQhzV2dQAAAMCMMdno6hCQx7hVIu2pGFdHAAAAAAAAgNzKrRJpAAAAAADAjXBqJ+zMrRJpkQa2hAMAAAAAAED2uFUi7YwPiTQAAAAAANwGp3bCztwqkQYAAAAAANwIhw3AztwqkRZl4DcQAAAAAAAAssetEmkAAAAAAMCNcNgA7MytEmlHFOXqEAAAAAAAAJBLuVUizd/gVl8uAAAAAADujYo02BnHWAIAAAAAAABWcKsSrarGfK4OAQAAAAAAOIsxbxw6eO7cOX3++edav369zp07J19fX1WpUkW9e/fWK6+8ovz582d77EmTJmny5MlWtd26datat26dYZsbN27o888/16pVqxQeHi6j0aiKFSuqW7duGjlypIoUKZLtWHMCt0qkAQAAAAAA5Cbr169X//79defOHdOz6Oho7d27V3v37tW8efP0008/qVKlSi6M8r69e/eqa9euunz5stnz0NBQhYaGat68eVq9erUaNGjgoghtRyINAAAAAADkTbl8j7SDBw+qd+/eio6OVoECBTR+/HgFBwcrJiZGy5Yt09y5c3X8+HF17NhRe/fuVYECBWya79ChQxm+r1ixYrrvLl68qM6dO+vq1avy8vLS66+/rk6dOkmS1q1bpxkzZujSpUvq1KmT9u/frzJlytgUq6u4VSLtoCJdHQIAAAAAAIBVRo8erejoaHl5eWnTpk1q0qSJ6V2bNm308MMPa9y4cTp27JhmzJihd99916b5ateune2+b7/9tq5evSpJCgkJUa9evUzvWrRooQYNGqh37966evWqJkyYoAULFtgUq6tw2AAAAAAAAMibko2O/zjI3r17tW3bNknSsGHDzJJoKcaMGaMaNWpIkv7zn/8oISHBYfFk5OrVq/rmm28kSU8++aRZEi1Fr1699OSTT0qSFi9ebEq65TZuVZH2VKJtJY4AAAAAAADOsGrVKtP10KFD02zj4eGhQYMGafz48bp165a2bdumdu3aOSnC/7NmzRolJSVJSj9WSRoyZIg2btyopKQkrVmzRsOHD3dWiHZDRRoAAAAAAMibjMmO/zjIjh07JEn+/v6qX79+uu1atWplut65c6fD4slISqySeTyp5YRYbeVWFWk/et7JvBEAAEA2DXJ1AAAAIM8ICwuTJFWpUkVeXumnb6pXr27RJ7vatWunv/76S/fu3VOhQoVUs2ZNdejQQS+++KKCgoIyjTUwMFAlS5ZMt12pUqVUsGBB3b171+ZYXcWtEmnPJhR0dQgAAAAAAMBZHLiHWYoLFy5Y1a5s2bJWjxkbG6uIiAir+gUFBcnf319RUVE6f/681XOkZfPmzabr69eva/v27dq+fbs+/vhjLVq0SF27dk2zX8q81nyN5cqV05EjR2yO1VXcKpEGAAAAAABgT+XKlbOqndFofVLv3r17pusCBTLf7z0lkRYZGWn1HA965JFH1K1bNzVq1EilS5dWQkKCjh8/rqVLl2rTpk26ffu2evToobVr1+qpp55KN15rY5WU7Vhdza0SaV0+KOXqEAAAAAAAgJMYkx23h5kjxcbGmq59fHwybe/r6ytJiomJyfJco0eP1qRJkyyeN27cWIMGDdLs2bP10ksvKSkpSc8//7xOnjwpPz+/NON1dKw5gVsl0hq+lTs3sgMAALnD4WGujgAAADibI5Yo5suXz3QdHx+fafu4uDhJskhwWaNQoUIZvn/xxRe1b98+zZs3T5cuXdIPP/yg/v37W8QbHR3t8FhzArdKpAEAAAAAADfihD3SsrL3mbUCAgJM19YsgYyKipJk3dLK7HjxxRc1b948SdL27dstEmkBAQGKjo7OEbE6mlsl0p7wq+DqEAAAAAAAADKUL18+FS1aVBEREZkeZnDr1i1Tcsra/dqyqmbNmqbrixcvWrwvW7asrl69atXBCykVfI6K1dE8XB0AAAAAAACAQxiTHf9xkBo1akiSTp48qcTExHTbHTt2zKKPvWV2UEJKou3OnTu6cuVKuu0uX76su3fvSnJcrI7mVhVpH3TJnSdCAAAAAACAbHDC0k5Had68uXbs2KGoqCjt379fjRs3TrPd9u3bTdfNmjVzSCxHjx41XZcuXdriffPmzbVkyRJTPH369ElzHGfE6mhulUg7u87VEQAAgLys9ueujgAAAOQV3bp105QpUyRJCxcuTDORlpycrMWLF0u6f2hAcHCwQ2KZPXu26bpVq1YW77t06aKXX35ZycnJWrhwYbqJtEWLFkmSPDw81KVLF4fE6mgs7QQAAAAAAHlTcrLjPw7SqFEjtWjRQpI0f/587dq1y6LN9OnTFRYWJkkaNWqUvL29zd4vWrRIBoNBBoNBkyZNsuh/6NAhnTx5MsM4Zs+erfnz50uSSpYsqe7du1u0KVmypOkAgo0bN+q7776zaLNy5Upt3LhRkjRw4ECVLFkyw3lzKreqSFubVMjVIQAAgDystqsDAAAAecrMmTPVrFkzxcTEqH379nrrrbcUHBysmJgYLVu2THPmzJEkVa1aVWPGjMny+Pv379fzzz+v4OBgPfXUU3rkkUdUpEgRJSYm6tixY/rmm2/0yy+/SJI8PT01e/Zs+fv7pznWhx9+qA0bNuj69evq27ev9u3bp06dOkmS1q1bp+nTp0uSihUrpg8++CA7344cwa0SaQAAAAAAwI3k4j3SJKlevXpavny5BgwYoLt37+qtt96yaFO1alWtX79eAQEB2ZojKSlJmzdv1ubNm9NtU6RIEc2fPz/D5ZjlypXT2rVr1a1bN125ckUff/yxPv74Y7M2JUuW1KpVq1S2bNlsxZoTuFUi7Yoh/VMuAAAAAAAAcprOnTsrNDRUM2fO1Pr163XhwgX5+PioSpUq6tWrl0aMGKH8+fNna+ynn37atGz0wIEDunr1qm7cuCGj0ajChQurTp066tChg4YMGaKCBQtmOl7jxo116NAhzZw5U6tWrVJ4eLgkqWLFiuratatGjx6tIkWKZCvWnMJgzOwM0zxkSvkBrg4BAADkYePPfuOSeRMiTrtkXuR+B+u+7uoQkIvV+XuGq0NALuVdtJLT5oqa0Nvhc/i/v8LhcyDn4LABAAAAAAAAwAputbSzu+9NV4cAAAAAAACcJZfvkYacx60SaQcig1wdAgAAyMOquzoAAAAAOJRbJdIAAAAAAID7MCYnuzoE5DFulUg77ENJJwAAAAAAALLHrRJpAAAAAADAjbBHGuzMrRJpb48p5OoQAAAAAAAAkEu5VSJt5PRrrg4BAADkYfNec3UEAADADBVpsDMPVwcAAAAAAAAA5AZuVZE2a9NoV4cAAAAAAACcxcipnbAvKtIAAAAAAAAAK7hVRdrfrWe4OgQAAJCHNb7U3NUhAACAB7FHGuzMrRJpt5J8XB0CAAAAAAAAcim3SqQBAAAAAAD3YaQiDXbmVom0ot6xrg4BAAAAAAAAuZRbJdKCCsW4OgQAAAAAAOAsVKTBztwqkQYAAAAAANxIcrKrI0Ae41aJtMByLO0EAAAAAABA9rhVIg0AAAAAALgRlnbCztwqkVZm62lXhwAAAPKwOFcHAAAAAIdyq0Ta6JLNXR0CAAAAAABwFirSYGcerg4AAAAAAAAAyA1yZEXaqVOnFBERoQoVKqhEiRJ2G9dDBruNBQAAAAAAcjajkYo02JdTK9KuX7+uL7/8Ul9++aXu3Llj8f7kyZOqX7++qlatqqZNm6pMmTLq2bOnbt++7cwwAQAAAAAAAAtOrUj7/vvvNWLECFWrVk2vvPKK2bu4uDg99dRTOn36tCljbDQa9eOPPyoiIkLbtm2zeX5fIxVpAAAAAAC4DfZIg505NZG2adMmGQwG9ejRw+LdokWLdOrUKRkMBnXp0kVPPPGENm/erLVr12rHjh1asWKFevfubdP89eL4DQQAAAAAAIDscerSzuPHj0uSGjVqZPHu22+/lSS1adNGq1at0muvvabVq1erbdu2MhqNpvcAAAAAAABWSTY6/gO34tSKtOvXr0uSSpcubfY8JiZGu3btksFg0AsvvGD27rnnntPmzZv1119/2Tz/aR8OKQUAAAAAAED2ODWRlnJogIeHeUJr9+7dSkhIkIeHh9q2bWv2rmLFipKka9euOSVGAAAAAACQNxipGIOdOTWRVqBAAd25c0dXrlwxe55ykEDNmjUVFBRk9s7b21uS5OVle6hFkmweAgAAAMgz6vw9w9UhIBc7WPd1V4eAXKrBhVWuDgHINqcm0qpXr64///xTGzZs0NNPP216/v3338tgMKhVq1YWfVKSbiVKlLB5/tNeZKIBAAAAAHAbVKTBzpyaSOvYsaN2796tOXPmqEaNGmrRooUWLVqko0ePymAw6JlnnrHok7I3WtmyZZ0ZKgAAAAAAAGDGqYm0ESNG6Msvv9Tly5c1YsQIs3dNmjRRcHCwRZ+1a9fKYDCoRYsWNs/fx+eWzWMAAAAAAIBcItnVASCvcWoiLTAwUJs3b9bAgQPNTuFs0aKFvv32W4v2Bw8e1N69e2UwGNSuXTub598QV9jmMQAAANJTw9UBAAAAwKGcmkiTpBo1amjfvn06c+aMrly5olKlSqlChQrptl+4cKEkqWnTpk6KEAAAAAAA5AWc2gl7c3oiLUXFihVVsWLFDNvUqVNHderUsducvvz+AQAAAAAAQDa5LJEGAAAAAADgUFSkwc7cKpH2cHyCq0MAAAAAAADOwmEDsDOXJNISExO1fv167dixQ6dPn9a9e/eUlJSUYR+DwaAtW7bYNO/CfPE29QcAAMiI7UcjAQAAICdzeiJt586dGjhwoM6dO2d6ZjSmX2ppMBhkNBplMBicER4AAAAAAMgj8sphA+fOndPnn3+u9evX69y5c/L19VWVKlXUu3dvvfLKK8qfP3+2x757965++uknbdmyRfv379fp06cVHR2twMBA1apVS506ddLzzz+vQoUKZThOhQoVdPbs2UznK1++vMLDw7Mdr6s5NZF27NgxdejQQTExMTIajfLx8dHDDz+swoULy8PDw+Hz/yvR4VMAAAAAAADYzfr169W/f3/duXPH9Cw6Olp79+7V3r17NW/ePP3000+qVKlSlsf++eef1b17d8XFxVm8i4iI0Pbt27V9+3ZNmzZN3377rYKDg236WvICpybSPvroI0VHR8vT01OTJ0/WyJEjVaBAAWeGAAAAAAAA3EUu3yPt4MGD6t27t6Kjo1WgQAGNHz9ewcHBiomJ0bJlyzR37lwdP35cHTt21N69e7OcY7lx44bi4uLk4eGhdu3aqUOHDqpTp44KFSqkCxcuaOnSpVq+fLmuXr2qTp066ffff1fdunUzHLNr16764IMP0n3v4+OTpRhzGqcm0n799VcZDAaNGjVKb731ljOnliQFBUY7fU4AAAAAAIDsGD16tKKjo+Xl5aVNmzapSZMmpndt2rTRww8/rHHjxunYsWOaMWOG3n333SyN7+3trRdffFFvvfWWHnroIbN39erVU+fOndWsWTONHDlS0dHRGjNmTKb71xcqVEi1a9fOUhy5icGY0QZldpYvXz4lJCTot99+U7NmzZw1rcn8sgOcPicAAHAfwy5845J5EyJOu2ReAO7tYN3XXR0CcqkGF1Y5ba6b3Vs5fI7CP253yLh79+5Vo0aNJEkvvvii/ve//1m0SU5OVu3atRUWFqagoCBdvXpV3t7edo+lYcOG2rdvnzw8PHTt2jUVKVLEok3KHmmDBw/WokWL7B5DTuH4jckeUKxYMUmSn5+fM6cFAAAAAADIVVatWmW6Hjp0aJptPDw8NGjQIEnSrVu3tG3bNofE0rp1a0n3E3dnzpxxyBy5hVOXdjZv3lwrVqzQ4cOH9dhjjzlzaklSE99bTp8TAAAAAAC4SC7eI23Hjh2SJH9/f9WvXz/ddq1a/V/V3c6dO9WuXTu7x/LgYQTOOCwyJ3NqIu3111/X999/r5kzZ6pfv37y8nLq9CpUgj3SAAAAAABAzhcWFiZJqlKlSob5k+rVq1v0sbft2+8vX/Xy8lKVKlUybPvbb7/p0Ucf1alTp2Q0GlWiRAk1atRIffv2VdeuXWUwGBwSo7M4NZPVsGFDzZgxQ6NGjdIzzzyjBQsWqGjRos4MAQAAAAAAuAmjEyrSLly4YFW7smXLWj1mbGysIiIirOoXFBQkf39/RUVF6fz581bPYa3169crNDRUkvTkk0+qYMGCGbZPvfQzPDxc4eHhWrFihZo1a6bly5erTJkydo/TWZyaSHvvvfckSY0bN9a6detUvnx5tWvXTtWrV1f+/Pkz7Z/V0ydSu3E5a8fAAgAAZEVpVwcAAACcrly5cla1y8pZj/fu3TNdFyiQeS4jJZEWGRlp9RzWuHnzpl599VVJkqenp95///102/r4+KhLly5q3769ateurcDAQN2+fVu7du3SV199pfPnz+v3339Xu3bttGvXLgUGBto1VmdxaiJt0qRJphI+g8GgmJgYrV27VmvXrrWqv62JNAAAAAAA4EZy6R5psbGxpmsfH59M2/v6+kqSYmJi7BZDUlKS+vfvr7Nnz0qS3nnnHdWrVy/d9nv27FGhQoUsnrdu3VojRoxQz549tWnTJoWFhWny5MmaMWOG3WJ1JuduUibLDGxWMrK2OhabcfkhAACALR5xdQAAAMDpHLGcMl++fKbr+Pj4TNunHAbg5+dntxheeeUVbdiwQZLUsWNHTZgwIcP2aSXRUgQEBGjFihWqXLmybty4oTlz5mjq1KlWJQlzGqcm0pKTXZsKTszd+9kBAAAAAIAscMYeaVnZ+8xaAQEBpmtrlmtGRUVJsm4ZqDXGjx+vOXPmSJKaN2+ulStXytPT06YxAwMD9eyzz2rWrFmKiorSvn371LRpU3uE61TufWYpAAAAAABADpMvXz7T4YyZHWZw69YtUyLN2v3aMvLxxx9r6tSpkqTHHntM69ats1ulW82aNU3XFy9etMuYzub0pZ2u9FjBm64OAQAAAAAAOEsu3SNNkmrUqKEdO3bo5MmTSkxMlJdX2imcY8eOmfWxxZdffql///vfprE2btxo10MBnLm9l6NQkQYAAAAAAJDDNG/eXNL9ZZv79+9Pt9327dtN182aNcv2fEuWLNGIESMkSZUqVdLmzZtNVXH2cvToUdN16dK587xzl1Wk3bx5UwsXLtTmzZt1+PBh3bx5v1qscOHCql27ttq2bauhQ4eqcOHCdpsz4ra/3cYCAABIrZqrAwAAAGacsUeao3Tr1k1TpkyRJC1cuFCNGze2aJOcnKzFixdLur/Zf3BwcLbm+uGHHzR06FAZjUaVLVtWW7ZssXui686dO1q+fLkkKX/+/GrQoIFdx3cWlyTSZs+erTfeeEPR0dGSzEv7Ll68qEuXLmnTpk2aNGmSpk+frhdeeMEu8/76/4+DBQAAcITs/xswAACAuUaNGqlFixbasWOH5s+fr8GDB6tJkyZmbaZPn66wsDBJ0qhRo+Tt7W32ftGiRRo6dKgkaeLEiZo0aZLFPJs2bVLfvn2VlJSk4sWLa/PmzapQoUKWYt2wYYNatWqV7l5q9+7dU+/evXXjxg1J0rBhw+SbS3M0Tk+kTZ06VW+//bYpeRYYGKh69eqpZMmSMhqNunr1qg4cOKA7d+4oKipKL7/8sm7fvq1x48Y5O1QAAAAAAJCL5eaKNEmaOXOmmjVrppiYGLVv315vvfWWgoODFRMTo2XLlplO1qxatarGjBmT5fF3796t7t27Kz4+Xt7e3vrss8+UkJCgw4cPp9unbNmyKlSokNmzqVOnqn///nrmmWfUvHlzVa5cWQUKFNDt27e1a9cuffXVVzp//rwkqVq1amkm9HILpybSDh8+rAkTJshoNKpUqVL69NNP1atXL4uMaWJiolauXKmxY8fq0qVLeuedd9SxY0fVqlXLpvkbxibZ1B8AAAAAAOQeuT2RVq9ePS1fvlwDBgzQ3bt39dZbb1m0qVq1qtavX6+AgIAsj79hwwbTasGEhAT1798/0z4LFy7UkCFDLJ7fvHlT8+bN07x589Lt27JlS4WEhNh1Gy9nc2oi7b///a+SkpJUrFgx7dq1Sw899FDaQXl5qW/fvmrevLkaNmyo69ev67///a+++uorZ4YLAAAAAADgUp07d1ZoaKhmzpyp9evX68KFC/Lx8VGVKlXUq1cvjRgxQvnz53dpjNOmTdOWLVu0a9cuHT9+XBEREbp9+7by58+v0qVLq3Hjxurbt6/at28vg8Hg0lhtZTA68ezRqlWr6tSpU5o+fbpGjx5tVZ/PPvtMY8aMUZUqVfTPP//YNP9f5bra1B8AACAjj51f7ZJ5EyJOu2ReAO7tYN3XXR0CcqkGF1Y5ba6rrVs7fI4S27Y5fA7kHE6tSLt48aIkqWnTplb3STm69dKlSzbPH5voskNKAQAAAAAAkMs5NbPk6ekp6f4eaNZKaevh4eGQmAAAAAAAQN6U2/dIQ87j1ETaQw89pLCwMG3ZssXqqrQtW7aY+trqmjF3Hq0KAAAAAAAA13NqIq1du3Y6evSopk2bpm7duumRRx7JsH1oaKg+/fRTGQwGtW/f3ub5qxe8bfMYAAAAAAAgdzAm5+6N7ZHzOHW95OjRo+Xr66vIyEg1b95cn376qSIiIizaRURE6JNPPlHLli0VGRkpX19fqw8nAAAAAAAAABzBqRVp5cuX1+zZszV06FBFRkbq3//+t8aPH68KFSqoRIkSMhgMunLlisLDw2U0GmU0GmUwGDR79my7LO28ec/PDl8FAAAAAADIDdgjDfbm9GMsBw0apCJFiuill17SxYsXZTQadfr0aZ05c0aSZDQaTW1Lly6tOXPm6Omnn3Z2mAAAAAAAAIAZpyfSJKljx446c+aMfvzxR23evFmHDx/WzZs3JUmFCxdW7dq11bZtW3Xv3l1eXvYL8bgHFWkAAMBxrDtKCQAAOIvRyB5psC+XJNIkycvLS7169VKvXr2cNuclL2PmjQAAAAAAAIA0uCyRBgAAAAAA4EjskQZ7c6tE2rj977s6BAAAAAAAAORSbpVIAwAAAAAA7sOYzB5psC+HJNI8PT0lSQaDQYmJiRbPsyP1WNkxpf4Em/oDAABk5N2zS10dAgAAABzIIYk0ozHtTf3Te+4sb7xd3KXzAwAAAAAA53FxGgJ5kEMSaRMnTszScwAAAAAAACCnMxhdXSbmROF127k6BAAAkIdV+PsXl8ybEHHaJfMCcG8H677u6hCQSzW4sMppc519rK3D5yj/12aHz4Gcw60OGzB4uE3OEAAAAAAAAHbm1ETab7/9Jklq2LCh/Pz8rOoTGxurPXv2SJJatmzpsNgAAAAAAEDewqmdsDenJtJat24tDw8PhYaGqmbNmlb1uXjxoqmfrad2htwoaVN/AACAjIx3dQAAAABwKKcv7czulmxutJUbAAAAAACwA1IJsLccv0dacnKyJMnT09PmsbYmR9g8BgAAQHqoSAMAIGdhaSfsLccn0sLDwyVJgYGBNo/1dfk4m8cAAAAAAACAe3JoIu3cuXNpPr98+bIKFCiQYd+4uDidOnVKEyZMkMFgUK1atRwRIgAAAAAAyKOMRirSYF8OTaRVrFjR4pnRaFT79u2zPNagQYNsjif2Xo4vwAMAAAAAAEAO5dDMUnoHBGTl4IB8+fJp5MiReu655+wVFgAAAAAAcAPGZFdHgLzGoYm0hQsXmt0PHTpUBoNB77//vsqUKZNuP4PBoHz58qlUqVKqV69epstArXX2SiG7jAMAAJAWy1p8AAAA5CUOTaQNHjzY7H7o0KGSpG7duqlmzZqOnDpN9wws7QQAAAAAwF0ks0ca7MypmaWtW7dKSnvvNAAAAAAAACAnc2oirVWrVs6czsLOfC6dHgAA5HGdXR0AAAAww6mdsDcPVwcAAAAAAAAA5AYu2zTMaDTq77//1sGDBxUREaGYmJhMT/N89913bZrzaPI9m/oDAAAAAIDcw5hMRRrsyyWJtK+//lqTJ0/W2bNns9TP1kRaWxWyqT8AAAAAAADcl9MTaW+//bamTp2aafWZJBkMBqvaAQAAAAAApEZKAfbm1ETan3/+qSlTpshgMKhdu3b69NNPlZycrMcee0wGg0GJiYm6deuW9u3bp6+++kqrV69W8+bNtXLlSpUoUcLm+S96JNnhqwAAAAAAAIA7cmoi7auvvpIklS9fXuvXr5eXl5eOHDliem8wGFS4cGG1b99e7du311dffaVXX31VHTp00J9//ikfHx+b5n+7xTWb+gMAAAAAgNyDPdJgb049tfOPP/6QwWDQyJEj5eWVeQ7v5ZdfVo8ePRQaGqovv/zSCRECAAAAAAAAaXNqRdrly5clSbVq1TI98/D4v1xeQkKCvL29zfoMHDhQ33//vZYvX67Ro0fbNH/izUSb+gMAAAAAgNwj2UhFGuzLqRVpCQkJkqTixYubnhUoUMB0ff36dYs+5cqVkySdPHnSwdEBAAAAAAAA6XNqRVqxYsV06dIl3b171/SsRIkS8vT0VHJyssLCwlS6dGmzPilVbPfu3bN5/jmHy9k8BgAAQHrGuzoAAABgxkhFGuzMqYm0WrVq6dKlSzp27JhatGghSfLx8VGtWrV06NAhLV++XE888YRZn6VLl0qSRYItO7w59hYAAAAAAOQy586d0+eff67169fr3Llz8vX1VZUqVdS7d2+98soryp8/v13mWbZsmRYuXKjQ0FDdunVLJUuWVIsWLfTqq6/q8ccft2qMGzdu6PPPP9eqVasUHh4uo9GoihUrqlu3bho5cqSKFClil1hdxamJtBYtWmjTpk3aunWrhg8fbnrep08fhYaGasGCBSpZsqT69Omj6Ohoff311/r2229lMBj01FNPOTNUAAAAAACQyxnzQEHN+vXr1b9/f925c8f0LDo6Wnv37tXevXs1b948/fTTT6pUqVK254iNjVWvXr20bt06s+dnz57V2bNnFRISokmTJmnChAkZjrN371517drVtLowRWhoqEJDQzVv3jytXr1aDRo0yHasrmYwGp33Y3XkyBE98sgjKlCggC5cuKCCBQtKuv8DULt2bYWHh8tgMC+7NBqNKly4sP7++2+VLVvWpvmfKd/Fpv4AAAAZ+eHsGpfMmxBx2iXzAnBvB+u+7uoQkEs1uLDKaXP97YQ8QF0H/vf/4MGDatq0qaKjo1WgQAGNHz9ewcHBiomJ0bJlyzR37lxJUvXq1bV3716zfeizon///goJCZEkBQcHa9SoUSpdurQOHTqkjz76SKdOnZIkzZ07V88//3yaY1y8eFH169fX1atX5eXlpddff12dOnWSJK1bt04zZsxQYmKiSpQoof3796tMmTLZitXVnL60c+vWrUpMTFRi4v+doJk/f35t3bpVAwYM0O+//27Wp3bt2lqyZInNSTQAAAAAAIDcZPTo0YqOjpaXl5c2bdqkJk2amN61adNGDz/8sMaNG6djx45pxowZevfdd7M8x/bt201JtM6dO+vHH3+Up6enJKlhw4bq0qWL6tevr3PnzmncuHHq2bOnChUqZDHO22+/ratXr0qSQkJC1KtXL9O7Fi1aqEGDBurdu7euXr2qCRMmaMGCBVmONSdwakWaNY4fP64jR44oMTFRDz/8sOrVq2e3sb8r1d9uYwEAAKTW8/JSl8xLRRoAV6AiDdnlzIq0Aw91dfgc9c6tdsi4e/fuVaNGjSRJL774ov73v/9ZtElOTlbt2rUVFhamoKAgXb16Vd7e3lmap2PHjvrpp5/k6emp8PDwNAuZli1bpr59+0qSpk2bpjFjxpi9v3r1qsqUKaOkpCQ9+eST2rBhQ5pzdejQQRs3bpSnp6cuXryoEiVKZCnWnMCpFWnWqFatmqpVq+aQsesViXDIuAAAAAAAAPa0atUq0/XQoUPTbOPh4aFBgwZp/PjxunXrlrZt26Z27dpZPUdkZKS2bNkiSWrXrl26qwGfeeYZFSxYUHfv3tUPP/xgkUhbs2aNkpKSMoxVkoYMGaKNGzcqKSlJa9asMds/P7fwcOZkycnJzpwOAAAAAAC4MaPR8R9H2bFjhyTJ399f9evXT7ddq1atTNc7d+7M0hx79uxRXFycxTip+fj4mE7t3LNnjxISEtKMNbNxbIk1p3BqRVqZMmX07LPPql+/fmrYsKEzp5YkLblX1OlzAgAA9zHJ1QEAAIA8IywsTJJUpUoVeXmln76pXr26RZ+szpF6nPTm2bRpkxITE3XixAnVrFnTYpzAwECVLFky3TFKlSplqmzLaqw5hVMTaVevXtXnn3+uzz//XJUrV9aAAQPUt29fPfzww06Z/19trjplHgAAAAAA4HrJRoPD57hw4YJV7bJyiGJsbKwiIiKs6hcUFCR/f39FRUXp/PnzVs8hyax9ZvOUK1fOrN+DibSUcaz5GsuVK6cjR45kOdacwqmJtA4dOmjz5s1KTEzUyZMnNXnyZE2ePFkNGjTQgAED1Lt371y50RwAAAAAAHBPDyaYMpKVsx7v3btnui5QoECm7VMSaZGRkVbPkdV5/P39Tdep50kZx9pY0xojt3BqIu2nn37SjRs3tHz5coWEhOiPP/6QJO3bt0/79u3T66+/rieeeEL9+/dX9+7drfoFyIrOm3LUAaUAACCP+c3VAQBZ5Fe6hatDAOCGEp04l9EJFWmOEBsba7r28fHJtL2vr68kKSYmxmHzpMyR1jwp4zgy1pzC6ad2FilSRK+88opeeeUVnT17ViEhIVq6dKmOHj2qpKQk/fLLL/rll1/00ksvqUuXLurfv786dOiQ4XpgAAAAAAAAV3DEEsV8+fKZruPj4zNtn3JggJ+fn8PmSZkjrXny5cun6Ohoh8aaU7g0O1W+fHmNHz9e48eP18GDBxUSEqJvv/1WFy5cUExMjFasWKEVK1aocOHC6tWrl7788kub5otMjsu8EQAAAAAAyBOcsUdaVvY+s1ZAQIDp2polkFFRUZKsW1qZ3XlS5khrnoCAAEVHRzs01pwix5R51alTR3Xq1NHHH3+s7du3a+nSpfr+++9169Yt3bhxQ7Nnz7Y5kfawD6d2AgAAAACAnC1fvnwqWrSoIiIiMj3M4NatW6bklLX7taV4MAl44cIFNWjQIN22D1bepZ6nbNmyunr1qlUHL6SMk9VYcwoPVweQllatWmnatGn64IMPVKhQIVeHAwAAAAAAciGjEz6OUqNGDUnSyZMnlZiY/s5yx44ds+hjrQdP3nxwnIzm8fLyUpUqVdIc586dO7py5Uq6Y1y+fFl3797NVqw5RY6pSJPur8ddt26dQkJC9NNPP5mtv7WHq0m580QIAAAAAADgXpo3b64dO3YoKipK+/fvV+PGjdNst337dtN1s2bNsjRHw4YN5ePjo/j4eG3fvl3//ve/02wXHx+v3bt3m/VJHeuSJUtM8fTp08fuseYUOaIi7ddff9WwYcNUokQJ9erVSz/++KNiY2NlNBpVuXJlvfvuu5lmRgEAAAAAAB6UbDQ4/OMo3bp1M10vXLgw7a8vOVmLFy+WJBUqVEjBwcFZmiMgIEBPPPGEJGnz5s3pLs384YcfTJVk3bt3t3jfpUsXeXh4ZBirJC1atEiS5OHhoS5dumQp1pzCZRVpf/31l5YuXarly5fr8uXLkiSj8X5RZLFixdSnTx/1798/3YxrdtxNis28EQAAAAAAgIs1atRILVq00I4dOzR//nwNHjxYTZo0MWszffp0hYWFSZJGjRolb29vs/eLFi3S0KFDJUkTJ07UpEmTLOZ544039PPPPysxMVGvvvqqfvjhB3l6epreR0RE6M0335R0P1n3/PPPW4xRsmRJ9e/fX0uWLNHGjRv13XffqWfPnmZtVq5cqY0bN0qSBg4cqJIlS2bxO5IzODWRdurUKYWEhGjp0qU6ceKEpP9Lnvn7+6tr164aMGCA2rVrZ/aLZi8pcwEAAAAAgLzP6IRTOx1p5syZatasmWJiYtS+fXu99dZbCg4OVkxMjJYtW6Y5c+ZIkqpWraoxY8Zka442bdro2Wef1bJly7RmzRq1a9dOo0ePVunSpXXo0CF9+OGHOnfunCRp6tSpCgoKSnOcDz/8UBs2bND169fVt29f7du3T506dZIkrVu3TtOnT5d0v3jqgw8+yFasOYFTE2kPP/ywDAaDKaHl5eWldu3aqX///urWrZvy58/vzHAAAAAAAAByrHr16mn58uUaMGCA7t69q7feesuiTdWqVbV+/XoFBARke54FCxbo7t27+umnn7R161Zt3brV7L2Hh4cmTJigF198Md0xypUrp7Vr16pbt266cuWKPv74Y3388cdmbUqWLKlVq1aZnRaa2zh9aafRaFTjxo3Vv39/9enTR8WKFXPa3J3zVXDaXAAAAAAAwLWSXR2AHXTu3FmhoaGaOXOm1q9frwsXLsjHx0dVqlRRr169NGLECJsLk/z8/LR+/XqFhIRo0aJFOnjwoG7fvq0SJUqoRYsWGjFihMWy0rQ0btxYhw4d0syZM7Vq1SqFh4dLkipWrKiuXbtq9OjRKlKkiE2xuprB6MT1ju+9954GDBigSpUqOWtKM+9W6O+SeQEAgHt4L3ypS+ZNiDjtknmR+/mVbuHqEAC4ocT4i06ba0fJnpk3slGLK985fA7kHE6tSKtQoYJ27typ69ev2/UQAWtF54lcNAAAAAAAsIZRuXuPNOQ8Tk2kDRkyRAaDQd9++61LEmnxJNIAAAAAAHAbyZw5CDvzcOZkgYGBku4fOgAAAAAAAADkJk6tSKtYsaIOHjyoW7duOXNak/PJ0S6ZFwAAAAAAOF8ySzthZ05NpHXv3l1///231q5dqzZt2jhzakmSwcBvIAAAAAAAAGSPU5d2jho1SuXLl9dXX32lX3/91ZlTAwAAAAAAN2OUweEfuBenVqQVLFhQv/zyi3r27Kknn3xSQ4cOVb9+/fToo48qKCjI4RVjN5NY2gkAAAAAAIDscWoizdPT03RtNBo1f/58zZ8/36q+BoNBiYmJjgoNAAAAAADkMcmuDgB5jlMTaUajMcN7Rztw+4xT5wMAAAAAAEDe4dRE2sSJE505nYU6gRVcOj8AAAAAAHAe9jCDvblVIg0AAAAAAADILqcm0lwtMjnO1SEAAAAAAAAnYY802JuHqwMAAAAAAAAAcgOXVqSdPn1au3bt0pUrVxQdHa2XX35ZRYsWddh81+JuO2xsAAAAAACQs1CRBntzSSLtwIEDGj16tHbu3Gn2vEePHmaJtFmzZmny5MkKDAzU0aNH5e3tbdO8xX0L2dQfAAAAAAAA7svpSzvXr1+vpk2baufOnTIajaZPWgYPHqyYmBidPn1a69atc3KkAAAAAAAgNzPK4PAP3ItTK9KuXLmivn37Ki4uTrVq1dK0adPUvHlzBQQEpNm+QIEC6tatm0JCQvTzzz+re/fuNs1/LzHGpv4AAAAAAABwX05NpH322WeKjIxU+fLltWPHDhUqVCjTPq1bt9bSpUu1f/9+m+f3NHC2AgAAAAAA7iKZgjHYmVMzSxs3bpTBYNCYMWOsSqJJUrVq1SRJ4eHhjgsMAAAAAAAAyIRTK9LOnDkjSWrUqJHVfVKWfUZGRto8v6+HbYcVAAAAAACA3COZPcxgZ06tSEtISJCkLJ2+efv2bUmSv7+/I0ICAAAAAAAArOLUirSSJUvq7NmzOnPmjOrVq2dVn127dkmSypYta/P8PX0r2jwGAAAAAADIHYyuDgB5jlMTac2aNdPZs2f1448/6plnnsm0fXR0tP73v//JYDCoZcuWNs/vRUknAAAAAAAAssmpSzsHDx4so9Gob7/9Vps2bcqwbWRkpHr37q1z585JkoYNG+aMEAEAAAAAQB6R7IQP3ItTK9Latm2rbt26adWqVerSpYtee+019erVy/T+5s2b+vPPP7Vp0yb973//05UrV2QwGDRo0CCrl4JmJICfcAAAAAAA3EaygZVpsC+D0Wh06pLh6OhoderUSdu2bZMhgx/olLCeeOIJrVu3Tr6+vjbP/d9yA2weAwAAID0jzn/jknkTIk67ZF7kfn6lW7g6BABuKDH+otPm+q5Uf4fP0fPyUofPgZzDqRVpkpQ/f35t3rxZn332mWbMmKHLly+n2a5w4cJ64403NG7cOHl42GcF6pTIA3YZBwAAIC0jXB0AAAAww2EDsDenJ9IkycPDQ2PGjNGoUaO0Z88e7du3T9euXVNSUpKKFCmievXqqXnz5napQntQ78BH7DoeAAAAAAAA3IdLEmmmyb281LRpUzVt2tSVYQAAAAAAgDyIrdJhby5NpDnbgoi9rg4BAADkYZ+5OgAAAAA4VI5LpF29elXr1q1TRESEKlasqM6dO8vPz8/VYQEAAAAAgFwmmUM7YWdOTaSFhYVp4sSJMhgMmj17tgoVKmT2fs2aNerXr59iYmJMz8qVK6c1a9bo0UcftXn+Z4s+ZvMYAAAAAAAAcE9OTaStWrVK3333nVq2bGmRRLt27ZoGDBig6Ohos+fnzp1T586ddfToUfn7+9s0/7KIv2zqDwAAkJHZrg4AAACYSRYlabAvD2dOtmXLFhkMBnXq1Mni3ZdffqnIyEh5eXlpxowZOnjwoD755BN5eHjowoULmjt3rjNDBQAAAAAAAMw4tSLt3LlzkqQ6depYvPvhhx9kMBg0aNAgjR49WpL0yCOP6MSJE5o7d67WrFljep5dPp45bks4AAAAAADgIEZXB4A8x6mZpevXr0uSihUrZvY8IiJCR44ckST169fP7F2XLl00d+5c03tbDAyqZ/MYAAAAAAAAcE9OTaSl7H8WGxtr9nznzp0yGo3y9fVVs2bNzN6VKlVKknT79m2nxAgAAAAAAPIGTu2EvTk1kVa4cGFdu3ZN586d0+OPP256vmXLFklSgwYN5Ovra9YnMTFRklSgQAGb59+VcNXmMQAAAAAAAOCenHrYQMreaCEhIaZnMTExWrlypQwGg9q0aWPR5+zZs5KkEiVKOCdIAAAAAACQJyQ74QP34tSKtGeffVabNm3S2rVr9eyzz6p58+Zavny5rl27Jg8PD/Xt29eiz59//ilJqlSpks3zd/cqY/MYAAAAAAAAcE9OTaQNGjRICxYs0M6dO7Vy5UqtXLnS9G7o0KGqXr26RZ+U0zzTqlbLqrnRYTaPAQAAkJ5xrg4AAACY4dTOjEVHR2vWrFlauXKlTp48qfj4eJUrV04dO3bUyJEj9dBDD9k0fmJiorZu3apNmzZp9+7dOnbsmG7fvi1/f39VqlRJbdq00csvv6zKlStnOM6QIUP09ddfWzXnmTNnVKFCBZvizohTE2keHh76+eefNXHiRK1cuVJXrlxRqVKlNHjwYE2YMMGi/dq1axUeHi6DwaB27do5M1QAAAAAAIA869SpU+rYsaOOHz9u9vzYsWM6duyY5s2bp5CQED399NPZGv/69euqUaOGbty4YfHuzp07OnDggA4cOKAvvvhCn3zyiUaNGpWteZzNqYk0SfL399e0adM0bdq0TNs2b95cZ86ckSSVL1/e5rl7+1ezeQwAAAAAAJA7cGpn2iIjI9WpUydTEm348OF69tln5efnp61bt2rKlCm6c+eOevXqpV27dunRRx/N8hxxcXGmJFrdunXVtWtXNW7cWCVKlNCdO3f0888/64svvlBsbKxGjx4tPz8/vfDCCxmOWbp0aW3cuDHDNmXKOHZbL6cn0rIiKChIQUFBrg4DAAAAAAAgz5g2bZqOHTsmSfrkk080duxY07smTZooODhYLVu2VHR0tEaPHq1ff/01y3OkrC5877339Pjjj1u8Dw4OVo8ePRQcHKyYmBiNGzdOffv2VUBAQLpjent7q3bt2lmOxZ5ydCLN3nYkXHV1CAAAAAAAwEk4VdNSQkKCZs6cKUmqUaOGxowZY9GmSZMmGjZsmGbPnq2tW7dq//79ql+/fpbmKVOmjDZt2pRhm8aNG+uVV17R9OnTdefOHW3evFndu3fP0jzO5rJEWmJiolavXq3Nmzfr8OHDunnzpiSpcOHCql27ttq2bauuXbvKy8t+If59+4zdxgIAAAAAADkbiTRL27Zt0+3btyVJgwcPloeHR5rthgwZotmzZ0u6fxBkVhNp1goODtb06dMl3d+3LadzSSJt1apVeu2113Tp0iXTM6Px/lkaBoNBf/zxh+bMmaNSpUrpv//9r7p16+aKMAEAAAAAAPKUHTt2mK5btWqVbrsGDRrI399fUVFR2rlzp8PiiYuLM12nl9TLSZyeSPvss8/0xhtvSLqfPDMYDKpQoYJKlCgho9Goa9euKTw8XEajUZcuXVKPHj00ffp0jR492ua56xaqaPMYAAAAAAAgdzA64bCBCxcuWNWubNmyDo7EOmFhYabr6tWrp9vOy8tLlStXVmhoqFkfe9u+fbtV8UjSjRs31KJFCx06dEgxMTEqXLiwHn30UXXu3FnPPfec8ufP77A4Uzg1kbZ7926NHTtWRqNRBQsW1Ntvv62hQ4eqaNGiZu0iIiK0cOFCffTRR7pz547Gjh2rJk2aqHHjxjbNX8DT16b+AAAAAAAADypXrpxV7VJW4rna+fPnJUn+/v4qVKhQhm3LlSun0NBQXb9+XXFxcfL1tW9e5fLly1q4cKEkqWjRogoODs6wfWRkpFl13JUrV3TlyhVt2rRJU6dO1YoVK9S0aVO7xpiaU2vmZsyYoeTkZAUGBuqPP/7Q2LFjLZJo0v1v3tixY/XHH38oMDBQycnJmjFjhjNDBQAAAAAAuVyyEz65zb179yRJBQoUyLStv7+/6ToyMtKucRiNRr300kumeCZMmCA/P7802xoMBj3++OP68MMP9fPPP+uvv/7SH3/8odmzZ6tRo0aSpIsXL6p9+/Y6cOCAXeNMzakVaTt37pTBYNCbb76pmjVrZtq+Ro0aevPNN/XWW2/pt99+s3n+/Aa3OqQUAAAAAAA4WEqFV24RGxsrSfLx8cm07YMVaDExMXaN46OPPtKaNWsk3T9wYMSIEem2/eyzz9KsnmvSpImGDx+ud955Rx999JGioqL0/PPPa9++fTIYHLOu16mZpVu3bklSpqV6D0ppm3KiBAAAAAAAgDWcUTHmqL3PEhMT5e3tbfM4Cxcu1JAhQ0z3+fLlkyTFx8dn2vfBgwDSqxbLjqVLl2rChAmSpAoVKigkJCTDgwYyWoJqMBj04Ycfas+ePdq8ebOpWq1Zs2Z2i/dBTk2klSpVSmfPns12X1ttijhs8xgAAAAAAAC5VUBAgCTrlmpGRUWZrq1ZCmqN9evXa+jQoTIajSpRooR++eUXlSxZ0uZxX3zxRW3evFnS/QMM8kQirW3btpo/f762b99u9cEB27ZtkyS1adPG5vlL5i9s8xgAAAAAACB3yBnb+2ePl5eXXU7LTF2YVLZsWf3555+KiorS7du3M6z2Slm2WqxYMbscNLBt2zb17NlTCQkJCgoK0qZNm1SlShWbx5VktoXYxYsX7TJmWpyaSBszZoxCQkI0depUdevWTVWrVs2w/T///KOPP/5Y/v7+Gjt2rJOiBAAAAAAAcL3q1avbfcyaNWvq+++/lyQdO3ZMjz/+eJrtEhMTderUKUn397C31Z49e9S5c2fFxsaqQIEC+vnnn/Xoo4/aPG4KZ52K6tREWrVq1fTdd9+pX79+evzxx/Xuu+9q0KBBKlzYvFLs1q1bWrx4sd5//31J0ooVK1StWjWb5/dw0EZzAAAAAAAg50kmDWChefPmpuvt27enm0jbt2+faWmnrcskQ0ND1aFDB0VGRipfvnxau3at1SsVrXX06FHTdenSpe069oMMRgek7DJbhnnx4kWdOHFCBoNBBoNBFStWVPHixWUwGHT16lWdOXPGlEl8+OGHVbp0aRkMBm3ZssWmuKoXb2hTfwAAgIwcu7bXJfMmRJx2ybzI/fxKt3B1CADcUGK845bdpTbzoQEOn2PUuW8cPoc9xcfHq3jx4rpz545q1KihI0eOpHnC5UsvvaTZs2dLul9N1rBh9nIq//zzj1q2bKmrV6/K29tbq1at0tNPP23T15CWtm3bmvJGO3bsMEsY2pNDKtK2bdsmg8GQZlndg784RqNRRqNRp06dMpULpnbixAn9888/djm21NOQ/gkQAAAAAAAgb3HGqZ25jY+Pj0aOHKn3339fYWFhmjZtmsV2Wrt27dL8+fMlSa1atUoziRYeHq6KFSua2qTscf+gc+fOqW3btrp69ao8PT0VEhKS5STa7t27Vb58+XQPoTQajZowYYIpiVanTh2HHTQgOSiR1rJlS7skvuyNRBoAAAAAAHB3Y8eO1fLly/XPP/9o3LhxOnnypJ599ln5+flp69at+uijj5SYmCg/Pz/95z//ydYcN27cUNu2bU0HFowZM0bVq1fX4cOH0+0TFBSkMmXKmD3bsGGDpk6dqg4dOqhdu3aqWbOmChUqpLi4OIWGhmr+/Pnas2ePJCl//vyaO3euQ3NSDqtIAwAAAAAAcCUq0tIWEBCg9evX6+mnn9aJEyc0Z84czZkzx6xNwYIFtXTpUtWtWzdbcxw6dEgnTpww3X/yySf65JNPMuwzePBgLVq0yOJ5XFycVq9erdWrV6fb96GHHlJISEi2l6Bay6mHDbja0ZvnXB0CAAAAAACAy1WpUkUHDhzQrFmztHLlSp08eVLx8fEqV66cnn76aY0aNUrly5d3dZgaOnSoSpQooV27dik0NFTXrl3TjRs35OXlpaJFi+qxxx5T586d1a9fP+XLl8/h8TjksAFrXLlyRTdu3NDdu3dVsGBBFSlSRCVLlnTonF4+ZTJvBAAAkE3O3Dz5QRw2gOzisAEAruDM/15Oc8JhA2/kssMGYBunVqStX79eCxcu1M6dO3X9+nWL98WKFVPz5s01dOhQdezY0e7zNy1W3e5jAgAAAAAAwD04JZEWGhqqgQMHmjaUS68I7tq1a/rxxx/1448/qlatWlqyZInq1KljtziKe/nbbSwAAAAAAJCzJee8cxCRyzk8kfb9999rwIABio+PNyXQ8ufPrzp16qhEiRLy9/dXZGSkrl69qtDQUEVHR0uSDh8+rMcff1xLlixRz549HR0mAAAAAAAAkCGHJtJ+//13DRgwQHFxcZKkjh07auTIkXriiSfk4eFh0T45OVm//PKLvvjiC/3000+Ki4vTwIEDVbJkSTVv3tzmeOKMnNcBAAAAAIC7IAsAe3NYIi05OVkvvvii4uLi5Ovrq0WLFqlPnz4Z9vHw8NCTTz6pJ598UsuWLdOQIUMUFxenl156SaGhoWkm37Kio7GQTf0BAAAAAEDu4ZLTFZGn2ZaZysB3332no0ePymAwaPHixZkm0VJ79tlntXjxYklSWFiYvvvuO0eECQAAAAAAAFjFYRVpa9askSQ98cQT6tWrV7bG6N27t+bMmaOtW7dq9erV6t27t00xvXX7T5v6AwAAZOQlVwcAAADMJFOTBjtzWEXa3r17ZTAY1LdvX5vG6d+/v4xGo/bu3WunyAAAAAAAAICsc1hF2tWrVyVJ1apVs2mc6tWrm41ni6cLP2LzGAAAAEBesbt4Q1eHgFyszt8zXB0CkCkOG4C9OSyRlpCQIEny8fGxaRxvb29JUmJios0x/dsz3uYxAAAAAAAA4J4ctrSzePHikqSzZ8/aNE5K/2LFitkcEwAAAAAAcB9GJ3zgXhxWkVazZk2dO3dOa9euVY8ePbI9TsqhBbVq1bI5pjPRATaPAQAAkJ7arg4AAAAADuWwirSOHTvKaDTq22+/1eHDh7M1RmhoqL799lsZDAZ17NjRzhECAAAAAIC8LNkJH7gXh1WkDRgwQBMnTtTNmzfVuXNn/frrr6pYsaLV/U+fPq0uXbooMTFRRYoU0YABA2yO6Yivp81jAAAApKezqwMAAACAQzkskVawYEFNmTJFL7zwgs6dO6e6detq0qRJev755xUQkP4Sy3v37mnu3LmaPHmy7t27J4PBoA8//FAFCxa0OaZacUk2jwEAAAAAAHKHZIOrI0Be47BEmiQ9//zzOn78uKZPn67IyEi98cYbmjBhglq2bKnHHntMJUuWlL+/vyIjI3XlyhUdOHBAv/32m2JiYmQ03t+yb9SoUXrhhRccGSYAAAAAAACQKYcm0iTp008/VYUKFTR27FjFxsYqOjpaGzdu1MaNG9Nsn5JA8/X11SeffKLXXnvNbrGc9GFpJwAAAAAA7iKZczVhZw5PpEnSq6++qs6dO+uzzz7TkiVLdPPmzXTbFi5cWAMHDtSoUaNUoUIFu8YR6hFj1/EAAAAAAADgPpySSJOkhx56SJ999pk+++wzHTlyRAcPHlRERITu3bungIAAFSlSRHXq1FHt2hwcDwAAAAAAbEc9GuzNaYm0B9WqVUu1atVy+ry1k/2cPicAAAAAAADyBpck0gAAAAAAABwt2dUBIM9xq0Ra/bg4V4cAAAAAAACAXMqtEmkf+dxzdQgAACAPa+3qAAAAgBlO7YS9ebg6AAAAAAAAACA3cKuKtA85bAAAAAAAALdBPRrsjYo0AAAAAAAAwApuVZG238Pf1SEAAIA8rKGrAwAAAGY4tRP25laJtMAkijoBAAAAAHAXHDYAe2NpJwAAAAAAAGAFt6pIO+xDJhoAAAAAAHdBFgD2RkUaAAAAAAAAYAW3qkgrk0TeEAAAAAAAd8FhA7A3t0qknfRMdHUIAAAAAAAAyKXcKpEGAAAAAADch5Fd0mBnbpVIq5boVl8uAAAAAAAA7MitMku3PF0dAQAAAAAAcBb2SIO9sfs+AAAAAAAAYAW3qkgrkuTqCAAAAAAAgLMks0ca7IyKNAAAAAAAAMAKblWRdtKLkjQAAAAAANwF9WgZi46O1qxZs7Ry5UqdPHlS8fHxKleunDp27KiRI0fqoYcesmn8bdu2KTg42Kq2EydO1KRJkzJsk5iYqPnz52vp0qUKCwtTZGSkypQpo7Zt22rkyJGqWbOmTfFaw60SaUFGThsAAAAAAAA4deqUOnbsqOPHj5s9P3bsmI4dO6Z58+YpJCRETz/9tIsiNHfjxg117NhRf/75p9nzU6dO6dSpU1q0aJG+/PJLPffccw6Nw60SaQAAAAAAwH2wR1raIiMj1alTJ1MSbfjw4Xr22Wfl5+enrVu3asqUKbpz54569eqlXbt26dFHH7V5zgULFqhhw4bpvi9evHi675KSkvTMM8+YkmjPPPOMhg8frsKFC+vPP//UBx98oGvXrumFF15QmTJl9OSTT9ocb3rcKpH2pPGeq0MAAAAAAABwqWnTpunYsWOSpE8++URjx441vWvSpImCg4PVsmVLRUdHa/To0fr1119tnrNixYqqXbt2tvouWbJEv/32myTplVde0axZs0zvGjVqpKeeekr169fX3bt39dprr+no0aPy8nJMyovDBgAAAAAAQJ6U7IRPbpOQkKCZM2dKkmrUqKExY8ZYtGnSpImGDRsmSdq6dav279/v1BhT+/TTTyVJQUFBpusHValSRePHj5cknThxQqtXr3ZYLG5VkTbLw9vVIQAAgDxsnqsDAAAAyMS2bdt0+/ZtSdLgwYPl4ZF2jdWQIUM0e/ZsSdIPP/yg+vXrOytEMydOnNDRo0clSX369FH+/PnTbDdkyBBTMu2HH35Qjx49HBKPWyXSvCnAAwAAAADAbRjZI83Cjh07TNetWrVKt12DBg3k7++vqKgo7dy50xmhpcnaeEuWLKmqVavqn3/+cWi8bpVIAwAAAAAAsKcLFy5Y1a5s2bIOjsQ6YWFhpuvq1aun287Ly0uVK1dWaGioWZ/seuutt3Tu3Dldu3ZN/v7+qlChglq3bq2XX35ZVatWtTnelPf//POPzp8/r6ioKPn7+9scd2pulUh7MtatvlwAAAAAANyaM/YwK1eunFXtjMacUR13/vx5SZK/v78KFSqUYdty5copNDRU169fV1xcnHx9fbM9765du0zXt2/f1t9//62///5bn3/+uSZMmKCJEyfKYDCkG6+UeTIy5dfCaDTqwoULqlatWrbjTY9bZZZatbjk6hAAAAAAAICTsLTT0r179yRJBQoUyLTtgxVdkZGR2UqklSpVSs8884yaN2+uSpUqycvLS+fOndPatWu1ZMkSJSQkaPLkyYqPj9dHH32UbrzWxJw6Xkdwq0QaAAAAAACAPT1YMZUbxMbGSpJ8fHwybftg4iwmJibLczVs2FBnz56Vt7f54Y+PPfaYunXrphdffFHt27fXnTt3NHXqVPXu3Vt169ZNM15rYrY1Xmu4VSJt4t4Srg4BAADkYZ+7OgAAAGDGGUs7HbX3WWJiokUCKjsWLlyoIUOGmO7z5csnSYqPj8+0b1xcnOnaz88vy3NntkdZo0aNNGvWLA0YMEBGo1GzZs3S3LlzzdqkxCvdj/nBe3vHaw2OsQQAAAAAAHATAQEBkqxb+hgVFWW6tmYpaHb06dNHgYGBkqTt27dbvE+JV8o8ZmfE61YVaVtiwl0dAgAAAAAAcJLkHLLBf3Z4eXnZ5bTMUqVKmd2XLVtWf/75p6KionT79u0MDxxIWbZarFgxmw4ayIiXl5eqVq2qvXv36uLFixbvH6z4u3DhgooWLZruWCnxGgwGh1UKulUibbT3w64OAQAAAAAAwCrVq1e3+5g1a9bU999/L0k6duyYHn/88TTbJSYm6tSpU5KkGjVq2D2OB2V0omnNmjVN18eOHbPYQ+1Bx44dk3T/9M7MlpVmF0s7AQAAAABAnmR0wie3ad68uek6raWUKfbt22daKtmsWTOHxZOYmKh//vlHklS6dGmL99bGe+XKFdM4jozXrSrSmvvddHUIAAAAAAAALtO6dWsFBgbqzp07+vrrrzVu3DgZDAaLdosWLTJdd+/e3WHxLFu2THfv3pUktWrVyuJ91apVVaNGDYWFhWnFihWaPn268ufP77J4qUgDAAAAAAB5UrKMDv/kNj4+Pho5cqQkKSwsTNOmTbNos2vXLs2fP1/S/eRWw4YNLdqEh4fLYDDIYDCodevWFu9v3bqlbdu2ZRjLnj179Nprr0m6v6/ZSy+9lGa7N954Q5J08+ZNjRs3zuL9qVOnNGXKFElS5cqVHZpIc6uKtNbXTrs6BAAAkIdddXUAAAAAVhg7dqyWL1+uf/75R+PGjdPJkyf17LPPys/PT1u3btVHH32kxMRE+fn56T//+U+25rhz546Cg4P16KOPqlu3bqpfv75KlSolT09PnTt3TmvXrtWSJUuUkJAg6X6yrEGDBmmONXjwYC1YsEC///67Zs2apStXrmj48OEKCgrSnj179P777+vu3bvy8PDQF198IS8vx6W73CqR1jCwsqtDAAAAAAAATmLMhRVjzhAQEKD169fr6aef1okTJzRnzhzNmTPHrE3BggW1dOnSDDf3t0ZoaKhCQ0PTfe/p6akJEybo/7V339FR1fn/x193UgihJgQQEAhSDEgLIEV6VBAQFcQvoCtNQUVFVlfXVRewrX1hVRALVckqggJKk1ACSgtSpRMSQmghEIQkICn39we/zBJJGWBm7kzm+ThnzpmZ+/l87ms42bjzzqeMGTOmyDbz5s1Tz549FRcXp7lz59oPTMgTGBiojz/+WD169LiuvMXxqUIaAAAAAAAApHr16mnLli2aOHGivv32Wx04cEAXL15UzZo11bNnTz3zzDOqXbv2NY9fvXp1ffvtt1q3bp02btyoI0eOKDU1VRcuXFCFChV08803q0uXLnr00UcVHh5e7HhhYWFau3atPv/8c0VHR2v37t3KyMhQ9erVdfvtt+uZZ57RLbfccs15HWWYRZ0xWsJ8fuNfrI4AAABKsOHJX1ly36xUtq/AtdnW/FmrI8CLNdv6b6sjwEsFhN3ktnv1r32fy+/xzaF5Lr8HPAeHDQAAAAAAAAAO8KmlnYv9zlodAQAAlGDDrQ4AAADy8cZTNeHZfKqQNuJCsNURAAAAAAAA4KV8qpAGAAAAAAB8B6d2wtl8qpB2wWBLOAAAAAAAAFwbnyqktW1w1OoIAAAAAADATXKtDoAShylaAAAAAAAAgAN8akbaz/trWB0BAACUYP2sDgAAAPIxTfZIg3P5VCENAAAAAAD4jlwOG4CT+VQhrWnFU1ZHAAAAAAAAgJfyqULaivQwqyMAAIASrIHVAQAAQD4cNgBn47ABAAAAAAAAwAE+NSNtQIcjVkcAAAAAAABuYrJHGpyMGWkAAAAAAACAA3xqRlrtH5KsjgAAAEqw360OAAAA8uHUTjibTxXSFpWNtDoCAAAAAAAAvJRPFdIAAAAAAIDvME1mpMG5fKqQ9mguSzsBAIDr7LY6AAAAAFzKpwppHxg3WR0BAAAAAAC4Sa7VAVDicGonAAAAAAAA4ACfmpFG1RAAAAAAAN9hcmonnIzaEgAAAAAAAOAAn5qRViM4w+oIAAAAAADATXKZkQYn86lC2oiL6VZHAAAAJdg6qwMAAADApXyqkAYAAAAAAHyHaTIjDc7lU4W0Uoaf1REAAAAAAADgpXyqkAYAAAAAAHwHe6TB2XyqkPahf2mrIwAAAAAAAMBL+VQhrVY7DhsAAAAA8jTb+m+rI8CLbWv+rNUR4KVaJc9z271MZqTByWxWBwAAAAAAAAC8gU/NSNu+MszqCAAAoATrZHUAAACQTy6ndsLJfKqQBgAAAAAAfAdlNDibTxXSKgZdsDoCAAAAAAAAvJRPFdIAAAAAAIDvyGVOGpyMwwYAAAAAAAAAB/jUjLQ6d+dYHQEAAAAAALgJM9LgbD5VSDOzKKQBAAAAAADg2vhUIQ0AAAAAAPgO02RGGpzLpwppWcmc2gkAAAAAAIBrw2EDAAAAAACgRMqV6fKHN8vMzNR7772n1q1bKzQ0VGXLllXDhg31t7/9TUlJSdc9vmEYV/0oyJAhQxzun5iYeN25i+JTM9KSdlS0OgIAACjBKlkdAAAAwEHx8fHq1auX9u7dm+/9PXv2aM+ePfriiy8UHR2tnj17ui1TgwYN3Hava+VThbSQ0EyrIwAAAAAAADcxvXzGmKukp6fr7rvvthfRhg8frgEDBqh06dJauXKl3nrrLf3+++964IEHtG7dOjVt2vSa7rNjx45i28yYMUPvv/++JGnw4MFFtq1evbqWLl1aZJsaNWo4HvAa+FQhDQAAAAAAwNe9//772rNnjyTp3Xff1fPPP2+/1q5dO3Xt2lWdOnVSZmamRo8erRUrVlzTfRo3blxsm9WrV0u6tAz0L3/5S5FtAwICHBrTlXyqkJabU/BaWwAAAAAAUPJwaueVsrKy9J///EeS1LBhQz333HNXtGnXrp0eeeQRffrpp1q5cqV+/fVXtWzZ0ulZ9u7dq40bN0qSunTpolq1ajn9Hs7GYQMAAAAAAAA+YtWqVTpz5oykS0spbbaCS0NDhgyxP//uu+9ckmXmzJn258Ut6/QUPjUjrWyVP6yOAAAAAAAA3MTbT9V0hTVr1tifd+7cudB2rVq1UpkyZZSRkaGff/7Z6TlM09SsWbMkSWXKlNH999/v9Hu4gk8V0oJbhFodAQAAAAAAwDK7d++2P4+IiCi0nb+/v+rWravt27fn6+Msq1at0qFDhyRJffv2VdmyZYvtc+rUKXXs2FE7duzQ+fPnFRoaqqZNm6p3794aNmyYgoODnZ7zz3yqkAYAAAAAAHyHO/ZIS05OdqjdjTfe6OIkjjl8+LCkS7PAKlasWGTbmjVravv27Tp58qT++OMPlSpVymk5Ll/WOWjQIIf6pKen55sdd/z4cR0/flw//fST3n77bc2ePVu33Xab0zIWxKcKaRlxaVZHAAAAJVjxf0cFAAAlTc2aNR1q5ykHH5w7d06SHJoBVqZMGfvz9PR0pxXSMjMzNXfuXEmXCoxRUVFFtjcMQ23btlXv3r3VokULVa1aVRcuXNCOHTs0ZcoUbdy4UUeOHFG3bt20Zs0aRUZGOiVnQXyqkLZ6bw2rIwAAgBLsAasDAACAfNgj7UoXLlyQJAUGBhbb9vLC2fnz552WYd68efaC3l/+8pdCDzzIM378+AJnz7Vr107Dhw/XK6+8on/961/KyMjQo48+qk2bNskwDKflvZxPFdIAAAAAAACcKW+ppLNlZ2crICDguseZNm1avhM4g4KCJEkXL14stu8ff/zv0MbSpUtfd5Y8V7uss6glqIZh6M0339TGjRsVExOjzZs3a+3atWrfvr0zol7BpwppkSGpVkcAAAAAAABuYrphRpqn7H3mqHLlykm6tFSzOBkZGfbnjiwFdcSxY8cUExMjSbr11lvVsGFDp4z72GOP2ceNjY2lkAYAAAAAAHA1cj1kX7Jr4e/v75TTMqtVq5bv9Y033qgNGzYoIyNDZ86cKXK2V95su8qVKzttf7RZs2YpJydHkuOHDDiiUaNG9udHjhxx2rh/5lOFtOxsP6sjAAAAAAAAOCQiIsLpYzZq1Mi+0f+ePXvUtm3bAttlZ2crPj5ekpw2a0ySvvzyS0lSQECABg4c6LRx3XWYg08V0irekGl1BAAAAAAA4CbuWNrpbTp06GB/HhsbW2ghbdOmTfalnc5aJrl161Zt375dktSrVy9VqlTJKeNK0q5du+zPq1ev7rRx/6zoYxEAAAAAAABQYnTp0kUVKlSQJM2YMaPQmVzTp0+3P+/Tp49T7n35IQODBw92yph5Pv30U/vzzp07O3Xsy/nUjLS0Y8FWRwAAACXYDVYHAAAA+XjzHmmuEhgYqFGjRun111/X7t279f777+v555/P12bdunWaMmWKpEtFqVtvvfWKcRITE1WnTh17m1WrVhV535ycHP33v/+VJFWqVEm9evVyKO/69etVu3btK/Z6y2Oapv75z39q+fLlkqRmzZq57KAByccKaQAAAAAAAL7u+eef1zfffKN9+/bphRde0IEDBzRgwACVLl1aK1eu1L/+9S9lZ2erdOnSmjBhglPuuXTpUh0/flySNHDgQAUEBDjUb8mSJXr77bd111136c4771SjRo1UsWJF/fHHH9q+fbumTJmijRs3SpKCg4P1+eefyzAMp2QuiE8V0m5oyh5pAAAAAAD4CvZIK1i5cuW0cOFC9ezZU/v379dnn32mzz77LF+b8uXLa9asWWrevLlT7nn5ss6rPa3zjz/+0Pz58zV//vxC29SqVUvR0dEFzp5zJp8qpJ3YwdJOAADgOiFWBwAAAHBQvXr1tGXLFk2cOFHffvutDhw4oIsXL6pmzZrq2bOnnnnmGdWuXdsp9zp79qwWLFgg6dJJpFdT7Bo6dKiqVq2qdevWafv27UpJSdGpU6fk7++vsLAwtWjRQr1799aDDz6ooKAgp+QtimG663xQD7CnQU+rIwAAgBIsYt8iS+6blXrQkvsC8G3bmj9rdQR4qVbJ89x2rwaVW7n8HvtObnL5PeA5fGpGWkiNDKsjAAAAAAAAwEv5VCEtMNR1m80BAAAAAADPwh5pcDab1QEAAAAAAAAAb+BTM9L8a5S1OgIAAAAAAHCTXN/ZFh5uwow0AAAAAAAAwAE+NSPt9w2ZVkcAAAAlWDmrAwAAgHzYIw3O5lOFtIDSuVZHAAAAAAAAgJfyqUIaAAAAAADwHabJhBo4l08V0g7sCbM6AgAAKMGqWh0AAAAALuVThTQAAAAAAOA7ctkjDU7mU4W09YFBVkcAAAAlWHurAwAAAMClfKqQ9lJKrNURAABACfac1QEAAEA+psmMNDiXTxXSAAAAAACA72BpJ5zNpwppSe1usjoCAAAAAAAAvJRPFdIAAAAAAIDvYGknnM2nCmnpJzlsAAAAuE5VqwMAAADApXyqkDb2XBmrIwAAgBLsK6sDAACAfHKZkQYns1kdAAAAAAAAAPAGPjUjLdIMtjoCAAAAAABwE5NTO+FkPlVIG/nvCKsjAAAAAAAAwEv5VCENAAAAAAD4Dk7thLP5VCGtzqOzrI4AAABKsOP9XrE6AgAAAFzIpwppAAAAAADAd+SyRxqczKcKaQeGs0caAAAAAAAAro1PFdJGf+tndQQAAFCCffGe1QkAAMDl2CMNzmazOgAAAAAAAADgDXxqRtrYymlWRwAAAAAAAG6Sy4w0OBkz0gAAAAAAAAAH+NSMtNBuoVZHAAAAAAAAbsIeaXA2nyqkTf6ylNURAABACfbcm1YnAAAAgCv5VCENAAAAAAD4jlwxIw3O5VOFtP7VjlodAQAAAAAAAF7Kpwpp65OqWR0BAACUYP2sDgAAAPJhjzQ4G6d2AgAAAAAAAA7wqRlpC0tdsDoCAAAowZiRBgCAZ8llRhqczKcKaQAAAAAAwHeYHDYAJ/OpQto/SmdYHQEAAAAAAABeyqcKaTnZbAkHAAAAAICvYGknnI3KEgAAAAAAAOAAn5qRFnojSzsBAAAAAPAVJjPSCpSenq7Nmzdr48aN2rhxo+Li4pSYmChJql27tv25M61bt06TJk3SmjVrdPz4cYWEhKhZs2YaMmSIBgwY4NAY2dnZmjJlimbNmqXdu3crPT1dNWrU0B133KFRo0apUaNGTs/9Zz5VSAMAAAAAAPB1vXv31qpVq9x2v9dee02vvvqqcnNz7e8dP35cx48f19KlSxUdHa3Zs2crKCio0DFOnTqlXr16acOGDfnej4+PV3x8vKZPn65JkyZp2LBhLvscko8V0sq0rmR1BAAAAAAA4Cac2lmwy2fqhYSEqFWrVlq3bp3S09Odfq8vvvhCY8eOlSTVrVtXL730kpo0aaKjR4/qP//5j1auXKkffvhBjz76qL766qsCx8jJyVHfvn3tRbS+fftq+PDhCg0N1YYNG/TGG28oJSVFI0aMUI0aNdS9e3enf448hulD8xw33Xif1REAAEAJ1ip5niX3zUo9aMl9Afi2bc2ftToCvJQ7/3tZKqimy+/xx4XDLr+Hs3322WcqW7asWrdurXr16kmSwsPDdejQIacu7Txz5ozq1KmjM2fOqFatWvr1118VFhZmv56Tk6M+ffrohx9+kCTFxsaqU6dOV4wzffp0DR06VJI0cuRITZw4Md/1AwcOqGXLljp79qzq16+vXbt2yd/fNXPHOGwAAAAAAACUSKZpuvzhjUaMGKEHH3zQXkRzlc8//1xnzpyRJL3zzjv5imiS5Ofnp0mTJsnPz0+S9N577xU4Tt77ISEhBbapV6+e/vGPf0iS9u/fr/nz5zvrI1zBp5Z2hjdJszoCAAAAAACAT5g3b54kqXz58urbt2+BbW688UbdcccdWrp0qZYtW6b09HSVLVvWfn3//v3atWuXJKl///4KDg4ucJwhQ4bYi2nfffed7r//fid+kv9hRhoAAAAAACiRmJFmnYsXL2rjxo2SpHbt2ikwMLDQtp07d5Yk/fHHH4qLi8t3bc2aNVe0K8gNN9ygBg0aSJJ+/vnna85dHJ+akXbD8gNWRwAAACVYttUBAAAAPMT+/fuVnX3p/x1FREQU2fby67t371bXrl3zvS6oXWHj7Nu3T4cPH1ZGRobKlClzLdGL5FOFtIpBzv8HBAAAAAAAnskd88WSk5MdanfjjTe6OIlnOXz4f4cwFPfZa9b836EQl/e71nFM01RycrJuvvlmh/M6yqcKaQAAAAAAAM50eRGoKL62DPTcuXP255fveVaQy2eOpaenu2QcZ/GpQlrq2X1WRwDgBZKTk+3/MTx8+LDP/eUIgPcJCLvJ6ggeh9/luB78/DimVfI8qyN4JH5+PEv2xSMuv4dhGC6/hze6cOGC/XlR+6NJUqlSpezPz58/75JxnMWnCmkAAAAAAADO9OeliM6SnZ2tgICA6x5n2rRpGjJkyPUHukpBQUH25xcvXiyy7R9//GF/Xrp06SLHufz11YzjLBTSAAAAAAAArhGzDgtWrlw5+/PilllmZGTYn/95+eafxymqkFbUOM5CIQ0AAAAAAMDD+Pv75zux8lpVq1bNCWmu3uUFxuIOZLh8Vt+f95z78zhhYWHFjmMYhssKnBTSAAAAAAAAPFBERITVEa5ZgwYN5Ofnp5ycHO3Zs6fItpdfb9iwYb5rjRo1yteuefPmxY5Ts2bNfAcPOJPNJaMCAAAAAADAZwUGBqp169aSpHXr1hW5T1psbKykS4cFtGrVKt+1Dh06XNGuIMePH9e+fZcOmWzfvv015y4OhTQAAAAAAAA43X333SdJOnv2rL777rsC2yQnJysmJkaSdPvtt+fbE026NLMtb5ba7NmzlZmZWeA406dPtz/v06fPdSYvHIU0AAAAAAAAXJXExEQZhiHDMNSlS5cC2zz66KOqUKGCJOnFF1/UqVOn8l3PycnRyJEjlZOTI0n629/+VuA4ee+fPn1aL7zwwhXX4+Pj9dZbb0mS6tat69JCGnukAQAAAAAA+JADBw7o559/zvde3sma6enp+WZ3SdJdd92lG2644arvExoaqnfeeUePP/64Dh06pDZt2ujll19WkyZNdPToUU2YMEErV66UJA0cOFBdu3YtcJzBgwdr6tSp+uWXXzRx4kQdP35cw4cPV0hIiDZu3KjXX39dZ8+elc1m00cffSR/f9eVuyikAQAAAAAA+JCff/5ZQ4cOLfDaqVOnrri2cuXKayqkSdJjjz2mo0eP6vXXX1d8fLyGDRt2RZuePXtq6tSphY7h5+enefPmqWfPnoqLi9PcuXM1d+7cfG0CAwP18ccfq0ePHteU01EU0gDgT2688UaZpml1DADAdeB3Oa4HPz+4Hvz8AFd69dVX1b17d02cOFFr1qzRiRMnVLFiRTVr1kxDhw7VwIEDix0jLCxMa9eu1eeff67o6Gjt3r1bGRkZql69um6//XY988wzuuWWW1z+WQyT/4UDAAAAAAAAxeKwAQAAAAAAAMABFNIAAAAAAAAAB1BIAwAAAAAAABxAIQ0AAAAAAABwAIU0AAAAAAAAwAEU0gAAAAAAAAAHUEgDAAAAAAAAHEAhDYDTjBs3ToZhyDAMS3N06dJFhmGoS5culuYAAAAAAJQsFNIAAAAAAAAAB1BIAwAAAAAAABzgb3UAAAAAAAA80cyZM91yn0GDBrnlPgCuH4U0AAAAACXWTTfd5PJ7GIah+Ph4l98H7jdkyBC37P9LIQ3wHhTSAAAA4PVsNptsNpu2b9+uRo0aOdQnPj5e9evXl81mU3Z2tosTwiqJiYkyDEOmabrsHlYftATX4+cHQB4KaQBc5syZMxo/frzmzJmjQ4cOKTAwUE2bNtXw4cP10EMPFdjn4sWLWrp0qZYuXaoNGzbowIEDSk9PV/ny5VWvXj316NFDTz31lMLCwq45V1pamubNm6fly5dr8+bNSkpK0sWLFxUaGqpmzZrp/vvv15AhQxQYGFhg/8TERNWpU0eSNG3aNA0ZMkTLli3Thx9+qLi4OKWlpal69eq666679PLLL+vGG28sNtMvv/yiadOmac2aNTp27Jhyc3N14403KiIiQn379tV9992n8uXLF9g3OTlZEydO1NKlS5WQkKDz58+rSpUqateunR5//HF17dr1mv+tAMCbXOsXXVd+QYbnuPfee1WxYkWnjnnmzBnNnz/fqWPCM/3000+qX7++U8fcu3ev7rrrLqeOCcD1DJP/5wDAScaNG6dXX31VknTw4EHdeeedhS5z6Nevn/773//K3z9/PX/IkCGaMWNGkfepVKmS5s+fr/bt2xd4vUuXLoqNjVXnzp21atWqK66Hh4fr0KFDRd4jMjJSixYt0g033HDFtT8X0vbs2aN33nmnwHEqV66s2NhYNWzYsMDr58+f1yOPPKL//ve/ReYZO3asxo0bd8X7U6ZM0dNPP63z588X2veRRx7R5MmTr/i3BoCSxGazyTAM7dixw+EZaQcOHFCDBg2YkVbCXcvPhqN27typJk2ayDAM5eTkOHVseAZ+fgD8Gd+qALhE//79lZCQoMcff1z9+vVThQoVtH37dr3zzjvat2+f5syZo2rVqunDDz/M1y87O1s33XST+vTpo9atW6tWrVry9/fXoUOHFBMTo6lTp+rUqVPq06ePfvvtN1WpUuWqs+Xk5KhNmza6++67FRkZqapVq+rixYtKSEjQV199pSVLlmjLli0aMGBAgYW4y33++edau3atOnfurMcee0wNGjTQmTNnNHPmTM2cOVMnT57UsGHDtG7duiv65ubm6t5779WyZcskSfXr19fIkSPVqlUrBQcH69ixY1q7dq1mz55d4L2nTp2qRx99VJLUuHFjPfbYY4qMjFRwcLASEhI0ZcoULVq0SFOmTFGFChX0wQcfXPW/FQCUZKdOnZIklSlTxuIkAADAa5gA4CRjx441Jdkf0dHRV7Q5e/as2axZM1OSabPZzO3bt+e7fuDAATM3N7fQe2zfvt0sW7asKcl85ZVXCmzTuXNnU5LZuXPnAq/v27evyM8xdepU+2eIiYm54npCQkK+zzl8+PACMz/66KP2Nps3b77i+oQJE+zX+/TpY164cKHAPDk5OeaRI0fyvZeUlGQGBwebkszBgwebWVlZBfZ96aWX7P/We/fuLfJzA4A3MwzDtNls5q5duxxqn56ebj700EOmYRhmZGSki9PBSrVr1zbDw8PN/fv3O33sffv2mbVr1zbr1Knj9LHhGaZPn25Onz7d/P33350+9pkzZ+zjA/AeLO0E4DSXL+28++679cMPPxTYbuPGjWrTpo0kaeTIkZo4ceJV3eevf/2rJkyYoMaNG2vHjh1XXC9uaacjWrRooS1btuipp57SRx99lO/a5Us7q1WrpoSEBJUqVeqKMfbu3auIiAhJ0n/+8x+NGjXKfi03N1e1atXSkSNHVKNGDe3Zs0dly5Z1ON/f/vY3ffDBB6pevbri4+MVFBRUYLvs7GyFh4fryJEjevnll/XGG284fA8A8GR/Pokxb0P56tWrKyAgoMi+f/zxh1JSUpSbmytJeuWVV+z//QIAACgKSzsBuMTQoUMLvda6dWvdcsst2rlzp2JiYoocJy0tTadPn9aFCxfsm0HnbRS8a9cuZWVlFfuFqSimaerEiRM6e/asLl68aH+/evXq2rJli7Zt21Zk/379+hVYRJOkm2++WWXLllV6eroOHjyY79rWrVt15MgRSdLw4cOvqogmyb6xce/evQstokmSv7+/2rVrpzlz5hS4vBQAvFViYuIV75mmaf/d6qi2bdvqhRdecFIqAABQ0lFIA+ASt956a5HXW7durZ07d2r//v26ePFivhMyd+zYofHjx2vx4sU6fvx4oWPk5uYqLS3tmvZJW7hwoT755BOtXr1a586dK7RdampqkePkzTgrTEhIiNLT06+4x5YtW+zPO3Xq5EDi//n999914MABSdKnn36qTz/91KF+Rf1bAoC3GTx4cL7XM2bMkGEYuueee4o8mdEwDAUFBalatWq67bbbFBUVJcMwXJwWAACUFBTSALhEccWtqlWrSro0eyAtLc3+esqUKXr88ccdPj2tqNMqC2KapoYPH64pU6Y4Zfzg4OAir9tsNkm64iSmywt01apVcyhLnpSUlKtqnyczM/Oa+gGAJ5o2bVq+13knPr/55ptOP1kPAAAgD4U0AC5R3F/3C9qecc+ePfYiWpUqVfT8888rKipK4eHhKleunH0J59SpU/XII48UOk5Rpk6dai+iNW/eXKNHj1abNm1Uo0YNBQcHy8/PT5I0aNAgffnll1c9/rW42pkQlxflRo8ebf+3KM7ls/4AoKQZO3aspOL/kAMAV2P16tUuGfdqVyQA8BwU0gC4xIkTJ1SzZs1Cr+fNqjIMQyEhIZKk6dOnKzs7W35+flq1apUaNmxYYN+0tLRrzvX5559LkurWrau1a9eqdOnSTr+HI8LCwuzPjx49qptvvtnhvpUqVbI/z8zMVOPGjZ2aDQC8UV4hDfizPx9M4QyGYSg+Pt7p48LzdOnSxenLvw3DcHj1BQDPQyENgEvExcUVWUiLi4uTJNWvX98+U2rnzp2SpGbNmhVaRJOkTZs2XXOuvHvce++9hRbRTNPU5s2br/kejmjRooX9+erVq9W1a1eH+1auXFk1atTQkSNHFBMTI9M02d8HAApgmqYOHjyo06dPS5JCQ0N100038TvTxxR0MEVB8n4u/jwbvaD3+RnyLe5YoQDAe1BIA+ASM2bMUN++fQu8tmnTJv3222+SpDvuuMP+ft5f5oray+v48eP2EyuvhSP3WLBggY4ePXrN93BEs2bNVLNmTR0+fFhffPGFnnvuuas6ufOee+7RJ598ooMHD2rOnDl64IEHXJgWALzL4sWLNWnSJK1ateqK3/fBwcHq0qWLRo4cqR49eliUEO7054Mp/mzr1q3atm2bTNNUxYoVFRkZqapVq8o0TaWkpGjr1q1KS0uTYRhq1qyZmjVr5qbk8AQrV660OgIAT2MCgJOMHTvWlGR/fPPNN1e0OXfunBkZGWlKMm02m7lt2zb7taefftr+/rp1667om5GRYXbt2jXfPRISEq5o17lzZ1OS2blz5yuuNWnSxJRk1qhRwzx9+vQV1w8cOGBWr17dPn7t2rWvaJOQkGC/Pm3atCL/TWrXrm1KMgcPHnzFtQ8//NA+Tp8+fcw//vijwDFycnLMI0eO5Hvv4MGDZqlSpUxJZmhoqBkXF1dkjoULF+b7twaAkig9Pd289957TZvNZtpsNtMwjAIfedfvu+8+Mz093erYsNDUqVPNwMBAs2bNmubs2bPNrKysK9pkZ2ebs2fPNmvXrm2WKlXKnDJligVJAQCeghlpAFyiVatWevDBBxUbG6t+/fqpfPny2r59u9555x3t3btXkvTkk0+qadOm9j4PP/ywPvroI+Xm5qpnz5564YUXdNtttykoKEi//vqrxo8fr/3796t9+/b65ZdfrinXoEGD9Pzzz+vIkSO67bbb9MILL+iWW27RhQsXtGLFCk2YMEF//PGHWrRo4fLlnU8++aR++OEHLVu2TN9//72aNGmikSNHqlWrVgoODtbx48e1fv16/fe//9WDDz6ocePG2fvWqVNHkydP1tChQ3X69Gm1b99eDz/8sO6++27VqlVL2dnZSk5O1saNGzVnzhzFx8frhx9+yPfvDQAlSW5urnr06KFffvlFpmkqICBA3bp1U+vWrfPNLoqLi9NPP/2kixcvasGCBerZs6dWrVrFUj0ftGnTJj322GOqXLmy1q9fr+rVqxfYzs/PTw888IA6dOigli1b6oknnlDTpk3VqlUrNycGAHgEqyt5AEqOy2ekHTx40KxTp06+2WOXP+6///4C/+r76quvFtpHkvncc8+Z06ZNu+YZaRcvXjS7detW6PilS5c2Z8+ebQ4ePNjlM9JM89Isu379+hX5mSWZY8eOLbD/119/bZYvX77Y/jabzVyxYkWRWQHAm02cONE+2+yuu+4yk5OTC22bnJxs9ujRw95+0qRJbkwKT/Hggw+aNpvN/Pjjjx3u89FHH5mGYZgDBw50YTIAgCezuaY8B8DX1alTR7/++qteeuklNWzYUMHBwapQoYI6deqkr776SnPmzJG//5WTYseMGaOFCxeqW7duCgkJUWBgoG688Ub17dtXP/30k95///3ryhUQEKCFCxfqww8/tM/8Kl26tOrVq6fHH39cmzdvdut+Y8HBwfr222+1YsUKPfzww6pTp45Kly6tcuXKKSIiQn379lV0dLSef/75Avv3799fiYmJevvtt9WlSxdVqVJFAQEBCg4O1k033aTevXvr3//+txITE6/qQAMA8DYzZ86UJN16661auHChatSoUWjbGjVq6IcfflDr1q1lmqZmzJjhrpjwIGvWrJEktWnTxuE+bdu2lST9/PPPLskEAPB8hmlyBAkAAAC8W4UKFZSenq7o6Gj179/foT6zZ8/WgAEDVK5cOf3+++8uTghPU7p0aV28eFGrV69W+/btHerzyy+/qGPHjipVqpTOnz/v4oTwFufOnVNMTIy2bdum1NRUnT9/vsiTPg3D0JQpU9yYEIAzsUcaAAAAvF7eHmcNGjRwuE/9+vXz9YVvqVy5so4cOaLFixc7XEhbtGiRJCksLMyV0eAlcnNz9frrr+uDDz5QRkaGQ31M06SQBng5lnYCAADA69WtW1eSlJKS4nCfvLZ5feFbunbtKtM09e9//9uhQ4zWrl2r8ePHyzAM3X777W5ICE83ZMgQvfbaa0pPT5fNZlPlypXtM9FuvPFGlSlTRqZp2t8LCwtT7dq1VatWLStjA7hOFNIAAADg9QYOHCjTNO17pTli5syZMgzD4aWgKFlefPFFBQYG6o8//tDtt9+u0aNHa+vWrcrNzbW3MU1TW7du1V//+ldFRUXpwoULCgwM1IsvvmhhcniCpUuX6quvvpJ0qaCWkpKimJgY+/VDhw7p7Nmz2rNnj5555hnZbDaFhIRo8eLFSkhIsCo2ACdgjzQAAAB4vYsXL+q2227Tli1b9NZbb+mFF14osv17772nv//972rRooXWrl2rwMBANyWFJ/n66681aNAgZWdn25f4BgYGKjQ0VIZh6NSpU7p48aKkS0U1f39/zZw5UwMGDLAyNjzAgAEDNHv2bDVu3Fjbt2+XJO3cuVNNmjSRYRjKycnJ1/7HH39Unz59VLNmTW3ZskUVKlSwIjYAJ6CQBgAAAK+XlJSk06dP67HHHtOmTZvUtGlTDR48WLfeequqVKkiwzB04sQJxcXF6csvv9TWrVvVqlUrffbZZwoJCSl0XJZglXwbNmzQk08+qc2bNxfZrkWLFpo0aZJat27tpmTwZOHh4Tp8+LAmTZqkxx57TFLRhTRJevTRRzVt2jSNGzdO//znP90dGYCTUEgDAACA17PZbE4/NMAwDGVnZzt1THiuuLg4xcTEaMeOHUpLS5NpmgoNDVWTJk10xx136NZbb7U6IjxIcHCw/vjjD8XExKhr166SpD179qhRo0YyDEOZmZkqVapUvj5LlixRz5491bx582ILtwA8F6d2AgAAoETg78O4HrfeeivFMly10NBQ+/Ny5crZn6ekpKhmzZr52lapUkWSlJiY6JZsAFyDQhoAAAC83rRp06yOAMCHVK1a1b6k/PL3AgMDlZWVpe3bt19RSEtKSpIkXbhwwa1ZATgXhTQAAAB4vcGDB1sdASWAaZo6ePCgvTgSGhqqOnXqyGazWZwMnqZJkyZKSkrSrl277Es7/f39FRkZqY0bN2ratGnq1atXvj6ffvqpJKl27dpuzwvAefgvAgAAAACftnTpUvXu3Vvly5dXgwYN1LZtW7Vt21YNGjRQhQoVdM899+inn36yOiY8SJcuXWSapmJiYvK9/5e//EWmaer777/XoEGDtHDhQn377bfq3bu3li5dKsMwdO+991qUGoAzcNgAAAAAAJ908eJFDR48WLNnz5ZU+D57eQdZ9O/fX9OnT1dgYKDbMsIzJSQkqG7duipVqpQSExNVtWpVSVJ2drbatm2rzZs3X3EAimmaql27tjZv3lzkacEAPBuFNAAAAJQoubm5WrVqldatW6fjx48rMzNTb7zxhqpVq2Zvc/HiRWVnZ8vPz++Kk/XgO/r166fvv/9epmnK399fd955p9q0aaMbbrhBpmnqxIkT2rhxo5YtW6asrCwZhqH777/fXniDb0tMTFROTo6qV6+u0qVL299PS0vTqFGjNHv2bGVlZUm6VIzt2bOnPvnkE914441WRQbgBBTSAAAAUGIsXLhQo0aNuuJUvB07dqhRo0b215988omeeuoplS1bVkePHlWZMmXcnBRWW7hwoXr37i3DMNSlSxdNnTq10L2rkpKSNGzYMK1YsUKGYeiHH35Qz5493ZwY3ubcuXPav3+/srOzVa9evXwnfALwXuyRBgAAgBLhiy++0D333KOEhASZpqlKlSoVulTvkUceUcWKFZWenq7vv//ezUnhCaZPny5JatasmZYsWVLkBvC1atXS4sWL1bx5c0mcEgvHlCtXTi1atFDr1q0pogElCIU0AAAAeL0DBw7oySeflCRFRUVp165dSklJKbR9YGCg7r//fpmmySbyPmr9+vUyDEPPPfecAgICim0fEBCgv/3tbzJNU+vXr3dDQngym80mf39/vfvuu1ZHAeBmFNIAAADg9SZMmKCsrCzdcsstWrRokSIiIort07FjR0nS1q1bXZwOnujkyZOSlG/Jb3Hyfq5SU1NdkgneIzAwUKZp2n+PAPAdFNIAAADg9ZYvXy7DMDR69GiHT1SsW7eupEv7X8H35O2Ld+rUKYf7nD59WpIUHBzskkzwHtWrV5ck+fn5WZwEgLtRSAMAAIDXO3z4sCTZ97ByRF4hJTMz0xWR4OFuvvlmSdI333zjcJ+vv/46X1/4rk6dOkmSNm/ebHESAO5GIQ0AAABezzAMSSr0cIGC5C3tK1++vEsywbPdc889Mk1T06ZNsx88UJTp06dr2rRpMgxD9913n8vzwbM9/fTT8vPz0/vvv6+zZ89aHQeAG1FIAwAAgNfLW2a1b98+h/vExsZKksLDw10RCR7u6aefVrVq1WSaph555BH16tVLc+fOVXJysrKyspSVlaXk5GTNnTtXPXv21COPPCLTNFW9enU99dRTVseHxVq2bKmPPvpIhw4dUufOnbV27VqrIwFwE3+rAwAAAADXq1OnTtq/f7+io6M1cODAYtunpqbq008/lWEYioqKckNCeJoyZcroxx9/1B133KG0tDQtWbJES5YsKbS9aZoKCQnRjz/+yB5p0LBhwyRdWua7bds2dezYUTVr1lTTpk0VEhJS5N5phmFoypQp7ooKwMkM82rmvwMAAAAeKC4uTm3atJFhGPriiy80dOhQSZLNZpNhGNqxY4f9dMbk5GT17dtXmzZtkr+/v3bt2qV69epZGR8WOnr0qJ555hnNmzdPOTk5Bbbx8/NTnz59NH78eNWoUcPNCeGJ8n635Mn7Wn35ewUxTVOGYRT6swbA81FIAwAAQIkwcuRITZ48WYZhqG/fvnrggQc0YMAAGYahWbNmyTAM/fTTT/r666914cIFSdILL7ygt956y+Lk8ATHjx/XypUr9dtvv9lP5wwNDVXjxo3VpUsXVatWzeKE8CTh4eHFFs2KkpCQ4MQ0ANyJQhoAAABKhJycHA0bNkxffvllkV9w8/7v75AhQzRlypTr+jIMAAB8C4cNAAAAoETw8/PTjBkz9O233yoyMlKmaRb4aNSokaKjozV16lSKaAAA4KowIw0AAAAl0tGjR7Vp0yalpKQoJydHlSpVUmRkpOrWrWt1NHioEydOFLi0s2rVqhYnAwB4CgppAAAAAHyWaZr67LPP9PHHH2vXrl0FtmnUqJGefvppDR8+nFmMkHTpsAGbzabt27fbDzIpTnx8vOrXry+bzabs7GwXJwTgKiztBAAAAOCT0tLS1LFjR40cOVK7du0qdDnwrl279MQTT6hTp046c+aM1bHhIa51TgpzWQDv5m91AAAAAOB65eTk6JdffpEkNWvWTBUqVCiy/ZkzZ7R9+3ZJUqdOnVyeD57HNE3de++9Wrt2rSSpUqVK+r//+z+1adNGN9xwg0zT1IkTJ7Rx40bNnj1bqampWrt2re69917FxsZanB7eKK+AxqxGwLuxtBMAAABeb+nSperRo4cqVaqkpKQklS5dusj2mZmZql27tk6fPq2YmBh17drVTUnhKWbNmqWHH35YhmHowQcf1KRJk1SuXLkC26anp+vJJ5+0nwj71VdfaeDAgW5ODE9is9lkGIZ27Njh8NLODRs2qF27dipXrpx+//13FycE4Cos7QQAAIDXmz17tiTpgQceKLaIJknBwcHq37+/TNPUN9984+p48EDR0dGSpM6dO+vLL78stIgmSWXLltWMGTPUuXNnmaapr776yl0x4eEcnV2WkZGhjz76SJI48ATwciztBAAAgNf79ddfZRiGoqKiHO7TtWtXTZo0SRs3bnRhMniqzZs3yzAMPfXUUw73efrppxUbG6stW7a4MBk80U033VTg+926dVNAQECRff/44w+lpKQoNzdXhmGod+/erogIwE0opAEAAMDrJScnS5Lq1KnjcJ/w8HBJ0pEjR1wRCR7u9OnTkq7uZyavbV5f+I7ExMQr3jNN86p/f7Rt21YvvPCCk1IBsAKFNAAAAHi9zMxMSVd3Gl5e27Nnz7okEzxbhQoVdOrUKR09elSRkZEO9Tl69KgkqXz58q6MBg80ePDgfK9nzJghwzB0zz33qGLFioX2MwxDQUFBqlatmm677TZFRUVx2ADg5SikAQAAwOtVrlxZycnJ2rNnj1q1auVQnz179ki6dFojfE/jxo0VGxuradOmqVevXg71mTp1qr0vfMu0adPyvZ4xY4Yk6c0333T4sAEAJQOHDQAAAMDr3XrrrTJNUzNnznS4z/Tp02UYhlq0aOHCZPBU/fr1k2ma+v777zVu3LgiZzOapqlx48bp+++/l2EYeuCBB9yYFJ5o7NixGjNmjKpUqWJ1FABuZphXM/8dAAAA8EBff/21HnzwQRmGoXfffVfPPfdcke0/+OADPf/88zIMQ9OnT9fDDz/spqTwFFlZWWrWrJn27NkjwzDUqFEjDRkyRG3atFHVqlVlGIaOHz+uDRs2aMaMGdq5c6dM01TDhg21bds2+fuzuAcAfBGFNAAAAHg90zTVokULbdu2TYZh6L777tPo0aPVtm1b+4l62dnZWrduncaPH6/58+dLurREb+vWrexZ5KMOHTqkqKgoJSQkFPszYJqmbrrpJq1YsUK1atVyU0IAgKehkAYAAIASITExUe3bt9exY8fsRZGAgACFhobKMAydOnVKWVlZki4VRapXr66ff/7ZfnonfFNGRobGjRunKVOm6MyZMwW2qVixoh599FGNGTNGZcuWdW9AeKTVq1dfV/9OnTo5KQkAd6OQBgAAgBIjJSVFjz32mBYsWFDonleGYahPnz6aNGkS+xvB7uLFi/r111/122+/6fTp05Kk0NBQNW7cWC1btlRgYKDFCeFJbDbbNc9kNQxD2dnZTk4EwF0opAEAAKDE2bt3rxYtWqQtW7YoNTVVkhQWFqYWLVqoV69eql+/vsUJAXgzm+3az+0zDEM5OTlOTAPAnSikAQAAwOvlLbOqVq0aRTIALhcbG1tsm4yMDO3du1f//e9/tWnTJt122216/fXXZbPZ1LlzZzekBOAKFNIAAADg9fKWWU2ZMkVDhgyxOg4A5PP222/rpZde0oABAxQdHW11HADXgUIaAAAAvF758uWVkZGhjRs3qmXLllbHgRd47bXXrrqPYRgKCgpShQoVVL9+fbVs2VLly5d3QTqURH379tX8+fP11VdfaeDAgVbHAXCNKKQBAADA6zVu3Fi7d+/WqlWr1LFjR6vjwAtcz2bxeQICAnTvvffqzTffVL169ZyUDCXVggULdN9996lz585auXKl1XEAXKNr3yERAAAA8BC9evWSJMXExFicBN7ENE376a55zwt7FNTm4sWLmjNnjpo3b67ly5db+VHgBWrVqiVJ+u233yxOAuB6UEgDAACA1/vrX/+q0NBQTZgwgS+pcEhubq4SExPVtm1bmaapPn366Pvvv9fhw4d14cIF/fHHHzp8+LC+//573XfffTJNU23atFF8fLzS0tK0Zs0aPfHEE7LZbMrMzFS/fv106tQpqz8WPNiJEyckXTqEAID3YmknAAAASoQNGzbo/vvv17lz5/T3v/9dDz74oMLDw62OBQ917tw53XrrrTp48KD++9//6v777y+y/dy5czVgwACFh4dr06ZNqlChgiRp6dKluvvuu5Wbm6uxY8dqzJgx7ogPL3TPPffoxx9/VIMGDbRnzx6r4wC4RsxIAwAAgNe76aabNHDgQF28eFHnzp3TP//5T9WtW1cVKlRQ7dq1ddNNNxX6qFu3rtXxYYEJEyZo3759euKJJ4otoknS/fffryeeeELx8fH64IMP7O93795dDz30kEzT1OLFi10ZGV4oLS1Ny5YtU8+ePfXjjz/KMAz17dvX6lgArgMz0gAAAOD1bLZr//uwYRjKyclxYhp4g6ZNm2rnzp1avny5unTp4lCfVatWKSoqSo0aNcq3hPj777/X/fffr0qVKunkyZMuSgxP4ufnd9V9TNNUgwYNtGHDBvuMRgDex9/qAAAAAMD1Gjx4sNUR4GUSEhIkSeXLl3e4T17bQ4cO5Xu/du3akqSzZ886KR083dXOR/H391e/fv00YcIEimiAl6OQBgAAAK83bdo0qyPAywQEBEiSduzYoRYtWjjUZ8eOHfn65snNzZUkVaxY0XkB4dHGjh1bbBubzaZy5cqpTp06at++vcLCwtyQDICrUUgDAAAA4HOaNGmiNWvW6P3331f//v0VFBRUZPvz58/rvffek2EYatKkSb5r8fHxkqTKlSu7LC88iyOFNAAlE4cNAAAAAPA5w4YNkyTt2rVLUVFR2rlzZ6Ftf/vtN0VFRWnXrl2SpEceeSTf9ZiYGBmGoaZNm7ouMADAI3DYAAAAAEqcCxcu6Ndff9Xx48eVmZmpe++996r2woJv6N27txYuXCjDMCRJzZs3V8uWLVWlShVJUkpKijZt2qRt27ZJurQvVu/evTV//nz7GL///rtq166ts2fPasaMGXr44Yfd/0EAAG5DIQ0AAAAlxuHDh/XKK6/om2++UVZWlv39HTt2qFGjRvbXU6ZM0aeffqoKFSrop59+shdS4FuysrL01FNP6YsvvpBpmoX+HORdGz58uD766KN8e6SdOnXKfoJnq1atVKZMGbdkh+fIzc3VqlWrtG7dOnvx/o033lC1atXsbS5evKjs7Gz5+fmpVKlSFqYFcL0opAEAAKBE2Lhxo3r27Km0tLR8J+oZhnFFIe3kyZOqWbOmsrKytGjRInXv3t2KyPAQW7Zs0Weffably5frwIED+a7VrVtXt99+u0aMGOHwoQTwHQsXLtSoUaOUmJiY7/0//8755JNP9NRTT6ls2bI6evQoBVfAi7FHGgAAALze77//rnvvvVenT5/WDTfcoEmTJtlPWCxI5cqV1aNHD0mXvgjDt0VGRuqTTz7Rvn37dP78eR07dkzHjh3T+fPntX//fk2ePJkiGq7wxRdf6J577lFCQoJM01SlSpVU2DyVRx55RBUrVlR6erq+//57NycF4EwU0gAAAOD1PvroI504cUJhYWFat26dHn/8cd1yyy1F9rnzzjtlmqY2btzoppTwBqVKlVLVqlVVtWpVluChUAcOHNCTTz4pSfaDKFJSUgptHxgYqPvvv1+maeqnn35yV0wALkAhDQAAAF7vhx9+kGEYevbZZ1WrVi2H+uQV2uLj410ZDUAJNGHCBGVlZemWW27RokWLFBERUWyfjh07SpK2bt3q4nQAXIlCGgAAALze/v37JUmdOnVyuE/FihUlSWfPnnVFJAAl2PLly2UYhkaPHq3AwECH+tStW1eSlJSU5MpoAFzM3+oAAAAAwPU6f/68JF3VBt7p6emSpKCgIJdkQskyc+bMfK8HDRpkURJ4gsOHD0uSmjdv7nCfvN9PmZmZrogEwE0opAEAAMDrVa5cWUeOHNHhw4fVrFkzh/r8+uuvkqRq1aq5MhpKiCFDhsgwDEmXToKlkObb8n4WCjtcoCAnT56UJJUvX94lmQC4B0s7AQAA4PVat24tSVq8eLFD7XNycvTZZ5/JMAx16NDBldFQgpimaX/At1WvXl2StG/fPof7xMbGSpLCw8NdEQmAmzAjDQAAAF5v4MCB+u677zR16lQ9+uijioyMLLRtbm6uHn/8ce3atUuGYegvf/mLG5PCW40dO9bqCPAgnTp10v79+xUdHa2BAwcW2z41NVWffvqpDMNQVFSUGxICcBXD5M8pAAAAKAE6dOigtWvXqmLFinr99df1wAMP6IYbbpBhGPrtt98UGhqqn376SePHj9e2bdskSXfddZcWLlxocXIA3iYuLk5t2rSRYRj64osvNHToUEmSzWaTYRjasWOHGjVqJElKTk5W3759tWnTJvn7+2vXrl2qV6+elfEBXAcKaQAAACgRUlNT1alTJ+3Zs8e+f1GewMBAXbx40f7aNE01adJEsbGx9tM7AeBqjBw5UpMnT5ZhGOrbt68eeOABDRgwQIZhaNasWTIMQz/99JO+/vprXbhwQZL0wgsv6K233rI4OYDrQSENAAAAJUZmZqb+/ve/a8qUKfYvrn8WEBCgoUOH6oMPPriqUz4B4HI5OTkaNmyYvvzyyyuK95fL+8o9ZMgQTZkypci2ADwfhTQAAACUOKdOndLSpUu1adMmpaSkKCcnR5UqVVJkZKR69Ohh3ygcAK7X3Llz9dZbb2nz5s0FXm/UqJFeeeUVDRgwwM3JALgChTQAAAAA+P8yMzM1YcIEffvttzpw4IBsNpvq1Kmj++67T88995zKlStndUR4qKNHjxZYvK9bt67V0QA4EYU0AAAAeL2kpCRJUo0aNeTn5+dQn9zcXCUnJ0uSatWq5bJssN7p06d19913S5JGjBihIUOGFNguNTVVUVFR2rlzp6T/LcnLW4pXu3ZtrVixQuHh4S7PDADwTBTSAAAA4PVsNptsNpu2b99uPymvOPHx8apfv75sNpuys7NdnBBWmj9/vvr06SM/Pz8dPHhQNWvWLLBdjx49tHTpUhmGIdM05e/vr0qVKiklJcVeVGvdurXWr1/vzvgAAA9iszoAAAAA4AzX+vdh/q5c8q1atUqSdNtttxVaRIuNjbUX0YKCgjR58mRlZGTo2LFjSkxMVPfu3SVJcXFxWrhwobuiAwA8jL/VAQAAAAAr5BXQbDb+tlzSbdq0SYZh6K677iq0zcyZM+3P33jjDY0YMcL+umbNmpo3b54aNWqkxMREzZ07V7169XJpZniPbdu2ac2aNTp48KDOnTunnJycItsbhqEpU6a4KR0AZ6OQBgAAAJ907NgxSWLzeB9w4sQJSVKLFi0KbbN8+XJJUunSpfXYY49dcb1UqVIaPny4XnrppUJPZ4Rv2bt3r4YNG3ZVS31N06SQBng5CmkAAAAoMfI2hS9KVlaW4uPj9eabb0qSbr75ZlfHgsVSUlIkSVWrVi3w+pEjR5SUlCTDMNShQwcFBwcX2K5169aSpMOHD7smKLzGkSNH1KlTJ6Wmptpnt5YtW1YhISHMcgVKOAppAAAA8DoFncxpmqYaN258VeMYhqF+/fo5KxY81IULFySp0CV3GzZssD9v1apVoeOEhYVJktLT052YDt7ozTff1MmTJ2UYhh599FH97W9/U4MGDayOBcANKJUDAADA65imme9R2PvFPR544AGNHj3aug8CtwgJCZEkJSQkFHj98qV5LVu2LHSczMxMSVJAQIAT08EbLVmyRIZhaNCgQfrss88oogE+hBlpAAAA8Dpjx47N9/rVV1+VYRh6/PHHVaVKlUL75Z3IWK1aNd12222qW7euq6PCAzRu3FgrVqzQjz/+WOAMxMtP4ezQoUOh4yQnJ0uSKleu7PyQ8CpHjx6VJA0aNMjiJADcjUIaAAAAvE5BhTRJevLJJ9WoUSMrIsGD9ejRQ8uXL1d0dLQGDx6srl272q9FR0dr9+7dMgxD7dq1K7JIlrcElNlHCAkJUUpKiipWrGh1FABuRiENAAAAXm/atGmSpBtvvNHiJPBEQ4cO1dtvv61Tp06pe/fu6tOnj+rVq6fdu3drwYIF9nZPP/10kePMnz9fhmHYDx2A72rVqpUWLVqkffv2KTIy0uo4ANzIMC/fVAIAAAAASqCFCxeqb9++ysrKyne6a97XoZ49e+rHH38stP+aNWvUuXNnGYahmJiYfLPa4HuWLVum7t27q2vXrlq+fLnVcQC4EYcNAAAAACjxevXqpRUrVujWW2/Nd+BEUFCQnnrqKc2ZM6fI/m+88YakS0v6OnXq5I7I8GB33nmnXnjhBa1cuVJPPPGEsrKyrI4EwE2YkQYAAIAS5dSpU1q3bp0OHjyoc+fOKScnp9g+Y8aMcUMyeIpjx44pKSlJgYGBatiwoYKCgorts2vXLpmmqTJlyig8PNz1IeHRZs6cKUn67LPPtG7dOlWrVk39+vVTRESEgoODi+3PIQWA96KQBgAAgBIhJSVFf/3rXzVnzhxlZ2dfVV9Him0AkMdms+VbInw1DMO46t9RADwHhw0AAADA66WlpalDhw6Kj48XfycG4A78rgF8E4U0AAAAeL23335bBw4ckCR169ZNzz77rFq2bKnQ0NBrnjUCAIVJSEiwOgIAi7C0EwAAAF4vIiJC+/fvV69evbRgwQKr48CDJCUlSZJq1KghPz8/p46dk5OjI0eOSJJq1arl1LEBAJ6JUzsBAADg9fKKJU8++aTFSeBpwsPDddNNN2nv3r1OH3vPnj328QEAvoFCGgAAALxe2bJlJUlVq1a1OAk8kasX4bDIBwB8B4U0AAAAeL0mTZpIkg4dOmRxEngq9soDADgDe6QBAADA682ePVsDBgxQ3759NWfOHKvjwIPYbDYZhqHq1asrICDAqWNnZWXpyJEjMgxDOTk5Th0bJcvMmTPzvR40aJBFSQBcLwppAAAAKBEeeughff3113rzzTf14osvWh0HHsJmc/0iHAppKE5eQVe69POSnZ1tcSIA18rf6gAAAADA9Vq9erUeffRRHTp0SC+//LK+++47Pfjgg4qIiFBwcHCx/Tt16uSGlLDC4MGDrY4ASGIvPaCkYEYaAAAAvN7lsz2uFrNDALjaq6++mu/12LFjLUoC4HpRSAMAAIDXu57leyzLAwAAjmJpJwAAALzeypUrrY4AAAB8ADPSAAAAAAAAAAcwIw0AAACAzzp27JjWrl2r5ORknTx5UqdOnVLp0qVVuXJlVa5cWU2aNFHLli3l789XJwAAhTQAAAAAPsQ0TcXExOibb77RqlWrlJCQUGyf0qVLq02bNurVq5cGDhyoatWquSEpvFFmZqYmTJigb7/9VgcOHJDNZlOdOnV033336bnnnlO5cuWsjgjgOrG0EwAAAF7ltddec/qYY8aMcfqY8CwZGRmaPHmyJk6cqEOHDkm6VFS7GoZhyM/PT/fee6+effZZtWvXzhVR4WFOnz6tu+++W5I0YsQIDRkypMB2qampioqK0s6dOyX97+cr70Th2rVra8WKFQoPD3d5ZgCuQyENAAAAXsVms9m/mDoLp3aWXNnZ2froo4/01ltv6dSpU/biRp06ddSmTRu1bt1aLVu2VJUqVRQaGqqQkBCdP39ep0+fVlpamvbt26e4uDht3LhRcXFxunDhgqRLxZHu3bvr3XffVePGja38iHCx+fPnq0+fPvLz89PBgwdVs2bNAtv16NFDS5culWEYMk1T/v7+qlSpklJSUuw/d61bt9b69evdGR+Ak1FIAwAAgFex2WxOHc8wDAppJVhERIT2798v0zRVo0YN9e/fXw899JAiIyOveqz09HR99913io6O1vLly5WTkyM/Pz9NmzZNf/nLX1yQHp7gr3/9q/7zn/+oY8eOio2NLbBNbGysunbtKsMwFBQUpPHjx2vo0KEKCAjQ4cOHNWLECHuRbcGCBerVq5ebPwUAZ2GPNAAAAHiVlStXWh0BXmTfvn1q1KiRXn75ZfXv3/+6CrFly5bVoEGDNGjQICUlJenNN9/UjBkzdPDgQScmhqfZtGmTDMPQXXfdVWibmTNn2p+/8cYbGjFihP11zZo1NW/ePDVq1EiJiYmaO3cuhTTAizEjDQAAAECJ9e2336pfv35OXw6c58iRI0pKSmK/tBKsQYMGio+P16JFi9S9e/cC24SHhyspKUnBwcFKSUlRcHDwFW3efvttvfTSS2ratKm2bt3q4tQAXIUZaQAAAABKrAceeMCl49eoUUM1atRw6T1grZSUFElS1apVC7yeV0w1DEMdOnQosIgmXdofTZIOHz7smqAA3MK5G0wAAAAAAFCC5B0wUdheihs2bLA/b9WqVaHjhIWFSbq01x4A70UhDQAAAACAQoSEhEiSEhISCrx++SmcLVu2LHSczMxMSVJAQIAT0wFwNwppAAAAAAAUonHjxpKkH3/8scDrCxcutD/v0KFDoeMkJydLkipXruzEdADcjT3SAAAAAPis1NRUzZo1S2vWrNHBgwd17ty5Qpfw5TEMQ/Hx8W5KCKv16NFDy5cvV3R0tAYPHqyuXbvar0VHR2v37t0yDEPt2rUrskiWtwS0QYMGLs8MwHUopAEAAADwSdHR0Ro5cqTOnTsnSTJN06F+rjoBFJ5p6NChevvtt3Xq1Cl1795dffr0Ub169bR7924tWLDA3u7pp58ucpz58+fLMAz7oQMAvBOFNAAAAAA+Z8WKFXr44YftxbPatWuradOmqlixomw2dsDB/4SEhGjatGnq27evsrKyNGfOHPu1vJ+fHj16qH///oWOsWbNGh04cECGYSgqKsrlmQG4jmE6+mcXAAAAACghunXrppiYGFWsWFGzZs1Sjx49rI4ED/fLL7/o2WefVVxcnP29oKAgPfroo3r33XcVFBRUaN/u3btr2bJlCg0N1YkTJ+Tn5+eOyABcgEIaAAAAAJ8TEhKis2fPasKECcUuyQMud+zYMSUlJSkwMFANGzYssoCWZ9euXTJNU2XKlFF4eLjrQwJwGQppAAAAAHxOhQoVlJ6erri4OLVo0cLqOAAAL8HifwAAAAA+p27dupKkjIwMi5MAALwJhTQAAAAAPmfAgAEyTVNLly61OgoAwIuwtBMAAACAz0lPT1fbtm2VmJioVatWqVWrVlZHggdKSkqSJNWoUcPpBwTk5OToyJEjkqRatWo5dWwArsOMNAAAAAA+p2zZslq0aJEiIiLUqVMnvfLKK9q+fbsuXLhgdTR4kPDwcN10003au3ev08fes2ePfXwA3oMZaQAAAAB81s6dOxUVFaXU1FSH+xiGoezsbBemgqew2WwyDEM7duxQo0aNnDr2zp071aRJExmGoZycHKeODcB1mJEGAAAAwCdNmDBBzZs3V2pqqkzTvKoHfIthGFZHAOAh/K0OAAAAAADutmjRIj377LOSJD8/P3Xo0EFNmzZVxYoVZbMx3wD5devWTQEBAU4dMysry6njAXAPlnYCAAAA8Dldu3ZVbGysqlevriVLlqhx48ZWR4IHckdRlaWdgHdhRhoAAAAAn7N9+3YZhqHXX3+dIhoKNXjwYKsjAPAwzEgDAAAA4HMqVqyoc+fOadOmTYqMjLQ6DgDAS7D4HwAAAIDPqV+/viQpLS3N4iQAAG9CIQ0AAACAzxk4cKBM09S8efOsjgIA8CIs7QQAAADgc7KystSxY0dt2bJFc+bMUe/eva2OBADwAhTSAAAAAPicpKQk/f777xoxYoTi4uLUv39/9e/fXw0aNFBwcHCx/WvVquWGlPB0x44d09q1a5WcnKyTJ0/q1KlTKl26tCpXrqzKlSurSZMmatmypfz9OecPKCkopAEAAADwOTabTYZhSJJM07Q/d4RhGMrOznZVNHgw0zQVExOjb775RqtWrVJCQkKxfUqXLq02bdqoV69eGjhwoKpVq+aGpABchUIaAAAAAJ9js137dtGGYSgnJ8eJaeDpMjIyNHnyZE2cOFGHDh2SdKmodjUMw5Cfn5/uvfdePfvss2rXrp0rogJwMQppAAAAAHzOjBkzrqv/4MGDnZQEniw7O1sfffSR3nrrLZ06dcpePKtTp47atGmj1q1bq2XLlqpSpYpCQ0MVEhKi8+fP6/Tp00pLS9O+ffsUFxenjRs3Ki4uThcuXJB0qajWvXt3vfvuu2rcuLGVHxHAVaKQBgAAAABAASIiIrR//36ZpqkaNWqof//+euihhxQZGXnVY6Wnp+u7775TdHS0li9frpycHPn5+WnatGn6y1/+4oL0AFzh2uczAwAAAABQgu3bt08NGzbUrFmzdOjQIb3//vvXVESTpLJly2rQoEFasmSJ4uPjNXz4cPn5+engwYNOTg3AlZiRBgAAAABAAb799lv169fvqg6juBpHjhxRUlIS+6UBXoRCGgAAAAAAAOAAf6sDAAAAAIC7DRs27Jr7GoahKVOmODENAMBbMCMNAAAAgM+x2WzXtFzPNE0ZhqGcnBwXpAIAeDpmpAEAAADwObVq1Sq2kJaRkaHU1FRJl2ahhYWFKTg42B3xAAAeihlpAAAAAFCI06dPKzo6WmPHjlVYWJjmz5+viIgIq2PBQ6SmpmrWrFlas2aNDh48qHPnzhU7W9EwDMXHx7spIQBno5AGAAAAAMXYvXu32rVrp5CQEG3evFkhISFWR4LFoqOjNXLkSJ07d07SpWW/jmBpMODdWNoJAAAAAMVo2LChRo0apTfeeEMffPCB3njjDasjwUIrVqzQww8/bC+e1a5dW02bNlXFihVls9ksTgfAlZiRBgAAAAAOWLNmjTp37qyIiAjt2rXL6jiwULdu3RQTE6OKFStq1qxZ6tGjh9WRALgJpXIAAAAAcEDZsmUlSUlJSRYngdXi4uJkGIZeffVVimiAj6GQBgAAAAAO2LJliyQpICDA4iSwWm5uriSpffv2FicB4G4U0gAAAACgGAkJCRo3bpwMw1Dz5s2tjgOL1a1bV5KUkZFhcRIA7sZhAwAAAAB8zsyZM4ttk5ubq7S0NG3atEnz589XZmamDMPQ448/7oaE8GQDBgzQ1q1btXTpUnXs2NHqOADciMMGAAAAAPgcm80mwzAcbp/3temZZ57R+PHjXRULXiI9PV1t27ZVYmKiVq1apVatWlkdCYCbsLQTAAAAgE8yTdOhR4UKFXTPPfdoyZIlFNEg6dLBE4sWLVJERIQ6deqkV155Rdu3b9eFCxesjgbAxZiRBgAAAMDnHDp0qNg2NptN5cqVU8WKFV0fCF5p586dioqKUmpqqsN9DMNQdna2C1MBcCUKaQAAAAAAXKUJEybo+eefV25urq7ma7VhGMrJyXFhMgCuxGEDAAAAAABchUWLFunZZ5+VJPn5+alDhw5q2rSpKlasKJuNHZSAkoxCGgAAAAAAV+G9996TJFWvXl1LlixR48aNLU4EwF0olQMAAADA/5eZmal//etfioyMVLly5VShQgU1b95c48aN07lz56yOBw+xfft2GYah119/nSIa4GPYIw0AAABAiXb69GndfffdkqQRI0ZoyJAhBbZLTU1VVFSUdu7cKUn2fa8Mw5Ak1a5dWytWrFB4eLjLM8OzVaxYUefOndOmTZsUGRlpdRwAbsSMNAAAAAAl2po1a7R+/XrFxcXp9ttvL7Tdww8/rN9++03SpSKav7+/qlatan+dmJioAQMGuCUzPFv9+vUlSWlpaRYnAeBuFNIAAAAAlGirVq2SJN12222qWbNmgW1iY2O1dOlSGYahoKAgTZ48WRkZGTp27JgSExPVvXt3SVJcXJwWLlzorujwUAMHDpRpmpo3b57VUQC4GYU0AAAAACXapk2bZBiG7rrrrkLbzJw50/78jTfe0IgRIxQQECBJqlmzpubNm6c6depIkubOnevawPB4Tz/9tFq3bq1PP/1UP/zwg9VxALgRp3YCAAAAKNFOnDghSWrRokWhbZYvXy5JKl26tB577LErrpcqVUrDhw/XSy+9pM2bN7smKLzGsWPH9Pnnn2vEiBHq06eP+vfvr/79+6tBgwYKDg4utn+tWrXckBKAK1BIAwAAAFCipaSkSJJ9v7M/O3LkiJKSkmQYhjp06FBoIaR169aSpMOHD7smKLxGeHi4/RAK0zT19ddf6+uvv3aor2EYys7OdmU8AC5EIQ0AAABAiXbhwgVJUk5OToHXN2zYYH/eqlWrQscJCwuTJKWnpzsxHbxV3qmuf34OoGSjkAYAAACgRAsJCVFKSooSEhLUsmXLK66vX7/e/ryg63kyMzMlyb53GnzXtGnTrI4AwCIU0gAAAACUaI0bN9aKFSv0448/ql+/fldcv/wUzg4dOhQ6TnJysiSpcuXKzg8JrzJ48GCrIwCwCKd2AgAAACjRevToIdM0FR0drZUrV+a7Fh0drd27d8swDLVr167IIlneEtAGDRq4NC8AwHMxIw0AAABAiTZ06FC9/fbbOnXqlLp3764+ffqoXr162r17txYsWGBv9/TTTxc5zvz582UYhv3QAQCA7zFMdkUEAAAAUMItXLhQffv2VVZWlv20Rel/m8T37NlTP/74Y6H916xZo86dO8swDMXExKhr164uzwwA8DwU0gAAAAD4hF9++UXPPvus4uLi7O8FBQXp0Ucf1bvvvqugoKBC+3bv3l3Lli1TaGioTpw4IT8/P3dEhocaNmzYNfc1DENTpkxxYhoA7kQhDQAAAIBPOXbsmJKSkhQYGKiGDRsWWUDLs2vXLpmmqTJlyig8PNz1IeHRbDZbvpmNjjJNU4ZhKCcnxwWpALgDhTQAAAAAAK5CeHh4sYW0jIwMpaamSro0Cy0sLEzBwcGSpISEBJdnBOAaFNIAAAAAAHCB06dPKzo6WmPHjlVYWJjmz5+viIgIq2MBuA4U0gAAAAAAcKHdu3erXbt2CgkJ0ebNmxUSEmJ1JADXyGZ1AAAAAAAASrKGDRtq1KhROnTokD744AOr4wC4DhTSAAAAAABwsTvvvFOS9N1331mcBMD1oJAGAAAAAICLlS1bVpKUlJRkcRIA14NCGgAAAAAALrZlyxZJUkBAgMVJAFwPCmkAAAAAALhQQkKCxo0bJ8Mw1Lx5c6vjALgO/lYHAAAAAADAm8ycObPYNrm5uUpLS9OmTZs0f/58ZWZmyjAMPf74425ICMBVDNM0TatDAAAAAADgLWw2mwzDcLh93tfuZ555RuPHj3dVLABuwIw0AAAAAACukqNzUipWrKhOnTpp5MiR6tatm4tTAXA1ZqQBAAAAAHAVDh06VGwbm82mcuXKqWLFiq4PBMBtKKQBAAAAQDFWr14tSapUqZJuueUWi9MAAKxCIQ0AAAAAinH5nlh33HGHxowZo/bt21ucCgDgbhTSAAAAAKAYNpvN/jyvoNalSxeNGTNGnTt3tioWAMDNKKQBAAAAQDGGDh0qSTp//rzWr1+vpKQkSZeKajk5OVZGgwfJzMzUhAkT9O233+rAgQOy2WyqU6eO7rvvPj333HMqV66c1REBXCcKaQAAAABwlQ4dOqRVq1ZpzZo1+uKLL6yOAxc6ffq07r77bknSiBEjNGTIkALbpaamKioqSjt37pT0v1M982Yw1q5dWytWrFB4eLjLMwNwHQppAAAAAAAUYv78+erTp4/8/Px08OBB1axZs8B2PXr00NKlS2UYhkzTlL+/vypVqqSUlBR7Ua1169Zav369O+MDcDJb8U0AAAAAAPBNq1atkiTddttthRbRYmNj7UW0oKAgTZ48WRkZGTp27JgSExPVvXt3SVJcXJwWLlzorugAXIBCGgAAAAAAhdi0aZMMw9Bdd91VaJuZM2fan7/xxhsaMWKEAgICJEk1a9bUvHnzVKdOHUnS3LlzXRsYgEtRSAMAAAAAoBAnTpyQJLVo0aLQNsuXL5cklS5dWo899tgV10uVKqXhw4fLNE1t3rzZNUEBuIW/1QEAAAAAwFWGDRvm9DENw9CUKVOcPi48U0pKiiSpatWqBV4/cuSIkpKSZBiGOnTooODg4ALbtW7dWpJ0+PBh1wQF4BYU0gAAAACUWNOnT7efmugMpmlSSPMxFy5ckCTl5OQUeH3Dhg32561atSp0nLCwMElSenq6E9MBcDcKaQAAAABKrFq1ahVZSMvMzNTJkyftrwMDAxUaGirTNJWWlqaLFy9KujQLLSwsrNDZRii5QkJClJKSooSEBLVs2fKK65efwlnQ9TyZmZmSZN87DYB3Yo80AAAAACVWYmKiEhISCnzMnTtXZcqUkb+/v5544gnFxcUpIyNDR48e1bFjx5SRkaFNmzbpiSeekJ+fn8qUKaO5c+cqISHB6o8FN2rcuLEk6ccffyzw+uWncHbo0KHQcZKTkyVJlStXdmI6AO5GIQ0AAACAzzl27Jh69uypY8eOaenSpZo4caJatmwpPz8/exs/Pz+1aNFCEydO1LJly/L1ge/o0aOHTNNUdHS0Vq5cme9adHS0du/eLcMw1K5duyKLZHlLQBs0aODSvABci0IaAAAAAJ/z/vvvKyUlRaNHj1bXrl2Lbd+5c2eNHj1aKSkpeu+999yQEJ5i6NChCgsLU05Ojrp3767+/fvr5ZdfVt++fTVo0CB7u6effrrIcebPny/DMOyHDgDwToZpmqbVIQAAAADAnW6++WYdOHBAsbGxRS7Hu9zPP/+sTp06qX79+tq7d6+LE8KTLFy4UH379lVWVla+Pffyvk737Nmz0KWfkrRmzRp17txZhmEoJibGoeItAM/EjDQAAAAAPidvv6qgoCCH++S1zesL39GrVy+tWLFCt956q0zTtD+CgoL01FNPac6cOUX2f+ONNyRdOrigU6dO7ogMwEU4tRMAAACAzylTpowuXLiguLg4tWrVyqE+GzdulCRO7vRR7du314YNG3Ts2DElJSUpMDBQDRs2dKgYO378eJmmqTJlyuTbhw+A92FpJwAAAACf07NnTy1ZskQ1atTQ5s2biz1JMSUlRS1bttTRo0fVvXt3LVq0yE1JAQCehKWdAAAAAHzOU089JUk6evSo2rRpo3nz5ik3N/eKdrm5uZo/f77atWunI0eOSJJGjRrl1qwAAM/BjDQAAAAAPmn06NH68MMP7ZvHh4SEKDIyUlWqVJFhGDpx4oS2bt2q06dP2zeVf+aZZzR+/HgrYwMALEQhDQAAAIDP+uCDDzR27FhlZmZKUr4TGaX/ncpYunRpvf7663r22WfdnhEA4DkopAEAAADwaSkpKZoxY4ZiYmK0Y8cOpaWlSbo0Q61Jkya64447NHjwYFWpUsXipAAAq1FIAwAAAAAAABzAYQMAAAAAAACAAyikAQAAAAAAAA7wtzoAAAAAAHiCs2fP6ty5c8rJySm2ba1atdyQCADgaSikAQAAAPBZy5Yt06RJk7RmzRr7IQPFMQxD2dnZLk4GAPBEFNIAAAAA+KRRo0Zp4sSJkiTOYAMAOIJCGgAAAACfEx0drY8//liSFBQUpPvuu08tW7ZUaGiobDa2kgYAFIxCGgAAAACf8+mnn0qSatasqRUrVqhu3boWJ0JJtnr1aklSpUqVdMstt1icBsD1MEzmMAMAAADwMSEhITp79qw+//xzDRs2zOo4KOFsNpsMw5Ak3XHHHRozZozat29vcSoA14I5ywAAAAB8TlZWliQpMjLS4iTwFaZpyjRNxcTEqFOnTrr99tsVGxtrdSwAV4mlnQAAAAB8Tnh4uHbv3q309HSro8AHDB48WJJ0/vx5rV+/XklJSVq5cqVWrVqlnJwci9MBuBoU0gAAAAD4nL59++rNN9/U8uXL1bFjR6vjoISbNm1avteHDh3SqlWrtGbNGosSAbhW7JEGAAAAwOf8/vvvat68udLS0rR+/XpFRERYHQkA4AXYIw0AAACAz6lQoYKWLFmiqlWrqn379po0aZLS0tKsjgUA8HDMSAMAAADgc2666SZJUmZmplJSUmQYhgzDUFhYmIKDg4vsaxiG4uPj3RETAOBhKKQBAAAA8Dk227UvzjEMgw3iAcBHcdgAAAAAAJ+Td4oiUJRhw4Y5fUzDMDRlyhSnjwvAPZiRBgAAAABAAWw2mwzDcNp4pmkyoxHwcsxIAwAAAACgALVq1SqykJaZmamTJ0/aXwcGBio0NFSmaSotLU0XL16UJIf33wPg+ZiRBgAAAADAVdq8ebP69eun5ORkDR8+XMOGDVPz5s3l5+cnScrJydG2bds0ZcoUff7557rxxhs1Z84ctWjRwuLkAK4HhTQAAAAAAK7CsWPHFBkZqd9//12LFi1S165di2wfGxuru+66SxUqVNCWLVtUrVo1NyUF4Gws7QQAAADg89LS0rRt2zalpqbq/PnzKm6+waBBg9yUDJ7o/fffV0pKiv7+978XW0STpM6dO2v06NF655139N577+nf//63G1ICcAVmpAEAAADwWatWrdLYsWP1888/O9zHMAxlZ2e7MBU83c0336wDBw4oNjZWHTp0cKjPzz//rE6dOql+/frau3evixMCcBVmpAEAAADwSZ988omefvppmaZZ7Aw04HLJycmSpKCgIIf75LXN6wvAO9msDgAAAAAA7rZ7926NGjVKpmmqSZMmmjdvnhYuXCjp0oyz+Ph4bdq0SZMnT7ZvDt+hQwft3LlTBw8etDI6PECZMmUkSXFxcQ732bhxoyRxcifg5VjaCQAAAMDnjBw5UpMnT1blypV14MABlStXTjt37lSTJk1kGIZycnLsbU3T1Isvvqj33ntPUVFRiomJsTA5PEHPnj21ZMkS1ahRQ5s3b1blypWLbJ+SkqKWLVvq6NGj6t69uxYtWuSmpACcjRlpAAAAAHxObGysDMPQqFGjVK5cuSLbGoahd955R1FRUVq5cqWmTp3qppTwVE899ZQk6ejRo2rTpo3mzZun3NzcK9rl5uZq/vz5ateunY4cOSJJGjVqlFuzAnAuZqQBAAAA8DkVKlRQenq6fvzxR/Xo0UOStGvXLjVu3FiGYejChQsKCAjI12f27NkaMGCAunTpohUrVlgRGx5k9OjR+vDDD2UYhiQpJCREkZGRqlKligzD0IkTJ7R161adPn3avgffM888o/Hjx1sZG8B14rABAAAAAD7nwoULkqTq1avb38vb90qS0tLSVKVKlXx96tWrJ+lSwQ2YMGGCatasqbFjxyozM1OnT5++osCaV0ArXbq0Xn/9dT377LNWRAXgRBTSAAAAAPic0NBQpaSkKCMjw/5e5cqV7bOL9u3bd0UhLTU1VZJ05swZt+WEZ3vuuef08MMPa8aMGYqJidGOHTuUlpYm6dIMtSZNmuiOO+7Q4MGDr/h5AuCdKKQBAAAA8DkRERFKSUnR/v37ddttt0m6dJpi/fr1tX//fi1YsEAdOnTI12fBggWSVOzG8vAtVapU0fPPP6/nn3/e6igA3IDDBgAAAAD4nA4dOsg0Ta1evTrf+3379pVpmvrwww81depUZWRk6OTJk3r//ff12WefyTAMRUVFWZQaAGA1DhsAAAAA4HM2bNigdu3aKTQ0VMnJyQoKCpIknTp1SjfffLN9ed7lTNNU6dKltWnTJjVs2NDdkQEAHoBCGgAAAACfNGPGDGVnZ6tnz56qVq2a/f1ff/1V//d//6eEhIR87atUqaKZM2eqW7du7o4KL3D27FmdO3dOOTk5xbatVauWGxIBcAUKaQAAAADwJ1lZWVqxYoV27typ7Oxs1a9fX927d1dwcLDV0eBBli1bpkmTJmnNmjUFzmIsiGEYys7OdnEyAK5CIQ0AAAAAgKs0atQoTZw4UdKlZb+OMgzDoVlrADwTp3YCAAAAAHAVoqOj9fHHH0uSgoKCdN9996lly5YKDQ2VzcaZfkBJRiENAAAAAICr8Omnn0qSatasqRUrVqhu3boWJwLgLhTSAAAAAPi0U6dOad26dTp48KDDm8WPGTPGDcngqbZv3y7DMDR27FiKaICPYY80AAAAAD4pJSVFf/3rXzVnzpyr3vydPa58W9myZXX+/Hlt2rRJkZGRVscB4EbMSAMAAADgc9LS0tShQwfFx8df1UbxgCSFh4dr9+7dSk9PtzoKADdjF0QAAAAAPuftt9/WgQMHZJqmunXrpiVLlujkyZPKyclRbm5usQ/4tr59+0qSli9fbnESAO7G0k4AAAAAPiciIkL79+9Xr169tGDBAqvjwMv8/vvvat68udLS0rR+/XpFRERYHQmAmzAjDQAAAIDPSUpKkiQ9+eSTFieBN6pQoYKWLFmiqlWrqn379po0aZLS0tKsjgXADZiRBgAAAMDnVKlSRadOndKvv/6q5s2bWx0HXuamm26SJGVmZiolJUWGYcgwDIWFhSk4OLjIvoZhKD4+3h0xAbgAhw0AAAAA8DlNmjTRqlWrdOjQIQppuGqJiYn5XpumKdM0lZKSUmxfwzBclAqAO1BIAwAAAOBzHnvsMa1cuVJffvml7r33XqvjwMsMHjzY6ggALMLSTgAAAAA+6aGHHtLXX3+tN998Uy+++KLVcQAAXoBCGgAAAIASa/Xq1YVey87O1pgxY7Ru3Tq1bNlSDz74oCIiIord40qSOnXq5MyYAAAvQSENAAAAQIlls9mcvieVYRjKzs526pgAAO/AHmkAAAAASjTmDgAAnIVCGgAAAIASa+XKlVZHgA9IS0vTtm3blJqaqvPnzxdbvB00aJCbkgFwNpZ2AgAAAABwDVatWqWxY8fq559/drgPS4MB78aMNAAAAAAArtInn3yip59+WqZpsnwY8CE2qwMAAAAAAOBNdu/erVGjRsk0TTVp0kTz5s3TwoULJV2acRYfH69NmzZp8uTJatGihSSpQ4cO2rlzpw4ePGhldADXiaWdAAAAAABchZEjR2ry5MmqXLmyDhw4oHLlymnnzp1q0qSJDMNQTk6Ova1pmnrxxRf13nvvKSoqSjExMRYmB3C9mJEGAAAAoMTq1auX4uLiXDJ2Zmam3n33XU2aNMkl48NzxcbGyjAMjRo1SuXKlSuyrWEYeueddxQVFaWVK1dq6tSpbkoJwBUopAEAAAAosRYvXqy2bduqV69eWrFihVPGPHbsmP71r38pPDxc//jHP5SamuqUceE9kpOTJcm+bFO6VDDLk5WVdUWfESNGyDRNffXVV64PCMBlKKQBAAAAKLHGjh2roKAgLV68WHfeeaduvPFGvfDCC1q/fr0uXrzo8DiHDh3S1KlTdccdd6hWrVr65z//qdTUVLVp00b9+vVz4SeAJ7pw4YIkqXr16vb3ypQpY3+elpZ2RZ969epJknbt2uXidABciT3SAAAAAJRoR44c0Wuvvabp06crKyvLPnMoICBATZo0UWRkpKpUqaKQkBCFhITo/PnzOn36tNLS0rRv3z7FxcXZZ53lfX1q2LChxo0bpwceeMCyzwXrVKtWTSkpKVqzZo1uu+02SZeW+uYt84yNjVWHDh3y9fnpp5901113KTAw0F6IA+B9/K0OAAAAAACuVKNGDX366acaO3asJk6cqBkzZujo0aO6ePGifv31V23evLnI/nnFMz8/P91xxx168skn1atXr3xL+eBbIiIilJKSov3799sLacHBwapfv77279+vBQsWXFFIW7BggSSpcuXKbs8LwHlY2gkAAADAJ1SvXl1vvvmmDh8+rNjYWI0bN0633367goODZZpmgY969epp2LBhmjZtmpKTk7V48WLdfffdFNF8XIcOHWSaplavXp3v/b59+8o0TX344YeaOnWqMjIydPLkSb3//vv67LPPZBiGoqKiLEoNwBlY2gkAAADA56WlpenkyZM6ffq0goKCVLlyZVWuXFmBgYFWR4MH2rBhg9q1a6fQ0FAlJycrKChIknTq1CndfPPNBe6RZpqmSpcurU2bNqlhw4bujgzASSikAQAAAABwlWbMmKHs7Gz17NlT1apVs7//66+/6v/+7/+UkJCQr32VKlU0c+ZMdevWzd1RATgRhTQAAAAAAJwoKytLK1as0M6dO5Wdna369eure/fuCg4OtjoagOtEIQ0AAAAAAABwAIcNAAAAACjxFi9erBYtWqhFixaKjo6+qr6zZs2y942JiXFRQgCAN2BGGgAAAIASzTRNNWzYUPv371dUVJSWLVt21f27deum5cuXq0mTJtq2bZuLkgIAPB2FNAAAAAAl2vLly3XnnXfKz89PW7du1S233HLVY+zatUvNmjVTbm6uli9fri5dujg/KLzSqVOntG7dOh08eFDnzp1TTk5OsX3GjBnjhmQAXMHf6gAAAAAA4Epz586VJN15553XVESTpEaNGql79+5avHix5s6dSyENSklJ0V//+lfNmTNH2dnZV9WXQhrgvdgjDQAAAECJtnHjRhmGod69e1/XOHfffbdM09T69eudlAzeKi0tTR06dNDXX3+trKwsmaZ5VQ8A3otCGgAAAIAS7dChQ5Kkm2+++brGadCggSQpMTHxeiPBy7399ts6cOCAff+8JUuW6OTJk8rJyVFubm6xDwDei6WdAAAAAEq033//XZIUGhp6XePk9T979ux1Z4J3mz9/vgzDUK9evbRgwQKr4wBwI2akAQAAACjRypcvL0k6c+bMdY2T179cuXLXmQjeLikpSZL05JNPWpwEgLtRSAMAAABQolWpUkXSpZM3r8fu3bvzjQffVbZsWUlS1apVLU4CwN0opAEAAAAo0Vq3bi3TNK97CV7ecr5bb73VScngrZo0aSLpf/vvAfAdFNIAAAAAlGg9evSQJC1btkyrV6++pjFWr16tn376Kd948F2PPfaYTNPUl19+aXUUAG5mmJy9CwAAAKAEy87OVkREhA4ePKgqVaooNjb2qk7w3Ldvnzp16qSTJ08qPDxce/fulb8/57b5uoceekhff/213nzzTb344otWxwHgJhTSAAAAAJR48+fPV9++fSVJwcHBeu211zR8+HD7XlcFSU9P1xdffKExY8YoPT1dhmFo7ty5uu+++9yUGlYragZjdna2xowZo3Xr1qlly5Z68MEHFRERoeDg4GLH7dSpkzNjAnAjCmkAAAAAfMJbb72ll19+WYZhSJLKlCmjjh07qkWLFqpatarKlCmjjIwMnThxQps3b9aaNWuUkZGhvK9Mr732ml555RUrPwLczGaz2X9enMUwDGVnZzt1TADuQyENAAAAgM/48ssvNXLkSGVkZEhSkUWSvK9KwcHB+vjjjzVkyBB3RIQHsdmcv624YRjKyclx+rgA3INCGgAAAACfcuzYMf373//WzJkzdfLkyULbhYWFaciQIRo9erSqV6/uxoTwFLGxsS4Zt3Pnzi4ZF4DrUUgDAAAA4LN27dqlbdu2KTU1VefOnVO5cuUUFhamZs2aqVGjRlbHAwB4GAppAAAAAAAAgAOcv+AbAAAAAAAAKIEopAEAAAAAAAAOoJAGAAAAAEABevXqpbi4OJeMnZmZqXfffVeTJk1yyfgAXINCGgAAAAAABVi8eLHatm2rXr16acWKFU4Z89ixY/rXv/6l8PBw/eMf/1BqaqpTxgXgHhw2AAAAAABAAV599VW9++67On/+vAzDULVq1fTggw+qb9++atGihQIDAx0a59ChQ1q+fLmio6MVGxur3Nxcmaaptm3b6osvvuCEWMCLUEgDAAAAAKAQR44c0Wuvvabp06crKytLhmFIkgICAtSkSRNFRkaqSpUqCgkJUUhIiM6fP6/Tp08rLS1N+/btU1xcnH3WWd7X74YNG2rcuHF64IEHLPtcAK4NhTQAAAAAAIpx9OhRTZw4UTNmzNDRo0ft7+cV1gqT95Xbz89Pd9xxh5588kn16tWr2H4APBOFNAAAAAAAHGSapn7++WetXLlSa9as0fr165WRkVFg2/r166tjx47q2LGj7rrrLlWtWtXNaQE4G4U0AAAAAACuQ1pamk6ePKnTp08rKChIlStXVuXKlR3eQw2A96CQBgAAAAAAADjAZnUAAAAAAAAAwBtQSAMAAAAAAAAcQCENAAAAAIAiLF68WC1atFCLFi0UHR19VX1nzZpl7xsTE+OihADchT3SAAAAAAAohGmaatiwofbv36+oqCgtW7bsqvt369ZNy5cvV5MmTbRt2zYXJQXgDsxIAwAAAACgECtWrNC+fftks9k0YcKEq+5vGIb+85//yM/PT7/99ptWrVrl9IwA3IdCGgAAAAAAhZg7d64k6c4779Qtt9xyTWM0atRI3bt3zzceAO9EIQ0AAAAAgEJs3LhRhmGod+/e1zXO3XffLdM0tX79eiclA2AFCmkAAAAAABTi0KFDkqSbb775usZp0KCBJCkxMfF6IwGwEIU0AAAAAAAK8fvvv0uSQkNDr2ucvP5nz5697kwArEMhDQAAAACAQpQvX16SdObMmesaJ69/uXLlrjMRACtRSAMAAAAAoBBVqlSRJO3ateu6xtm9e3e+8QB4JwppAAAAAAAUonXr1jJNUwsWLLiucebPny/DMHTrrbc6KRkAK1BIAwAAAACgED169JAkLVu2TKtXr76mMVavXq2ffvop33gAvJNhmqZpdQgAAAAAADxRdna2IiIidPDgQVWpUkWxsbFXdYLnvn371KlTJ508eVLh4eHau3ev/P39XZgYgCsxIw0AAAAAgEL4+/vrgw8+kGEYOnnypFq1aqXx48crPT29yH7p6emaMGGCWrVqpZSUFEnSBx98QBEN8HLMSAMAAAAAoBhvvfWWXn75ZRmGIUkqU6aMOnbsqBYtWqhq1aoqU6aMMjIydOLECW3evFlr1qxRRkaG8r5yv/baa3rllVes/AgAnIBCGgAAAAAADvjyyy81cuRIZWRkSJK9qFaQvK/awcHB+vjjjzVkyBB3RATgYhTSAAAAAABw0LFjx/Tvf/9bM2fO1MmTJwttFxYWpiFDhmj06NGqXr26GxMCcCUKaQAAAAAAXINdu3Zp27ZtSk1N1blz51SuXDmFhYWpWbNmatSokdXxALgAhTQAAAAAAADAAZzaCQAAAAAAADiAQhoAAAAAAADgAAppAAAAAAAAgAMopAEAAAAAAAAOoJAGAAAAAAAAOIBCGgAAAAAAAOAACmkAAAAAAACAAyikAQAAAAAAAA6gkAYAAAAAAAA4gEIaAAAAAAAA4AAKaQAAAAAAAIADKKQBAAAAAAAADqCQBgAAAAAAADiAQhoAAAAAAADgAAppAAAAAAAAgAMopAEAAAAAAAAOoJAGAAAAAAAAOIBCGgAAAAAAAOAACmkAAAAAAACAA/4frf6qsDlvvCQAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 469, "width": 617 } }, "output_type": "display_data" } ], "source": [ "# Visualize the design matrix, adjust names, and add colorbar\n", "plot_design_matrix(model_sum,\n", " plot_names=['Intercept', 'C(hand, Sum)[S.good]', 'C(hand, Sum)[S.neutral]'], cbar=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Critically for valid ANOVA tests the sum over rows of this scheme adds up to 0:" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([300., 0., 0.])" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model_sum.exog.sum(axis=0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Compare this to our treatment/dummy coding which did not!" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([300., 100., 100.])" ] }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model_a.exog.sum(axis=0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Interpreting Parameters\n", "\n", "In this coding scheme parameters represent:\n", "\n", "- Intercept = the grand-mean of `balance` over all levels of `hand`\n", "- $\\beta_1$ = difference between the mean of `hand = 'good'` and the grand-mean\n", "- $\\beta_2$ = difference between the mean of `hand = 'neutral'` and the grand-mean" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: balance R-squared: 0.338\n", "Model: OLS Adj. R-squared: 0.333\n", "No. Observations: 300 F-statistic: 75.70\n", "Covariance Type: nonrobust Prob (F-statistic): 2.70e-27\n", "=======================================================================================================\n", " coef std err t P>|t| [0.025 0.975]\n", "-------------------------------------------------------------------------------------------------------\n", "Intercept 9.7715 0.237 41.165 0.000 9.304 10.239\n", "C(hand, Sum(omit='bad'))[S.good] 3.2549 0.336 9.696 0.000 2.594 3.916\n", "C(hand, Sum(omit='bad'))[S.neutral] 0.5751 0.336 1.713 0.088 -0.086 1.236\n", "=======================================================================================================\n", "\n", "Notes:\n", "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" ] } ], "source": [ "print(results_sum.summary(slim=True))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Challenge\n", "\n", "Using the mean for each level of `hand` you calculated earlier and any other values you need to calculate, use the means to recreate what each parameter estimate represents\n", "\n", "Use `print` in Python or a markdown cell to write out your explanation" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Your code here" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Intercept = Grand-mean = 9.772\n", "B1 = Good - Grand-mean = 3.255\n", "B2 = Neutral - Grand-mean = 0.575\n" ] } ], "source": [ "# Solution\n", "grand_mean = np.mean([bad, good, neutral])\n", "\n", "print(f\"Intercept = Grand-mean = {grand_mean:.3f}\")\n", "print(f\"B1 = Good - Grand-mean = {good - grand_mean:.3f}\")\n", "print(f\"B2 = Neutral - Grand-mean = {neutral - grand_mean:.3f}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Orthogonal Polynomial Coding\n", "\n", "This form of coding uses the intercept to estimate the **grand-mean** (mean of means) of all levels and uses additional parameters to calculate polynomial trends across levels of the categorical variable, i.e. *linear*, *quadratic*, *cubic*, etc.\n", "\n", "We can use this coding scheme with `C(Student, Poly)`" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [], "source": [ "# Estimate model\n", "model_poly = ols(\"balance ~ C(hand, Poly)\", data=df.to_pandas())\n", "results_poly = model_poly.fit()" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 1. , -0.70710678, 0.40824829],\n", " [ 1. , -0.70710678, 0.40824829],\n", " [ 1. , -0.70710678, 0.40824829],\n", " [ 1. , -0.70710678, 0.40824829],\n", " [ 1. , -0.70710678, 0.40824829],\n", " [ 1. , -0.70710678, 0.40824829],\n", " [ 1. , -0.70710678, 0.40824829],\n", " [ 1. , -0.70710678, 0.40824829],\n", " [ 1. , -0.70710678, 0.40824829],\n", " [ 1. , -0.70710678, 0.40824829]])" ] }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Print first 10 rows of the design matrix\n", "model_poly.exog[:10, :]" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABNIAAAOpCAYAAADfTQpfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AADupklEQVR4nOzdZ3SU1fr38d8kIZQEQugtUqUrIr0TBETpICAdRKwoKMUDisA5KqCIBz0WkGYBKYpUBQSpClJE6UjvLaGGFFLu5wVP5s+kTjLlzmS+n7VmrbvscgVihItr720xDMMQAAAAAAAAgDT5mB0AAAAAAAAA4AlIpAEAAAAAAAB2IJEGAAAAAAAA2IFEGgAAAAAAAGAHEmkAAAAAAACAHUikAQAAAAAAAHYgkQYAAAAAAADYgUQaAAAAAAAAYAcSaQAAAAAAAIAdSKQBAAAAAAAAdiCRBgAAAAAAANiBRBoAAAAAAABgBxJpAAAAAAAAgB1IpAEAAAAAAAB2IJEGAAAAAAAA2IFEGgAAAAAAAGAHEmkAAAAAAACAHUikAQAAAAAAAHYgkQYAAAAAAADYgUQaAAAAvMqiRYtksVhksVjk6+ur/fv3mx2SVzl16pT1199isahMmTJmhwQ4TVb9/r59+7aKFi1qjWvkyJFmhwR4LBJpALyCYRhq0aKFzR9sSpUqpZs3bzo0blxcnGrWrGkzbpUqVRQTE+OkyAHAfNHR0apcubLNz7oaNWooNjY202M+9dRTNuMVKFBAFy9edGLUKbtz546GDx9uvR8wYICqV6+eZp8BAwbYxJrSx8fHR7lz51ZwcLAqVKigRo0aqV+/fpo4caI2bNigyMhIV39p8EJJkzb3f15//XWHxj58+HCqY48fP945XwDcJm/evHr77bet99OmTdOhQ4dMjAjwXCTSAHgFi8WiWbNmKSAgwPrs/PnzDv8hc9KkSfrrr7+s9z4+PpozZ45y5szp0LgAkJXkypVLs2fPlo/P//3Rce/evXrvvfcyNd7ixYv1ww8/2Dz76KOPVLx4cYfitMc777yjc+fOSZJy5sypf//7304Z1zAMRUdH68aNGzp+/Lh+//13ffPNNxozZoxatGihggULqkuXLlqxYoUMw3DKnEBa5s2bp7i4uEz3/+qrr5wYjWvNnTtX48ePt35OnTpldkhZ0nPPPafy5ctLkmJjY/Xqq6+aHBHgmUikAfAaZcuW1aRJk2yezZ49W2vWrMnUeAcPHtR//vMfm2evv/666tevn+kYASCratiwoYYMGWLz7N1339W+ffsyNE5YWFiycdq0aaP+/fs7HGN6Lly4oGnTplnvBw4cqJIlS7p8XuleVd+PP/6oDh06qHr16vrll1/cMi+815UrV7R69epM9U1ISNC3337r5IhcZ+7cuZowYYL1QyItZTly5NCoUaOs9+vWrdP69etNjAjwTH5mBwAA7vTyyy/r+++/16ZNm6zPnnvuOe3fv1958+a1e5z4+Hg988wzunv3rvVZxYoVnVbZAABZ0cSJE7Vy5UqdOHFC0r2KhmeeeUbbt2+Xr6+vXWO88sorunLlivU+X758mjFjhkviTerf//63oqKiJEm+vr6Z3iPowQcfTLGiOSYmRtevX9eNGzd05swZ/fHHH7pw4UKydgcPHlTr1q310ksv6b///a9y5MiRqTiA9Hz99ddq165dhvutW7fOWrmJ7KV///6aMGGC9WfTm2++qccee8zkqADPQiINgFdJXOL58MMPW/erOXPmjEaOHKkvvvjC7nE++ugj/fHHH9b7xCWduXPndnrMAJBV5MmTR19++aVatmxpXZ64a9cuTZkyRW+88Ua6/ZcuXaoFCxbYPHv//fcVEhLiknjvd/78ec2ePdt636FDB5UrVy5TY5UoUUIvvPCCXW3PnDmjb7/9Vp9++mmypNpnn32mc+fO6fvvv/eqZFqZMmVY3upCDz30kLVSdPny5bpx44by58+foTHuX9ZpsVhUrVo1DuWwU1b//s6ZM6deeOEF635pf/zxh9auXavWrVubHBngOVjaCcDrlC9fPtm+PjNmzNCvv/5qV/9jx47ZbNYqSUOHDlXDhg2dFiMAZFUtWrTQ4MGDbZ6NHz9eR44cSbPf9evX9eKLL9o8Cw0N1XPPPef0GFPyySef2ByO4K55H3jgAY0ZM0anTp3SuHHjbPaZk+4lOl577TW3xALvcP8y6ZiYGC1cuDBD/W/duqUff/zRet+8eXOVLl3aafHBfIMGDbKpIp46daqJ0QCeh0QaAK/0yiuvqHHjxtZ7wzD07LPP6s6dO2n2MwxDgwYNsi4NkqQKFSro3XffdVmsAJDVfPDBBzZVZNHR0XrmmWeUkJCQap+hQ4fq0qVL1vs8efJo5syZslgsLo1VkqKiojR9+nTrfalSpdxefZEjRw6NHz9eK1euTHYgzaeffsqeaXCazp0722xXkdFDAxYtWmTz5xx37F8I9ypRooSeeOIJ6/2aNWs4wRPIABJpALySj4+PZs+ebbMU8+TJk/rXv/6VZr9PP/1Umzdvtt5bLJZk4wBAdpcvXz6bxJQk/f777/rkk09SbL9q1Sp98803Ns8mTpyY6aWVGbVkyRLduHHDet+1a9dklWHu8sQTT6RY/fH6669n6eVg8Bx58uRRt27drPfbtm3T0aNH7e5/f+ItICBAXbt2dWp8yBru/x6RpDlz5pgUCeB52CMNgNd68MEH9c4772j48OHWZ59++qm6deumpk2bJmt/+vRpjR492ubZK6+8oiZNmrg8VgDIap544gn169dPX3/9tfXZm2++qfbt29skyG7evKnnn3/epm+jRo2SndzpSvfHKElPPfWU2+ZOyUsvvaQVK1bYnKi4f/9+rVu3Tq1atcrUmKdOndKePXt05coVhYeHK2/evCpSpIgeeeQRVapUyeGYo6OjtX//fh08eFDXrl1TRESE/P39FRgYqJIlS6ps2bKqUqWKW/d6u337tjZv3qxz584pLCxMAQEBKl++vBo2bKiCBQu6fP4jR45o586dunDhggzDUKFChVS1alXVrVvX7sM3XKVfv342ewJ+/fXXyU4aT8nx48e1detW632XLl0UGBjolJhu376tgwcP6siRIwoPD1dkZKTy5s2rAgUKqFKlSqpZs6b8/LL2X08vXLigHTt26NSpU4qIiFDu3LlVp06dFP/cmNV17NhR/v7+1oOz5s2bp4kTJ5r+vQt4BAMAvFh8fLzRoEEDQ5L1U6FCBePOnTvJ2rZq1cqmXbly5YyIiAgTogaArOHatWtGsWLFbH42tmjRwkhISLC2eeaZZ2ze58qVyzhy5IjbYrx+/brh6+trnT9fvnxGXFxchsbo37+/zdfQrFkzh+Nat26dzZiSjD59+mRojJs3bxrjx483KlasmGys+z9ly5Y1Jk2aZERGRmY4zr179xq9e/c2AgIC0pxDkpE7d26jadOmxtSpU41r166lOubJkydt+pUuXTpDMR0/ftzo1q2bkStXrhTj8PX1NTp27Gjs37/f2qdZs2Y2bTZs2JDmHGm1X7x4sfHwww+n+utQoEAB4913383Ur3dGJf21lGRcvHjRSEhIMMqWLWvza3z/f5epGTt2rM1Y69atMwzDMNq2bWvzfNy4cXbF98cffxgjR440Hn30UcPHxyfN75+AgACjV69ext69e+0aO+nvUUY+c+bMSTbeuHHjUv0aV61aZTRs2DDFsTp27GgzTka+v4cPH27TNmfOnMbu3bvt+voTdezY0WaMIkWKGBcuXLCrb9OmTW36btmyJUNzA96KpZ0AvFriaZu5cuWyPjt27JjefPNNm3YzZ8602b8m8fTPgIAAt8UKAFlNcHCwPvvsM5tnv/76q2bMmCFJWrt2rU1VjCRNmDBBFStWdFuMa9euVXx8vPW+SZMmWaLi4rHHHlPlypVtnv38889p7jN3v2+++UblypXT+PHj9c8//6TZNnHrgkqVKmn37t12x/if//xHNWvW1Lx589LdQ1S6txfd5s2b9frrr2vTpk12z5MRs2bNUvXq1bV48WJFR0en2CY+Pl7Lli3To48+6tTlalFRUerZs6e6deumvXv3ptru2rVrevPNN9WsWTOFh4c7bf6MsFgs6tu3r/X+9OnT6f6eGIZhswQ7JCREoaGhmY7h6aefVr169fTBBx/ozz//TPd7+86dO5o/f75q1KihsWPHZomlzrGxsXr22WfVtm1b/f77704ff9KkSTaHVcXExKhbt266efOmXf2nTp2qZcuWWe99fHz07bffqnjx4nb1T/r7u2rVKrv6Ad6ORBoAr1epUiX9+9//tnn28ccfW//AdP78eY0YMcLm/UsvvaTmzZu7K0QAyLI6d+6cbK+dUaNG6eDBg8lO96xTp47Ncnp3WLt2rc39/QfNmC3p/0fCw8N17NixNPsYhqG33npL/fr1SzFJ4+vrqwIFCiQ70ECSzp49q2bNmmn9+vXpxjZx4kS9/fbbNknIRH5+fgoODlZwcLBbk5LTp0/X4MGDbTbCT+Tr66vg4GCbwyvu3r2rQYMGafHixQ7PHRcXpy5dumjBggU2z3PmzKn8+fOn2Gfnzp3q2rWraQmhfv362dynd+jApk2bdOrUKet93759HdpL8P59Ce9nsViUL1++VL9/DMPQO++8k2xJuBkGDx6sWbNm2TxL6Xsts/z8/LRw4UKbpcgnTpzQM888k27f7du3J9vb980338zQ8vCkPw/XrFljd1/Am5FIAwDd2+S5Xr161vuEhAQ988wzio6O1gsvvGDzL4NlypTRpEmTzAgTALKk//3vfypUqJD1/tatW6pbt67OnDljfebv76/Zs2e7vRrsjz/+sLl/+OGH3Tp/WurXr5/s2d9//51mnylTpiQ7KbpcuXKaOnWqDh48qNjYWIWHhys6OlonT57U1KlTVaxYMWvbO3fuqEePHjp37lyqc5w+fVrjx4+3eVahQgV99tlnOnbsmKKjo3Xt2jVdu3ZNcXFxOnfunFavXq033nhDVatWteMrz7hdu3bp5ZdftklK5ciRQ6+99pr++usv3b17V9euXdPdu3e1detW9e/fXxaLRYZhaPDgwTYnxmbGuHHjrHvaVa5cWbNnz9aFCxcUHR2t69ev6/bt21q0aFGyastNmzZp7ty5Ds2dWeXLl7dJlHz//feKjIxMtX3SOJMm4jKrSpUqGjFihFasWKGTJ08qPj5eN2/etP5+HTp0SNOmTdODDz5o0+/LL7/U/PnzUx339ddf1+eff67PP/88Wd/XXnvN+i6lT4MGDdKNe/HixdbkY1BQkP79739b/xu7du2aYmJitGPHDof3XCxVqpS++eYbm8TckiVL9PHHH6fa59q1a+rRo4diY2Otz0JDQzVu3LgMzV2jRg2b+71796b5PQLg/zNxWSkAZCkHDx40cubMabNXRP369W3uLRaLsX79erNDBYAsZ968eWnuSTRhwgS3xxQZGWmzP5ok48yZMxkexxV7pBmGYfz555/Jfp0++OCDVNtv27bN8PPzs2n/8ssvG9HR0WnOc/XqVaNRo0Y2/dq2bZtq+0mTJiX7f2FG9gTdsmWLcfDgwVTfZ3SPtLi4OKN69eo2fYKDg41du3al2W/58uWGv79/it+PGd0jLfHz3HPPGbGxsan2u379ulGjRg2bPjVr1kxzLkektkdaoi+//NLm3TfffJPiOBEREUZgYKDN7/n9MrNH2scff2z8/vvvdn8t0dHRxuDBg23mKV++vBEfH59u34zugZeSpHukJX6qV69u955jhpH5PQBHjx5t08/f39/YsWNHsnYJCQnJfj+KFi1q8/ueEUn3udy6dWumxgG8CRVpAPD/ValSJdm/wG/fvt3m/vnnn1eLFi3cGBUAeIZevXqpQ4cOKb6rUaNGslOP3eHo0aM2SxNz5MihkiVLuj2O1AQHByd7llbl1MiRIxUXF2e9f/755/W///0vxWWc9ytUqJCWL1+u0qVLW5+tWrVK+/btS7H9n3/+aXM/fvz4DO0J2rhxY1WpUsXu9ulZtWqV9u/fb/Pshx9+UK1atdLs1759e3366adOi6NDhw6aPn16midL5s+fXzNnzrR5tmfPHh0/ftxpcWRE9+7dlTt3but9ass7f/jhB0VERFjv+/fv7/Dcr7zyil2VX4ly5syp6dOn2yx5Pn78uM3ptu4WHBystWvX2r3nmCP+85//qFmzZtb7u3fvqnv37smWyL7//vs2e5n5+Pho3rx5NpWnGVGmTBmb+0OHDmVqHMCbkEgDgPuMHDlSderUSfHdAw88oPfff9/NEQGA53jxxRdTfD579mzlyJHDzdHIZr8nSSpevLhDez45W0p7a6W2qf+2bdu0detW633JkiX14Ycf2j1XgQIFkv1j0Zdffpli2+vXr9vcly1b1u55XCHx8IpE3bt3t3sT/EGDBql27doOx5AjRw67k3K1a9fWo48+avNs165dDseQGfny5VOnTp2s97/++muKy3rvT7DlzJlTPXr0cEd4yVgsFo0aNcrm2a+//mpKLJI0duxYtyTRpHt7r3333XcqUqSI9dmpU6c0cOBA6/3WrVv11ltv2fR7++239dhjj2V63lKlStncJ/25CSC5rPMnCQDIAnx9fTVnzhz5+/snezdz5kzlzZvXhKgAIOuLjY3VG2+8keK7tE44dKULFy7Y3N//F9SsIDAwMNmzu3fvptg26V5RzzzzTIZPju7atatNNVVqpzgmTfCZlQSS7m3ynzSR8txzz9nd32KxZKh9atq2bZss4ZCWRo0a2dwfPnzY4Rgy6/69zhISEvTtt9/avD9z5ow2bNhgvW/fvn2K1ZLuknTvwKT7HLpLjhw5nFKZlxHFixfXvHnzbBL+S5cu1UcffaSrV6/q6aeftqlKbdGihcaOHevQnEl/Lib9uQkgudTrkgHAS1WrVk1du3bVd999Z33WoEGDDJ2CBADe5r333ks1Yfb666/riSeeUNGiRd0a0/1L1STZLHHLCm7fvp3sWWrLNJMmvR5//PEMz5c3b149+OCD1qVb+/fvV0RERLKEXt26dW1OunzttddUokQJU06r/vvvv21O6cydO3eG43jiiSccjuP+JXf2KFeunM19aidYukOrVq1UvHhxXbx4UdK96rP7T3v8+uuvbQ5xcGXyKDIyUgcOHNDFixd1+/Zt3blzRwkJCWn2uf/QEneqUaOGChQo4PZ5W7ZsqbFjx2rChAnWZ2+88Ybmz5+v8+fPW58VK1ZM8+fPd7jKNk+ePDb3SX9uAkiORBoApCBpRVpKFWoAgHv279+v9957L9X3169f18svv6zvv//ejVHJJgEjSbly5XLr/Om5/0ToREn/UivdW+6ZdI+w3377LdU9ztISExNjvU5ISNDly5eTJdL69u2rcePGWU/vu3LlikJDQ1W3bl1169ZNrVq10kMPPeSWZbJJK7mqV6+e4ZNfS5UqpUKFCiksLCzTcSTdRyo9SSvYb926lem5HeXr66s+ffrogw8+kHTv13Tnzp3WrSy+/vpra9siRYqoTZs2Tp3//PnzmjNnjhYtWqQDBw6kmzhLyqwk5EMPPWTKvNK95Zpbt27V+vXrJd2r+L2/MtTHx0fz5893yj9OJP0HBk7tBNJHIg0AAACZFh8fr4EDB9osSXzwwQf13HPPaeTIkdZnP/zwg3788Ud17tzZbbEl3Zft/iVRWcG1a9eSPUtpP6YrV67YVAxJSnUZbWZiKF++vM2zokWLasaMGerXr59N0mPHjh3asWOHpHvLP+vWraumTZsqNDRU9evXd0liLel+bZndr6pYsWIOJdKCgoIy1D5psu/+Qy/M0L9/f2siTbpXlVanTh399ttvOnr0qPV579690zxMISMMw9CkSZP0zjvvOJScSaly0x3MqEZLlHiAQM2aNa2VhPcbP3683fsEpic2Ntbm3oz9LAFPwx5pAAAAyLQpU6bYVEpYLBbNmjVLw4cPV+PGjW3avvzyy26tLkla3ZW0Qs1sf//9d7Jn95+smSilhJuzpJbg6N27t3766adkSbZEN27c0Nq1a/XWW2+pUaNGCgkJ0b/+9S9duXLFqfElrdrL7F6l+fLlcygOi8XiUH+zVatWzeaU0wULFuju3bvJTvF05rLOwYMHa8yYMQ5XOCVNIrtLSnsYulPRokX1yiuvJHv+yCOP6M0333TaPEl/fzK69yLgjUikAQAAIFOOHDmS7CTIl156SU2aNJHFYtHMmTNt9vy6ePGihg8f7rb4ChYsaHOf0lJKM6W0ifojjzyS7FlqBxA4Q1pJiscff1yHDh3SokWL1Llz5xRPGU104cIFTZ48WeXKldPcuXOdFl/SPeMy+2vhyl9DT3F/kiw8PFzff/+9Fi1aZH1Wo0YN1ahRwylzff3115o1a5bNs8DAQD3zzDP66quvtGPHDp0/f163b99WbGysDMOw+UA6fvy4Jk2alOz5vn379NtvvzltnqTLjs2sxAM8BYk0AAAAZFhCQoIGDRqk6Oho67PSpUvb/MWvUqVKevvtt236zZ4927rvj6slre66f6PurOD+kxKle/tTpVQBlvQvtv7+/oqPj0+WfMjMJ72N+3PkyKFu3bppyZIlCg8P1549e/TJJ5+oR48eKS6zvHPnjgYOHKjZs2dn/BckBUmTd5lNhma1JKoZevbsabNs79VXX7X5dXFWNZphGMlOkmzRooVOnTqlWbNmqV+/fqpTp45KlCihwMDAZEtJ2ez+3l6G3bt3T3Fvvfj4ePXs2VNXr151ylxJfy5mdD9AwBuRSAMAAECGffzxx8mqImbMmJFsOdSoUaNUs2ZNm2eDBw92y4bWSU9OvHXrlqmbvt/vl19+0T///GPz7Mknn0xxCWHhwoVt7u/evatz5865NL6U+Pj46JFHHtGQIUO0YMECnT9/Xrt27dKLL76YbF+l1157zSlLUosVK2Zzf+TIkQyPERMTo1OnTjkci6crVKiQnnzySet9eHi49drPz0+9evVyyjy7d++2OWkzf/78+v7775NViKbGkb3ssovXX39df/75p/U+ICDA5mCB8+fPq2/fvk6p3kv6syTpz00AyZFIAwAAQIacOHEi2R49AwcOVOvWrZO19fPz06xZs2yqTk6ePKm33nrL5XGWKFFCRYoUsXl26NAhl89rjylTpiR7NmDAgBTbFihQQA888IDNs82bN7sirAyxWCyqVauWPvvsM23cuNEmmXbr1i2tWLHC4TkST5ZMdPr0aV26dClDY/z555/JNlT3VqlVnT3++ONOOQFSkvbu3Wtz37ZtWwUHB9vdf+fOnU6Jw1MtXrxYn332mc2zzz77TN99953NgR5r1qxJcelnRty9e1fHjh2zeZb0Hz4AJEciDQAAAHYzDEPPPvusTUVZ8eLFNXXq1FT71KxZUyNGjLB5Nm3atBT3CHO2+zdYl5L/Jd8Mn376qdauXWvz7NFHH1WzZs1S7dOyZUub+/v3tsoKGjZsqC5dutg8c8avddGiRVW2bFmbZwsWLMjQGPPnz3c4juyiXbt2KVaGOfOQgaQHTiRNAqcnMwnYpMtDzT4lNbOOHz+uZ5991ubZwIED1a9fP4WGhiZbKj927Fht2bIl0/MdOnTIJslcuHDhFA88AWCLRBoAAADsNn369GR7e33++edpbkQvSePGjVOlSpWs94l7rLl6E/ikyan7Txg1w+rVq5MduGCxWNJMRErSU089ZXO/YsWKLFe5kzThdefOHaeMm3TJ4dSpU+0e++zZs049/MDT5ciRQxMmTFCPHj2sn169eqlDhw5Om8Pf39/mPiMn9Z49e1YLFy7M8JxJT3PNKku4MyImJkbdunWzib169er63//+Z70fO3asTVI9cb+0zC6H3b17t81906ZNMzUO4G1IpAEAAMAuZ8+e1ahRo2ye9ejRQx07dky3b65cuTRz5kybPcAOHDig9957z+lx3u+JJ56wuU+aBHSX2NhYTZgwQW3btlVMTIzNu+HDh6dZjSbd+zqSLnPs1auXzT5XGZXa/kpxcXGZGu/w4cM290n3N8us5557Tr6+vtb7s2fP6uWXX053f6jo6Gj179+fzeuTePnll7VgwQLrZ968eclOR3VEqVKlbO7XrFljV4VYfHy8+vXrl6nketJlqVllCXdGDBs2THv27LHeBwQEaNGiRcqTJ4/1mY+Pj7799lub/7Yc2S8t6c/D+/fQA5A6EmkAAACwy3PPPafbt29b7wsVKqRPPvnE7v6NGzfWSy+9ZPNs4sSJOnDggNNiTOrhhx+2Wap09OhRnT171mXzJXX27FlNnDhRZcqU0fjx45WQkGDzvnv37nbvczRlyhSbJWzHjh1T48aNM7SE0jAMbdiwQR07dtTSpUtTbPPQQw/pnXfeSbZELy0//fRTsiV5oaGhdvdPywMPPJBsafBXX32lHj16pBrj8ePH1aZNG2uiIFeuXE6JBelr1qyZTcL8xIkTyU7xTOrOnTvq2rWrNm7cmKk5k+7r9fXXXzutItIdFi1apC+++MLm2eeff64qVaoka1u0aFF99913Nsnl1atXa/LkyRme9/5Emo+PD4k0wE5+6TcBAACAt5s7d65Wr15t8+zjjz9OdqJkeiZNmqQVK1ZYT/W7e/euBg0apN9//91mI21n6tWrlyZOnGi9X7ZsmYYMGZLp8S5cuJDsL73SvaVZN27c0I0bN3T27Flt375d58+fT3WcESNGaNKkSTZ/IU5L06ZNNXXqVL366qvWZ4cPH9ajjz6qzp07q1evXmrUqJHNAQuxsbE6ceKE/v77b23evFlLly61xtS3b98U57l48aLGjh2r8ePHq2nTpmrfvr1q166thx56yGYJ7507d7R792598803mjNnjk3VUc2aNZ26TGzChAn6+eefbZKGixcv1sqVK9WmTRs98sgjCg4OVlhYmLZv364NGzZY93564oknFBkZqU2bNln7pnQ6KpyjaNGi6tSpk3788Ufrs8SE+YgRI1S/fn3rwRSnT5/WsmXL9P7771u/L5s2bZrhwzSefPJJ+fj4WBPVR44cUeXKldWxY0eVL19euXPntmkfGhpqs9TcTEePHk22L9qgQYNS/e9Tkpo3b65x48bZ7Jk2duxYNW7cWI0bN7Zr3h07dtj8fGrZsqXTqkiBbM8AACTTv39/Q5L106xZM7NDAgDTXLx40QgODrb5udi+fftMj/fzzz/bjCXJmDp1qhMjtnXo0CGHfqYn/X+Co58aNWoYmzZtyvTXM2nSJMPX1zfV8XPkyGEULFjQyJMnT5pxLF68OMXxg4KC0hy7UKFCRr58+VJtExwcbOzfvz/V+E+ePGnTvnTp0nZ93ZcvXzaqVauWoV/rhx56yLh27ZrRtGlTm+fbt29Pc65mzZrZtN+wYYNdMSaaM2eOTf/+/ftnqL+9kv5aSjIuXrzo9Hnatm1rM8e4cePSbH/06FEjf/78Kf6e+Pn5GQULFjT8/f2TvStZsqRx9uzZZM/tMWDAALu/L+bMmZOs/7hx4zL0NaYmI9/f0dHRxiOPPGLTvnr16kZkZGS688THxxutWrWy6VuqVCnj6tWrdsU5cuRIm77ffvutvV8i4PVY2gkAAIA0vfjii7p+/br1PigoKMWKLHu1adMmWbXFW2+9pZMnT2Z6zLRUrlxZzZs3t95v2bLFWhHnLrlz59ZTTz2ln376SX/99ZdD1VpvvPGGVq9enWxz/0SxsbEKDw+3OVk1qcKFC6tkyZIpvkurWis2NlZhYWGpbuZevXp1/fbbb6pWrVoaX0HmFClSRFu2bNGgQYPsqijr3r27tmzZouDg4GTxpnc4BhxToUIFLVu2LMUTQuPi4hQeHp5sL7TKlStr48aNyfZYs9f//vc/u/ZrzEqGDh2qv/76y3ofEBCgxYsXJ6ugS0nifmnFixe3Pjt37pz69euX7n5pCQkJNoc6FC5cWF27ds34FwB4KRJpAAAASNWCBQuS7aX14YcfqkSJEg6N+9///tdmg/DIyEgNHjzYoTHTcv9JmQkJCZo1a5ZTx7dYLMqZM6eCgoJUrlw5NWzYUH379tXEiRO1YcMGXbt2TYsXL052+EFmtWzZUv/884+++uorNW7c2LpULi2lS5fWM888o2XLlunChQtq0KBBiu0OHz6sWbNmqVu3bnb9PlssFjVq1EgzZ87UX3/9leK+Ts4SHBysmTNn6u+//9bo0aNVq1YtFS1aVH5+fsqXL58eeeQRvfLKK9q1a5cWLlyooKAgSUq2l1pwcLDLYsQ9TZs21Z49ezRgwIA0vz9LlCihd999V3v27FGFChUyPV9AQICWLl2qLVu2aMiQIWrQoIGKFCliV1LKDAsXLtT06dNtnn3xxReqXLmy3WMUKVJE8+fPt1ke/vPPP6e7X9rPP/9s848JL730EvsIAhlgMdJLVwMAAAAezjAMVa9eXQcPHpQklSxZUidPnrQrAeUJIiMj9ccff+jcuXMKDw9XRESEAgICFBQUpLJly6pKlSqZ3v/o3Llz+ueff3Ty5EnduHFDkZGRyp07t4KCglShQgXVqFFDBQoUcPJX5DwXL160SQgWLFhQYWFhJkbkfW7fvq3ffvtNx48f140bN5QjRw4VK1ZMDz/8sGrUqMGedW7Wvn17rVy5UpKUJ08enTx50mZvRQBp47ABAAAAZHsWi0X//ve/9dRTT0mSzp8/r/nz56t///4mR+YcefLkcdopmUmVKlUq08vtsoKkFZV16tQxJxAvljdvXrVp08bsMCDpwIEDWrVqlfX+1VdfJYkGZBBLOwEAAOAVunbtqtq1a1vvJ0+enO5eQvBsUVFRmjp1qs2zli1bmhQNYL5JkyZZf+4FBQVp1KhRJkcEeB4SaQAAAPAa9ydVDh06pAULFpgYDTIi6eb06YmPj9fgwYN17Ngx67NcuXJpwIABTo4M8AyHDx/Wd999Z70fN24c+wUCmUAiDQAAAF6jSZMmNieGvvnmmxlO0MAco0ePVteuXfXLL78oNjY2zba7d+/WY489pnnz5tk8f+GFF1I8SRLwBm+88Ybi4+MlSdWqVdMrr7xickSAZ2KPNAAAAHiVDz74QOXKlbPenzp1ShUrVjQxItgjPj5eS5Ys0ZIlS5Q/f37Vr19f1atXV5EiRZQnTx7dunVLZ86c0W+//aZ9+/Yl61+tWjVNnDjRhMgB80VEROjRRx9VzZo1Jd07cMDPj3QAkBmc2gkAAAAgyxs2bJimTZuWqb6PPPKIli9frpCQECdHBQDwNiztBAAAAJDllStXTjlz5sxQn7x58+qNN97Q1q1bSaIB8DhXrlzRypUr9fbbb+uJJ55QoUKFZLFYZLFYXLbf44IFC/T444+rePHiypUrl8qUKaO+fftq+/btdo8RHh6ucePGqUaNGgoKClK+fPlUo0YNjRs3TuHh4S6J252oSAMAAADgEW7duqU1a9ZYl2+eOnVKYWFhioyMlJ+fn4KDg1WoUCHVqlVLzZo1U8eOHdlMHYDHslgsqb7r37+/5s6d67S5oqOj1a1bN61cuTLF9z4+Pho/frzGjh2b5jg7d+5Ux44ddfHixRTflyhRQsuWLbM5RdvTkEgDAAAAAADIYu5PpIWEhKhKlSpau3atJOcn0nr37q358+dLkkJDQzV06FCVKFFC+/bt03vvvafjx49Lkr788ks9++yzKY5x/vx51apVS5cvX5afn59ef/11tWvXTpK0cuVKTZ06VXFxcSpatKh2796tkiVLOi1+dyKRBgAAAAAAkMWMGzdOderUUZ06dVS0aFGdOnVKZcuWleTcRNqmTZvUvHlzSfcOovjxxx/l6+trfR8WFqZatWrpzJkzCg4O1okTJ5Q/f/5k4wwYMEBfffWVJGnRokXq1q2bzfvFixere/fukqSBAwdq9uzZTonf3dgjDQAAAAAAIIuZMGGC2rVrp6JFi7p0nvfff1+S5Ovrq88++8wmiSZJhQoV0uTJkyVJ169f16xZs5KNcfnyZX377beSpMcffzxZEk2SunXrpscff1yS9PXXX+vy5ctO/TrchUQaAAAAAACAF4qIiND69eslSa1atVKpUqVSbNelSxfly5dPkrRkyZJk75cvX674+HhJ96rNUpN4SEJ8fLyWL1/uSOimIZEGAAAAAADghXbs2KGYmBhJUrNmzVJt5+/vr/r161v7xMbG2rzfsmWL9Tqtce5/t3Xr1kzFbDYSaQAAAAAAAF7o0KFD1uvKlSun2TbxfVxcnI4ePZriOEFBQSpWrFiqYxQvXtxa2Xb/3J7Ez+wAAAAAAAAAPNW5c+fsapfaskkznT171nqdXnwhISE2/apWrZpsHHu+xpCQEB04cMBmbk9CIg0AAAAAACCT7k8wpcUwDBdHknG3b9+2XgcGBqbZNiAgwHodERGR4jjpjXH/OEnH8BRelUirX6K52SEAAIBsbPuFjabMGxt2wpR54flCKrQ1OwR4sH+62Zc8AJLK9+Vat83F/yPTFh0dbb329/dPs23OnDmt11FRUSmOk94Y94+TdAxP4VWJtKJ+6WdGAQAAAABANpEQ7/IpPHWJoiTlypXLen337t002yYeSiBJuXPnTjZOZGRkumPcP07SMTyFVyXSAAAAAAAAnCkr7n1mr7x581qv01tqeefOHet10iWcefPmVWRkpF3LNRPHsWcZaFbkVYm0JspvdggAAAAAAMBdjASzI8jS7k8Cnjt3TrVr10617f2Vd0n3hStVqpQuX75s18ELiePYu7dcVuNjdgAAAAAAAABwv/tP3jx8+HCabRPf+/n5qUKFCimOc/PmTV26dCnVMS5evKhbt25JkqpUqZKpmM3mVRVpx33SX6sLAAAAAACyiQQq0tJSp04d+fv76+7du9q0aZP+9a9/pdju7t272r59u02f+zVu3FjffPONJGnTpk3q0aNHiuNs2rTJet2oUSNnfAlu51WJtMtGdPqNAAAAAAAAvEDevHn12GOP6eeff9a6det07ty5FPd8W7JkibWSrHPnzsned+jQQS+++KISEhI0Z86cVBNpc+fOlST5+PioQ4cOzvtC3IilnQAAAAAAIFsyjASXf7KyuXPnymKxyGKxaPz48Sm2GTFihCQpLi5OL7/8suLjbU86DQsL0xtvvCFJyp8/v5599tlkYxQrVky9e/eWJK1Zs0bff/99sjaLFy/WmjVrJEl9+/ZVsWLFMv11mcmrKtLuGq4/9hYAAAAAAMBRW7du1bFjx6z3YWFh1utjx45Zq7sSDRgwIFPztGjRQk8//bQWLFig5cuXq1WrVho2bJhKlCihffv26d1339WZM2ckSZMmTVJwcHCK47z77rtavXq1rl69qp49e2rXrl1q166dJGnlypX68MMPJUmFCxfWO++8k6lYswKvSqQ94hNkdggAAAAAAMBdPHiPtJkzZ+qrr75K8d1vv/2m3377zeZZZhNpkjR79mzdunVLP/30kzZs2KANGzbYvPfx8dHYsWP1/PPPpzpGSEiIVqxYoU6dOunSpUuaPHmyJk+ebNOmWLFiWrp0aYrLRz0FSzsBAAAAAAC8WO7cubVq1SrNmzdPrVq1UpEiReTv76+QkBD16tVLW7duTXVp6P3q1aunffv26a233lL16tUVGBiowMBAPfTQQ3rrrbe0f/9+1atXz/VfkAtZDMMwzA7CXRqUDDU7BAAAkI1tO78h/UYuEBt2wpR54flCKrQ1OwR4sH+6hZgdAjxUvi/Xum2uu2f/dvkc/iE1XD4Hsg4q0gAAAAAAAAA7eNUeafl8cpkdAgAAAAAAcJcEDh2Ec3lVIq2AT06zQwAAAAAAAICH8qpEGgAAAAAA8CKG557aiazJqxJp/hZfs0MAAAAAAACAh/KqRBoAAAAAAPAiCVSkwbm8KpH2aEJus0MAAAAAAACAh/KqRFowh3UAAAAAAOA1DPZIg5P5mB0AAAAAAAAA4Am8qiLtrai/zQ4BAABkY/3MDgAAANhijzQ4GRVpAAAAAAAAgB28qiLtmbwPmx0CAAAAAABwF/ZIg5N5VSItzmKYHQIAAAAAAAA8lFcl0gAAAAAAgBdJiDc7AmQzXpVIu6xYs0MAAAAAAACAh/KqRBoAAAAAAPAi7JEGJ/OqRFqj2JxmhwAAAAAAAAAP5VWJtBycNQAAAAAAgPdIoCINzuVjdgAAAAAAAACAJ/CqirRI0oYAAAAAAHgP9kiDk3lVIg0AAAAAAHgRlnbCybwqkRZrMTsCAAAAAAAAeCqvSqR9EvOP2SEAAIBs7CWzAwAAADYMI97sEJDNsGsYAAAAAAAAYAevqkjrkqeC2SEAAAAAAAB34bABOBkVaQAAAAAAAIAdvKoiDQAAAAAAeBFO7YSTeVUiLUyxZocAAAAAAAAAD+VViTQAAAAAAOBF2CMNTuZVibRLCVFmhwAAAAAAAAAP5VWJNAAAAAAA4EUS4s2OANmMVyXSqvrkMzsEAAAAAAAAeCivSqR9eHGz2SEAAIBsbKLZAQAAAFvskQYn8zE7AAAAAAAAAMATeFVF2vwCzcwOAQAAAAAAuEsCFWlwLirSAAAAAAAAADt4VUXa575XzQ4BAABkY0+ZHQAAALDFHmlwMq9KpI2MLWB2CAAAAAAAAPBQXpVIAwAAAAAAXoQ90uBkXpVI+zpXjNkhAACAbKyN2QEAAADApbwqkXY9IdrsEAAAAAAAgLtQkQYn49ROAAAAAAAAwA5eVZEWFn/H7BAAAAAAAICbGEa82SEgm6EiDQAAAAAAALCDV1Wk/XPrvNkhAAAAAAAAd2GPNDiZVyXS3i7QwOwQAAAAAAAA4KFY2gkAAAAAALInI8H1Hzc4c+aMRowYoSpVqiggIEAFChRQ3bp1NWXKFEVGRmZ63I0bN8pisWTo07x58xTHKlOmjF39y5Qpk+l4swKvqkjbY8n8NxcAAAAAAIC7rVq1Sr1799bNmzetzyIjI7Vz507t3LlTM2fO1E8//aRy5cq5JZ5KlSq5ZZ6syqsSaQAAAAAAwIt4+B5pf//9t7p3767IyEgFBgZq9OjRCg0NVVRUlBYsWKAvv/xSR44cUdu2bbVz504FBgZmaPw6depo37596bYbMmSINm3aJEnq379/mm07duyod955J9X3/v7+GYoxq/GqRJq/hZWsAAAAAADAMwwbNkyRkZHy8/PT2rVr1aDB/+393qJFCz344IMaNWqUDh8+rKlTp+rtt9/O0PgBAQGqXr16mm1u3Lih7du3S5IqVKighg0bptk+f/786Y7pybwqkVZIOcwOAQAAAAAAuIub9jBzhZ07d2rjxo2SpEGDBtkk0RINHz5cc+bM0aFDh/Tf//5Xo0ePVo4czs19LFy4UDExMZKkvn37OnVsT0SJFgAAAAAAyJ4SElz/cZGlS5darwcOHJhiGx8fH/Xr10+SdP36dWvizZm+/vprSZLFYiGRJi+rSPvq+h6zQwAAANnY+2YHAAAAso0tW7ZIurf8slatWqm2a9asmfV669atatWqldNiOH78uH7//XdJUpMmTVS2bFmnje2pqEgDAAAAAADZk5Hg+o+LHDp0SNK9fcn8/FKvg6pcuXKyPs6SWI0mpX/IQKLNmzfr4YcfVkBAgPLkyaOyZcuqR48eWrp0qQzDcGp8ZvCqirTSAUXNDgEAAAAAAGQj586ds6tdqVKl7B4zOjpaYWFhdvULDg5WQECA7ty5o7Nnz9o9hz2+/fZbSVLu3Ln11FNP2dXn5MmTNvenTp3SqVOntGjRIjVq1EgLFy5UyZIlnRqnO3lVIq1UjiCzQwAAAAAAAO7iwj3MEoWEhNjVLiPVWLdv37ZeBwYGpts+MZEWERFh9xzp2bJli06cOCFJ6ty5s/Lly5dme39/f3Xo0EGtW7dW9erVFRQUpBs3bmjbtm36/PPPdfbsWf32229q1aqVtm3bpqAgz8zReFUiDQAAAAAAIKuLjo62Xvv7+6fbPmfOnJKkqKgop8XwzTffWK8TDzRIy44dO5Q/f/5kz5s3b64hQ4boqaee0tq1a3Xo0CFNmDBBU6dOdVqs7uRVibR/oq+YHQIAAAAAAHAXN1SkOXs5pSTlypXLen337t1028fExEi6twTTGWJiYrR48WJJUokSJdSyZct0+6SUREuUN29eLVq0SOXLl1d4eLhmzJihSZMm2ZUkzGq8KpEGAAAAAADgTBnZ+8xeefPmtV7bs1zzzp07kuxbBmqPZcuW6caNG5Kk3r17y9fX1+Exg4KC9PTTT+vTTz/VnTt3tGvXLjVs2NDhcd3NqxJpk8UxrQAAAAAAeA0XnqrpSrly5VKhQoUUFhaW7mEG169ftybS7N2vLT33n9Zpz7JOe1WtWtV6ff78eaeN605elUiLtVjMDgEAAAAAACBdVapU0ZYtW3Ts2DHFxcXJzy/lFM7hw4dt+jjqypUrWrNmjSTp0UcfVfXq1R0eM1FGDlzIqnzMDgAAAAAAAMAlEhJc/3GRxo0bS7q3bHP37t2pttu0aZP1ulGjRg7PO3/+fMXFxUlybjWaJB08eNB6XaJECaeO7S5eVZHm76ElnQAAAAAAwLt06tRJEydOlCTNmTNH9erVS9YmISHBugwzf/78Cg0NdXjexPH8/PzUq1cvh8dLdPPmTS1cuFCSlCdPHtWuXdtpY7sTFWkAAAAAACB7MhJc/3GRunXrqkmTJpKkWbNmadu2bcnafPjhhzp06JAkaejQocqRI4fN+7lz58pischisWj8+PHpznngwAHt2bNHkvTEE0+ocOHCdsW6evVqRUVFpfr+9u3b6t69u8LDwyVJgwYNUs6cOe0aO6vxqoq0gzm96ssFAABu9qTZAQAAgGxl2rRpatSokaKiotS6dWuNGTNGoaGhioqK0oIFCzRjxgxJUsWKFTV8+HCH5/vqq6+s1/3797e736RJk9S7d2916dJFjRs3Vvny5RUYGKgbN25o27Zt+vzzz3X27FlJUqVKlexK6mVVXpVZCmJlJwAAAAAA3sOFe5i5Q82aNbVw4UL16dNHt27d0pgxY5K1qVixolatWqW8efM6NFdCQoLmz58vSQoODla7du0y1P/atWuaOXOmZs6cmWqbpk2bav78+SpQoIBDsZrJqxJpAAAAAAAAnqR9+/bau3evpk2bplWrVuncuXPy9/dXhQoV1K1bNw0ZMkR58uRxeJ7169fr/PnzkqQePXpkaOnllClTtH79em3btk1HjhxRWFiYbty4oTx58qhEiRKqV6+eevbsqdatW8tisTgcq5ksRnY4e9ROnR9ob3YIAAAgG/vxzApT5o0NO2HKvPB8IRXamh0CPNg/3ULMDgEeKt+Xa902V9SS91w+R+4uyavEkH1x2AAAAAAAAABgB69a2vlltVtmhwAAAAAAANzFw/dIQ9bjVYm03/aUNDsEAACQjXU0OwAgg07O7mt2CPBgsT9vNDsEAHA7r0qkAQAAAAAAL0JFGpzMqxJp53OwJRwAAAAAAAAyx6sSaQAAAAAAwIsYhtkRIJvxqkRapMXsCAAAAAAAAOCpvCqRFu7D2mgAAAAAALwGe6TBydg0DAAAAAAAALCDV1WknTIizQ4BAAAAAAC4CxVpcDIq0gAAAAAAAAA7eFVFWte7AWaHAAAAAAAA3MWgIg3O5VWJtNyUdAIAAAAAACCTvCqRBgAAAAAAvAgFNXAyr0qkHcjla3YIAAAgG2trdgAAAABwKa9KpDW+G2V2CAAAAAAAwF0Mw+wIkM14VSINAAAAAAB4EZZ2wsm8KpFWsvhNs0MAAAAAAACAh/KqRBoAAAAAAPAiVKTBybwqkbbhcjGzQwAAANnYALMDAAAAgEt5VSKtihFpdggAAAAAAMBdDCrS4Fw+ZgcAAAAAAAAAeAKvqkhb4O9vdggAACAbq2d2AAAAwIaRYJgdArIZKtIAAAAAAAAAO3hVRdoTUWZHAAAAAAAA3IZTO+FkXpVIi7BQgAcAAAAAAIDM8apEGgAAAAAA8CKc2gkn86pE2kl/KtIAAAAAAACQOV6VSAMAAAAAAF6EUzvhZF6VSLtj4T8gAAAAAAAAZI5XJdIO6I7ZIQAAAAAAAHfh1E44GZuGAQAAAAAAAHbwqoq0AItXfbkAAAAAAHg3KtLgZFSkAQAAAAAAAHbwqhKtikYus0MAAAAAAADuYnDoIJyLijQAAAAAAADADl5VkQYAAAAAALwIe6TBybwqkfa3IswOAQAAAAAAAB7KqxJpAAAAAADAiySwRxqcy6sSaU/EBZodAgAAAAAAADyUVyXSfvS9aXYIAAAgG+tndgAAAMCWwR5pcC5O7QQAAAAAAADs4FUVaU/H5jM7BAAAAAAA4C7skQYnoyINAAAAAAAAsINXVaR1eKe42SEAAAAAAAA3MRLYIw3O5VWJtDpjtpodAgAAyMb2DzI7AgAAALgSSzsBAAAAAED2lGC4/uMGZ86c0YgRI1SlShUFBASoQIECqlu3rqZMmaLIyEiHxh4/frwsFotdn40bN6Y7Xnh4uMaNG6caNWooKChI+fLlU40aNTRu3DiFh4c7FGtW4FUVaY/lLmN2CAAAAAAAwF0Mz1/auWrVKvXu3Vs3b960PouMjNTOnTu1c+dOzZw5Uz/99JPKlStnYpT37Ny5Ux07dtTFixdtnu/du1d79+7VzJkztWzZMtWuXdukCB3nVYk0AAAAAAAAT/H333+re/fuioyMVGBgoEaPHq3Q0FBFRUVpwYIF+vLLL3XkyBG1bdtWO3fuVGBgoEPz7du3L833ZcuWTfXd+fPn1b59e12+fFl+fn56/fXX1a5dO0nSypUrNXXqVF24cEHt2rXT7t27VbJkSYdiNYtXJdLe6RBhdggAAAAAAMBd3LT00lWGDRumyMhI+fn5ae3atWrQoIH1XYsWLfTggw9q1KhROnz4sKZOnaq3337bofmqV6+e6b5vvvmmLl++LEmaP3++unXrZn3XpEkT1a5dW927d9fly5c1duxYzZ4926FYzWIxDMOzv6syYH+5dmaHAAAAsrHqJ1aaMm9s2AlT5oXni9u8wOwQ4MFif95odgjwUPm+XOu2ue78u7fL5wh4e55Lxt25c6fq1q0rSXr++ef1xRdfJGuTkJCg6tWr69ChQwoODtbly5eVI0eODM0zfvx4TZgwQZKU2RTR5cuXVbJkScXHx+vxxx/X6tWrU2zXpk0brVmzRr6+vjp//ryKFi2aqfnMxGEDAAAAAAAge0pIcP3HRZYuXWq9HjhwYIptfHx81K9fP0nS9evX7ToMwBWWL1+u+Ph4SanHKkkDBgyQJMXHx2v58uXuCM3pvGpp54r4/GaHAAAAsrHML4YAAACwtWXLFklSQECAatWqlWq7Zs2aWa+3bt2qVq1auTy2pBJjTRpPUkljHTx4sEvjcgWvSqRdssSZHQIAAAAAAHAXD94j7dChQ5KkChUqyM8v9fRN5cqVk/XJrFatWunPP//U7du3lT9/flWtWlVt2rTR888/r+Dg4HRjDQoKUrFixVJtV7x4ceXLl0+3bt1yOFazeFUiDQAAAAAAwJnOnTtnV7tSpUrZPWZ0dLTCwsLs6hccHKyAgADduXNHZ8+etXuOlKxbt856ffXqVW3atEmbNm3S5MmTNXfuXHXs2DHFfonz2vM1hoSE6MCBAw7HahavSqQVM7zqywUAAAAAwLsZrtvDLFFISIhd7TKykf/t27et14GBgem2T0ykRURE2D3H/R566CF16tRJdevWVYkSJRQbG6sjR45o3rx5Wrt2rW7cuKGuXbtqxYoVeuKJJ1KN195YJWU6VrORWQIAAAAAAMhCoqOjrdf+/v7pts+ZM6ckKSoqKsNzDRs2TOPHj0/2vF69eurXr5+mT5+uF154QfHx8Xr22Wd17Ngx5c6dO8V4XR1rVuBVibTOOa+ZHQIAAAAAAHAXN+yR5oolirly5bJe3717N932MTExkpQswWWP/Pnzp/n++eef165duzRz5kxduHBBS5YsUe/evZPFGxkZ6fJYswKvSqTtiUh9YzwAAABHVU6/CQAAyGYysveZvfLmzWu9tmcJ5J07dyTZt7QyM55//nnNnDlTkrRp06ZkibS8efMqMjIyS8Tqaj5mBwAAAAAAAOAKRkKCyz+ukCtXLhUqVEhS+ocZXL9+3Zqcsne/toyqWrWq9fr8+fPJ3icmE+05eCGxgs9VsbqaV1Wk7ff33GNvAQAAAACA96hSpYq2bNmiY8eOKS4uTn5+KadwDh8+bNPHFdI7KKFq1aravXu3bt68qUuXLqlYsWIptrt48aJu3bolyXWxuhoVaQAAAAAAIHtKMFz/cZHGjRtLurcUcvfu3am227Rpk/W6UaNGLonl4MGD1usSJUoke58Ya9J4knJHrK7mVRVpbw7Pb3YIAAAAAAAA6erUqZMmTpwoSZozZ47q1auXrE1CQoK+/vprSfcODQgNDXVJLNOnT7deN2vWLNn7Dh066MUXX1RCQoLmzJmjHj16pDjO3LlzJUk+Pj7q0KGDS2J1Na9KpL364RWzQwAAANnYzFfMjgAAANhww6mdrlK3bl01adJEW7Zs0axZs9S/f381aNDAps2HH36oQ4cOSZKGDh2qHDly2LyfO3euBg4cKEkaN26cxo8fb/N+3759yp07typUqJBqHNOnT9esWbMkScWKFVPnzp2TtSlWrJh69+6tb775RmvWrNH333+vp556yqbN4sWLtWbNGklS3759U13+mdV5VSINAAAAAADAU0ybNk2NGjVSVFSUWrdurTFjxig0NFRRUVFasGCBZsyYIUmqWLGihg8fnuHxd+/erWeffVahoaF64okn9NBDD6lgwYKKi4vT4cOH9e233+qXX36RJPn6+mr69OkKCAhIcax3331Xq1ev1tWrV9WzZ0/t2rVL7dq1kyStXLlSH374oSSpcOHCeueddzLzy5EleFUi7dO1w8wOAQAAAAAAuIvhmlM13aVmzZpauHCh+vTpo1u3bmnMmDHJ2lSsWFGrVq1S3rx5MzVHfHy81q1bp3Xr1qXapmDBgpo1a1aayzFDQkK0YsUKderUSZcuXdLkyZM1efJkmzbFihXT0qVLrad8eiKvSqQBAAAAAAB4kvbt22vv3r2aNm2aVq1apXPnzsnf318VKlRQt27dNGTIEOXJkydTYz/55JOaNWuWtm3bpj179ujy5csKDw+XYRgqUKCAatSooTZt2mjAgAHKly9fuuPVq1dP+/bt07Rp07R06VKdOnVKklS2bFl17NhRw4YNU8GCBTMVa1ZhMdI7wzQb+aNEF7NDAAAA2Vi9C0tMmTc27IQp88LzxW1eYHYI8GCxP280OwR4qHxfrnXbXBGvu35D+8Cpy10+B7IOr6pIux7vb3YIAAAAAAAA8FBelUgDAAAAAADew/DgUzuRNXlVIq1QjmizQwAAAAAAAICH8qpEGgAAAAAA8CJUpMHJvCqRFpw/yuwQAAAAAAAA4KG8KpEWFMLSTgAAAAAAvEZCgtkRIJvxMTsAAAAAAAAAwBN4VUVayQ0nzA4BAABkYzFmBwAAAGyxRxqcjIo0AAAAAAAAwA5eVZE2rFhjs0MAAAAAAADuQkUanMyrEmk+spgdAgAAAAAAcBPDIJEG52JpJwAAAAAAAGCHLFmRdvz4cYWFhalMmTIqWrSo08bNaVCRBgAAAACA12BpJ5zMrRVpV69e1WeffabPPvtMN2/eTPb+2LFjqlWrlipWrKiGDRuqZMmSeuqpp3Tjxg13hgkAAAAAAAAk49aKtB9++EFDhgxRpUqV9NJLL9m8i4mJ0RNPPKETJ05Y1zAbhqEff/xRYWFh2rhxo8Pz14whEw0AAAAAgNegIg1O5tZE2tq1a2WxWNS1a9dk7+bOnavjx4/LYrGoQ4cOeuyxx7Ru3TqtWLFCW7Zs0aJFi9S9e3eH5j/hz5ZwAAAAAAAAyBy3ZpaOHDkiSapbt26yd999950kqUWLFlq6dKleeeUVLVu2TC1btpRhGNb3AAAAAAAA9jASDJd/4F3cWpF29epVSVKJEiVsnkdFRWnbtm2yWCx67rnnbN4988wzWrdunf7880+H5y8Y7/AQAAAAQLax6cW9ZocAD9bu+gGzQ4CHivvS7AiAzHNrIi3x0AAfH9tCuO3btys2NlY+Pj5q2bKlzbuyZctKkq5cueKWGAEAAAAAQDZBxRiczK2JtMDAQN28eVOXLl2yeZ54kEDVqlUVHBxs8y5HjhySJD8/x0M94cd/QAAAAAAAAMgctybSKleurD/++EOrV6/Wk08+aX3+ww8/yGKxqFmzZsn6JCbdihYt6vD8PfyvOzwGAAAAAADwEAlmB4Dsxq2JtLZt22r79u2aMWOGqlSpoiZNmmju3Lk6ePCgLBaLunTpkqxP4t5opUqVcmeoAAAAAAAAgA23JtKGDBmizz77TBcvXtSQIUNs3jVo0EChoaHJ+qxYsUIWi0VNmjRxeP7VMQUcHgMAACA1VcwOAAAA2OBUTTibT/pNnCcoKEjr1q3To48+KsMwrJ8mTZpo0aJFydr//fff2rlzpySpVatW7gwVAAAAAAAAsOHWijRJqlKlinbt2qWTJ0/q0qVLKl68uMqUKZNq+zlz5kiSGjZs6PDcOUlEAwAAAADgPahIg5O5PZGWqGzZsipbtmyabWrUqKEaNWo4bc4H78Y6bSwAAAAAAAB4F9MSaQAAAAAAAC7FqZ1wMq9KpM3JddfsEAAAQDbGjq4AAADZmymJtLi4OK1atUpbtmzRiRMndPv2bcXHx6fZx2KxaP369Q7N+1qcQ90BAAAAAIAH4dROOJvbE2lbt25V3759debMGeszw0j9G9tiscgwDFksFneEBwAAAAAAAKTIrYm0w4cPq02bNoqKipJhGPL399eDDz6oAgUKyMfHx+XzBwdFunwOAAAAAACQRbBHGpzMrYm09957T5GRkfL19dWECRP06quvKjAw0J0hAAAAAAAAAJni1kTar7/+KovFoqFDh2rMmDHunFqStOlWYbfPCQAAvEcFswMAAAA22CMNzubWRFpYWJgkqXPnzu6c1qpBzuumzAsAAAAAAADP5/qNye5TuPC9irDcuXO7c1oAAAAAAOCNEtzwgVdxa0Va48aNtWjRIu3fv1+PPvqoO6eWJOUvymEDAAAAAAAAyBy3VqS9/vrr8vX11bRp0xQXF+fOqQEAAAAAgJcxElz/gXdxa0VanTp1NHXqVA0dOlRdunTR7NmzVahQIbfNH36RE0IBAIDrlDA7AAAAALiUWxNp//73vyVJ9erV08qVK1W6dGm1atVKlStXVp48edLt//bbbzs0/+HofA71BwAASMtDZgcAAABsUTEGJ7MYhuG2s2B9fHxksVis94Zh2NynJz4+3qH5Fxfv7VB/AACAtHS7OM+UeWPDTpgyLzzf+mpjzA4BHqzd9S1mhwAPFXf3vNvmCm/bzOVzFFy1yeVzIOtwa0WadC95lta9K8XZn7MDAAAAAAAejj3M4GxuTaQlJPAdDAAAAAAA3IQ0BJzM7RVpZno03zWzQwAAAAAAAICH8qpEWtiNALNDAAAA2VglswMAAAA2WNoJZ/MxOwAAAAAAAADAE5hWkXbt2jXNmTNH69at0/79+3Xt2r1llwUKFFD16tXVsmVLDRw4UAUKFHDanL/mzOm0sQAAAJJqZHYAAADABhVpcDZTEmnTp0/XiBEjFBkZKcn25M7z58/rwoULWrt2rcaPH68PP/xQzz33nBlhAgAAAAAAAFZuT6RNmjRJb775pjV5FhQUpJo1a6pYsWIyDEOXL1/Wnj17dPPmTd25c0cvvviibty4oVGjRjk8d53oeIfHAAAAAAAAniG7VKSdOXNGH3/8sVatWqUzZ84oZ86cqlChgrp3766XXnpJefLkyfTYt27d0k8//aT169dr9+7dOnHihCIjIxUUFKRq1aqpXbt2evbZZ5U/f/40xylTpoxOnz6d7nylS5fWqVOnMh2v2SzG/eVgLrZ//37VrFlT8fHxKl68uD744AN169ZNOXLksGkXFxenxYsXa+TIkbpw4YL8/Py0Z88eVatWzaH5/wzp6FB/AACAtDx6dpkp88aGnTBlXni+9dXGmB0CPFi761vMDgEeKu7uebfNdTm0mcvnKLphk0vHX7VqlXr37q2bN2+m+L5SpUr66aefVK5cuQyP/fPPP6tz586KiYlJs13RokX13XffKTQ0NNU23pJIc2tF2v/+9z/Fx8ercOHC2rZtmx544IGUg/LzU8+ePdW4cWPVqVNHV69e1f/+9z99/vnn7gwXAAAAAAB4MsNidgQO+fvvv9W9e3dFRkYqMDBQo0ePVmhoqKKiorRgwQJ9+eWXOnLkiNq2baudO3cqMDAwQ+OHh4crJiZGPj4+atWqldq0aaMaNWoof/78OnfunObNm6eFCxfq8uXLateunX777Tc98sgjaY7ZsWNHvfPOO6m+9/f3z1CMWY1bE2m//vqrLBaLRo8enWoS7X4hISF64403NHz4cK1fv97h+aPjTDtbAQAAAAAAIEOGDRumyMhI+fn5ae3atWrQoIH1XYsWLfTggw9q1KhROnz4sKZOnaq33347Q+PnyJFDzz//vMaMGZMsT1OzZk21b99ejRo10quvvqrIyEi78jP58+dX9erVMxSHJ/Fx52Tnz98r32zYsKHdfRo1unf+1YULF1wSEwAAAAAAyJ6MBNd/XGXnzp3auHGjJGnQoEE2SbREw4cPV5UqVSRJ//3vfxUbG5uhOXr06KEvvvgizWKnV155RbVr15Ykbdy4UeHh4RmaI7txa4mWr6+vpHt7oNkrsa2Pj+M5vytGTofHAAAAAAAAcLWlS5darwcOHJhiGx8fH/Xr10+jR4/W9evXtXHjRrVq1crpsTRv3ly7du1SQkKCTp48qYIFCzp9Dk/h1kTaAw88oEOHDmn9+vV2V6UllgzasxQ0PZXz3XB4DAAAAAAA4BmMBM/dI23LlnsHegQEBKhWrVqptmvW7P8OVNi6datLEmn3H0bgjEInT+bWRFqrVq108OBBTZkyRZ06ddJDDz2UZvu9e/fqgw8+kMViUevWrd0UJQAAAAAAgH3OnTtnV7tSpUplaNxDhw5JkipUqCA/v9TTN5UrV07Wx9k2bbp3Mqmfn58qVKiQZtvNmzfr4Ycf1vHjx2UYhooWLaq6deuqZ8+e6tixoywWz01uSm5OpA0bNkxffPGFIiIi1LhxY7311lsaOHCgChUqZNMuLCxMs2fP1nvvvaeIiAjlypVLw4YNc3j+a7dzOzwGAAAAAADwDK7cwyxRSEiIXe0Mw7B7zOjoaIWFhUlKPwEXHBysgIAA3blzR2fPnrV7DnutWrVKe/fulSQ9/vjjypcvX5rtT548aXN/6tQpnTp1SosWLVKjRo20cOFClSxZ0ulxuotbE2mlS5fW9OnTNXDgQEVEROhf//qXRo8erTJlyqho0aKyWCy6dOmSTp06JcMwZBiGLBaLpk+f7pSlnQAAAAAAAFnd7du3rdeBgYHptk9MpEVERDg1jmvXrunll1+WdG/f+//85z+ptvX391eHDh3UunVrVa9eXUFBQbpx44a2bdumzz//XGfPntVvv/2mVq1aadu2bQoKCnJqrO7i1kSaJPXr108FCxbUCy+8oPPnz8swDJ04ccKasbw/Q1uiRAnNmDFDTz75pFPmPuJDRRoAAHAd+88lBwAA7mAYrl9G6IoqsOjoaOu1v79/uu1z5rx3uGJUVJTTYoiPj1fv3r11+vRpSdJbb72lmjVrptp+x44dyp8/f7LnzZs315AhQ/TUU09p7dq1OnTokCZMmKCpU6c6LVZ3cnsiTZLatm2rkydP6scff9S6deu0f/9+Xbt2TZJUoEABVa9eXS1btlTnzp3TXAecURf87C+jBAAAAAAASE9G9z6zR65cuazXd+/eTbd94mEAuXM7r4DopZde0urVqyXdy+OMHTs2zfYpJdES5c2bV4sWLVL58uUVHh6uGTNmaNKkSXYlCbMaUxJp0r0N6rp166Zu3bqZFQIAAAAAAMjG3LFHmivkzZvXem3Pcs07d+5Ism8ZqD1Gjx6tGTNmSJIaN26sxYsXy9fX16Exg4KC9PTTT+vTTz/VnTt3tGvXLjVs6Hn1/KYl0swwanfqa3kBAAAAAACygly5cqlQoUIKCwtL91TQ69evWxNp9h58kJbJkydr0qRJkqRHH31UK1eudFqlW9WqVa3X58+fd8qY7uZjdgAAAAAAAACuYCRYXP5xlSpVqkiSjh07pri4uFTbHT58OFmfzPrss8/0r3/9yzrWmjVrnHooQEZOLs2qvKoibWKttNfzAgAAOOLt0/PMDgEAAGQTjRs31pYtW3Tnzh3t3r1b9erVS7Hdpk2brNeNGjXK9HzffPONhgwZIkkqV66c1q1bp0KFCmV6vJQcPHjQel2iRAmnju0uLkmkJa6btVgsNllTR9bTJh0rM0a8WcSh/gAAAAAAwHN4cgFUp06dNHHiREnSnDlzUkykJSQk6Ouvv5Z0b7P/0NDQTM21ZMkSDRw4UIZhqFSpUlq/fr3TE103b97UwoULJUl58uRR7dq1nTq+u7hkaadhGNZPas8z8wEAAAAAAPAGdevWVZMmTSRJs2bN0rZt25K1+fDDD3Xo0CFJ0tChQ5UjRw6b93PnzpXFYpHFYtH48eNTnGft2rXq2bOn4uPjVaRIEa1bt05lypTJUKyrV69WVFRUqu9v376t7t27Kzw8XJI0aNAg5cyZM0NzZBUuqUgbN25chp67y5XP9ps6PwAAyN7KPGd2BAAA4H6u3MPMHaZNm6ZGjRopKipKrVu31pgxYxQaGqqoqCgtWLDAerJmxYoVNXz48AyPv337dnXu3Fl3795Vjhw59NFHHyk2Nlb796eePylVqpTy589v82zSpEnq3bu3unTposaNG6t8+fIKDAzUjRs3tG3bNn3++ec6e/asJKlSpUqpJvU8gVcl0gAAAAAAADxFzZo1tXDhQvXp00e3bt3SmDFjkrWpWLGiVq1apbx582Z4/NWrVysyMlKSFBsbq969e6fbZ86cORowYECy59euXdPMmTM1c+bMVPs2bdpU8+fPV4ECBTIca1bhVYcNWHxYHgoAAAAAgLfw9Io0SWrfvr327t2radOmadWqVTp37pz8/f1VoUIFdevWTUOGDFGePHlMjXHKlClav369tm3bpiNHjigsLEw3btxQnjx5VKJECdWrV089e/ZU69atZbF49u+JxXDj5mObN2+WJNWpU0e5c+e2q090dLR27Ngh6V7m0hETS/dxqD8AAEBaRp/+1pR5Y8NOmDIvPN/6askrGwB7tbu+xewQ4KHi7p5321ynHmnl8jnK/PWLy+dA1uHWirTmzZvLx8dHe/fuVdWqVe3qc/78eWs/R0/tBAAAAAAA3oNzC+Fsbl/amdkCOGcUzm1ICHN4DAAAgNSMNjsAAAAAuFSW3yMtISFBkuTr6+vwWF+VjnF4DAAAAAAA4Bmywx5pyFqyfCLt1KlTkqSgoCBzAwEAAAAAAB7FMEikwblcmkg7c+ZMis8vXryowMDANPvGxMTo+PHjGjt2rCwWi6pVq+ZwPNG3s3zeEAAAAAAAAFmUSzNLZcuWTfbMMAy1bt06w2P169fPGSEBAAAAAAAvYSSYHQGyG5cm0lI7ICAjBwfkypVLr776qp555hmH4zl9Kb/DYwAAAKQm+T8hAgAAIDtxaSJtzpw5NvcDBw6UxWLRf/7zH5UsWTLVfhaLRbly5VLx4sVVs2bNdJeB2uu2haWdAAAAAAB4iwT2SIOTuTSz1L9/f5v7gQMHSpI6deqkqlWrunJqAAAAAAAAwKncWqK1YcMGSSnvneYOW3OZMi0AAPAS7c0OAAAA2ODUTjibWxNpzZo1c+d0AAAAAAAAgNN41aZhBxNumx0CAAAAAABwEyOBijQ4l2mJNMMw9Ndff+nvv/9WWFiYoqKi0j3N8+2333ZozpbK71B/AAAAAAAAeC9TEmlfffWVJkyYoNOnT2eon6OJNAAAAAAA4D3SqdcBMsztibQ333xTkyZNSrf6TJIsFotd7ex13ifeaWMBAAAAAADAu/i4c7I//vhDEydOlCS1atVKf/31l/78809J95Jm8fHxCgsL0+rVq9WxY0cZhqHGjRvr4sWLSkhIcGeoAAAAAADAwxkJFpd/4F3cWpH2+eefS5JKly6tVatWyc/PTwcOHLC+t1gsKlCggFq3bq3WrVvr888/18svv6w2bdrojz/+kL+/v0Pzv9nkikP9AQAAAAAA4L3cmkj7/fffZbFY9Oqrr8rPL/2pX3zxRf36669asmSJPvvsMw0bNsyh+eOuxTnUHwAAAAAAeI4Eg4oxOJdbl3ZevHhRklStWrX/C8Dn/0KIjY1N1qdv374yDEMLFy50fYAAAAAAAABAKtxakZaYKCtSpIj1WWBgoPX66tWrKlGihE2fkJAQSdKxY8ccnn/G/hCHxwAAAEjNaLMDAAAANgwq0uBkbq1IK1y4sCTp1q1b1mdFixaVr6+vJOnQoUPJ+iRWsd2+fdsNEQIAAAAAAAApc2tFWrVq1XThwgUdPnxYTZo0kST5+/urWrVq2rdvnxYuXKjHHnvMps+8efMkKVmlWmbkMBweAgAAAAAAeAiDPACczK2JtCZNmmjt2rXasGGDBg8ebH3eo0cP7d27V7Nnz1axYsXUo0cPRUZG6quvvtJ3330ni8WiJ554wuH5f7fcSr8RAAAAAAAAkAKLYbgvP3vgwAE99NBDCgwM1Llz55QvXz5JUmRkpKpXr65Tp07JYrFdv2wYhgoUKKC//vpLpUqVcmj+LqU7ONQfAAAgLUtOLzdl3tiwE6bMC8+3vtoYs0OAB2t3fYvZIcBDxd0977a5/nJDHuARk/7/D3O4fWnnhg0bFBcXp7i4OOvzPHnyaMOGDerTp49+++03mz7Vq1fXN99843ASTZJ63c3r8BgAAAAAAADwTm5NpElSs2bNUnxeunRpbdmyRUeOHNGBAwcUFxenBx98UDVr1nRzhAAAAAAAIDvg1E44m9sTaempVKmSKlWq5JKxaxYMc8m4AAAAAAAAyP7cmkhLSEiQj4+PO6e08c3tQqbNDQAAsr/xZgcAAABscGonnM2tWa2SJUvqtdde086dO905LQAAAAAAAOAwt1akXb58WR9//LE+/vhjlS9fXn369FHPnj314IMPumX+11pcdss8AAAAAADAfAnskQYnc2tFWps2beTr6yvDMHTs2DFNmDBBlStXVr169fTJJ5/o8mUSXQAAAAAAAMiaLIbh3hXD4eHhWrhwoebPn6/ff//9XhCWexliHx8fPfbYY+rdu7c6d+6swMBAp87dtORjTh0PAADgfpvPrzdl3tiwE6bMC88XUqGt2SHAg/3TLcTsEOCh8n251m1z7SzZ2eVz1Dn/o8vnQNbh9kTa/U6fPq358+dr3rx5Onjw4L2A/n9SLVeuXOrQoYN69+6tNm3ayM/P8VWojxZv7PAYAAAAqfnz4lZT5iWRhswikQZHkEhDZpFIgycz7whNSaVLl9bo0aO1f/9+7dmzRyNHjlTJkiVlGIaioqK0aNEidezYUcWLF9dLL71kZqgAAAAAAMDDJBgWl3/gXUytSEvNpk2bNG/ePP3www+6fv26pHuVavHx8Q6N26N0JydEBwAAkLKFp5eaMi8VacgsKtLgCCrSkFnurEjbXqKLy+eof2GJy+dA1uHWUzvt1axZM9WsWVM1a9bUm2++qRs3bpgdEgAAAAAAALxclkqk3b17VytXrtT8+fP1008/KSYmxqnjX46PcOp4AAAAAAAg62LpJZwtSyTSfv31V82bN09LlizRrVu3JEmJK04rVKigXr16qXfv3g7Pcys+2uExAAAAAAAA4J1MS6T9+eefmjdvnhYuXKiLFy9K+r/kWeHChdWjRw/17t1b9erVMytEAAAAAADgwQwq0uBkbk2kHT9+XPPnz9e8efN09OhRSf+XPAsICFDHjh3Vp08ftWrVSr6+vk6fPwueqwAAAAAAAAAP4dZE2oMPPiiLxWJNaPn5+alVq1bq3bu3OnXqpDx58rgzHAAAAAAAkI0lmB0Ash23L+00DEP16tVT79691aNHDxUuXNhtc7fPVcZtcwEAAAAAACB7cWsibfz48erTp4/KlSvnzmmtIslFAwAAAADgNQyxRxqcy8edk5UpU0Zbt27VH3/84c5pAQAAAAAAAIe5tSJtwIABslgs+u6770w5jfMuFWkAAAAAAHiNBM4chJO5NZEWFBSkW7du6cEHH3TntFZnEyJNmRcAAAAAAACez61LO8uWLStJun79ujunBQAAAAAAXihBFpd/3OHMmTMaMWKEqlSpooCAABUoUEB169bVlClTFBnpvKKhBQsW6PHHH1fx4sWVK1culSlTRn379tX27dvtHiM8PFzjxo1TjRo1FBQUpHz58qlGjRoaN26cwsPDnRarWdxakda5c2f99ddfWrFihVq0aOHOqSVJFgubDAIAAAAAAM+xatUq9e7dWzdv3rQ+i4yM1M6dO7Vz507NnDlTP/30k0MHO0ZHR6tbt25auXKlzfPTp0/r9OnTmj9/vsaPH6+xY8emOc7OnTvVsWNHXbx40eb53r17tXfvXs2cOVPLli1T7dq1Mx2r2dxakTZ06FCVLl1an3/+uX799Vd3Tg0AAAAAALyMIYvLP670999/q3v37rp586YCAwP17rvv6vfff9f69es1ePBgSdKRI0fUtm1bRUREZHqeQYMGWZNooaGhWrp0qXbs2KFZs2apfPnySkhI0Ntvv62ZM2emOsb58+fVvn17Xbx4UX5+fho1apQ2b96szZs3a9SoUfLz89OFCxfUrl07nT9/PtOxms1iGIZbt947duyYnnrqKR04cEADBw5Ur1699PDDDys4ONjlFWPNS7V06fgAAMC7bTy3zpR5Y8NOmDIvPF9IhbZmhwAP9k+3ELNDgIfK9+Vat821vmgPl8/x2OWFLhs7NDRUGzdulJ+fnzZv3qwGDRrYvP/ggw80atQoSdKECRP09ttvZ3iOTZs2qXnz5pKk9u3b68cff5Svr6/1fVhYmGrVqqUzZ84oODhYJ06cUP78+ZONM2DAAH311VeSpEWLFqlbt2427xcvXqzu3btLkgYOHKjZs2dnONaswK2JtPt/IwzDyFDizGKxKC4uzqH5gwLLO9QfAAAgLTcjjpsyL4k0ZBaJNDiCRBoyy52JtF/ckEhr5aJE2s6dO1W3bl1J0vPPP68vvvgiWZuEhARVr15dhw4dUnBwsC5fvqwcOXJkaJ62bdvqp59+kq+vr06dOqVSpUola7NgwQL17NlTkjRlyhQNHz7c5v3ly5dVsmRJxcfH6/HHH9fq1atTnKtNmzZas2aNfH19df78eRUtWjRDsWYFbl3aaRiG9ZP03p4PAAAAAACAN1i6dKn1euDAgSm28fHxUb9+/STdO9hx48aNGZojIiJC69evlyS1atUqxSSaJHXp0kX58uWTJC1ZsiTZ++XLlys+Pj7NWKV7VWuSFB8fr+XLl2co1qzCrYcNjBs3zp3TJVMjqIyp8wMAAAAAAPdx9R5mrrRlyxZJUkBAgGrVqpVqu2bNmlmvt27dqlatWtk9x44dOxQTE5NsnKT8/f1Vv359rV27Vjt27FBsbKxN5VtirOmNkzTWxH3ePIlXJdIAAAAAAAA8waFDhyRJFSpUkJ9f6umbypUrJ+uT0TmSjpPaPGvXrlVcXJyOHj2qqlWrJhsnKChIxYoVS3WM4sWLK1++fLp161aGY80q3JpIM1tEQozZIQAAAAAAADdJcMMc586ds6tdassmUxIdHa2wsDC7+gUHBysgIEB37tzR2bNn7Z5Dkk379OYJCfm/fRHPnj1rk0hLHMeerzEkJEQHDhzIcKxZhVcl0q7E3DA7BAAAAAAAkI3cn2BKS0b2fr99+7b1OjAwMN32iYm0iIgIu+fI6DwBAQHW66TzJI5jb6wpjeEpTE2knThxQtu2bdOlS5cUGRmpF198UYUKFTIzJAAAAAAAkE24oyLNFaKjo63X/v7+6bbPmTOnJCkqKspl8yTOkdI8ieO4MtaswpRE2p49ezRs2DBt3brV5nnXrl1tEmmffvqpJkyYoKCgIB08eDDDR7gmVSRnfof6AwAAAAAA3M8VSxRz5cplvb5792667RMPDMidO7fL5kmcI6V5cuXKpcjISJfGmlW4PZG2atUqPfXUU7p7965NWaPFkvwkjf79++tf//qXwsPDtXLlSnXu3NmdoQIAAAAAAA/mjlM7M7L3mb3y5s1rvbZnCeSdO3ck2be0MrPzJM6R0jx58+ZVZGSkS2PNKtyaSLt06ZJ69uypmJgYVatWTVOmTFHjxo1tfuPuFxgYqE6dOmn+/Pn6+eefHU6k3Y7zzLJBAAAAAADgPXLlyqVChQopLCws3cMMrl+/bk1O2btfW6L7k4Dnzp1T7dq1U217f+Vd0nlKlSqly5cv23XwQuI4GY01q3BrIu2jjz5SRESESpcurS1btih//vzp9mnevLnmzZun3bt3Ozy/r8XH4TEAAAAAAIBnSHB9QZrLVKlSRVu2bNGxY8cUFxcnP7+UUziHDx+26ZMR95+8ef84ac3j5+enChUqJBtn9+7dunnzpi5duqRixYqlOMbFixd169atTMWaVbg1s7RmzRpZLBYNHz7criSaJFWqVEmSdOrUKdcFBgAAAAAAkIU0btxY0r2lkGkVF23atMl63ahRowzNUadOHesBAfePk9Tdu3e1ffv2ZH2SxpreOI7EmlW4tSLt5MmTkqS6deva3Sdx2aczjkXN6ePYYQUAAAAAAMBzJLhhjzRX6dSpkyZOnChJmjNnjurVq5esTUJCgr7++mtJUv78+RUaGpqhOfLmzavHHntMP//8s9atW6dz586luOfbkiVLrJVkKW271aFDB7344otKSEjQnDlz1KNHjxTnmzt3riTJx8dHHTp0yFCsWYVbK9JiY2MlKUOnb964cUOSFBAQ4IqQAAAAAAAAspy6deuqSZMmkqRZs2Zp27Ztydp8+OGHOnTokCRp6NChyfItc+fOlcVikcVi0fjx41OcZ8SIEZKkuLg4vfzyy4qPj7d5HxYWpjfeeEPSvWTds88+m2yMYsWKqXfv3pLurUb8/vvvk7VZvHix1qxZI0nq27dvqss/szq3VqQVK1ZMp0+f1smTJ1WzZk27+iR+ozjjFIyncpZ1eAwAAAAAAOAZDLMDcNC0adPUqFEjRUVFqXXr1hozZoxCQ0MVFRWlBQsWaMaMGZKkihUravjw4Zmao0WLFnr66ae1YMECLV++XK1atdKwYcNUokQJ7du3T++++67OnDkjSZo0aZKCg4NTHOfdd9/V6tWrdfXqVfXs2VO7du1Su3btJEkrV67Uhx9+KEkqXLiw3nnnnUzFmhW4NZHWqFEjnT59Wj/++KO6dOmSbvvIyEh98cUXslgsatq0qcPz+3lwSScAAAAAAMiYBLMDcFDNmjW1cOFC9enTR7du3dKYMWOStalYsaJWrVpl3RorM2bPnq1bt27pp59+0oYNG7Rhwwab9z4+Pho7dqyef/75VMcICQnRihUr1KlTJ126dEmTJ0/W5MmTbdoUK1ZMS5cudUqxlFncurSzf//+MgxD3333ndauXZtm24iICHXv3t2a9Rw0aJA7QgQAAAAAAMgy2rdvr7179+q1115TxYoVlSdPHuXPn1+1a9fW5MmTtWfPnmSnaGZU7ty5tWrVKs2bN0+tWrVSkSJF5O/vr5CQEPXq1Utbt25NdWno/erVq6d9+/bprbfeUvXq1RUYGKjAwEA99NBDeuutt7R///4U93rzJBbDMNxa6dilSxctXbpU/v7+euWVV9StWzfVr19fFotFmzZtUo4cObR27Vp98cUXunTpkiSpX79+mjNnjsNz/y+kj8NjAAAApGbI2W9NmTc27IQp88LzhVRoa3YI8GD/dAsxOwR4qHxfpl1Y40zfF+/t8jmeujjP5XMg63Dr0k5J+vbbb9WuXTtt3LhRU6dO1dSpU2Wx3Fty2axZM2u7xPzeY489pi+++MLdYQIAAAAAAAA23J5Iy5Mnj9atW6ePPvpIU6dO1cWLF1NsV6BAAY0YMUKjRo2Sj49zVqBOjNjjlHEAAABSMsTsAAAAgA1PP2wAWY/bE2nSvU3qhg8frqFDh2rHjh3atWuXrly5ovj4eBUsWFA1a9ZU48aNlTNnTqfO2z3oIaeOBwAAAAAAAO9hSiLNOrmfnxo2bKiGDRuaGQYAAAAAAMiGPP3UTmQ9pibS3G122E6zQwAAANnYR2YHAAAAAJfKcom0y5cva+XKlQoLC1PZsmXVvn175c6d2+ywAAAAAACAh0mwmB0Bshu3JtIOHTqkcePGyWKxaPr06cqfP7/N++XLl6tXr16KioqyPgsJCdHy5cv18MMPOzz/04UedXgMAAAAAAAAeCe3JtKWLl2q77//Xk2bNk2WRLty5Yr69OmjyMhIm+dnzpxR+/btdfDgQQUEBDg0/4KwPx3qDwAAkJbpZgcAAABsJIiSNDiXjzsnW79+vSwWi9q1a5fs3WeffaaIiAj5+flp6tSp+vvvv/X+++/Lx8dH586d05dffunOUAEAAAAAAAAbbq1IO3PmjCSpRo0ayd4tWbJEFotF/fr107BhwyRJDz30kI4ePaovv/xSy5cvtz7PLH/fLLclHAAAAAAAcBHD7ACQ7bi1Iu3q1auSpMKFC9s8DwsL04EDByRJvXr1snnXoUMHSbK+BwAAAAAAAMzg1hKtxP3PoqOjbZ5v3bpVhmEoZ86catSokc274sWLS5Ju3Ljh8Px9g2s6PAYAAAAAAPAMnNoJZ3NrIq1AgQK6cuWKzpw5o/r161ufr1+/XpJUu3Zt5cyZ06ZPXFycJCkwMNDh+bfFXnZ4DAAAAAAAAHgnty7tTNwbbf78+dZnUVFRWrx4sSwWi1q0aJGsz+nTpyVJRYsWdU+QAAAAAAAgW0hwwwfexa0VaU8//bTWrl2rFStW6Omnn1bjxo21cOFCXblyRT4+PurZs2eyPn/88YckqVy5cg7P39mvpMNjAAAAAAAAwDu5tSKtX79+aty4sQzD0OLFizV06FD9/vvvkqSBAweqcuXKyfoknuaZUrUaAAAAAABAagw3fOBd3FqR5uPjo59//lnjxo3T4sWLdenSJRUvXlz9+/fX2LFjk7VfsWKFTp06JYvFolatWjk8/5eRhxweAwAAIDWjzA4AAAAALuXWRJokBQQEaMqUKZoyZUq6bRs3bqyTJ09KkkqXLu3w3N0DKjk8BgAAAAAA8Ayc2glnc3siLSOCg4MVHBxsdhgAAAAAAABA1k6kOduW2MtmhwAAAAAAANyEUzXhbKYl0uLi4rRs2TKtW7dO+/fv17Vr1yRJBQoUUPXq1dWyZUt17NhRfn7OC/GvGyedNhYAAAAAAAC8iymJtKVLl+qVV17RhQsXrM8M495ZFxaLRb///rtmzJih4sWL63//+586depkRpgAAAAAAMCDUZEGZ3N7Iu2jjz7SiBEjJN1LnlksFpUpU0ZFixaVYRi6cuWKTp06JcMwdOHCBXXt2lUffvihhg0b5vDcj+Qv6/AYAAAAAAAA8E4+7pxs+/btGjlypAzDUN68eTV58mRdvnxZx48f1++//65t27bp+PHjunz5siZPnqygoCAZhqGRI0fqjz/+cGeoAAAAAADAwxkW13/gXdxakTZ16lQlJCQoKChIv/32m6pWrZpiu0KFCmnkyJFq166dGjZsqFu3bmnq1KlauHChQ/MH+uZ0qD8AAAAAAAC8l1sTaVu3bpXFYtEbb7yRahLtflWqVNEbb7yhMWPGaPPmzQ7Pn8fiVYeUAgAAAADg1dgjDc7m1qWd169flySFhoba3Sex7Y0bN1wREgAAAAAAAGAXt5ZoFS9eXKdPn850X0etDdvv8BgAAAAAAMAzUJEGZ3NrRVrLli0lSZs2bbK7z8aNGyVJLVq0cEVIAAAAAAAAgF3cWpE2fPhwzZ8/X5MmTVKnTp1UsWLFNNv/888/mjx5sgICAjRy5EiH5y+Wp4DDYwAAAAAAAM9gmB0Ash23JtIqVaqk77//Xr169VL9+vX19ttvq1+/fipQwDbBdf36dX399df6z3/+I0latGiRKlWq5PD8PhbOpQUAAAAAwFskkAaAk1kMw3B6gja9ZZjnz5/X0aNHZbFYZLFYVLZsWRUpUkQWi0WXL1/WyZMnlRjWgw8+qBIlSshisWj9+vUOxVW5SB2H+gMAAKTl8JWdpswbG3bClHnh+UIqtDU7BHiwf7qFmB0CPFS+L9e6ba5pD/Rx+RxDz3zr8jmQdbikIm3jxo2yWCxKKUdnua8qzDAMGYah48eP6/jx4ymOdfToUf3zzz82/TLL1+LWLeEAAAAAAICJOGwAzuaSRFrTpk2dkvgCAAAAAAAAsgqXVaRlRVSkAQAAAADgPahIg7O59bABsx28dsbsEAAAAAAAAOChTEukXbp0SeHh4bp165by5cunggULqlixYmaFAwAAAAAAshmnn64Ir+fWRNqqVas0Z84cbd26VVevXk32vnDhwmrcuLEGDhyotm2df4JQw8KVnT4mAAAAAAAAvINbEml79+5V3759tX//fklK8TRPSbpy5Yp+/PFH/fjjj6pWrZq++eYb1ahRwx0hAgAAAACAbCaBcxDhZC5PpP3www/q06eP7t69a02g5cmTRzVq1FDRokUVEBCgiIgIXb58WXv37lVkZKQkaf/+/apfv76++eYbPfXUU06JpYhfgFPGAQAAAAAAgPdxaSLtt99+U58+fRQTEyNJatu2rV599VU99thj8vFJfoJmQkKCfvnlF33yySf66aefFBMTo759+6pYsWJq3Lixw/HEGJzXAQAAAACAtyALAGdLns1ykoSEBD3//POKiYlRzpw59d1332nFihVq1apVikk0SfLx8dHjjz+ulStXav78+fL391dMTIxeeOEFJSTw7Q8AAAAAAADzuKwi7fvvv9fBgwdlsVj09ddfq1u3bhnq//TTT8vHx0dPP/20Dh06pO+//17du3d3KKa2Rn6H+gMAAAAAAM/BqZ1wNpdVpC1fvlyS9Nhjj2U4iZaoe/fuatGihSRp2bJlTosNAAAAAAAAyCiXVaTt3LlTFotFPXv2dGic3r1769dff9XOnTsdjmnMjT8cHgMAACA1L5gdAAAAsJFATRqczGWJtMuXL0uSKlWq5NA4lStXthnPEU8WeMjhMQAAAIDs4uTsvmaHAA8W+/NGs0MAALdz2dLO2NhYSZK/v79D4+TIkUOSFBcX53BMAAAAAADAeyS44ePJIiMj9cEHH6hu3boqUKCAAgMDVaVKFY0YMUJnzpxxePy4uDj98ssvGjlypJo0aaLChQsrR44cyp8/vx599FGNGDFCx48fT3ecAQMGyGKx2PU5deqUw3GnxWUVaUWKFNGZM2d0+vRp1a5dO9PjnD59WpJUuHBhh2P6l+9dh8cAAAAAAADwdMePH1fbtm115MgRm+eHDx/W4cOHNXPmTM2fP19PPvlkpsa/evWqqlSpovDw8GTvbt68qT179mjPnj365JNP9P7772vo0KGZmsfdXJZIq1q1qs6cOaMVK1aoa9eumR4n8dCCatWqOSs0AAAAAADgBdghLWURERFq166dNYk2ePBgPf3008qdO7c2bNigiRMn6ubNm+rWrZu2bdumhx9+OMNzxMTEWJNojzzyiDp27Kh69eqpaNGiunnzpn7++Wd98sknio6O1rBhw5Q7d24999xzaY5ZokQJrVmzJs02JUuWzHCsGeGyRFrbtm31888/67vvvtOIESNUvXr1DI+xd+9efffdd7JYLGrbtq3DMZ2MzOvwGAAAAKnJ+J92AAAA3G/KlCk6fPiwJOn999/XyJEjre8aNGig0NBQNW3aVJGRkRo2bJh+/fXXDM9hsVjUqlUr/fvf/1b9+vWTvQ8NDVXXrl0VGhqqqKgojRo1Sj179lTevKnnbnLkyJGp/JIzuSyR1qdPH40bN07Xrl1T+/bt9euvv6ps2bJ29z9x4oQ6dOiguLg4FSxYUH369HE4pgM5fR0eAwAAIDXtzQ4AAADY8PQ9zFwhNjZW06ZNkyRVqVJFw4cPT9amQYMGGjRokKZPn64NGzZo9+7dqlWrVobmKVmypNauXZtmm3r16umll17Shx9+qJs3b2rdunXq3LlzhuZxN5cdNpAvXz5NnDhRhmHozJkzeuSRR/TRRx/p9u3bafa7ffu2pk6dqpo1a+rMmTOyWCx69913lS9fPleFCgAAAAAA4BU2btyoGzduSJL69+8vH5+UU0MDBgywXi9ZssRl8YSGhlqv7Tl4wGwuq0iTpGeffVZHjhzRhx9+qIiICI0YMUJjx45V06ZN9eijj6pYsWIKCAhQRESELl26pD179mjz5s2KioqSYdxbyTx06NB018jaq1pMvFPGAQAAAAAAWV+CxewIsp4tW7ZYr5s1a5Zqu9q1aysgIEB37tzR1q1bXRZPTEyM9Tq1pF5W4tJEmiR98MEHKlOmjEaOHKno6GhFRkZqzZo1qW4Ol5hAy5kzp95//3298sorrg4RAAAAAADAKxw6dMh6Xbly5VTb+fn5qXz58tq7d69NH2fbtGmTXfFIUnh4uJo0aaJ9+/YpKipKBQoU0MMPP6z27dvrmWeeUZ48eVwWZyKXJ9Ik6eWXX1b79u310Ucf6ZtvvtG1a9dSbVugQAH17dtXQ4cOVZkyZZwaxzF/9kgDAAAAAMBbJLjh3M5z587Z1a5UqVIujsQ+Z8+elSQFBAQof/78abYNCQnR3r17dfXqVcXExChnzpxOjeXixYuaM2eOJKlQoUI2yzxTEhERYVMdd+nSJV26dElr167VpEmTtGjRIjVs2NCpMSbllkSaJD3wwAP66KOP9NFHH+nAgQP6+++/FRYWptu3bytv3rwqWLCgatSo4dLTF/b6RLlsbAAAAAAA4H1CQkLsape4As9siXvXBwYGpts2ICDAeh0REeHURJphGHrhhRes8YwdO1a5c+dOsa3FYlH9+vXVvn17PfrooypatKiio6O1b98+zZo1Szt27ND58+fVunVrbdmyRTVr1nRanEm5LZF2v2rVqqlatWpmTA0AAAAAALxE1khdZS3R0dGSJH9//3Tb3p84i4pybnHSe++9p+XLl0u6d+DAkCFDUm370UcfpVg916BBAw0ePFhvvfWW3nvvPd25c0fPPvusdu3aJYvFNRvkmZJIM0v1hJQzmwAAAAAAAJmRuFTS2eLi4pQjRw6Hx5kzZ47NCZy5cuWSJN29ezfdvvcfBJBatVhmzJs3T2PHjpUklSlTRvPnz0/zoIG0lqBaLBa9++672rFjh9atW6c///xTv//+uxo1auS0eO/nVYk0AAAAAADgPRLcMEdW2fvMXnnz5pV0b6lmeu7cuWO9tmcpqD1WrVqlgQMHyjAMFS1aVL/88ouKFSvm8LjPP/+81q1bJ+neAQYk0pyg1n2ZVAAAAAAAgKzKz8/PKadlFi9e3Oa+VKlS+uOPP3Tnzh3duHEjzWqvxGq7woULO2V/tI0bN+qpp55SbGysgoODtXbtWlWoUMHhcSWpatWq1uvz5887ZcyUeFUi7T3/22aHAAAAsrHmZgcAAABsuOPUTleqXLmy08esWrWqfvjhB0nS4cOHVb9+/RTbxcXF6fjx45KkKlWqODzvjh071L59e0VHRyswMFA///yzHn74YYfHTeSuwxxSX4AKAAAAAADgwQw3fDxN48aNrdebNm1Ktd2uXbusSzsdXSa5d+9etWnTRhEREcqVK5dWrFihevXqOTRmUgcPHrRelyhRwqlj38+rKtLe5bABAAAAAADgxZo3b66goCDdvHlTX331lUaNGpXiCZdz5861Xnfu3DnT8/3zzz9q3bq1rl+/rhw5cuiHH35Q8+bNMz1eaqZPn269btasmdPHT+RVibTdPgFmhwAAALKxOmYHAAAAbLjjsAFP4+/vr1dffVX/+c9/dOjQIU2ZMkUjR460abNt2zbNmjVL0r2kVJ06yf+Uc+rUKZUtW9baZuPGjcnanDlzRi1bttTly5fl6+ur+fPn68knn8xQvNu3b1fp0qWT7fWWyDAMjR07VuvXr5ck1ahRw2UHDUhelkgDAAAAAADwdiNHjtTChQv1zz//aNSoUTp27Jiefvpp5c6dWxs2bNB7772nuLg45c6dW//9738zNUd4eLhatmxpPbBg+PDhqly5svbv359qn+DgYJUsWdLm2erVqzVp0iS1adNGrVq1UtWqVZU/f37FxMRo7969mjVrlnbs2CFJypMnj7788ssUK+ycxasSaUHxnrh6GQAAAAAAZIanHzbgKnnz5tWqVav05JNP6ujRo5oxY4ZmzJhh0yZfvnyaN2+eHnnkkUzNsW/fPh09etR6//777+v9999Ps0///v1tlpQmiomJ0bJly7Rs2bJU+z7wwAOaP39+itVzzuRViTQAAAAAAABIFSpU0J49e/Tpp59q8eLFOnbsmO7evauQkBA9+eSTGjp0qEqXLm12mBo4cKCKFi2qbdu2ae/evbpy5YrCw8Pl5+enQoUK6dFHH1X79u3Vq1cv5cqVy+XxWAx3nQ+aBbxZppfZIQAAgGzs3VPzTZk3NuyEKfPC88VtXmB2CPBgsT9vNDsEeKh8X65121yvlXna5XN8dIqfpd7EqyrSSsb7mB0CAAAAAAAAPJRXJdIAAAAAAID34NROOJtXJdKO+caZHQIAAAAAAAA8lFcl0gAAAAAAgPcwOLUTTuZVibRKcV715QIAAAAAAMCJvCqzdN3X7AgAAAAAAIC7sEcanI1jLAEAAAAAAAA7eFVFWsF4syMAAAAAAADuksAeaXAyKtIAAAAAAAAAO3hVRdoxP0rSAAAAAADwFtSjwdm8KpEWbHDaAAAAAAAAADLHqxJpAAAAAADAe7BHGpzNqxJpjxu3zQ4BAAAAAAAAHsqrEmkAAAAAAMB7JJgdALIdr0qkfeqTw+wQAABANjbT7AAAAADgUl6VSMshH7NDAAAAAAAAbmKwRxqcjMwSAAAAAAAAYAevqkh7PNqrvlwAAAAAALwae6TB2ahIAwAAAAAAAOzgVSVazZpcMDsEAAAAAADgJuyRBmfzqkTauJ1FzQ4BAABkYx+bHQAAAABcyqsSaQAAAAAAwHuwRxqczasSaeujTpkdAgAAAAAAADyUVyXSAAAAAACA90gw2CMNzuVVibRhOR40OwQAAAAAAOAmpNHgbF6VSGuc+5rZIQAAAAAAAMBDeVUiDQAAAAAAeI8EatLgZF6VSGt+5YTZIQAAgGzsstkBAAAAwKW8KpEGAAAAAAC8h0FFGpzMqxJpdYLKmx0CAAAAAAAAPJRXJdI6JgSbHQIAAAAAAHCTBLMDQLbjY3YAAAAAAAAAgCfwqoq0n31vmR0CAADIxgabHQAAALDBqZ1wNirSAAAAAAAAADt4VUXac9F5zA4BAAAAAAC4Cad2wtm8KpEWbaEADwAAAAAAAJnjVYk0AAAAAADgPTi1E87mVYm0+hUvmB0CAAAAAAAAPJRXJdK2Hi1pdggAACAbe8rsAAAAgA3DYI80OBebhgEAAAAAAAB28KqKtIfzh5sdAgAAAAAAcJMETu2Ek1GRBgAAAAAAANjBqyrSfo0oZHYIAAAgG6todgAAAMAGp3bC2bwqkfZ04/NmhwAAAAAAAAAP5VWJNAAAAAAA4D0M9kiDk3lVIq30ijNmhwAAALKxm2YHAAAAAJfisAEAAAAAAJAtJchw+ceTRUZG6oMPPlDdunVVoEABBQYGqkqVKhoxYoTOnHG8GGnjxo2yWCx2fcaPH5/ueHFxcZo+fbqaNm2qwoULK3fu3KpQoYJeeOEFHTx40OF47eFVFWk/BdY0OwQAAAAAAADTHT9+XG3bttWRI0dsnh8+fFiHDx/WzJkzNX/+fD355JMmRWgrPDxcbdu21R9//GHz/Pjx4zp+/Ljmzp2rzz77TM8884xL4/CqRNqzCSztBAAArnPI7AAAAIANw/DsijFXiYiIULt27axJtMGDB+vpp59W7ty5tWHDBk2cOFE3b95Ut27dtG3bNj388MMOzzl79mzVqVMn1fdFihRJ9V18fLy6dOliTaJ16dJFgwcPVoECBfTHH3/onXfe0ZUrV/Tcc8+pZMmSevzxxx2ONzVelUgDAAAAAADwdlOmTNHhw4clSe+//75GjhxpfdegQQOFhoaqadOmioyM1LBhw/Trr786PGfZsmVVvXr1TPX95ptvtHnzZknSSy+9pE8//dT6rm7dunriiSdUq1Yt3bp1S6+88ooOHjwoPz/XpLy8KpH2oaWc2SEAAAAAAAA3STA7gCwoNjZW06ZNkyRVqVJFw4cPT9amQYMGGjRokKZPn64NGzZo9+7dqlWrlrtDtfrggw8kScHBwdbr+1WoUEGjR4/W6NGjdfToUS1btkxdu3Z1SSwcNgAAAAAAAOAlNm7cqBs3bkiS+vfvLx+flFNDAwYMsF4vWbLEDZGl7OjRo9aDBHr06KE8efKk2M5d8XpVRRpZQwAAAAAAvIfh4adqusKWLVus182aNUu1Xe3atRUQEKA7d+5o69at7ggtRfbGW6xYMVWsWFH//POPS+P1qkRayTx3zA4BAAAAAADANIcO/d/xSJUrV061nZ+fn8qXL6+9e/fa9MmsMWPG6MyZM7py5YoCAgJUpkwZNW/eXC+++KIqVqzocLyJ7//55x+dPXtWd+7cUUBAgMNxJ+VViTQAAAAAAOA9EtxQkXbu3Dm72pUqVcrFkdjn7NmzkqSAgADlz58/zbYhISHau3evrl69qpiYGOXMmTPT827bts16fePGDf3111/666+/9PHHH2vs2LEaN26cLBZLqvFK6f8ahoSESLp3Wuu5c+dUqVKlTMebGq9KpD13N8LsEAAAQDa2Lf0mAADAjQzD9Ym0xORNetwRiz3+X3v3HR1llfBx/PdMEgyhJoRAQLqUUISELh2pARQBQVgXRMCGIq+Kq+5K0bXjigoqKITAgoqKAgsivQlIgjTpHUMLgQgkAdKe9w9OZmUJyYTMzJPJfD/n5JzJzHPv/MLJ67vzy33uvXz5siSpePHiuV775xVdSUlJt1WkhYaGqk+fPmrdurWqV68uX19fnThxQosWLdLs2bOVlpamCRMmKDU1VW+++eYt8zqS+X/zuoJXFWkAAAAAAADe7OrVq5KkIkWK5Hrtn4uzK1eu5Pm9mjZtquPHj8vPz++G5yMiItS7d289/vjj6tKliy5evKi3335b/fv3V6NGjbLN60jm/OZ1hFcVaXcYPlZHAAAAAAAAbuKOWzv/fOuhM6Wnp99UQN2OqKioG0609Pf3lySlpqbmOvbatWv2x0WLFs3ze+e2R1mzZs00ZcoUPfzwwzJNU1OmTNHnn39+wzVZeaXrmf/8vbPzOsKrirSPfF3zjwgAAAAAALxTQdn7zFElSpSQ5Nitj8nJ/z200ZFbQW/HgAEDNHLkSF28eFFr16696fWsvNL1zDkVae7I61VFGgAAAAAA8B6mG1akuYqvr69TTssMDQ294fs777xTv/zyi5KTk/XHH3/keOBA1mq7smXL5uuggZz4+vqqVq1aiomJ0cmTJ296/c9FZVxcnIKDg285V1ZewzBcVnB6VZFWuSWHDQAAAABZ1j650+oI8GA9E3dbHQEeKv3z3K/BdXXq1HH6nHXr1tV3330nSdq3b59atGiR7XXp6ek6fPiwJCksLMzpOf4sp4MY6tata3+8b9++m/ZQ+7N9+/ZJun4ARG63ld4um0tmBQAAAAAAsFimabr8y9O0bt3a/ji7WymzxMbG2m+VbNWqlcvypKen68CBA5KkChUq3PS6o3nPnDljn8eVeb1qRdrO1bde/gcAAJBfba0OAAAAkIv27durVKlSunjxoqKjo/Xiiy/KMIybrps5c6b98QMPPOCyPF999ZUuXbokSWrXrt1Nr9eqVUthYWHau3ev5s2bp/fff18BAQGW5fWqIq20/9XcLwIAAAAAAIWC560Xc70iRYpo1KhRev3117V3715NnDhRY8aMueGaTZs2afr06ZKul1tNmza9aZ5jx46pWrVq9mvWrFlzw+uJiYnasWOH2rdvf8ssW7Zs0TPPPCPp+r5mTzzxRLbXvfDCCxo2bJguXLigF198UZMnT77h9cOHD+utt96SJNWoUYMiDQAAAAAAAM4xZswYff311zpw4IBefPFFHTp0SA899JCKFi2q1atX680331R6erqKFi2qSZMm3dZ7XLx4UR06dNDdd9+t3r17q3HjxgoNDZWPj49OnDihRYsWafbs2UpLS5N0vSxr0qRJtnMNGTJEM2bM0M8//6wpU6bozJkzGjFihAIDA7Vlyxa9/vrrunTpkmw2mz7++GP5+rqu7qJIAwAAAAAAhVIma9KyVaJECS1evFiRkZE6ePCgpk2bpmnTpt1wTcmSJTVnzpwcN/d3xM6dO7Vz560Pt/Hx8dGrr76qsWPH5njNDz/8oMjISMXExOi7776zH5iQpUiRIpo8ebK6d++er7y5oUgDAAAAAADwMnfddZe2bdumKVOm6JtvvtGhQ4eUmpqqSpUqKTIyUs8++6yqVKly2/NXqFBB33zzjTZt2qQtW7bo5MmTSkhI0NWrV1WqVCnVrl1b7du31/Dhw1W1atVc5wsODtbGjRv1+eefa+7cudq7d6+Sk5NVoUIF3XvvvXr22WdVr169287rKMPM6YzRQuby05FWRwAAAIVYiclLLHnftIQjlrwvPN/Keq9YHQEerGfieqsjwEOlp55023u1rNjB5e+x6eRql78HCg6vWpFmpmVYHQEAAAAAAAAeyquKNAAAAAAA4D286CY8uIlXFWlpcVetjgAAAAAAAAAP5VVFGgAAAAAA8B6c2gln86oi7cSu0lZHAAAAhVgZqwMAAADApbyqSAsMSrE6AgAAAAAAcBOTFWlwMpvVAQAAAAAAAABP4FUr0jIzDKsjAAAAAAAAN+HUTjgbK9IAAAAAAAAAB3jVirTiIdesjgAAAAAAANyEUzvhbF5VpAVEBFkdAQAAAAAAAB7Kq4o0AAAAAADgPdgjDc7mVUVackyi1REAAEAhVtzqAAAAAHApryrS1u2vaHUEAABQiD1odQAAAHAD9kiDs3FqJwAAAAAAAOAAr1qRFh6YYHUEAAAAAADgJiYr0uBkrEgDAAAAAAAAHOBVK9LS032sjgAAAAAAANwkk1M74WReVaSVLp9idQQAAAAAAOAm3NoJZ+PWTgAAAAAAAMABXrUiLfF0gNURAABAIVbe6gAAAOAG3NoJZ2NFGgAAAAAAAOAAr1qRVv5u9kgDAAAAAMBbsEcanM2rirSzu7i1EwAAuE6g1QEAAADgUl5VpAEAAAAAAO/BHmlwNq8q0gIrJlsdAQAAAAAAAB7Kq4o0AAAAAADgPdgjDc7mVUVakSDD6ggAAAAAAADwUF5VpPlWLG51BAAAAAAA4CbskQZns1kdAAAAAAAAAPAEXrUi7eIvKVZHAAAAhVgJqwMAAIAbsEcanI0VaQAAAAAAAIADvGpFml/RTKsjAAAAAAAANzFNegA4l1cVaYf2BVsdAQAAFGLlrA4AAAAAl/KqIg0AAAAAAHiPTPZIg5N5VZG2uYi/1REAAEAh1srqAAAAAHApryrSAAAAAACA9zBNVqTBubyqSHslfq3VEQAAQCH2vNUBAAAA4FJeVaSdaFnd6ggAAAAAAMBN2CMNzmazOgAAAAAAAADgCbxqRVrSOQ4bAAAArlPO6gAAAOAG7JEGZ2NFGgAAAAAAAOAAr1qRNu5yMasjAACAQuzfVgcAAAA3yGRFGpzMq4q0cDPA6ggAAAAAAADwUF5VpAEAAAAAAO9hcmonnMyrirSn/lXH6ggAAAAAAADwUF5VpAEAAAAAAO/BqZ1wNq8q0qoNn2N1BAAAUIid6fcPqyMAAAA4LCUlRVOmTNE333yjQ4cOKTU1VZUqVVKPHj00atQoVa5cOV/zG4aR5zHZlZ+PPPKIoqOjHRp/9OhRVa1aNc/v6yivKtIOjeDWTgAAAAAAvEUme6Td0uHDh9WjRw/t37//huf37dunffv26YsvvtDcuXMVGRnptky1atVy23vdLq8q0gAAAAAAgPfg1s7sJSUlqWfPnvYSbcSIEXrooYdUtGhRrV69Wm+99ZYuXryoBx98UJs2bdLdd999W++za9euXK+Jjo7WxIkTJUlDhgzJ8doKFSrop59+yvGaihUrOh7wNnhVkTb6Gx+rIwAAgELsi/esTgAAAJC7iRMnat++fZKkd999V2PGjLG/1rJlS3Xo0EFt27ZVSkqKRo8erVWrVt3W+9SvXz/Xa9atWyfp+m2gDz/8cI7X+vn5OTSnK9ksfXcAAAAAAAAXyTRNl395mrS0NH344YeSpLCwMD3//PM3XdOyZUsNGzZMkrR69Wpt3brVJVn279+vLVu2SJLat2+f7z3Z3MGrVqSNK5todQQAAAAAAADLrFmzRn/88Yek67dS2mzZr7F65JFHNHXqVEnS/Pnz1bhxY6dnmTVrlv1xbrd1FhReVaQFdQmyOgIAAAAAAHAT9ki72fr16+2P27Vrd8vrmjRpomLFiik5OVkbNmxweg7TNDVnzhxJUrFixdS3b1+nv4crcGsnAAAAAACAl9i7d6/9cZ06dW55na+vr2rUqHHTGGdZs2aNjh8/Lknq06ePihcvnuuY8+fPq02bNipdurTuuOMOhYaGqmvXrpo8ebJSUlKcnjE7XrUi7bPZd1gdAQAAFGLPv2F1AgAA8GeZcv2KtLi4OIeuu/POO12cxDG///67pOurwEqXLp3jtZUqVdLOnTt17tw5Xbt2TXfc4bxe5c+3dQ4ePNihMUlJSTesjjtz5ozOnDmjZcuW6e2339a8efN0zz33OC1jdryqSBsQesrqCAAAAAAAoBCpVKmSQ9cVlNtML1++LEkOrQArVqyY/XFSUpLTirSUlBR99913kq4XjB07dszxesMw1KJFC/Xq1UsREREqV66crl69ql27dmn69OnasmWLTp48qS5dumj9+vUKDw93Ss7seFWRBgAAAAAAvEdBKa8KkqtXr0qSihQpkuu1fy7Orly54rQMP/zwg73Qe/jhh2954EGWDz74INvVcy1bttSIESP0j3/8Q2+++aaSk5M1fPhwxcbGyjAMp+X9M68q0jafCLU6AgAAKMT6WR0AAAC4Xdatks6Wnp4uPz+/fM8TFRWlRx55xP69v7+/JCk1NTXXsdeuXbM/Llq0aL6zZMnrbZ053YJqGIbeeOMNbdmyRStWrNCvv/6qjRs3qlWrVs6IehOvKtIAAAAAAID3yHTDirSCsveZo0qUKCHp+q2auUlOTrY/duRWUEecPn1aK1askCQ1bdpUYWFhTpn38ccft8+7du1aijRnWHzHVasjAACAQowVaQAAwFl8fX2dclpmaOiNd+fdeeed+uWXX5ScnKw//vgjx9VeWavtypYt67T90ebMmaOMjAxJjh8y4Ii6devaH588edJp8/4vryrSXi6anPtFAAAAAACgUDDdcGqnK9WpU8fpc9atW9e+0f++ffvUokWLbK9LT0/X4cOHJclpq8Ykafbs2ZIkPz8/DRw40Gnzums/vJx3cwMAAAAAAECh0bp1a/vjtWvX3vK62NhY+62dzrpNcvv27dq5c6ckqUePHipTpoxT5pWkPXv22B9XqFDBafP+L69akZaRTm8IAAAAAIC3cMceaZ6mffv2KlWqlC5evKjo6Gi9+OKL2Z5wOXPmTPvjBx54wCnv/edDBoYMGeKUObNMnTrV/rhdu3ZOnfvPaJYAAAAAAAC8RJEiRTRq1ChJ0t69ezVx4sSbrtm0aZOmT58u6Xop1bRp05uuOXbsmAzDkGEYat++fa7vm5GRoS+//FKSVKZMGfXo0cOhvJs3b9bp06dv+bppmvrHP/6hlStXSpIaNmzosoMGJC9bkRZ0J3ukAQAAAADgLdy1b5anGTNmjL7++msdOHBAL774og4dOqSHHnpIRYsW1erVq/Xmm28qPT1dRYsW1aRJk5zynj/99JPOnDkjSRo4cKD8/PwcGrd06VK9/fbb6tatmzp37qy6deuqdOnSunbtmnbu3Knp06dry5YtkqSAgAB9/vnn2a6wcxavKtKKNXPevbcAAAAAAACeqESJElq8eLEiIyN18OBBTZs2TdOmTbvhmpIlS2rOnDlq1KiRU97zz7d15vW0zmvXrmnBggVasGDBLa+pXLmy5s6dm+3qOWfyqiINAAAAAAB4D08/tdOV7rrrLm3btk1TpkzRN998o0OHDik1NVWVKlVSZGSknn32WVWpUsUp73Xp0iUtXLhQ0vWTSPNSdg0dOlTlypXTpk2btHPnTsXHx+v8+fPy9fVVcHCwIiIi1KtXLw0aNEj+/v5OyZsTw/SidY6xd/a2OgIAACjEmsT9YMn7piUcseR94flW1nvF6gjwYD0T11sdAR4qPfWk297rDv9KLn+Pa1d/d/l7oOBgRRoAAAAAACiUvGjtENzEq4q0qg0SrY4AAAAAAAAAD+VVRVr5lYesjgAAAAqxdKsDAACAG7AiDc5mszoAAAAAAAAA4Am8akVaaf9iVkcAAAAAAABuwno0OBsr0gAAAAAAAAAHGCY3DAPADeLi4lSp0vVjsn///XfdeeedFicCAOQV/y1HfvD7g/zg9wco3FiRBgAAAAAAADiAIg0AAAAAAABwAEUaAAAAAAAA4ACKNAAAAAAAAMABFGkAAAAAAACAAyjSAAAAAAAAAAdQpAEAAAAAAAAOoEgDAAAAAAAAHECRBgAAAAAAADjAME3TtDoEAAAAAAAAUNCxIg0AAAAAAABwAEUaAAAAAAAA4ACKNAAAAAAAAMABFGkAAAAAAACAAyjSAAAAAAAAAAdQpAEAAAAAAAAOoEgDAAAAAAAAHECRBgAAAAAAADiAIg2A04wfP16GYcgwDEtztG/fXoZhqH379pbmAAAAAAAULhRpAAAAALxO9erVVb16dU2ePNnqKAAAD+JrdQAAAAAAcLe4uDhlZGSoUaNGVkeBhzpx4oQkqVy5crrjjjtyvPbq1auKj4+XJFWuXNnl2QC4DivSAAAAAHid8uXLS5KKFi1qcRJ4og0bNqhq1apq0KCBUlJScr3+ypUrql+/vqpXr64tW7a4ISEAV6FIAwAAAOB1mjdvLknavXu3xUngib7++mtJUu/evRUYGJjr9YGBgerbt68yMzP11VdfuToeABeiSAMAAIDHs9ls8vX11Z49exwec/jwYfs4eJ8nn3xSpmnqgw8+UFpamtVx4GE2bdokwzDUuXNnh8d06dJF0vXVbAA8F0UaAJf5448/NG7cONWrV0/FixdXUFCQ2rdvrzlz5txyTGpqqhYtWqSnn35aTZs2VWBgoPz8/FSmTBk1b95c48ePV0JCQr5yJSYmKioqSg8//LDq1q2r4sWLq0iRIipfvry6du2qadOmKTU19Zbjjx07Zj+ddObMmZKk5cuXq1evXipfvrzuuOMOVatWTU8++aTi4uIcyvTzzz9r+PDhql27tkqWLKnixYurTp066t27t2bNmqVLly7dcmxcXJxefvllRUREKDAwUP7+/qpcubIGDBig1atX5+nfBgA8mWmabh0Hz9axY0e9/PLL2rFjh3r27Knff//d6kjwIFm/L7Vr13Z4zF133SVJOnnypEsyAXAPw+R/OQBwkvHjx2vChAmSpCNHjqhz5846fPhwttf269dPX3755U2rAB555BFFR0fn+D5lypTRggUL1KpVq2xfb9++vdauXat27dppzZo1N71etWpVHT9+PMf3CA8P15IlS+z7p/zZsWPHVK1aNUlSVFSU9u3bp3feeSfbecqWLau1a9cqLCws29evXLmiYcOG6csvv8wxz7hx4zR+/Pibnp8+fbqeeeYZXbly5ZZjhw0bps8++4wVFwAKNZvNJsMwtGvXLtWtW9ehMYcOHVKtWrVks9mUnp7u4oQoaF577TVJ0vz587Vz5075+PioVatWuvvuuxUYGCgfH58cx48dO9YdMVFA+fv7Ky0tTTExMYqIiHBozK+//qomTZqoSJEiunr1qosTAnAVPlUBcIkBAwbo6NGjeuKJJ9SvXz+VKlVKO3fu1DvvvKMDBw7o22+/VWhoqD766KMbxqWnp6t69ep64IEH1KxZM1WuXFm+vr46fvy4VqxYoRkzZuj8+fN64IEH9NtvvykkJCTP2TIyMtS8eXP17NlT4eHhKleunFJTU3X06FH9+9//1tKlS7Vt2zY99NBD2RZxf/b5559r48aNateunR5//HHVqlVLf/zxh2bNmqVZs2bp3LlzevTRR7Vp06abxmZmZur+++/X8uXLJUk1a9bUU089pSZNmiggIECnT5/Wxo0bNW/evGzfe8aMGRo+fLgkqX79+nr88ccVHh6ugIAAHT16VNOnT9eSJUs0ffp0lSpVSu+//36e/60AoDA7f/68JKlYsWIWJ4EVxo8fL8MwJEmGYSgjI0Pr16/X+vXrHRpPkebdgoODdfr0aR05csThIu3IkSOS5NCeagAKMBMAnGTcuHGmJPvX3Llzb7rm0qVLZsOGDU1Jps1mM3fu3HnD64cOHTIzMzNv+R47d+40ixcvbkoy//GPf2R7Tbt27UxJZrt27bJ9/cCBAzn+HDNmzLD/DCtWrLjp9aNHj97wc44YMSLbzMOHD7df8+uvv970+qRJk+yvP/DAA+bVq1ezzZORkWGePHnyhudOnDhhBgQEmJLMIUOGmGlpadmOfeWVV+z/1vv378/x5wYAT2YYhmmz2cw9e/Y4dH1SUpL5l7/8xTQMwwwPD3dxOhREhmHk6wverUePHqbNZjP79evn8Ji+ffuahmGYnTp1cmEyAK7GHmkAXKJnz54aOHDgTc+XKFFC06ZNk3R9RdZnn312w+s1atSw/3U4Ow0aNLCvwvrhhx9uK1vNmjVzfH3o0KEKDw936D1CQ0P18ccfZ5v5hRdesD/+379uZ2Zm6r333pMkVaxYUbNmzdIdd9yR7XvYbDZVqFDhhuc+/PBDpaSkqEKFCjnetjlhwgRVrFhRmZmZmjVrVo4/CwB4kurVq9/wlaVLly43vfa/XxUrVlTp0qX15ZdfyjAM9erVy8KfBFbJzMzM1xe82/333y/TNDV//nx98803uV4/b948zZ8/X4ZhqHfv3q4PCMBluLUTgEsMHTr0lq81a9ZM9erV0+7du7VixYoc50lMTNSFCxd09epV+2bQpUuXliTt2bNHaWlp8vPzu+2cpmnq7NmzunTp0g0HDFSoUEHbtm3Tjh07chzfr1+/WxZgtWvXVvHixZWUlGRfyp9l+/bt9o1mR4wYoeLFi+cp94IFCyRJvXr1kr+//y2v8/X1VcuWLfXtt99me3spAHiqY8eO3fScaZp53sS7RYsWevHFF52UCoC3eOSRR/TWW2/p2LFjGjRokDZv3qzRo0erUqVKN1z3+++/64MPPrD/4bVSpUr2PwoD8EwUaQBcomnTpjm+3qxZM+3evVsHDx5UamqqihQpYn9t165d+uCDD/Tjjz/qzJkzt5wjMzNTiYmJt7VP2uLFi/Xpp59q3bp1unz58i2vy+2E0Dp16uT4emBgoJKSkm56j23bttkft23b1oHE/3Xx4kUdOnRIkjR16lRNnTrVoXE5/VsCgKcZMmTIDd9HR0fLMAzdd9999j+4ZMcwDPn7+ys0NFT33HOPOnbsmONKaADIjp+fn+bPn6+2bdsqKSlJkyZN0qRJk1S5cmWFhobKMAydOnVKJ06ckHS96C9evLi+//77W/4RFoBnoEgD4BK5lVvlypWTdP1/VCQmJtq/nz59up544gmHT0/L6bTK7JimqREjRmj69OlOmT8gICDH122263fQZ2Rk3PD8nwu60NBQh7JkiY+Pz9P1WVJSUm5rHAAURFFRUTd8n3Xi8xtvvOHwqZ0AkB+NGjXS5s2b9fDDD2v79u2SpOPHj99QnmVp3LixZs+enesfYQEUfBRpAFwit7/u//l/WGTZt2+fvUQLCQnRmDFj1LFjR1WtWlUlSpSw38I5Y8YMDRs27Jbz5GTGjBn2Eq1Ro0YaPXq0mjdvrooVKyogIMB+1P3gwYM1e/bsPM9/O/K6EuLPpdzo0aPt/xa5+fOqPwAobMaNGycp9z/kAIAz1a1bV7/++quWLVumxYsXa9u2bfY/mAYHBysiIkK9evXSvffea3FSAM5CkQbAJc6ePXvTHhF/lrWqyjAM+xHgM2fOVHp6unx8fLRmzRqFhYVlOzYxMfG2c33++eeSrh9qsHHjRhUtWtTp7+GI4OBg++NTp06pdu3aDo8tU6aM/XFKSorq16/v1GwA4ImyijQgr1JTUzVnzhz98MMP2rFjhxISEnJdkW4YhsOr5+EdunTpoi5dulgdA4AbUKQBcImYmJgci7SYmBhJ10/QzFoptXv3bklSw4YNb1miSVJsbOxt58p6j/vvv/+WJZppmvr1119v+z0cERERYX+8bt06dejQweGxZcuWVcWKFXXy5EmtWLFCpmmyvw8AZMM0TR05ckQXLlyQJAUFBal69er8NxN2Bw4cUO/evbV//363rEIHAHg+m9UBABROWXvVZCc2Nla//fabJKlTp07257P+spvTXl5nzpyxn1h5Oxx5j4ULF+rUqVO3/R6OaNiwob1o/OKLL5SUlJSn8ffdd58k6ciRI/r222+dng8APNmPP/6oXr16qWTJkqpVq5ZatGihFi1aqFatWipZsqR69eqlH3/80eqYsFhycrK6d++uffv2yTAM9e7dWyNGjJB0fcXZq6++qqefflotWrSwP3fPPfdo3LhxGjt2rJXRAQAWokgD4BILFy7UvHnzbno+KSlJjz32mKTrG/E//vjj9tdq1qwp6fpfhzdv3nzT2JSUFA0aNCjPBwz8WdZ7LFq0KNvbNw8fPqynnnrqtud3lM1m05gxYyRJcXFxGjx4sFJTU7O9NjMz86Zib8yYMfYTn5544olcV+ktWbJEO3fudEJyACi4kpOT1bt3b/Xs2VNLlixRcnKyTNO84Ss5OVlLlixRz5499cADDyg5Odnq2LDIZ599pqNHj8rHx0fLli3T/PnzNWrUKPvrEyZM0EcffaSNGzfq119/VVhYmDZv3qwyZcpwKzEAeDFu7QTgEk2aNNGgQYO0du1a9evXTyVLltTOnTv1zjvvaP/+/ZKkkSNH6u6777aP+etf/6qPP/5YmZmZioyM1Isvvqh77rlH/v7+2rp1qz744AMdPHhQrVq10s8//3xbuQYPHqwxY8bo5MmTuueee/Tiiy+qXr16unr1qlatWqVJkybp2rVrioiIcPntnSNHjtSiRYu0fPlyff/992rQoIGeeuopNWnSRAEBATpz5ow2b96sL7/8UoMGDdL48ePtY6tVq6bPPvtMQ4cO1YULF9SqVSv99a9/Vc+ePVW5cmWlp6crLi5OW7Zs0bfffqvDhw9r0aJFN/x7A0BhkpmZqe7du+vnn3+WaZry8/NTly5d1KxZM5UrV06maSo+Pl4xMTFatmyZUlNTtXDhQkVGRmrNmjXc7umFFi1aJMMw1L9/f3Xs2DHHaxs1aqTVq1erYcOGeu6559SyZUs1btzYTUlhpayDqP53X7ys528He+wBHs4EACcZN26cKcmUZB45csSsVq2a/fv//erbt6+ZlpZ20xwTJky45RhJ5vPPP29GRUXZvz969OhNc7Rr186UZLZr1+6m11JTU80uXbrccv6iRYua8+bNM4cMGWJKMqtUqXLTHEePHrVfHxUVleO/SZUqVUxJ5pAhQ7J9PTk52ezXr1+OP7Mkc9y4cdmO/+qrr8ySJUvmOt5ms5mrVq3KMSsAeLIpU6aYhmGYNpvN7NatmxkXF3fLa+Pi4szu3bvbr//kk0/cmBQFRdmyZU2bzWZ+88039ud+++03++9FZmbmTWPee+890zAM85FHHnFnVFjIMAz770R2z9/O1//OBcCzsCINgEtUq1ZNW7du1cSJE/X999/r+PHj8vPzU8OGDfXYY4/pL3/5S7bjxo4dqyZNmujDDz9UTEyMkpOTFRISombNmumJJ55Q586dNXPmzNvO5efnp8WLF+vTTz/VrFmztGfPHpmmqYoVK6pTp0569tlnVadOHS1evPi23yMvAgIC9M0332j16tWKiorShg0bdObMGfn6+qpixYqqW7eu+vXrZ98T7X8NGDBAXbp00bRp07R06VLt2bNHiYmJ8vPzU/ny5VWvXj116NBB/fr1y/HwBwDwdLNmzZIkNW3aVIsXL5bNdusdTCpWrKhFixapVatW2rJli6Kjo/Xkk0+6KyoKiD/++EOSVKVKFftzWdsmSNe3oyhRosQNY1q1aiVJWrt2resDokC41W283N4LeC/DNDmeBgAAAJ6tVKlSSkpK0ty5czVgwACHxsybN08PPfSQSpQooYsXL7o4IQqa0qVL6/Lly/rll1/UpEkTSVJCQoJCQkJkGIZ27typevXq3TBm8+bN9m0ncjq4CABQeHHYAAAAADxe1h5ntWrVcnhM1gE07I/mnapVqyZJNxzoExwcrKCgIEnKdj/WrVu3SpKKFCnihoQAgIKIIg0AAAAer0aNGpKk+Ph4h8dkXZs1Ft4laxXa/558fe+998o0Tb333ns6f/68/fljx47pnXfekWEYatSokTujogBat26d1q1bl6fT5K9evWofB8BzUaQBAADA4w0cOFCmadr3SnPErFmzZBiGw7eConDp3LmzTNPUwoULb3h+1KhRkqQjR46oVq1aevDBB9WjRw81bNhQcXFxkqTHHnvM7XlRsLRv314dO3bU0aNHHR5z8uRJ+zgAnosiDQAAAB5v1KhRioiI0FdffaV333031+vfe+89ffnllwoPD9fo0aNdHxAFTs+ePdW2bVuVKFFChw8ftj/fqlUrjR07VqZpKjExUfPnz9fSpUt1+fJlSdLQoUM1aNAgq2KjALnd7cbZphzwbBw2AAAAAI934sQJXbhwQY8//rhiY2N19913a8iQIWratKl98/izZ88qJiZGs2fP1vbt29WkSRNNmzZNgYGBt5y3cuXKbvwpUJCsXLlSX3zxhXbv3q309HTVrFlTgwcPVt++fa2OhgLAZrPJMAzt2rVLdevWdWjMwYMHVbt2bfn6+io1NdXFCQG4CkUaAAAAPF7Wh1pnMgxD6enpTp0TQOFwO0Xa8uXL1bVrV5UpU0bnzp1zcUIAruJrdQAAAADAGfj7MABXOXHiRLbPnz59WsWLF89x7LVr13T48GG9+uqrMgxD9erVc0VEAG5CkQYAAACPFxUVZXUEAIVYtWrVbnrONE116dIlz3MNHjzYGZEAWIRbOwEAAAB4tdWrVysqKkqbNm3SmTNndOXKFe3cufOGW/bWr1+vXbt2qWTJknr44YctTAsr2Gz5P6fP399fo0aN0ttvv+2ERACswoo0AAAAAF4pJSVFQ4YM0fz58yX99/bg7Pbb8/Hx0dNPPy3DMNS8eXPVrFnTrVlhrf9d9Tp06FAZhqHXX39dFStWvOU4wzDk7++v0NBQhYeH53obKICCjxVpAAAAALxSr169tGTJEpmmqWbNmqlt27aaOHHiLTeRb9iwoX777Te98cYbeumllyxKjYLgdg4bAFA45H99KgAAAFCAZGZmatWqVXrjjTf0zDPPaNiwYTp9+vQN16SmpiolJUXXrl2zKCWs9v3332vx4sWSpGnTpmnz5s169913cxzTp08fmaaptWvXuiMiCrDVq1dr1apV2e6dBqBw49ZOAAAAFBqLFy/WqFGjdOzYsRuef/755xUaGmr/fvr06Xr66adVvHhxnTp1SsWKFXNzUlgtOjpakvTwww9r+PDhDo1p3LixJGnv3r0uywXP0K5dO6sjALAIK9IAAABQKHzxxRe67777dPToUZmmqTJlyuhWu5gMGzZMpUuXVlJSkr7//ns3J0VBEBMTI8MwNGDAAIfHZJWx586dc1UsAEABx4o0AAAAeLxDhw5p5MiRkqSOHTtq8uTJqlOnzi1P2itSpIj69u2rL774QsuWLeMURi90/vx5Scpxo/hbyczMdHYceDDTNLV9+3bt2LFDCQkJunLlyi1L/Cxjx451UzoAzkaRBgAAAI83adIkpaWlqX79+lqyZImKFCmS65g2bdroiy++0Pbt210fEAVOiRIldOHCBV26dMnhMYcPH5YklSlTxlWx4GGio6M1YcIEHT9+PE/jKNIAz8WtnQAAAPB4K1eulGEYGj16tEMlmiTVqFFDknTixAlXRkMBVbNmTUnSli1bHB7z3XffSbp+eifw97//XY8++qiOHTsm0zRz/JJ00/cAPBNFGgAAADze77//Lklq1KiRw2OyDhhISUlxRSQUcJGRkTJNU5988omuXr2a6/VLly7Vd999J8Mw1LNnTzckREH2yy+/6K233pIkde7cWdu3b9evv/4qSTIMQxkZGUpISNDSpUt1//33yzRNtW7dWqdPn+bWYMDDUaQBAADA4xmGIUl5WumRtWF8yZIlXZIJBdvTTz+t0qVL69ixY+rTp499z7T/dfXqVb3//vvq06ePMjMzVb58eQ0dOtTNaVHQfPrpp5KkKlWqaPHixbr77rvl5+dnf90wDAUFBalLly76/vvvNWXKFG3YsEHdunVTamqqVbEBOAFFGgAAADxehQoVJEkHDhxweMzatWslSVWrVnVFJBRwpUuX1r///W/ZbDb99NNPqly5siIjI+2vv/766+revbtCQkL04osv6urVq/Lz89OcOXPk7+9vYXIUBBs3bpRhGBo1apR8fXPfevzJJ59U3759tXPnTn3yySduSAjAVSjSAAAA4PHatm0r0zQ1d+5ch65PSEjQ1KlTZRiGOnbs6OJ0KKgiIyO1ZMkSlS1bVleuXNHSpUvtqxvnzZunZcuWKSkpSaZpKjg4WEuWLFH79u2tDY0C4fTp05KkevXq2Z/78ynBaWlpN43561//KtM09fXXX7s+IACXoUgDAACAx3vsscckSUuWLFFUVFSO18bFxSkyMlIJCQny8fGxj4V36ty5s44cOaKPP/5YnTp1UqlSpewbwhctWlStWrXSO++8o8OHD+vee++1Oi4KiKyiLCQkxP5c8eLF7Y+zbh3/s0qVKkmSDh065OJ0AFwp9zWoAAAAQAHXtGlTPfHEE/rss880fPhwLVmyRA8++KD99Z07d2rXrl1atmyZvvrqK129elWGYej555/XXXfdZWFyFAQBAQEaOXKkRo4cKUlKT09XRkaG7rjjDouToaAqW7asTp06pUuXLtmfK1eunHx8fJSZmam9e/fabznPkrWK7fLly27NCsC5WJEGAACAQuHjjz+23zo1f/58DRw40H6b3l/+8hcNGjRIM2fO1JUrV2SapoYMGaI333zT4tQoiHx9fSnRkKOsWzr37dtnf65IkSL257O7fXPOnDmSdFPBBsCzUKQBAACgUPDx8VF0dLS++eYbhYeH22/P+9+vunXrau7cuZoxY4a9aAOAvGjTpo1M09Tq1atveH7AgAEyTVMzZszQ2LFjtXv3bsXExOjpp5/Wl19+KcMw1L17d4tSA3AGw8zLGeEAAACAhzh16pRiY2MVHx+vjIwMlSlTRuHh4apRo4bV0QB4uN27d6tBgwYqXry44uLiVLJkSUlSSkqK6tevr2PHjt1U1JumqaCgIG3fvl133nmnFbEBOAFFGgAAAACvtXfvXk2bNk3r16/XkSNHdPnyZWVmZuY4xjAMpaenuykhCqq1a9cqPT1d4eHhCgoKsj9//PhxPfzww/r5559vuL5+/fqaPXu2GjZs6O6oAJyIIg0AAACAV/rXv/6ll19+Wenp6crLxyLDMJSRkeHCZCgM9u/fr927dys9PV01a9ZUeHi41ZEAOAGndgIAAMDjZWRk2Fd/NGzYUKVKlcrx+j/++EM7d+6UJLVt29bl+VDwLF26VC+88IKk68VYixYt1LhxYwUFBclmYytp5F/t2rVVu3Ztq2MAcDJWpAEAAMDj/fTTT+revbvKlCmjEydOqGjRojlen5KSoipVqujChQtasWKFOnTo4KakKCi6deumZcuWKTAwUAsXLlSrVq2sjgQPUr16dUnSc889p6efftriNADciT+1AAAAwOPNmzdPkvTggw/mWqJJUkBAgP10va+//trV8VAAxcbGyjAMjR07lhINeRYXF6fjx4+rUaNGVkcB4GYUaQAAAPB4W7dulWEY6tixo8NjslahbdmyxVWxUIClpKRIklq3bm1xEnii8uXLS5JDxT2AwoUiDQAAAB4vLi5OklStWjWHx1StWlWSdPLkSVdEQgFXsWJFSVJqaqrFSeCJmjdvLknavXu3xUkAuBtFGgAAADxe1uqivGz/m3XtpUuXXJIJBVuvXr0kyX5IBZAXTz75pEzT1AcffKC0tDSr4wBwI4o0AAAAeLyyZctKkvbt2+fwmKxry5Qp45JMKNheeOEFBQYG6v3339eZM2esjgMP07FjR7388svasWOHevbsqd9//93qSADcxNfqAAAAAEB+NW3aVL///rtmzZqlhx9+2KExM2fOlGEYioiIcHE6FEQVKlTQggUL9MADD+iee+7R5MmTFRkZaXUseIjXXntNd9xxh+6++24tX75c1atXV6tWrXT33XcrMDBQPj4+OY4fO3asm5ICcDbDzMv6dwAAAKAA+uqrrzRo0CAZhqF3331Xzz//fI7Xv//++xozZowMw9DMmTP117/+1U1JUVBkHUxx6tQpHThwQIZhqHTp0qpZs6YCAgJyHGsYhlauXOmOmCigbDabDMOwf2+a5g3f5yYjI8MVsQC4AUUaAAAAPJ5pmoqIiNCOHTtkGIZ69+6t0aNHq0WLFvLz85Mkpaena9OmTfrggw+0YMECSVL9+vW1ffv2PH0ARuHw5yLE0Y9EhmHYCxOKEO9ms+Vvl6TMzEwnJQHgbhRpAAAAKBSOHTumVq1a6fTp0/aCxM/PT0FBQTIMQ+fPn7dvCm6apipUqKANGzbYT++Ed2nfvn2+CtTVq1c7MQ0AwFNQpAEAAKDQiI+P1+OPP66FCxfecpWRYRh64IEH9MknnygkJMTNCQEAgCejSAMAAEChs3//fi1ZskTbtm1TQkKCJCk4OFgRERHq0aOHatasaXFCAADgiSjSAAAA4PHWrVsnSQoNDaUkAwAALpO/HRIBAACAAqB9+/bq0KGDfv75Z6ujAACAQszX6gAAAABAfhUvXlzJyclq0KCB1VFQwJw4ccL+uHLlytk+fzv+PBcKLx8fH6fPaRiG0tPTnT4vAPegSAMAAIDHq1y5svbu3auUlBSro6CAqVatmqSby4us528HRYj3YCckAP+LIg0AAAAer0ePHtq7d69WrFihNm3aWB0HBcitihAKEjhi3LhxOb6+ePFixcbGSpLq1aunZs2aqVy5cjJNU/Hx8YqJidFvv/0mwzDUpEkTRUZGuiM2ABfisAEAAAB4vDNnzqhBgwZKTU3Vzz//rPr161sdCQVEdHS0/fGQIUOyff52/HkueKfXX39d48aNU8OGDTVt2jQ1bdo02+tiY2P12GOPaceOHRo/frxeffVVNycF4EwUaQAAACgUfvnlF/Xt21eXL1/W3/72Nw0aNEhVq1a1OhaAQmjlypXq3LmzatWqpa1bt6pYsWI5Xp+cnKyIiAgdOnRIP/30kzp16uSmpACcjSINAAAAHq969eqSpKSkJCUkJMgwDEnXDyEoXbp0jhuGG4ahw4cPuyUngMLh/vvv13/+8x9Nnz5djzzyiENjoqKiNGzYMPXq1UsLFixwbUAALsMeaQAAAPB4x44du+H7rL8VX758WZcvX85xbFbpBuTmu+++05gxYyhfYd8X7e6773Z4TMOGDSVJMTExLskEwD0o0gAAAODx2K8K7pCUlKRjx45RvkIXLlyQJF28eNHhMZcuXZIkJSYmuiQTAPegSAMAAIDHi4qKsjoCAC9SoUIFHTt2TN999506dOjg0Jhvv/1WkhQaGurKaABczGZ1AAAAAAAAPEm3bt1kmqamTp2qefPm5Xr9t99+q6lTp8owDEVGRrohIQBXoUgDAAAAACAPXnnlFZUsWVKZmZkaOHCgevfurR9++EEnT55UWlqa0tPTdfLkSf3www964IEHNGDAAGVkZKhEiRJ6+eWXrY4PIB+4tRMAAACFztWrV7V161adOXNGKSkpuv/++1WyZEmrYwEoJCpWrKgFCxbovvvu0+XLl7Vo0SItWrToltebpqkSJUpowYIFqlixohuTAnA2VqQBAACg0Pj99981ZMgQlS5dWm3btlX//v31yCOPKC4u7obrpk+frmbNmqlz5872Ez4BIC/atWunnTt36oEHHpDNZpNpmtl+2Ww29enTRzt37lS7du2sjg0gn1iRBgAAgEJhy5YtioyMVGJi4g3lWHYnLN53330aOXKk0tLStGzZMnXt2tWdUQEUElWqVNF3332nM2fOaPXq1dq1a5f9v0FBQUFq0KCBOnTooPLly1sdFYCTUKQBAADA4128eFH333+/Lly4oNDQUL366qtq06aNGjRokO31ZcuWVffu3bVw4UItXryYIg1AvpQvX14DBw7UwIEDrY4CwMUo0gAAAODxPv74Y509e1bBwcHatGmTKleunOuYzp07a8GCBdqyZYsbEgIAgMKAIg0AAAAeb9GiRTIMQ88995xDJZok1atXT5J0+PBhV0ZDAeDj42N1BABAIUGRBgAAAI938OBBSVLbtm0dHlO6dGlJ0qVLl1wRCQUIB0rA1RITE7Vjxw4lJCToypUruf7ODR482E3JADgbRRoAAAA83pUrVyRJxYoVc3hMUlKSJMnf398lmVBwtG3bNttDJ4D8WrNmjcaNG6cNGzY4PMYwDIo0wINRpAEAAMDjlS1bVidPntTvv/+uhg0bOjRm69atkqTQ0FBXRkMBsGbNGqsjoBD69NNP9cwzz8g0TVY9Al7EZnUAAAAAIL+aNWsmSfrxxx8duj4jI0PTpk2TYRhq3bq1K6MBKIT27t2rUaNGyTRNNWjQQD/88IMWL14s6fqKs8OHDys2NlafffaZIiIiJEmtW7fW7t27deTIESujA8gnijQAAAB4vIEDB8o0Tc2YMUPbtm3L8drMzEw98cQT2rNnjyTp4YcfdkdEAIXIxx9/rIyMDAUHB2v9+vW67777bjjopFq1aoqIiNBjjz2mmJgYjRkzRhs2bNAzzzyjKlWqWJgcQH5RpAEAAMDj9e3bV/fcc4+uXbume++9V1OmTFF8fLz9dcMwdPbsWc2ePVtNmjTRjBkzZBiGunXrpvbt21sXHIBHWrt2rQzD0KhRo1SiRIkcrzUMQ++88446duyo1atXa8aMGW5KCcAVDJObuQEAAFAIJCQkqG3bttq3b99NG8sXKVJEqamp9u+zbsdau3at/fROAHBUqVKllJSUpP/85z/q3r27JGnPnj2qX7++DMPQ1atX5efnd8OYefPm6aGHHlL79u21atUqK2IDcAIOGwAAAEChEBwcrNjYWP3tb3/T9OnTdfXqVftr165dsz/28/PT0KFD9f777+fplE94t9dee+2G78eOHWtREhQEWf99qVChgv25P//3JDExUSEhITeMueuuuyTJfls5AM/EijQAAAAUOufPn9dPP/2k2NhYxcfHKyMjQ2XKlFF4eLi6d+9+w4dfwBE2m+2GlY4ZGRkWpoHVQkNDFR8fr/Xr1+uee+6RJKWkpNhv81y7du1NB5ksW7ZM3bp1U5EiRW4o+gF4FlakAQAAoNApU6aMBg0apEGDBlkdBYVI1hqE/711GN6nTp06io+P18GDB+1FWkBAgGrWrKmDBw9q4cKFNxVpCxculCSVLVvW7XkBOA9FGgAAADzeiRMnJEkVK1aUj4+PQ2MyMzMVFxcnSTectgdkJyoqyuoIKEBat26ttWvXat26dRoyZIj9+T59+ujtt9/WRx99pDp16mjAgAFKSUlRdHS0pk2bJsMw1LFjRwuTA8gvbu0EAACAx7PZbLLZbNq5c6fq1q3r0JjDhw+rZs2astlsSk9Pd3FCAIXJL7/8opYtWyooKEhxcXHy9/eXdP228tq1aysxMfGmMaZpqmjRooqNjVVYWJi7IwNwEpvVAQAAAABnuN2/D/N3ZQB51bx5c0VFRemdd965oTQrU6aMfvrpJ1WtWlWmad7wFRISou+//54SDfBwrEgDAACAx8vaCH7Xrl0Or0g7dOiQatWqJR8fH6Wlpbk4IQBvkpaWplWrVmn37t1KT09XzZo11bVrVwUEBFgdDUA+sUcaAAAAvNLp06clyX7KHgA4i5+fn7p27aquXbtaHQWAk1GkAQAAoNBw5DTFtLQ0HT58WG+88YYkqXbt2q6OBQ9w8eJFnTt3TufPn1fRokVVtmxZBQcHy8/Pz+poAIAChCINAAAAHie7kzlN01T9+vXzNI9hGOrXr5+zYsGDbNiwQWvWrNH69eu1adMmJScnZ3tdrVq11KZNG7Vp00Zdu3ZVSEiIm5MCAAoS9kgDAACAx7HZnHNmVv/+/TVnzpxsizkUPqdPn9ann36qmTNn6uTJk/bnc/tIlLXS0cfHR507d9ZTTz2lHj16uDQrCrZZs2bla/zgwYOdlASAu1GkAQAAwONMmDDhpu8Nw9ATTzyR44ohwzDk7++v0NBQ3XPPPapRo4aro6IAOHnypP75z38qKipKaWlp9uLMx8dH9erVU+PGjRUSEqKgoCAFBgbqypUrunDhghITE3XgwAHFxsYqISHBPp9hGKpTp47GjRun/v37W/VjwUJZB5zcDsMwlJ6e7uREANyFIg0AAAAe73ZO7YR3mDBhgt577z1duXJFpmkqJCREAwYMUN++fdW0aVMVLVrUoXmOHj2qlStXau7cuVq3bp0yMzNlGIaaNWumzz//PM+3FcOz5WdVrGEYysjIcGIaAO5EkQYAAACPFx0dLUl64IEHVLJkSYvToCDJKjw6d+6s559/Xp06dcr3rcGnTp3SjBkzNGnSJF24cEHjx4/X2LFjnREXHuL48eO5XpOcnKz9+/drzpw5mj9/vu655x5NmzZNxYoVU5UqVdyQEoArUKQBAAAAKLR69OihsWPHqnnz5k6fOzk5WVOmTFGJEiX05JNPOn1+FB5ffvml/vrXv6pdu3ZasWLFbd8WCsB6FGkAAAAAALjYo48+qujoaE2ZMkVPPPGE1XEA3CaKNAAAABQq58+f16ZNm3TkyBFdvnzZob2IuC0PgKstXbpUkZGRatasmTZv3mx1HAC3iSINAAAAhUJ8fLz+7//+T99++22eT8Rj428ArrZ9+3ZFRESoVKlSSkxMtDoOgNuUv102AQAAgAIgMTFRrVu31ldffaW0tDSZppmnL3ifsLAwvffeezp79qzVUeAlTpw4IUlKS0uzOAmA/KBIAwAAgMd7++23dejQIZmmqS5dumjp0qU6d+6cMjIylJmZmesXvM/+/fv10ksvqVKlSurdu7cWLlzIykS4TFpamt59911J0l133WVxGgD5wa2dAAAA8Hh16tTRwYMH1aNHDy1cuNDqOPAAjRs31rZt2yTJfoJi2bJlNXjwYA0dOlRhYWFWxkMBl7W6LCeZmZlKTExUbGysJk+erN9++02S9MYbb+ill15ydUQALkKRBgAAAI8XEBCga9euacmSJeratavVceAhdu3apRkzZmju3Lk6d+6cpP+Was2bN9ewYcM0YMAAFS9e3MqYKIB8fHzyPMY0TbVs2VKrVq3SHXfc4YJUANyBIg0AAAAeLyQkROfPn9fWrVvVqFEjq+PAw6Snp2vRokWKiorS0qVLlZ6ebi/UAgIC9OCDD2ro0KFq06aNxUlRUNhsedslKSgoSI899pheffVVFS1a1EWpALgDRRoAAAA83r333qs1a9Zo/vz5uv/++62OAw929uxZRUdHKzo6Wnv37pX031VqNWrU0LBhwzR48GCFhoZaGRMWi46OzvUam82mEiVKqFq1aqpfv/5trWIDUPBQpAEAAMDjzZs3Tw899JD69Omjb7/91uo4KCR++eUXTZ8+XfPmzdOlS5ckXS/VfHx81LVrVw0bNky9evWiIAEAL0KRBgAAgELhL3/5i7766is28obTLV68WCNGjNDZs2clXd/rKmuVWmhoqF544QU9/fTT8vX1tTImAMANKNIAAADg8datW6eMjAy9+uqr2rRpkxo3bqxBgwapTp06CggIyHV827Zt3ZASnuT48eOKjo7WzJkzdfz4cUnXCzRfX1917txZu3fvtp/caBiGwsPDtXz5cgUGBloZGwDgYhRpAAAA8Hg2m82+QiivDMNQenq6kxPBE129elXfffedoqKitGbNGpmmqayPSzVr1tSwYcP0yCOPKCQkRJK0fPlyvffee1qxYoUMw9AzzzyjSZMmWfgTwJ0OHDig9evX69dff1VCQoL++OMP3XHHHQoODlZYWJjatGmjFi1aWB0TgJNRpAEAAMDj5fUEvT8zDEMZGRlOTANPs3nzZkVFRenrr7/W5cuXJV1ffebv76++fftqxIgROa5afPbZZ/Xxxx+ratWqOnLkiLtiwyKLFy/W22+/rY0bN+Z6baVKlfT888/rqaeeYi89oJCgSAMAAIDHW7t2bb7Gt2vXzklJ4ClOnz6t2bNnKyoqSgcOHJAk++qzhg0bavjw4Xr44YdVqlSpXOfatm2bGjduLB8fH6Wlpbk0N6xz5coVPfnkk5o9e7ak//6+5CRrpWx4eLi+//57VapU6YbXz58/r40bN6pXr17ODwzAJSjSAAAAAHgdPz8/ZWZm2suQkiVL6qGHHtLw4cPVpEmTPM11+PBh1axZk9WNhVhaWpp69uypFStW2H9nWrZsqfvuu08REREqV66cihUrpqSkJJ09e1a//vqrFi5cqM2bN9vnqFSpkjZu3KiKFStKko4dO6Zu3bpp0KBBGjt2rCU/F4C841gZAAAAAF4nq/Bq2bKlRowYof79+zt0MEV2ypUrp6ioKGfGQwHzyiuvaPny5ZKury6bOnVqjoVrly5d9NJLLykmJkaPP/64tm/frt9//10DBw7UunXrtGPHDnXv3t1+EiwAz8GKNAAAAABe5/nnn9fw4cMVFhZmdRQUcEeOHFHdunWVlpame++9VwsXLpS/v7/D469evapevXpp5cqVMgxDo0aN0syZM3Xx4kXZbDZ9+eWXevDBB134EwBwJoo0AAAAeJTXXnvN6XNyWxWAW3n99dc1btw4BQcHa+/evSpTpkye5zh//rzq1KmjCxcuSPrvYRazZs1Sv379nB0ZgAtRpAEAAMCj2Gw2+wbezsK+VgBupXXr1tq0aZNeeOEFvfPOO7c9z9/+9je99957kqSQkBAtWLBAzZs3d1ZMAG5y++eEAwAAABYxTdNpXwCQk2PHjkmSOnbsmK95ssYbhqFffvmFEg3wUBw2AAAAAI+yevVqqyPAg+S3/MiOYRhauXKl0+dFwZSQkCDp+qES+RESEiLp+u9PlSpV8p0LgDUo0gAAAOBR2rVrZ3UEeJA1a9bIMAynrD7MmsfZtxajYCtZsqTOnz+vxMTEfM1z8eJFSVJgYKAzYgGwCEUaAAAAgEKrbdu2FF/IlwoVKuj8+fOKjY1Vhw4dbnuemJgYSVLFihWdFQ2ABSjSAAAAABRaa9assToCPFz79u21c+dORUVF6bnnnpOPj0+e50hPT9eMGTNkGIbat2/v/JAA3IbDBgAAAAAAuIUHH3xQkrR//3698sortzXH3//+d+3fv1+S1L9/f6dlA+B+FGkAAAAAANxCq1atFBkZKdM0NXHiRI0cOVIpKSkOjU1JSdHIkSM1ceJEGYahyMhI3XPPPS5ODMCVDJMzvwEAAABA0vVb8LI2lQ8MDJSvL7vhQDp58qRatGihkydPyjAMlS9fXsOGDVPPnj3VqFEjFSlSxH7ttWvXtGPHDi1cuFBRUVE6c+aMTNNUpUqVtGnTJlWoUMHCnwRAflGkAQAAAPBqe/fu1SeffKIVK1bo4MGD9hM+DcNQzZo11blzZz3xxBOqW7euxUlhpb1796pnz546evToDQdY2Gw2lSpVSsWKFVNSUpIuXbqkzMxM++umaapGjRpatGiR6tSpY0V0AE5EkQYAAADAa7388suaOHGiMjMzdauPRoZhyGazacyYMXrzzTfdnBAFSVJSkl588UVFRUXp2rVrN7xmGMZNv0P+/v569NFH9fbbb6t48eLujArARSjSAAAAAHilZ555Rp988om9/AgLC1Pz5s1Vvnx5maaps2fPasuWLdqzZ4+k60XJ008/rQ8//NDK2CgAzp07p6+++krr1q3Tjh07lJCQoKSkJJUoUULBwcG6++671bZtWw0cOFDBwcFWxwXgRBRpAAAAALzOzz//rDZt2sgwDIWFhWnatGm33AR+06ZNeuKJJ7Rr1y4ZhqH169ezYTwAeClO7QQAAADgdaZOnSpJqlatmn7++ecci7GWLVtq3bp1ql69uiTps88+c0tGAEDBQ5EGAAAAwOusX79ehmHopZdeUqlSpXK9vlSpUvrb3/4m0zS1fv16NyQEABREFGkAAAAAvM6ZM2ckSeHh4Q6PiYiIkCSdPXvWJZkAAAWfr9UBAAAAAMDd/P39lZqaquTkZIfHJCUlSZLuuOMOV8VCIfXaa6/d8P3YsWMtSgIgvyjSAAAAAHidatWqaceOHVq4cKHatm3r0JhFixZJkn2vNMBR48ePl2EY9u8p0gDPxa2dAAAAALxOZGSkTNPU5MmTtXLlylyvX7lypT7++GMZhqHIyEg3JERhY5qmTNO0OgaAfDJM/i8ZAAAAgJdJSEjQXXfdpcuXL8vHx0cjRozQo48+qvDwcNls19cbZGZmatu2bZo+fbq++OILpaenq1SpUjp06JDKlClj8U8ATxIdHX3D90OGDLEoCYD8okgDAAAA4JWWLVum++67T6mpqfbb7ooUKaKgoCAZhqHz588rNTVV0vXVREWKFNF//vMfderUycrYAAALUaQBAAAA8Frbt2/XY489ptjY2Byva9q0qaZNm6aGDRu6KRkAoCCiSAMAAADg9WJiYrRixQr99ttvunDhgiQpKChI9evXV6dOndS0aVOLEwIACgKKNAAAAAAAAMABvlYHAAAAAAB3WbJkiX788UcdP35cGRkZqlChgtq3b6/+/fvLz8/P6njwUBcvXtS5c+d0/vx5FS1aVGXLllVwcDC/U0AhxIo0AAAAAIVefHy8+vTpo02bNmX7etWqVbVw4ULVq1fPzcngiTZs2KA1a9Zo/fr12rRpk5KTk7O9rlatWmrTpo3atGmjrl27KiQkxM1JATgbRRoAAACAQi0zM1OtW7fW5s2bc7wuNDRUv/32mwIDA92UDJ7k9OnT+vTTTzVz5kydPHnS/nxuH6mzToT18fFR586d9dRTT6lHjx4uzQrAdSjSAAAAABRq8+bN00MPPSTDMFS1alW98soratGihXx9fbVz505NnDhRMTExMgxDr7zyil5//XWrI6MAOXnypP75z38qKipKaWlp9uLMx8dH9erVU+PGjRUSEqKgoCAFBgbqypUrunDhghITE3XgwAHFxsYqISHBPp9hGKpTp47GjRun/v37W/VjAbhNFGkAAAAACrV+/fpp/vz5qly5srZu3aoyZcrc8HpaWpo6dOigjRs3qmbNmtq/f79FSVHQTJgwQe+9956uXLki0zQVEhKiAQMGqG/fvmratKmKFi3q0DxHjx7VypUrNXfuXK1bt06ZmZkyDEPNmjXT559/rvr167v4JwHgLBRpAAAAAAq16tWr6/jx4/rggw80atSobK9ZuXKlOnfuLMMwdOnSJRUrVszNKVEQ2Ww2SVLnzp31/PPPq1OnTvbnbtepU6c0Y8YMTZo0SRcuXND48eM1duxYZ8QF4AYUaQAAAAAKteLFi+vKlSvauHGjmjdvnu01ycnJKlGihAzD0OHDh1W1alX3hkSB1KNHD40dO/aWvzf5kZycrClTpqhEiRJ68sknnT4/ANegSAMAAABQqNlsNhmGoV27dqlu3bq5Xvfbb78pLCzMjQkBAJ4if2tSAQAAAKCQYa0BAOBWKNIAAAAAAAAAB/haHQAAAAAA3GHBggWKjY11ynWDBw92Vix4oLCwMD366KMaPHiwypUrZ3UcAG7EHmkAAAAACrWsvc+cxTAMpaenO20+eJ6s3ykfHx9FRkbq0UcfVY8ePeTj42N1NAAuRpEGAAAAoFCz2Zy7o41hGMrIyHDqnPAsjRs31rZt2yTJXtKWLVtWgwcP1tChQzmsAijEKNIAAAAAFGrR0dFOn3PIkCFOnxOeZdeuXZoxY4bmzp2rc+fOSfpvqda8eXMNGzZMAwYMUPHixa2MCcDJKNIAAAAAALhN6enpWrRokaKiorR06VKlp6fbC7WAgAA9+OCDGjp0qNq0aWNxUgDOQJEGAAAAAIATnD17VtHR0YqOjtbevXsl/XeVWo0aNTRs2DANHjxYoaGhVsYEkA8UaQAAAAAAONkvv/yi6dOna968ebp06ZIk2Q8o6Nq1q4YNG6ZevXpxQAHgYSjSAAAAAABwkcWLF2vEiBE6e/asJMk0TfsqtdDQUL3wwgt6+umn5evra2VMAA6iSAMAAAAAwImOHz+u6OhozZw5U8ePH5d0vUDz9fVV586dtXv3bp04cULS9VVq4eHhWr58uQIDA62MDcABzj0HGgAAAAAAL3T16lXNmTNHnTp1Uo0aNTRhwgQdO3ZMpmnqrrvu0ttvv624uDgtXrxYx44d008//aROnTrJNE1t27ZNEyZMsPpHAOAAVqQBAAAAAHCbNm/erKioKH399de6fPmypOurz/z9/dW3b1+NGDFCbdu2veX4Z599Vh9//LGqVq2qI0eOuCs2gNtEkQYAAAAAQB6cPn1as2fPVlRUlA4cOCDpenkmSQ0bNtTw4cP18MMPq1SpUrnOtW3bNjVu3Fg+Pj5KS0tzaW4A+cduhgAAAAAA5EHlypWVmZlpL89Kliyphx56SMOHD1eTJk3yNFfJkiUlSZmZmU7PCcD5KNIAAAAAAMiDjIwMSVLLli01YsQI9e/fXwEBAbc1V7ly5RQVFeXMeABciFs7AQAAAADIg+eff17Dhw9XWFiY1VEAuBlFGgAAAAAAAOAAm9UBAAAAAAAAAE/AHmkAAAAAkIt169ZJksqUKaN69epZnAYAYBVu7QQAAACAXNhsNhmGIUnq1KmTxo4dq1atWlmcCq7WsWNHp89pGIZWrlzp9HkBuAdFGgAAAADkwmb77644WYVa+/btNXbsWLVr186qWHCxrALVGR+bs+YxDMN+6icAz0ORBgAAAAC5GDp0qCTpypUr2rx5s06cOCFJlCKFXPv27e3FqTOtXr3a6XMCcA+KNAAAAADIo+PHj2vNmjVav369vvjiC6vjAADchCINAAAAAAAAcIAt90sAAAAAAAAA+FodAAAAAACAwiA9PV2JiYmSpMDAQPn68pEbKGxYkQYAAAAAwG3au3evnnnmGYWFhcnf31/ly5dX+fLl5e/vr7CwMI0aNUp79uyxOiYAJ2GPNAAAAACF1qOPPur0OQ3D0PTp050+LzzPyy+/rIkTJyozM1O3+mhtGIZsNpvGjBmjN998080JATgbRRoAAACAQstms8kwDKfNZ5qmDMNQRkaG0+aEZ3rmmWf0ySef2Au0sLAwNW/eXOXLl5dpmjp79qy2bNliX41mGIaefvppffjhh1bGBpBPFGkAAAAACq2qVavmWKSlpKTo3Llz9u+LFCmioKAgmaapxMREpaamSrpeggQHBysgIECSdPToUdcGR4H2888/q02bNjIMQ2FhYZo2bZruueeebK/dtGmTnnjiCe3atUuGYWj9+vW3vBZAwcceaQAAAAAKrWPHjuno0aPZfn333XcqVqyYfH199eSTTyomJkbJyck6deqUTp8+reTkZMXGxurJJ5+Uj4+PihUrpu+++44SDZo6daokqVq1avr5559zLMZatmypdevWqXr16pKkzz77zC0ZAbgGK9IAAAAAeJ3Tp08rPDxcFy9e1JIlS9ShQ4ccr1+7dq26deumUqVKadu2bQoNDXVTUhRE1apV04kTJzR16lQNHz7coTGff/65Hn/8cVWpUoUyFvBgrEgDAAAA4HUmTpyo+Ph4jR49OtcSTZLatWun0aNHKz4+Xu+9954bEqIgO3PmjCQpPDzc4TERERGSpLNnz7okEwD3oEgDAAAA4HX+85//yDAM9ejRw+ExWdcuXrzYVbHgIfz9/SVJycnJDo9JSkqSJN1xxx0uyQTAPSjSAAAAAHiduLg4Sf8tRByRdW3WWHivatWqSZIWLlzo8JhFixZJkn2vNACeiSINAAAAgNcpVqyYJCkmJsbhMVu2bJEk+8md8F6RkZEyTVOTJ0/WypUrc71+5cqV+vjjj2UYhiIjI92QEICrUKQBAAAA8DpNmjSRaZp68803de7cuVyvj4+P11tvvSXDMNS0aVM3JERBNnr0aJUsWVJpaWnq3r27Ro4cqa1btyozM9N+TWZmprZu3aqnnnpK3bt3V1pamkqWLKnRo0dbFxxAvnFqJwAAAACvs2TJEvXs2VOGYahKlSr617/+pfvuu082241rDTIzM7Vo0SI999xzOnr0qAzD0OLFi9WtWzeLkqOgWLZsme677z6lpqbKMAxJUpEiRRQUFCTDMHT+/HmlpqZKkkzTVJEiRfSf//xHnTp1sjI2gHyiSAMAAADglUaPHq2PPvrIXoIEBgYqPDxcISEhMgxDZ8+e1fbt23XhwgVlfWx69tln9cEHH1gZGwXI9u3b9dhjjyk2NjbH65o2bapp06apYcOGbkoGwFUo0gAAAAB4rffff1/jxo1TSkqKJNlLtSxZH5eKFi2q119/Xc8995zbM6Lgi4mJ0YoVK/Tbb7/pwoULkqSgoCDVr19fnTp14nZgoBChSAMAAADg1eLj4xUdHa0VK1Zo165dSkxMlHR9hVqDBg3UqVMnDRkyRCEhIRYnBQBYjSINAAAAAAAHLFmyRD/++KOOHz+ujIwMVahQQe3bt1f//v3l5+dndTwAbkCRBgAAAABADuLj49WnTx9t2rQp29erVq2qhQsXql69em5OBsDdKNIAAAAAALiFzMxMtW7dWps3b87xutDQUP32228KDAx0UzIAVvC1OgAAAAAAFASXLl3S5cuXlZGRkeu1lStXdkMiFATffvutNm/eLMMwVLVqVb3yyitq0aKFfH19tXPnTk2cOFExMTE6c+aM/vWvf+n111+3OjIAF2JFGgAAAACvtXz5cn3yySdav369/ZCB3BiGofT0dBcnQ0HRr18/zZ8/X5UrV9bWrVtVpkyZG15PS0tThw4dtHHjRtWsWVP79++3KCkAd7BZHQAAAAAArDBq1Ch169ZNCxcu1IULF2SapsNf8B6//vqrDMPQc889d1OJJkl+fn6aMGGCJOnQoUNKTk52d0QAbsStnQAAAAC8zty5czV58mRJkr+/v3r37q3GjRsrKChINhvrDfBf8fHxkqTmzZvf8poWLVrYH587d07FihVzeS4A1qBIAwAAAOB1pk6dKkmqVKmSVq1apRo1alicCAVVSkqKDMNQiRIlbnnNn4uzK1euuCMWAIvwpxYAAAAAXmfnzp0yDEPjxo2jRINTcesvULhRpAEAAADwOmlpaZKk8PBwi5MAADwJt3YCAAAA8DpVq1bV3r17lZSUZHUUeIgFCxYoNjbWKdcNHjzYWbEAuJlhsu4UAAAAgJcZO3as3njjDb366qsaP3681XFQgNlsNhmG4bT5DMNQenq60+YD4F4UaQAAAAC8zsWLF9WoUSMlJiZq8+bNqlOnjtWRUEA5+xRXwzCUkZHh1DkBuA+3dgIAAADwOqVKldLSpUt13333qVWrVnr99dc1cOBABQYGWh0NBUxUVJTVEQAUIKxIAwAAAOB1qlevLklKSUlRfHy8DMOQYRgKDg5WQEBAjmMNw9Dhw4fdERMAUMBQpAEAAADwOvm5XY9b8wDAe3FrJwAAAACvM2TIEKsjAAA8ECvSAAAAAAAAAAc49/gRAAAAAAAAoJCiSAMAAAAAAAAcQJEGAAAAAAAAOIDDBgAAAAB4vcTERO3YsUMJCQm6cuWKcttKevDgwW5KBgAoSDhsAAAAAIDXWrNmjcaNG6cNGzY4PMYwDKWnp7swFQCgoGJFGgAAAACv9Omnn+qZZ56RaZq5rkADAEBijzQAAAAAXmjv3r0aNWqUTNNUgwYN9MMPP2jx4sWSrq84O3z4sGJjY/XZZ58pIiJCktS6dWvt3r1bR44csTI6AMBC3NoJAAAAwOs89dRT+uyzz1S2bFkdOnRIJUqU0O7du9WgQQMZhqGMjAz7taZp6qWXXtJ7772njh07asWKFRYmBwBYiRVpAAAAALzO2rVrZRiGRo0apRIlSuR4rWEYeuedd9SxY0etXr1aM2bMcFNKAEBBQ5EGAAAAwOvExcVJkv22Tel6YZYlLS3tpjGPPfaYTNPUv//9b9cHRKGybt06rVu3Trt377Y6CoB8okgDAAAA4HWuXr0qSapQoYL9uWLFitkfJyYm3jTmrrvukiTt2bPHxelQ2LRv314dOnTQ3Xffra5du+rnn3+2OhKA20SRBgAAAMDrBAUFSZKSk5Ptz5UtW9a+Ku3AgQM3jUlISJAk/fHHH64PiEIn63TYFStWqG3btrr33nu1du1aq2MByCOKNAAAAABep06dOpKkgwcP2p8LCAhQzZo1JUkLFy68aUzWc2XLlnVDQhQmQ4YM0ZAhQ9S/f39VqlRJpmlq9erV6tixo9XRAOSRr9UBAAAAAMDdWrdurbVr12rdunUaMmSI/fk+ffro7bff1kcffaQ6depowIABSklJUXR0tKZNmybDMCg/kGdRUVE3fH/8+HGtWbNG69evtygRgNtlmKZpWh0CAAAAANzpl19+UcuWLRUUFKS4uDj5+/tLks6fP6/atWtnu0eaaZoqWrSoYmNjFRYW5u7IAIACgCINAAAAgFeKjo5Wenq6IiMjFRoaan9+69at6t+/v44ePXrD9SEhIZo1a5a6dOni7qgAgAKCIg0AAAAA/kdaWppWrVql3bt3Kz09XTVr1lTXrl0VEBBgdTQAgIUo0gAAAAAAAAAHcNgAAAAAAADZePTRR50+p2EYmj59utPnBeAerEgDAAAAACAbNptNhmE4bT7TNGUYhjIyMpw2JwD3YkUaAAAAAK92/vx5bdq0SUeOHNHly5cdKjnGjh3rhmSwWuXKlXMs0lJSUnTu3Dn790WKFFFQUJBM01RiYqJSU1MlXV+FFhwczB57QCHAijQAAAAAXik+Pl7/93//p2+//Vbp6el5GsuKIvz666/q16+f4uLiNGLECD366KNq1KiRfHx8JF3/HdmxY4emT5+uzz//XHfeeae+/fZbRUREWJwcQH5QpAEAAADwOomJiWrevLkOHz6s2/lIlJmZ6YJU8BSnT59WeHi4Ll68qCVLlqhDhw45Xr927Vp169ZNpUqV0rZt2xQaGuqmpACczWZ1AAAAAABwt7fffluHDh2SaZrq0qWLli5dqnPnzikjI0OZmZm5fsG7TZw4UfHx8Ro9enSuJZoktWvXTqNHj1Z8fLzee+89NyQE4CoUaQAAAAC8zoIFC2QYhnr27KmlS5eqS5cuKlOmjFM3lkfh9Z///EeGYahHjx4Oj8m6dvHixa6KBcANKNIAAAAAeJ0TJ05IkkaOHGlxEniiuLg4SZK/v7/DY7KuzRoLwDNRpAEAAADwOsWLF5cklStXzuIk8ETFihWTJMXExDg8ZsuWLZLEyZ2Ah6NIAwAAAOB1GjRoIEk6fvy4xUngiZo0aSLTNPXmm2/q3LlzuV4fHx+vt956S4ZhqGnTpm5ICMBVKNIAAAAAeJ3HH39cpmlq9uzZVkeBB3r66aclSadOnVLz5s31ww8/ZHsIRWZmphYsWKCWLVvq5MmTkqRRo0a5NSsA5zLM2znrGQAAAAA83F/+8hd99dVXeuONN/TSSy9ZHQceZvTo0froo4/sB1QEBgYqPDxcISEhMgxDZ8+e1fbt23XhwgVlfex+9tln9cEHH1gZG0A+UaQBAAAAKLTWrVt3y9fS09M1duxYbdq0SY0bN9agQYNUp04dh/awatu2rTNjwkO9//77GjdunFJSUiTpplNfsz5uFy1aVK+//rqee+45t2cE4FwUaQAAAAAKLZvNdlO5kV+GYSg9Pd2pc8JzxcfHKzo6WitWrNCuXbuUmJgo6foKtQYNGqhTp04aMmSIQkJCLE4KwBko0gAAAAAUWjab87eFNgxDGRkZTp8XAFDw+VodAAAAAABcZfXq1VZHAAAUIqxIAwAAAAAAABzAijQAAAAAAPLp0qVLunz5skO3/VauXNkNiQC4AkUaAAAAAAC3Yfny5frkk0+0fv16+yEDueGwCsCzUaQBAAAAAJBHo0aN0pQpUyRJ7JgEeA+KNAAAAACFVo8ePTR+/Hg1bdrU6XOnpKRo8uTJKl68uJ566imnz4+Ca+7cuZo8ebIkyd/fX71791bjxo0VFBTkkpNiARQcFGkAAAAACq0ff/xRS5cuVbdu3fT888+rY8eO+Z7z9OnTioqK0qRJk3T+/HmNGzfOCUnhSaZOnSpJqlSpklatWqUaNWpYnAiAu3BqJwAAAIBCa8KECXr33Xd15coVGYah0NBQDRo0SH369FFERISKFCni0DzHjx/XypUrNXfuXK1du1aZmZkyTVMtWrTQF198obp167r4J0FBEhgYqEuXLunzzz/Xo48+anUcAG5EkQYAAACgUDt58qRee+01zZw5U2lpaTIMQ5Lk5+enBg0aKDw8XCEhIQoMDFRgYKCuXLmiCxcuKDExUQcOHFBMTIwSEhIk/XcvrLCwMI0fP14PPvigZT8XrFO8eHFduXJFsbGxCg8PtzoOADeiSAMAAADgFU6dOqUpU6YoOjpap06dsj+fVazdStZHJh8fH3Xq1EkjR45Ujx49ch2Hwqt+/frau3ev1qxZozZt2lgdB4AbsQsiAAAAAK9QoUIFvfHGG/r999+1du1ajR8/Xvfee68CAgJkmma2X3fddZceffRRRUVFKS4uTj/++KN69uxJiebl+vTpI0lauXKlxUkAuBsr0gAAAAB4vcTERJ07d04XLlyQv7+/ypYtq7Jlyzq8hxq8y8WLF9WoUSMlJiZq8+bNqlOnjtWRALgJRRoAAAAAAHm0f/9+3XfffUpISNDrr7+ugQMHKjAw0OpYAFyMIg0AAAAAgDyoXr26JCklJUXx8fEyDEOGYSg4OFgBAQE5jjUMQ4cPH3ZHTAAuQJEGAAAAAEAe2Gy3v924YRjKyMhwYhoA7uRrdQAAAAAAcLUff/xRf//73yVJL7zwggYNGuTw2Dlz5uj999+XJL377rvq1KmTSzLCcwwZMsTqCAAswoo0AAAAAIWaaZoKCwvTwYMH1bFjRy1fvjzP47t06aKVK1eqQYMG2rFjh4uSAgAKuttfjwoAAAAAHmDVqlU6cOCAbDabJk2alOfxhmHoww8/lI+Pj3777TetWbPG6RkBAJ6BIg0AAABAofbdd99Jkjp37qx69erd1hx169ZV165db5gPAOB9KNIAAAAAFGpbtmyRYRjq1atXvubp2bOnTNPU5s2bnZQMAOBpOGwAAAAAQKF2/PhxSVLt2rXzNU+tWrUkSceOHctvJBQyiYmJ2rFjhxISEnTlyhXlthX54MGD3ZQMgLNRpAEAAAAo1C5evChJCgoKytc8WeMvXbqU70woHNasWaNx48Zpw4YNDo8xDIMiDfBgFGkAAAAACrWSJUsqMTFRf/zxR77myRpfokSJ/IeCx/v000/1zDPPyDTNXFegASg82CMNAAAAQKEWEhIiSdqzZ0++5tm7d+8N88F77d27V6NGjZJpmmrQoIF++OEHLV68WNL1FWeHDx9WbGysPvvsM0VEREiSWrdurd27d+vIkSNWRgeQTxRpAAAAAAq1Zs2ayTRNLVy4MF/zLFiwQIZhqGnTpk5KBk/18ccfKyMjQ8HBwVq/fr3uu+8+Va5c2f56tWrVFBERoccee0wxMTEaM2aMNmzYoGeeeUZVqlSxMDmA/KJIAwAAAFCode/eXZK0fPlyrVu37rbmWLdunZYtW3bDfPBea9eulWEYGjVqVK63+hqGoXfeeUcdO3bU6tWrNWPGDDelBOAKFGkAAAAACrW+ffuqevXqMk1T/fv31/79+/M0/sCBA+rfv78Mw1DVqlXVr18/FyWFp4iLi5Mk+22b0vXCLEtaWtpNYx577DGZpql///vfrg8IwGUo0gAAAAAUar6+vnr//fdlGIbOnTunJk2a6IMPPlBSUlKO45KSkjRp0iQ1adJE8fHxkqT3339fvr6c2ebtrl69KkmqUKGC/blixYrZHycmJt405q677pKU/736AFiL/w8AAAAAoNC7//779c9//lN///vflZKSohdeeEHjxo1TmzZtFBERoXLlyqlYsWJKTk7W2bNn9euvv2r9+vVKTk62n8g4YcIE9e7d29ofBAVCUFCQ4uPjlZycbH+ubNmy9lVpBw4cuOlQioSEBEnK9+mxAKxFkQYAAADAK7z88su688479dRTTyk5OVlJSUlaunSpli5dmu31WQVaQECAJk+erEceecSNaVGQ1alTR/Hx8Tp48KDuueceSdd/T2rWrKmDBw9q4cKFat269Q1jsg67KFu2rNvzAnAebu0EAAAA4DX++te/6sCBA3r++edVtmxZmaZ5y6/g4GC98MILOnDgACUabtC6dWuZpnnT4RV9+vSRaZr66KOPNGPGDCUnJ+vcuXOaOHGipk2bJsMw1LFjR4tSA3AGw8z6MwsAAAAAeJk9e/Zox44dSkhI0OXLl1WiRAkFBwerYcOGqlu3rtXxUED98ssvatmypYKCghQXFyd/f39J0vnz51W7du1s90gzTVNFixZVbGyswsLC3B0ZgJNQpAEAAAAAkEfR0dFKT09XZGSkQkND7c9v3bpV/fv319GjR2+4PiQkRLNmzVKXLl3cHRWAE1GkAQAAAADgRGlpaVq1apV2796t9PR01axZU127dlVAQIDV0QDkE0UaAAAAAAAA4AAOGwAAAAAAAAAcQJEGAAAAAAAAOMDX6gAAAAAAAHiq8+fPa9OmTTpy5IguX76sjIyMXMeMHTvWDckAuAJ7pAEAAAAAkEfx8fH6v//7P3377bdKT0/P01hHyjYABRNFGgAAAAAAeZCYmKjmzZvr8OHDup2P1JmZmS5IBcAd2CMNAAAAAIA8ePvtt3Xo0CGZpqkuXbpo6dKlOnfunDIyMpSZmZnrFwDPxYo0AAAAAADyoE6dOjp48KB69OihhQsXWh0HgBuxIg0AAAAAgDw4ceKEJGnkyJEWJwHgbhRpAAAAAADkQfHixSVJ5cqVszgJAHejSAMAAAAAIA8aNGggSTp+/LjFSQC4G0UaAAAAAAB58Pjjj8s0Tc2ePdvqKADcjCINAAAAAIA86N+/vwYOHKjvv/9eb7/9ttVxALgRp3YCAAAAAJCNdevW3fK19PR0jR07Vps2bVLjxo01aNAg1alTRwEBAbnO27ZtW2fGBOBGFGkAAAAAAGTDZrPJMAynzmkYhtLT0506JwD38bU6AAAAAAAABRVrTwD8GUUaAAAAAADZWL16tdURABQw3NoJAAAAAAAAOIBTOwEAAAAAAAAHUKQBAAAAAAAADqBIAwAAAAAAABxAkQYAAAAAQDZ69OihmJgYl8ydkpKid999V5988olL5gfgGhRpAAAAAABk48cff1SLFi3Uo0cPrVq1yilznj59Wm+++aaqVq2ql19+WQkJCU6ZF4B7cGonAAAAAADZmDBhgt59911duXJFhmEoNDRUgwYNUp8+fRQREaEiRYo4NM/x48e1cuVKzZ07V2vXrlVmZqZM01SLFi30xRdfqG7dui7+SQA4C0UaAAAAAAC3cPLkSb322muaOXOm0tLSZBiGJMnPz08NGjRQeHi4QkJCFBgYqMDAQF25ckUXLlxQYmKiDhw4oJiYGPuqs6yP32FhYRo/frwefPBBy34uALeHIg0AAAAAgFycOnVKU6ZMUXR0tE6dOmV/PqtYu5Wsj9w+Pj7q1KmTRo4cqR49euQ6DkDBRJEGAAAAAICDTNPUhg0btHr1aq1fv16bN29WcnJyttfWrFlTbdq0UZs2bdStWzeVK1fOzWkBOBtFGgAAAAAA+ZCYmKhz587pwoUL8vf3V9myZVW2bFmH91AD4Dko0gAAAAAAAAAH2KwOAAAAAAAAAHgCijQAAAAAAADAARRpAAAAAADk4Mcff1RERIQiIiI0d+7cPI2dM2eOfeyKFStclBCAu7BHGgAAAAAAt2CapsLCwnTw4EF17NhRy5cvz/P4Ll26aOXKlWrQoIF27NjhoqQA3IEVaQAAAAAA3MKqVat04MAB2Ww2TZo0Kc/jDcPQhx9+KB8fH/32229as2aN0zMCcB+KNAAAAAAAbuG7776TJHXu3Fn16tW7rTnq1q2rrl273jAfAM9EkQYAAAAAwC1s2bJFhmGoV69e+ZqnZ8+eMk1TmzdvdlIyAFagSAMAAAAA4BaOHz8uSapdu3a+5qlVq5Yk6dixY/mNBMBCFGkAAAAAANzCxYsXJUlBQUH5midr/KVLl/KdCYB1KNIAAAAAALiFkiVLSpL++OOPfM2TNb5EiRL5TATAShRpAAAAAADcQkhIiCRpz549+Zpn7969N8wHwDNRpAEAAAAAcAvNmjWTaZpauHBhvuZZsGCBDMNQ06ZNnZQMgBUo0gAAAAAAuIXu3btLkpYvX65169bd1hzr1q3TsmXLbpgPgGcyTNM0rQ4BAAAAAEBBlJ6erjp16ujIkSMKCQnR2rVr83SC54EDB9S2bVudO3dOVatW1f79++Xr6+vCxABciRVpAAAAAADcgq+vr95//30ZhqFz586pSZMm+uCDD5SUlJTjuKSkJE2aNElNmjRRfHy8JOn999+nRAM8HCvSAAAAAADIxVtvvaW///3vMgxDklSsWDG1adNGERERKleunIoVK6bk5GSdPXtWv/76q9avX6/k5GRlfeR+7bXX9I9//MPKHwGAE1CkAQAAAADggNmzZ+upp55ScnKyJNlLtexkfdQOCAjQ5MmT9cgjj7gjIgAXo0gDAAAAAMBBp0+f1r/+9S/NmjVL586du+V1wcHBeuSRRzR69GhVqFDBjQkBuBJFGgAAAAAAt2HPnj3asWOHEhISdPnyZZUoUULBwcFq2LCh6tata3U8AC5AkQYAAAAAAAA4gFM7AQAAAAAAAAdQpAEAAAAAAAAOoEgDAAAAAAAAHECRBgAAAAAAADiAIg0AAAAAAABwAEUaAAAAAAAA4ACKNAAAAAAAAMABFGkAAAAAAACAAyjSAAAAAAAAAAdQpAEAAAAAAAAOoEgDAAAAAAAAHECRBgAAAAAAADiAIg0AAAAAAABwAEUaAAAAAAAA4ACKNAAAAAAAAMABFGkAAAAAAACAAyjSAAAAAAAAAAdQpAEAAAAAAAAOoEgDAAAAAAAAHPD/AWkPQ0Y7IGkAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 468, "width": 617 } }, "output_type": "display_data" } ], "source": [ "# Visualize the design matrix\n", "plot_design_matrix(model_poly, cbar=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Like sum/deviation coding, polynomial contrasts are for valid ANOVA tests as the sum over rows of this scheme adds up to 0:" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 3.00000000e+02, -5.06586146e-15, -1.55653268e-13])" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model_poly.exog.sum(axis=0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Interpreting Parameters\n", "\n", "In this coding scheme parameters represent:\n", "\n", "- Intercept = the grand-mean of `balance` over all levels of `hand`\n", "- $\\beta_1$ = linear trend over levels of `hand`\n", "- $\\beta_2$ = quadratic trend over levels of `hand`\n", "\n", "To see this more clearly let's visualize how `Poly` is *encoding* levels of `hand`" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [], "source": [ "# Import the Poly function which we don't normally use directly\n", "from patsy.contrasts import Poly\n", "\n", "# Generate a matrix using our predictor variables\n", "poly_codes = Poly().code_without_intercept(model_poly.exog_names).matrix\n", "\n", "poly_codes = pl.DataFrame(poly_codes, \n", " schema=['linear', 'quadratic']).with_columns(\n", " hand = np.array(['bad', 'good','neutral']))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The matrix above is like a \"mini\" **design matrix** mapping the levels of `hand` to the polynomial value\n", "\n", "Visually if we think about each level of `hand` on the x-axis below we can see how the polynomial value changes:" ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABF4AAAM6CAYAAAC4hoc9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3RUVRfG4d9MegESeu+EIlWKdAWlKCKCdARFRFRQmqBiw95QsCuK8AFSQhHU0ASlo/TQewu9JyE9mfn+iAQuM5RAkpuZvM9arhX3mZn7jlIyO+eebbHb7XZERERERERERCTDWc0OICIiIiIiIiLirtR4ERERERERERHJJGq8iIiIiIiIiIhkEjVeREREREREREQyiRovIiIiIiIiIiKZRI0XEREREREREZFMosaLiIiIiIiIiEgmUeNFRERERERERCSTqPEiIiIiIiIiIpJJ1HgREREREREREckkaryIiIiIiIiIiGQSNV5ERERERERERDKJGi8iIiIiIiIiIplEjRcRERERERERkUyixouIiIiIiIiISCZR40VEREREREREJJN4mh1Abi4+Pp6tW7cCUKBAATw99b9NREREREREJKMlJydz5swZAKpVq4avr+8dv6Y+wbuArVu3Uq9ePbNjiIiIiIiIiOQYa9eupW7dunf8OrrVSEREREREREQkk2jHiwsoUKBA2tdr166lSJEiJqYRERERERERcU8nTpxIu+Pk6s/id0KNFxdw9ZkuRYoUoXjx4iamEREREREREXF/GXW+qm41EhERERERERHJJGq8iIiIiIiIiIhkEjVeREREREREREQyiRovIiIiIiIiIiKZRI0XEREREREREZFMosaLiIiIiIiIiEgmUeNFRERERERERCSTqPEiIiIiIiIiIpJJ1HgREREREREREckkaryIiIiIiIiIiGQST7MDSNaJj4/n4sWLxMbGkpKSYnYcEUkHDw8PvL29yZ07N4GBgVit6puLiIiIiLgCNV5yALvdzokTJ4iMjDQ7iojcpuTkZBISEoiOjsZisVCsWDFy5cpldiwREREREbkJNV5ygHPnzjk0XTw99b9exJWkpKRgt9uB1GbqsWPH1HwREREREXEB+vTt5hITEzlz5kzavxcsWJCgoCA8PDxMTCUi6WW324mNjeX8+fNcunQprfkSEhKi245ERERERLIxfbfu5i5dupT2db58+ciXL5+aLiIuyGKxEBAQQPHixQkMDARSmzFX/x4XEREREZHsR40XNxcTE5P2de7cuU1MIiIZwWKxkDdv3rR/j4qKMjGNiIiIiIjcjBovbi4xMRFI/bDm4+NjchoRyQj+/v5YLBbgyu9xERERERHJntR4cXM2mw1IHUV7+YOaiLg2i8WSdsugRsOLiIiIiGRvaryIiIiIiIiIiGQSNV5ERERERERERDKJGi8iIiIiIiIiIplEjRcRERERERERkUyixouIiIiIiIiISCZR40UkmyhdujQWi4Unn3zS7CgiIiIiIiKSQdR4EclAS5cuxWKxYLFYGDlypNlxRERERERExGRqvIiIiIiIiIiIZBJPswOISKpDhw6ZHUFEREREREQymHa8iIiIiIiIiIhkEjVeRERERERERCTD2Wx2/rf6EB8v2GV2FFOp8SKSTdxoqtHVh/YuXboUgNDQUO6//34KFCiAn58fFStWZPjw4Zw/f/6Wrvfnn3/y+OOPU6ZMGfz8/MidOzc1atRg+PDhnDhx4obP3bZtG++99x6tWrWiePHi+Pj4EBgYSIUKFXjiiSf4559/bvj8kSNHpr0fgMjISN59911q1apFUFAQFouFCRMm3NL7EBERERGR7OdkZDxPjF/LW79t57ul+1m176zZkUyjM15EXExKSgo9evRgypQphvqePXv49NNP+fXXX1mxYgWFCxd2+vyYmBh69uzJr7/+aqjHx8ezZcsWtmzZwnfffcfUqVN5+OGHHZ6/dOlSmjVr5lBPTExk37597Nu3j4kTJ/LKK6/w4Ycf3vT97N27l5YtW+qMGxERERERNzF38zHemLONqPjktNpLM8JZMKgpefy8TExmDjVeRFzMm2++yerVq3n00Ufp1asXpUqV4tSpU3zzzTeEhYWxb98+Bg8ezNSpUx2em5KSQtu2bfn777+xWCx07dqVDh06UKZMGZKSkli7di2fffYZR44c4bHHHmP16tXUrl3b8BrJyckEBATQpk0bmjdvTqVKlcidOzenT59m+/btfPnllxw+fJiPPvqIkJAQevfufcP307FjR44dO8YLL7zAI488QnBwMHv37qVUqVIZ+t9NREREREQy18XYRF6fs40/tjjuoD8RGc+SnafocHdxE5KZS40XwWazcyE20ewYWSbY3xur1WJ2jNu2evVq3nvvPV577TVDvXXr1rRu3ZpFixYxc+ZMvvzySwoUKGB4zJgxY/j777/x8vJi7ty5PPjgg4b1+vXr07NnT5o0acL27dsZNGgQK1asMDymZs2aHD16lKCgIIdsrVq1YsCAATz88MP8+eefvP322/Tq1QsPD4/rvp9t27axYMECWrRokVa7ttkjIiIiIiLZ27I9Zxg+M5xTUQkOa4Vz+/Jpp+o0qVDAyTPdnxovwoXYRGq/t9jsGFlmw+sPkC/Qx+wYt6127dqMGDHCoW6xWBgyZAiLFi0iOTmZNWvW8Mgjj6StJyUl8dlnnwEwYMAAh6bLZcHBwXz66ac89NBDrFy5kn379lG+fPm09fz5898wn7e3N59++ik1a9bk8OHDbN68+YaNlCeffNLQdBEREREREdcRm5jMR/N3MXHNYafr7WoW5Z1HqpLHP+fdYnSZGi8iLqZ79+5ph9Je6+oGx4EDBwxra9euTTs0t3Pnzje8RtOmTdO+XrNmjaHxcq2EhAROnTrFpUuXsNlsANjt9rT18PDwGzZeevToccMsIiIiIiKSPW06coEhoeEcPBvjsJbHz4v3Hq1K2xpFTUiWvajxIuJiKlWqdN21vHnzpn0dHR1tWFu/fn3a1w0aNLjl6508edKhFhMTw5dffsm0adPYvn07KSkp133+2bM3Pr28evXqt5xFRERERETMl5Ri46sle/lm6X5SbHaH9aYhBfjkseoUzuNrQrrsR40XERfj7+9/3TWr9cqE+GubIadPn76t68XGxhr+/dChQzRv3pyDBw/e0vPj4uJuuB4cHHxbuUREREREJOvtOx3N4OnhbD0W6bDm62XltYcq83j9UtfdpZ8TqfEiBPt7s+H1B8yOkWWC/b3NjmCKqxsxS5cuJV++fLf0vIIFCxr+vWfPnhw8eBCLxULv3r3p2rUrlStXpkCBAvj4pJ6dY7PZ0g7Uvfq2I2dudPCuiIiIiIhkDzabnf+tOcRH83eRkGxzWK9RIojRnWtQtkCgCemyNzVeBKvV4tKHzcqtubrR4u3tTdWqVdP9Grt27WLlypUAvPrqq7z//vtOH3fhwoXbCykiIiIiItnO8YtxDJsZzqp95xzWPK0WXry/As/fVw5PD6uTZ4saLyI5RK1atdK+XrRoUbrOebls+/btaV937dr1uo+7+jwZERERERFxTXa7nbmbj/PG3G1Exyc7rJcrEMDoLjWpXjwo68O5ELWjRHKIxo0bpx2++/333xMVFZXu10hOvvKH7bVnv1zt+++/T39AERERERHJNi7EJDJgyiYGTd/stOnyZMPShL3YRE2XW6DGi0gO4evry0svvQSkTirq2rUrMTGOY98ui46O5uuvvzbUKlSokPb1//73P6fP++6775gzZ86dBxYREREREVP8vfs0rcYsJ2zrCYe1Inl8+eXpexj5yF34eum8xluhW41EMsnmzZuZMGHCTR/XuHFjypcvn/mBgOHDh7NkyRKWLFnC/PnzqVKlCs8++ywNGjQgKCiI6Ohodu/ezdKlS5kzZw6+vr4MGDAg7fm1atWiatWqbNu2je+++46LFy/So0cPihQpQkREBJMnT2bmzJk0atSIVatWZcl7EhERERGRjBGbmMz7YTv55d8jTtfb1yrGyEfuIo+fVxYnc21qvIhkkrlz5zJ37tybPm78+PFZ1njx8PDg999/59lnn2XixIkcOXKEESNGXPfx1040slgsTJo0iebNm3PhwgWmTp3K1KlTDY+pVq0aM2bMoGjRopnyHkREREREJONtPHKBIdM3c+ic45ECQf5efNC+Gg9VK2JCMtenW41Echg/Pz/+97//sX79ep577jnuuusu8uTJg6enJ0FBQdSsWZM+ffowc+ZMdu7c6fD8mjVrsnnzZp599llKlSqFl5cXefPmpV69eowaNYq1a9dSpIj+QBYRERERcQWJyTZGLdxNx+9WO2263FexAIsGNVXT5Q5Y7Ha73ewQcmNHjx6lRIkSAERERFC8ePFbfu7evXtJTk7G09PTcD6HiLg2/d4WERERkTu191Q0g0M3s+2Y4+ANPy8PXmtTmR73lMRisZiQzhx38vn7enSrkYiIiIiIiEgOYrPZGb/6EB8v2EViss1hvVbJID7vXJMy+QNMSOd+1HgRERERERERySGOXYxj2IxwVu8/57DmabUw6IEKPHtvOTw9dDJJRlHjRURERERERMTN2e12ft10jLfmbic6IdlhvULBQEZ3qUnVYnlMSOfe1HgRERERERERcWPnYxJ57detzN920ul6n8ZlGNaqIr5eHlmcLGdQ40VERERERETETf216xTDZ27l7KUEh7WieXwZ1bkGDcvlNyFZzqHGi4iIiIiIiIibiUlI5r2wnUxde8Tpeoe7izHykbvI7euVxclyHjVeRERERERERNzIhsPnGRIazuFzsQ5rwf5efNC+Gg9WK2JCspxJjRcRERERERERN5CYbGPM4j18v2w/NrvjerOKBfi4Y3UK5vLN+nA5mBovIiIiIiIiIi5u98loBk/fzI4TUQ5r/t4evN6mCt3qlcBisZiQLmdT40VERERERETERdlsdn5edZBPFu4mMdnmsF67VDCfd65BqXwBJqQTUONFRERERERExCUdvRDLSzPC+efAeYc1Lw8Lgx4I4dl7y+Fh1S4XM6nxIiIiIiIiIuJC7HY7szYe4+3fthOdkOywHlIokNFdanJX0TwmpJNrqfEiIiIiIiIi4iLOXUpgxK9bWbj9lMOaxQJPNy7D0JYV8fXyMCGdOKPGi4iIiIiIiIgLWLLzFC/P2sLZS4kOa8WC/Piscw3ql81nQjK5ETVeRERERERERLKxSwnJvPfHDqati3C63rF2cd5qW4Vcvl5ZnExuhRovIiIiIiIiItnUukPnGRK6mYjzcQ5reQO8+aB9NVpXLWxCMrlVaryIiIiIiIiIZDMJySmM/nMvPyzfj93uuP5A5YJ82KE6BXL5ZH04SRc1XkRERERERESykV0noxg0bTO7TkY7rAV4e/DGw1XoUrcEFovGRLsCNV5EREREREREsoEUm51xKw8wauEeElNsDut1SgXzeeealMznb0I6uV1WswOIiPuxWCxYLBZGjhxpdpRMc+jQobT3OWHCBLPjiIiIiIiLizgfS7cf/+GDebscmi5eHhZebl2J6f0aqOnigrTjRSQTRUZGMnnyZMLCwtixYwenT5/Gy8uLQoUKUa9ePdq1a0eHDh3w8PAwO6qIiIiIiJjAbrczY/1R3v59OzGJKQ7rlQrn4vPONalSNLcJ6SQjaMeLSCb56aefKFeuHAMGDGD+/PkcPnyYuLg4oqKi2Lt3L7/88gudO3emVq1arFmzxuy4WWbChAlpO0UOHTpkdhwHOWG3joiIiIhkD2cvJfDMpA0Mn7XFoelisUC/pmWZO6CRmi4uTjteRDLBsGHDGDVqFACenp507dqVRx55hFKlSpGYmMju3buZOnUqS5YsYevWrTRv3pzp06fzyCOPmJxcblXp0qWxOzteXkRERETkFizafpJXZ2/lXEyiw1rxYD8+61SDe8rmMyGZZDS3aLwcOXKEL7/8krCwMI4cOYKPjw/ly5enc+fOPP/88/j7Z9w9cIsXL2by5MmsXLmSEydO4OnpSaFChahevTr3338/PXv2JDAwMMOuJ67nm2++SWu6lChRgt9//50aNWoYHtO4cWP69OnD9OnT6dWrF/Hx8XTp0oUNGzZQpUoVM2KLiIiIiEgWiI5P4t0/dhC6/qjT9c51ivPGw1XI5euVxckks7h84yUsLIwePXoQGRmZVouNjWXdunWsW7eOn376iXnz5lG2bNk7us6FCxfo3bs3c+fOdVi7fOvIrFmzaNCgATVr1ryja4nrOnz4MC+99BIAgYGB/PXXX5QvX/66j+/SpQt2u51u3boRHx9Pz5492bBhQ1bFFRERERGRLLT24HmGhG7m6IU4h7V8Ad582KEaLe8qbEIyyUwufcZLeHg4nTt3JjIyksDAQN5//31Wr17NkiVL6Nu3LwC7d++mTZs2XLp06bavExkZSYsWLdKaLm3atGHSpEmsWbOGlStX8ssvvzBo0CCKFy+eIe9LXNeYMWOIj48H4K233rph0+Wyrl270qZNGwA2btzIn3/+aVgvXbo0FouFJ5988oav8+STT2KxWChdurTT9QsXLjB+/Hgef/xxqlSpQmBgIN7e3hQuXJhWrVoxduxYEhMdtzk688svv3DfffcRHBxMYGAgVatW5a233uLixYvXfc7SpUuxWCz07t07rVamTJm0M1Uu/7N06dLrvqcTJ07w8ssvc9ddd5ErVy6Hx9/Je7z83/myt99+2yHb1f8P0jPVaNWqVTz99NNUrFiR3LlzExgYSKVKlXj00UeZOHEiUVFRN3y+iIiIiLi2hOQUPpy3ky5j1zhturSoUoiFg5uq6eKmXHrHy6BBg4iNjcXT05NFixbRoEGDtLXmzZtToUIFhg8fzq5du/j888958803b+s6L7zwAhs2bMDT05PJkyfTpUsXw3qjRo3o3r07n3/+OSkpjqdQS85gt9uZOHEiAH5+fmnNv1vx4osvEhYWBsC4ceNo0aJFhuerVasWhw8fdqifOnWKRYsWsWjRIr7//nvmzZtH4cLO/8BPTk6ma9euzJo1y1Dfvn0727dv55dffnFoHGWUf/75h7Zt23L27NnrPiYj3mNGiouLo0+fPkydOtVhbffu3ezevZu5c+fy1ltv6TBfERERETe180QUg6dvZtfJaIe1AG8P3nrkLjrVLm74IaC4F5dtvKxbty7tJ919+vQxNF0uGzp0KOPHj2fnzp2MGTOGV199FS+v9N0nt3LlSiZNmgTA66+/7tB0uZrFYsHT02X/k8od2r59O+fPnwegadOm5MmT55afe//99+Pv709sbCwrV67MlHwpKSncc889PPzww9SqVYtChQqRmJjIwYMHmTx5MgsWLGDTpk107drVsIvkaoMHD05rulSsWJHhw4dTvXp1IiMjmTFjBj/++ON1f4/UrVuXrVu3MnfuXF5//XUAFi5cSNGiRQ2PK1OmjMNzL126xGOPPUZ8fDyvvfYaLVq0wN/fn61bt1KkSJEMeY+LFi0iMTGRatWqAfDcc8/x/PPPGx4THBx8/f/A17DZbLRr1y6tEVWhQgWef/556tSpg7+/PydOnGD16tWEhobe8muKiIiIiOtIsdkZu/wAn/+5m6QUx6EM9crk5bNONSiRN+POJJXsyWW7BHPmzEn7+upbF65mtVrp1asXr776KhcuXGDp0qXp3knw9ddfA6nndQwdOvS282ZrNhvEnTc7RdbxywvWjL/LLjw8PO3ru+++O13P9fDwoEaNGqxZs4Zjx45x6tQpChUqlKH5/vrrLypUqOBQb9iwIT169GD8+PE89dRTLFu2jCVLlnD//fcbHrdlyxa+/fZbIPX9LVu2zHCQ9P3330/Dhg154oknnF4/ICCAqlWrsn79+rRaSEjIdW+Nutq5c+cIDAxk5cqVhoOK69atm2HvMSQkxPCcggULUrVq1Ztmu56vvvoqrenSvn17pk6dio+Pj+Exbdq04d133+XkyZO3fR0RERERyX6OnItl6IzNrDt0wWHN28PKS61C6NO4LB5W7XLJCVy28bJixQog9cNc7dq1r/u4e++9N+3rlStXpqvxkpiYmHauy4MPPpj2ITM5OZljx45hsVgoXLgw3t7et/MWso+48/BpObNTZJ1h+yEgf4a/7NW3wNzObSxXN1rOnj2b4Y0XZw2Jq/Xu3ZuvvvqKTZs2MWfOHIfGy/fff4/NZgNg7NixTqd39erVi2nTpjF//vyMC/6f4cOHO0yHutadvseMYrPZ+PTTTwEoVqwYEydOdGi6XGa1Wh12/YiIiIiIa7Lb7UxfF8G7f+wgJtHxGIrKRXIzuksNKhXObUI6MYvLNl527twJQPny5W94e0+lSpUcnnOrwsPD0w5KbdCgASdPnuTVV19lxowZxMTEAODr60uzZs14/fXXadiwYXrfBgBHjzofI3bZiRMnbut1JWtdfYBzQEBAup9/9XNudEhtRrDb7Zw6dYqoqCjDYbNFixZl06ZNht07ly1evBiAatWq3bDZ+dRTT2VK46VHjx7pevztvMeMsnnzZo4dOwZA3759NWJeREREJAc4E53Aq7O3sHjnaYc1iwX6NS3H4BYV8PH0MCGdmMklGy/x8fFpuwtuNkkoODiYgIAAYmJiiIiISNd1duzYYbhmtWrVHA72jI+PZ/78+SxcuJDPPvuMQYMGpesaACVKlEj3cyT7yZUrV9rXtzNF6+rnXG93xJ0KCwvju+++Y/ny5URHOx7udZmzX+f79u0DHG/vuVa9evXuPOg1AgMDb3kk/O2+x4y0adOmtK+bNm2aadcRERERkexhwbaTjPh1K+djHCdolsjrx+eda1K3dF4Tkkl24JLjpK/+MHUrP0m+vJMgvR+GLx+UCqmjZc+ePcvDDz/M+vXriY+P59SpU3z77bfkzp0bm83GkCFDMuUn/eIa8ue/cvvS7ZzZcerUKaevlRHsdjtPP/00Dz/8MGFhYTdsSEDqNJ6rXbx4Ebs99UCwggUL3vC5GX2LFEBQUNBNH3On7zEjXd3UufrwXxERERFxL9HxSbw0I5xnJ29w2nTpWrcE8wc2VdMlh3PZHS+X3cr5Kpd3D6T3g9bl24kAEhISaNu2LXPmzMH638GsBQsW5LnnnqNatWrce++92Gw2hg8fTuvWrdM1CuxmO3FOnDiRKbsI0vjlTT33JKfwy5w/9KpXr5729dU7Hm5FSkoKW7ZsAVJHUZcsWTJDs/3888+MGzcOgJo1azJo0CDuueceihUrhr+/Px4eqdsde/XqxaRJk9KaLJdd/e9mjLm7nO9G7vQ9ZhaNBRQRERFxT/8cOMfQ0HCOXXT8nJk/0JuPOlTngSoZ/0NJcT0u2Xjx9fVN+/rqsxuuJyEhAUj9QHu71wH49NNP05ouV2vcuDEdOnRg5syZbNu2jW3btqWNpL0VN7tdKtNZrZly2GxOc9ddd5EvXz7OnTvH8uXLiYyMvOWR0osXLyY2NhZI/fV09a+zy19fPtj2eq5uFF7rxx9/BKBcuXKsXr36ur8XLlxwPHUdjGOUr96Z48zN1jPLnb7HjHT1jqXjx49TsWLFTL+miIiIiGSN+KQUPlu0m59WHsTZz/Ja3VWID9pXI19g5hwfIK7HJW81Su9ZGpc/kKb3gMurr1OmTJkbfnhq1apV2tfr1q1L13XEPVgsFnr16gWk7q663Ai4FV999VXa1506dTKsXf51eLOGwe7du6+7tn37dgDatWt33YaE3W5n48aNTtd8fX3TJgbd7Nf3zdYzawfInb7HjHT1OPHly5dn+vVEREREJGtsPx5Ju69X8eMKx6ZLoI8nozrV4PvHa6vpIgYu2Xjx9fVN+4nyzSYCXbhwIa3xkt5DbK9+/M12pVz92NOnHU+xlpxh0KBBaR/633777bQDaW9k2rRphIWFAaljqHv27GlYL1OmDAAbN2687u0x27ZtY+vWrde9RnJyMkDarhpnfvvtN44fP37d9QceeACArVu33vBWqp9//vm6a2DcSXZ5N1pGyIj3CFfy3Um2GjVqpP2Z8NNPP93WYcsiIiIikn2k2Ox88/c+Hv1mFbtPOZ4lWL9sXhYMakLH2sV1q7k4cMnGC0DlypUB2LdvX9oHLmd27drl8Jxbddddd6V9nZLiOIP9alev32i8tbi3kiVL8tlnnwGpu7Huv//+G44tDg0N5Yknnkj796+++srhFrd7770XSL1lZerUqQ6vER0dzVNPPXXDXJd3q/z+++9Od87s37+f559//oav0a9fv7S/RJ555hmntzb98ssvzJs374avc/Vhs/v3Z9zZQhnxHq/OdyfZrFYrw4YNA1Kbw7169brubZE2m+2mzSARERERMc/hczF0/mENny7cTVKK8Qeh3p5WXm9TmSlP16d4sL9JCSW7c9nGS+PGjYHU24g2bNhw3cctW7Ys7etGjRql6xqlSpVKO+T0Zh/Crl4vVqxYuq4j7uW5555j6NChABw5coQ6derQq1cvZs6cybp161i9ejU///wzDzzwAF26dEn7QP7aa6/RsWNHh9d7/PHHyZ07NwB9+vThnXfe4d9//2Xt2rV8++231KpVi61bt1KrVq3rZrp8C9SxY8do2LAh48ePZ+3atSxfvpyRI0dSu3Ztzp8/b7hF5lo1atSgf//+AKxfv546deowYcIENmzYwF9//cVzzz1Hr169qFOnzg3/+9SqVSutufTGG2+waNEi9uzZw759+9i3b99tTxvKiPcI0LBhQyB1d8wPP/zAtm3b0rKlZzdb//79adGiBQC//vor1apV44svvmDVqlVs2rSJ+fPn89Zbb1GpUiXGjh17W+9ZRERERDKP3W5nyr9HePCLFWw47PiDvSpFcvP7gMY83aQsVqt2ucgN2F3Uv//+awfsgL1fv35OH5OSkmKvXLmyHbAHBQXZExMT032dwYMHp11n1apV133cfffdl/a4iIiIdF/nRiIiIm77tffs2WPfsWOHfc+ePRmaSW5u7Nix9nz58qX9v7veP76+vvavvvrqhq8VGhpq9/DwuO7zQ0ND7U888YQdsJcqVcrh+YmJifaWLVteN4Ofn99NX+Py63To0OG6r1OmTBn7gQMH0v79rbfecvo6w4cPv+5r/P3332mPu1mezHiPmzZtsvv4+Dh9jSeeeCLtcQcPHkyrjx8/3ulrxcTE2Dt27HjTXwPX++90I/q9LSIiIpJ5TkXF2XuPX2sv9fIfDv+UeeUP+ycLdtoTklLMjimZ4E4+f1+Py+54qVevHk2aNAFg3LhxrFmzxuExn332GTt37gRg4MCBeHl5GdYnTJiAxWLBYrEwcuRIp9cZNGhQ2k/nX3zxRae3V0yePJmlS5cC0KZNG/OnFEm20LdvX/bv38/XX39N69atKVGihMNtRHny5GH79u0MGDDghq/VqVMnVq9eTfv27SlQoADe3t6UKFGCJ554gvXr1zscyHstLy8vwsLC+PLLL6lTpw7+/v74+flRvnx5nn32WTZu3HjT17j8OrNmzWLSpEk0adKEPHny4O/vT+XKlRkxYgQbNmxIO5PmRj766CN+/PFHmjRpQt68eW9pXPStZMuI91izZk3WrFlDt27dKFmyZNo4+tvh7+/PjBkz+Ouvv+jZsydlypTBz8+PXLlyUalSJTp06MCUKVPSbksSEREREfPN33qCVqOX89cux93OJfP6M+PZBgxrVQlvT5f9OC1ZzGK3X+e0ThewadMmGjVqRFxcHIGBgYwYMYJmzZoRFxfHtGnT0rbvh4SEsH79esOUIkhtvPTu3RuAt95667rNl08//ZThw4cDUKVKFYYPH07VqlWJjIxk9uzZfP/996SkpJA7d27Wr1+fdtZERjl69GjaQZ0RERHpauzs3buX5ORkPD09MzyX3L5hw4YxatQoIPUWmctNQJFbpd/bIiIiIhkrKj6Jkb9tZ/bGY07Xu9UryettKhPgozM93dmdfP6+Hpf+FVOrVi2mT5/O448/TlRUFCNGjHB4TEhICGFhYQ5Nl/QYNmwY58+f5+OPP2bHjh08+eSTDo8pWLAgc+bM0QcguSWffPIJBw4cYPbs2UycOJHChQvz8ccfmx1LRERERCRHWr3/LMNmbOHYRcfzBvMH+vBJx2o0r1TIhGTiDlx+b1Tbtm3ZsmULgwcPJiQkBH9/f4KCgqhTpw4ff/wxmzZtonz58nd8nQ8//JBVq1bRs2dPSpcujY+PD3ny5KFu3bq8++677NmzhwYNGmTAO5KcwGKxMHnyZOrWrQukNmLGjBljbigRERERkRwmPimFd//YQfcf/3XadHmwamEWDW6qpovcEZe+1Sin0K1G7uvUqVN8//332O12rFYrL774IkFBQWbHEheg39siIiIid2bbsUgGT9/M3tOXHNZy+Xjydru7aF+rmI4EyGF0q5GImylUqBBvvfWW2TFERERERHKM5BQb3y/bz5jFe0m2Oe5DaFA2H6M616BYkJ8J6cQdqfEiIiIiIiIiOcKhszEMDt3MpiMXHda8Pa283LoSvRuWxmrVLhfJOGq8iIiIiIiIiFuz2+388u8R3g/bSVxSisN61WK5Gd25JhUK3f5QFpHrUeNFRERERERE3NbpqHiGz9rC0t1nHNasFujfrDwvNK+At6fLz56RbEqNFxEREREREXFLYVtO8NqcrVyMTXJYK53Pn88616R2qWATkklOosaLiIiIiIiIuJXIuCTemruNOZuPO13vcU9JXmtTGX9vfSSWzKdfZSIiIiIiIuI2Vu07y0szwjkRGe+wViCXD590rE6zigVNSCY5lRovIiIuyG53HH0oIiIikpPFJ6Xw0fxdTFh9yOl6m2pFeO/RqgQHeGdtMMnx1Hhxcx4eHiQnJ5OSkoLNZsNq1YFRIq4uJSWFlJTU0/g9PDxMTiMiIiJivi1HLzJ4+mb2n4lxWMvl68m77arSrmZRLBaNiZasp8aLm/P19SUhIQG73c6lS5fInTu32ZFE5A5dvHgx7Wt/f3/zgoiIiIiYLDnFxrdL9/Plkr0k2xx3BDcqn49PO9agaJCfCelEUqnx4uZy585NZGQkACdPngQgMDBQO19EXIzdbichIYGoqCjOnTuXVg8O1in8IiIikjMdOHOJIaHhbI646LDm42nllQcr8USD0lit2uUi5lLjxc0FBATg5+dHXFwcKSkpHDt2DIvFotsTRFxMSkqKw7kuefLkwcfHx6REIiIiIuaw2+1M/ucw78/bSXySzWG9WrE8jO5Sg/IFc5mQTsSRGi9uzmKxULJkSY4cOUJcXByQ+gdVcnKyyclE5E4UKFCAfPnymR1DREREJEudiopn2MwtLN9zxmHNw2qhf7PyvNC8PF4e2uEv2YcaLzmA1WqlVKlSxMTEEB0dnbb7RURch9Vqxdvbm4CAAAIDA/H21mn8IiIikrP8Hn6c1+dsIzIuyWGtTP4APu9cg1oldRu2ZD9qvOQQFouFwMBAAgMDzY4iIiIiIiJyyyJjk3hj7jZ+Cz/udL1n/VK8+lAl/L318VayJ/3KFBERERERkWxpxd4zDJuxhZNR8Q5rhXL78EnHGtwbUsCEZCK3To0XERERERERyVbiElP4aP5O/rfmsNP1tjWK8m67uwjy1+3Xkv2p8SIiIiIiIiLZRnjERQaHbubAmRiHtdy+nrz7aFXa1SxmQjKR26PGi4iIiIiIiJguKcXG13/t4+u/95FiszusN6mQn086VqdIHj8T0oncPjVeRERERERExFT7z1xiyPTNhB+NdFjz9bLy6oOV6Vm/FFarxYR0IndGjRcRERERERExhc1mZ9I/h/lw/k7ik2wO6zWK5+HzLjUpV0DTWcV1qfEiIiIiIiIiWe5kZDzDZoazYu9ZhzUPq4UXmpenf7PyeHlYTUgnknHUeBEREREREZEsNXfzMd6Ys42o+GSHtbIFAhjduSY1SgRlfTCRTKDGi4iIiIiIiGSJi7GJvD5nG39sOeF0/cmGpXm5dSX8vD2yOJlI5lHjRURERERERDLdsj1nGD4znFNRCQ5rhXP78mmn6jSpUMCEZCKZS40XERERERERyTSxicl8OG8Xk/457HS9Xc2ivPNIVfL4e2VxMpGsocaLiIiIiIiIZIpNRy4wJDScg2djHNby+Hnx3qNVaVujqAnJRLKOGi8iIiIiIiKSoZJSbHy1ZC/fLN1Pis3usN40pACfPFadwnl8TUgnkrXUeBEREREREZEMs+90NIOnh7P1WKTDmq+Xldceqszj9UthsVhMSCeS9dR4ERERERERkTtms9n535pDfDR/FwnJNof1GiWCGN25BmULBJqQTsQ8aryIiIiIiIjIHTl+MY5hM8NZte+cw5qn1cKL91fg+fvK4elhNSGdiLnUeBEREREREZHbYrfbmbP5GG/O3U50fLLDerkCAYzuUpPqxYOyPpxINqHGi4iIiIiIiKTbhZhEXp+zjbCtJ5yu925UmpdbV8LXyyOLk4lkL2q8iIiIiIiISLr8vfs0L8/cwunoBIe1Inl8GdWpBo3K5zchmUj2o8aLiIiIiIiI3JLYxGTeD9vJL/8ecbrevlYxRj5yF3n8vLI4mUj2pcaLiIiIiIiI3NTGIxcYMn0zh87FOqwF+XvxQftqPFStiAnJRLI3NV5ERERERETkuhKTbXy5ZC/fLt2Hze64fl/FAnzyWHUK5vbN+nAiLkCNFxEREREREXFq76loBoduZtuxKIc1Py8PXmtTmR73lMRisZiQTsQ1qPEiIiIiIiIiBjabnZ9XHeSThbtJTLY5rNcqGcTnnWtSJn+ACelEXIsaLyIiIiIiIpLm2MU4XgoNZ82Bcw5rnlYLgx6owLP3lsPTw2pCOhHXo8aLiIiIiIiIYLfbmb3xGCN/2050QrLDeoWCgYzuUpOqxfKYkE7EdanxIiIiIiIiksOdj0lkxOytLNh+0ul6n8ZlGNaqIr5eHlmcTMT1qfEiIiIiIiKSg/216xTDZ27l7KUEh7WieXwZ1bkGDcvlNyGZiHtQ40VERERERCQHiklI5r2wnUxde8Tpeoe7izHykbvI7euVxclE3IsaLyIiIiIiIjnMhsPnGRIazuFzsQ5rwf5efNC+Gg9WK2JCMhH3o8aLiIiIiIhIDpGYbGPM4j18v2w/NrvjerOKBfi4Y3UK5vLN+nAibkqNFxERERERkRxg98loBk/fzI4TUQ5r/t4evN6mCt3qlcBisZiQTsR9qfEiIiIiIiLixmw2O+NWHuTTRbtJTLY5rNcuFcznnWtQKl+ACelE3J8aLyIiIiIiIm7q6IVYhoaG8+/B8w5rXh4WBrcIoV/TcnhYtctFJLOo8SIiIiIiIuJm7HY7Mzcc5e3fd3ApIdlhPaRQIKO71OSuonlMSCeSs6jxIiIiIiIi4kbOXUpgxK9bWbj9lMOaxQJPNy7D0JYV8fXyMCGdSM6jxouIiIiIiIibWLLzFC/P2sLZS4kOa8WC/Piscw3ql81nQjKRnEuNFxERERERERd3KSGZ9/7YwbR1EU7XO9Yuzlttq5DL1yuLk4mIGi8iIiIiIiIubN2h8wwJ3UzE+TiHtbwB3nzQvhqtqxY2IZmIgBovIiIiIiIiLikhOYXRf+7lh+X7sdsd1x+oXJAPO1SnQC6frA8nImnUeBEREREREXExu05GMWjaZnadjHZYC/D24M22VehcpwQWi8ZEi5hNjRcREREREREXkWKz89OKA3y2aA+JKTaH9bqlg/msU01K5vM3IZ2IOKPGi4iIiIiIiAuIOB/L0NBw1h4677Dm5WFhaMuK9G1SFg+rdrmIZCdqvIiIiIiIiGRjdrudGeuP8vbv24lJTHFYr1Q4F593rkmVorlNSCciN6PGi4iIiIiISDZ19lICr87eyp87TjmsWSzwTJOyDGkZgo+nhwnpRORWqPEiIiIiIiKSDS3afpJXZ2/lXEyiw1rxYD8+61SDe8rmMyGZiKSHGi8iIiIiIiLZSHR8Eu/+sYPQ9UedrneuU5w3Hq5CLl+vLE4mIrdDjRcREREREZFsYu3B8wwJ3czRC3EOa/kCvPmwQzVa3lXYhGQicrvUeBERERERETFZQnIKny/aw9gVB7DbHddbVCnEhx2qkT/QJ+vDicgdUeNFRERERETERDuORzEkdDO7TkY7rAX6ePJm2yp0ql0ci0VjokVckRovIiIiIiIiJkix2Rm7/ACf/7mbpBTHbS71yuTls041KJHX34R0IpJRrGYHyAhHjhzhpZdeonLlygQEBJA3b17q1avHqFGjiI2NzZRrnjhxgqCgICwWCxaLhfvuuy9TriMiIiIiIu7nyLlYuo5dw8cLdjk0Xbw9rIx4qBJT+9ZX00XEDbj8jpewsDB69OhBZGRkWi02NpZ169axbt06fvrpJ+bNm0fZsmUz9LovvPCC4ZoiIiIiIiI3Y7fbmb4ugnf/2EFMYorDeuUiuRndpQaVCuc2IZ2IZAaX3vESHh5O586diYyMJDAwkPfff5/Vq1ezZMkS+vbtC8Du3btp06YNly5dyrDr/v7778yaNYuCBQtm2Gu6JbsdkuLNTiEiIiIiki2ciU6g78T1vDJ7q0PTxWKBZ+8tx5z+DdV0Efeiz4Su3XgZNGgQsbGxeHp6smjRIkaMGEGDBg1o3rw5Y8eO5ZNPPgFg165dfP755xlyzUuXLtG/f38ARo0alSGv6ZaSE+H3F2Fad0hJNjuNiIiIiIipFmw7Sasxy1m887TDWom8foT2a8ArD1bCx9PDhHQimeTMHviyFuz8w+wkpnLZxsu6detYunQpAH369KFBgwYOjxk6dCiVK1cGYMyYMSQlJd3xdUeMGEFERATNmjWjZ8+ed/x6binmHExqDxsnwv4lsOh1sxOJiIiIiJgiOj6Jl2aE8+zkDZyPSXRY71q3BPMHNqVu6bwmpBPJRLHnYUpniD4O0x+HFZ/jdFZ6DuCyjZc5c+akfd27d2+nj7FarfTq1QuACxcupDVqbtfatWv55ptv8Pb25rvvvruj13JbdjtM7QqHV16p/fsdrP/ZvEwiIiIiIiZYs/8crcesYOaGow5r+QO9+alXHT56rDqBPi5/9KaIUXIihPaCCwf/K9hhyduwfpypscziso2XFStWABAQEEDt2rWv+7h777037euVK1de93E3k5yczDPPPIPNZuPll1+mYsWKt/1abs1igVbvg4e3sT5vGBxcbk4mEREREZEsFJ+Uwnt/7KD7T/9w7GKcw3qruwqxcFBTHqhSyIR0IpnMbof5w+DQCmO9aC2o0d2cTCZz2dbqzp07AShfvjyentd/G5UqVXJ4zu0YNWoU4eHhlCtXjhEjRtz26zhz9KhjB/xqJ06cyNDrZboS9eCRr+DXfldqtmSY3hP6/gX5ypmXTUREREQkE207FsmQ0M3sOeU43CPQx5ORj9zFY3cXw2KxmJBOJAv8+wNsmGCs5SoCXaeAd84cj+6SjZf4+HjOnj0LQPHixW/42ODgYAICAoiJiSEiIuK2rnfgwAHeeecdAL799lt8fX1v63Wup0SJEhn6etlCja5wZjesvOpQ4/iLMKULPL0Y/ILMSiYiIiIikuFSbHa+X7afMYv3kJTieI5F/bJ5GdWpBsWDc+YHT8kh9i6Gha8aa55+qU2X3EXNyZQNuOStRtHR0WlfBwYG3vTxAQEBALc9Urpfv37ExcXRpUsXWrZseVuvkSM1fwMqPWysndsLM3tr0pGIiIiIuI3D52Lo/MMaPl2426Hp4u1p5fU2lZnydH01XcS9ndmd+lnPbjPW238Hxe42J1M24bI7Xi7z9va+wSNT+fj4ABAX53h/5c1MnDiRxYsXkzt3bkaPHp3u59+Km+3EOXHiBPXq1cuUa2cqqxXa/wA/t4ZTW6/U9/8FC0fAQ5+Yl01ERERE5A7Z7Xamro3gvbAdxCamOKxXKZKb0V1qUrFwLhPSiWShyxOMEqKM9ftGwF3tzcmUjbhk4+XqW30SEx1Hsl0rISEBAD8/v3Rd5+zZswwdOhSA999/nyJFiqTr+bfqZrdLuTSfQOg2FX5sDjGnr9TX/gAFQqDu0+ZlExERERG5Taej43ll1lb+2nXaYc1qgefuK8fA+0Pw9nTJmwxEbl1yYup5nhcOGetVH4N7h5sSKbtxycZLrlxXOsa3cvtQTEwMcGu3JV1tyJAhnD17ljp16vD888+nL6RcEVQi9Z6+CW0gJeFKfd5wyFceyt5nWjQRERERkfSav/UEI37dyoXYJIe1knn9Gd2lBrVL5TUhmUgWs9th3lA4fM0E4aJ3Q7tvUqfeims2Xnx9fcmfPz9nz5696USgCxcupDVe0nOI7fHjx5k0aRIAzZs3JzQ09IaPP336NNOmTQOgTJky3HPPPbd8rRyhRF1o9zXM7nulZk+B0Cfg6SWQv7x52UREREREbkFUfBIj525n9qZjTte71SvJ620qE+Djkh+zRNLvn+9g40RjLVfR1B+8e6XvjhN35rJ/IlSuXJkVK1awb98+kpOTrztSeteuXYbn3Kqrb2H65JObn0Wyc+dOunXrBsATTzyhxosz1TunHri0YtSVWvxFmHp50lGwadFERERERG5k9b6zvDQjnOOR8Q5r+QN9+KRjNZpXKmRCMhGT7FkEi14z1jz9Uo+ayJ05x3S4Kpe94bBx48ZA6m1EGzZsuO7jli1blvZ1o0aNMj2X3ESz15xMOtqXuvMlxXGrpoiIiIiImeKTUnjn9x10/+lfp02XB6sWZtHgpmq6SM5yeifMfMpxglGHH6BoTVMiZWcu23h59NFH074eP36808fYbDYmTkzd9hQUFESzZs1u+fVLly6N3W6/6T+X3XvvvWm1CRMm3NZ7yhGsVugwFgpXM9YPLoMFr5iTSURERETEiW3HImn71Up+XnXQYS2Xjyefd67Btz3uJm/AzSetiriNmHMwpQskRhvrzV6HKu3MyZTNuWzjpV69ejRp0gSAcePGsWbNGofHfPbZZ+zcuROAgQMH4uXlZVifMGECFosFi8XCyJEjMz2z/Mc7ALpNg8Brfiqw7idY+6M5mURERERE/pOcYuPrv/by6Der2HvacZhHg7L5WDC4KR3uLo5Fh4dKTpKcCNMfh4uHjfWqHaHpS+ZkcgEue8YLwBdffEGjRo2Ii4ujZcuWjBgxgmbNmhEXF8e0adMYO3YsACEhIWljoSWbyFM89cCl8Q8ZJx3NfxnylYNyzc3LJiIiIiI51qGzMQwO3cymIxcd1rw9rbzcuhK9G5bGalXDRXIYux3+GAxHVhvrxeqkDlJRE/K6XLrxUqtWLaZPn87jjz9OVFQUI0aMcHhMSEgIYWFhhhHUkk0UrwOPfguz+lyp2VMg9EnouwTyVzAtmoiIiIjkLHa7nV/+PcL7YTuJS0pxWK9aLDejO9ekQiF9rpAcas3XsHmysZa7mCYY3QKXvdXosrZt27JlyxYGDx5MSEgI/v7+BAUFUadOHT7++GM2bdpE+fIaVZxtVesITYcbawmRqfcMxp43J5OIiIiI5Cino+LpPWEdr8/Z5tB0sVrgheblmf1cIzVdJOfavQAWvWGsefmnTjDKpYOlb8Ziv/qEWMmWjh49SokSJQCIiIigePHiJifKYDYbzHwSdsw11ss0hcdng4eX06eJiIiIiNypsC0neG3OVi7GOk7YLJ3Pn88616R2qWATkolkE6d2wLgWkHjNeUddJkPltuZkykSZ8fnb5Xe8iBuwWuHR76FIDWP94HKYPzz1XkIRERERkQwUGZfEoGmb6D9lo9Omy+P1SzJvYBM1XSRnizkLU7s4Nl2av+GWTZfM4tJnvIgb8faHrlPhx+Zw6eSV+vqfoUBluOcZ87KJiIiIiFtZte8sL80I50RkvMNawVw+fNKxOvdVLGhCMpFsJDnhvwlGR4z1ap2hiYbXpId2vEj2kacYdJsCnr7G+oKXYd8SczKJiIiIiNuIT0ph5G/b6fHTv06bLm2qFWHhoKZquoikTTBaY6wXrwuPfKUJRumkxotkL8Vqp046uprdBjN6w5k95mQSEREREZe35ehF2ny5ggmrDzms5fL1ZEyXmnzdvRbBAd5ZH04ku1n9JWz+xVjLXfy/CUa+zp8j16XGi2Q/VR+De18x1hIiYUpnTToSERERkXRJTrHx5ZK9dPh2NfvPxDisNyqfj4WDmvJorWJY9FN8Edg9H/58y1jzCoDu0yBQu8Fuh854kezp3pfh7G7Y/uuV2oWDENorddKRp34SISIiIiI3duDMJYaEhrM54qLDmo+nlVcerMQTDUpjtarhIgLAyW0w62ng6gEnFugwFgpXMyuVy9OOF8merFZo9y0UrWWsH1oB817SpCMRERERuS673c6kNYd46MsVTpsu1YrlIezFxvRuVEZNF5HLLp2GqV0dJxjd/yZUfticTG5CO14k+/L2T72H8MfmEH3iSn3j/6BgZaj/nHnZRERERCRbOhkZz/BZW1i+54zDmofVQv9m5XmheXm8PPQzaJE0lycYRUYY69W7QuPB5mRyI/rTRrK33EVTmy+efsb6whGwd7E5mUREREQkW/o9/Ditxix32nQpmz+Amc82YEiLEDVdRK5mt8PvAyHiX2O9xD3wyJeaYJQB9CeOZH/F7ob23xlrdhvM7A2nd5mTSURERESyjcjYJF6cuokXpm4iMi7JYb1Xg1KEvdiEWiWDTUgnks2tGgPhU421PCWgyy/g6WNKJHejW43ENdzVPnWc9NIPrtQSomBqF3j6LwjIZ142ERERETHNir1nGDZjCyej4h3WCuX24dOONWgaUsCEZCIuYFcYLH7bWPMKgG7TIFC/bzKKdryI67h3eOqo6atdOJQ66Sg50ZRIIiIiImKOuMQU3pq7jZ7j1jpturStUZSFg5qq6SJyPSe3wqy+OEwweuwnKFzVrFRuSY0XcR0WC7T7BorebawfXglhQzTpSERERCSHCI+4SJuvVvC/NYcd1nL7evJF15p81a0WQf7eJqQTcQHRp2BKV0iKMdZbvA2VHjInkxtT40Vci5cfdJsKuYoa65smwT/fmpNJRERERLJEUoqN0X/uocN3qzlwJsZhvUmF/Cwc3JR2NYuZkE7ERSTFw/QeEHXUWK/RHRq+aE4mN6czXsT15Cqc2nz5uTUkx12pL3od8lWAkJbmZRMRERGRTLH/zCWGTN9M+NFIhzVfLyuvPliZnvVLYbVqAovIddnt8PuLcHSdsV6iPrQdowlGmUQ7XsQ1Fa0JHX4w1uw2mPkUnN5pSiQRERERyXg2m53/rT5Emy9XOG261Cieh7AXm/BEw9JquojczMrPYct0Yy2oJHTVBKPMpMaLuK4q7aDZ68ZaYjRM6QIx58zJJCIiIiIZ5kRkHL1+Xstbv20nPslmWPOwWhj0QAVmPteQcgUCTUoo4kJ2/g5L3jHWvAOh23QIyG9OphxCjRdxbU1fgqodjbWLh2H645p0JCIiIuLC5m4+RqvRy1m576zDWtkCAcx+riGDHgjBy0MfaURu6kQ4zH7mmqIFHhsHhaqYEikn0Z9S4tosFmj3NRSrY6wfWQ1/DNakIxEREREXczE2kQFTNjJw2mai4pMd1p9sWJqwF5pQo0RQ1ocTcUXRp2BqN0iKNdZbvgsVW5uTKYfR4bri+rz8oOsU+LEZRB27Ut88GQpWgoYvmJdNRERERG7Zsj1nGD4znFNRCQ5rhXP78mmn6jSpUMCEZCIuKikOpnU3fk4CqPk4NBhgTqYcSDtexD3kKpQ66cjL31hf9AbsXmBOJhERERG5JbGJybwxZxtP/LzWadOlXc2iLBzUVE0XkfSw22HuADi23lgv2RAe/lwTjLKQGi/iPorUgA5jrynaYVYfOLXDlEgiIiIicmObjlygzZcrmfTPYYe1PH5efNWtFl90rUUefy8T0om4sBWjYNtMYy2oFHSZpAlGWUyNF3EvldtC8zeMtcRLMLULXDpjTiYRERERcZCUYuPzRbvp+P0aDp6NcVhvGlKAhYOa0rZGURPSibi4HXPhr/eMNe9c0F0TjMygM17E/TQZCmd2w9bQK7WLR1InHT3xm7q7IiIiIibbdzqawdPD2Xos0mHN18vKaw9V5vH6pbDoVgiR9Du+GWb3M9YsVuj4MxSsbEqknE47XsT9WCzwyFdQvK6xHvGPJh2JiIiImMhms/PzyoO0+XKl06ZLzRJBzHuxCT0blFbTReR2RJ9MnWCUHGest3wPQlqak0m040XclJdv6qSjsc0g6uiV+uZfoEBFaDTQvGwiIiIiOdDxi3EMmxnOqn3nHNY8rRYG3l+B5+4rh6eHfjYscluS4lKbLtHHjfW7e0H9583JJIB2vIg7CywI3aeBV4Cx/udbsGueOZlEREREchi73c6vm47Sasxyp02XcgUC+PX5RrxwfwU1XURul90Oc/vD8Y3GeqnG8NBnmmBkMv3JJu6tcLX/Jh1d/QeNHWb3hZPbzEolIiIikiNciElkwJRNDJ4eTnR8ssN670alCXuxCdWK5zEhnYgbWf4pbJtlrAWXhs4TwdPblEhyhRov4v4qPwwPvGWsJV6CqV3h0mlzMomIiIi4ub93n6bVmOWEbT3hsFYkjy+/PH0Pb7W9C18vDxPSibiR7b/C3+8baz65odt0CMhnTiYxUONFcoZGg6BGN2MtMiJ10lFygimRRERERNxRbGIyr/26ld7j13E62vH7rPa1irFgUFMalddIW5E7dnwT/PqcsWaxQsfxULCSOZnEgQ7XlZzBYoG2X8D5AxDx75V6xL/w+0B49Dvd9ygiIiJyhzYeucCQ6Zs5dC7WYS3I34sP2lfjoWpFTEgm4oaiTjifYNTqA6jwgDmZxCnteJGcw9MHuvwCeUoY6+FTYdUYUyKJiIiIuIPEZBujFu6m43ernTZd7qtYgEWDmqrpIpJREmNhWjeIvuZWvtpPwj3PmhJJrk87XiRnCSwA3abBuJaQFHOlvvhtyFch9TwYEREREblle09FM2j6ZrYfj3JY8/Py4PWHK9O9Xkks2l0skjFsNpjzXOptRlcr3QQeGqWd/NmQdrxIzlO4Kjz2E46Tjp6Bk1vNSiUiIiLiUmw2Oz+tOECbr1Y6bbrcXTKI+QOb0OOeUmq6iGSkZR/DjjnGWnCZ1AlGHl6mRJIbU+NFcqZKD0GLt421pBiY0hWiT5mTSURERMRFHLsYR4+f/uW9sJ0kJtsMa55WC8NaVSS0XwNK5w8wKaGIm9o2C5Z9ZKz55IHuoeCf15xMclNqvEjO1fBFqNHdWIs6CtN7QFK8OZlEREREsjG73c6sDUdpPXo5aw6cc1ivUDCQOf0b0b9ZeTw99FFDJEMd2wBznjfWLFboNB4KhJiTSW6J/jSUnMtigbZjoER9Y/3oOvjtBbDbTYklIiIikh2dj0nkuckbGTojnOiEZIf1Po3L8PsLjalaLI8J6UTcXNRxmNodkq/5AXHrj6D8/eZkklumw3UlZ/P0ga6/wI/N4OKRK/Wtoalz75sMNS+biIiISDbx165TDJ+5lbOXEhzWiubxZVTnGjQsl9+EZCI5QGIsTO0Kl04a63WegnrPmJNJ0kU7XkQC8kO36eAdaKwveQd2/GZOJhEREZFsICYhmVdnb+WpCeudNl063F2MBYObqukikllsNpjzLJwIN9bLNIUHP9EEIxehHS8iAIWqwGPjUjvJXHWL0a/9ILgUFKlhWjQRERERM2w4fJ4hoeEcPhfrsBbs78UH7avxYLUiJiQTyUGWfgg75hprectCp/9pgpEL0Y4XkcsqtoaW7xprSbEwtZsmHYmIiEiOkZhs45MFu+j0/RqnTZfmlQqycHBTNV1EMtvWmbD8E2NNE4xckna8iFytwQA4sws2Tb5SizoG07rDk3+Al5952UREREQy2e6T0QyevpkdJ6Ic1vy9PXjj4Sp0rVsCi25vEMlcR9c7mWDkAZ0nQP4KpkSS26cdLyJXs1igzWgo2dBYP7Ye5g7QpCMRERFxSzabnR+XH6DtVyudNl1qlwpm/sAmdKtXUk0XkcwWeTT1B78p15yr9ODHUK65OZnkjmjHi8i1PL2hyyT4sTlcPHylvm1m6qSjpsPMyyYiIiKSwY5eiGVoaDj/HjzvsOblYWFwixD6NS2Hh1UNF5FMlxiTetTBpWuOOqj7NNTra04muWPa8SLiTEB+6D4dvHMZ63+953i4lYiIiIgLstvtzFgfQesxK5w2XUIKBTKnfyOev6+8mi4iWcFmSx3ucXKLsV72Pmj9kSmRJGNox4vI9RSsDB1/hqldwG67Up/dD4JKQdGapkUTERERuRPnLiUw4tetLNzuOEDAYoGnG5dhaMuK+Hp5mJBOJIf6+33Y+buxlq88dJqgCUYuTjteRG4kpCW0fM9YS477b9LRSXMyiYiIiNyBJTtP0WrMcqdNl2JBfkztW5/X2lRR00UkK20JhRWjjDXfPNBtOvgFm5NJMowaLyI3U/95uLuXsRZ9PLX5khRnTiYRERGRdLqUkMwrs7bQ53/rOXsp0WG9Y+3iLBjUhPpl85mQTiQHi1iXOsjjahYP6DwR8pc3J5NkKN1qJHIzFgs89BmcOwCHV16pH9+YOuKt48+pjxERERHJptYdOs+Q0M1EnHf8oVHeAG8+aF+N1lULm5BMJIe7GOF8gtFDn6Se7SJuQTteRG6Fp3dqxzm4tLG+fTYs+8SUSCIiIiI3k5Ccwofzd9L5hzVOmy4PVC7IwkFN1XQRMUPCpdRd9DGnjfV6z6ROMRK3oR0vIrcqIF/qPZbjWkBC1JX60g+gQAjc1d68bCIiIiLX2HUyikHTNrPrZLTDWoC3B2+2rULnOiWwaOeuSNa7PMHo1FZjvVxzaPWhOZkk02jHi0h6FKwEHceD5ZrfOr8+B8c2mpNJRERE5CopNjs/LNvPI1+tctp0qVs6mPkDm9Klbkk1XUTM8te7sOsPYy1fhdTPGh7aH+Fu1HgRSa8KD0CrD4y15LjUezOjjpuTSURERASIOB9Lt7H/8OH8XSSm2AxrXh4WXnmwEtOeaUDJfP4mJRQRwqfBys+NNd8g6D4d/ILMSCSZTI0Xkdtxz7NQ+0ljLfpEavMlMdaUSCIiIpJz2e12QtdF0HrMctYeOu+wXqlwLub2b8yz95bDw6pdLiKmiVgLv71grFk9ocskyFfOnEyS6dR4EbkdFgs8NApKNzHWj2+COc+l3rMpIiIikgXOXkrgmUkbGD5rCzGJKYY1iwX6NS3L3AGNqFI0t0kJRQSAi0f+m2B0zTj3hz6FMk3NySRZQo0Xkdvl4fXfpKMyxvqOObDsY1MiiYiISM6yaPtJWo1ezp87TjmsFQ/2Y1rf+rz6UGV8PD1MSCciadImGJ0x1u95Fuo8ZU4myTJqvIjcCf+80D0UfPIY68s+gm2zzMkkIiIibi86PolhM8J5ZtIGzsUkOqx3qVOC+QObcE/ZfCakExEDmw1m94VT24z1cvdDy/fNySRZSscli9ypAiHQaTz80gnsV23vnfM8BJeGYrVNiyYiIiLu598D5xg6I5yjF+Ic1vIFePPRY9VpUaWQCclExKklb8PuecZa/oqpnyE0wShH0I4XkYxQ/n5o/aGxlhwPUzXpSERERDJGQnIKH8zbSdcf/3HadGlRpRALBzdV00UkO9k8BVaNMdb8gqH7NPDN4/Qp4n7UXhPJKPWegTO7YP3PV2qXTsLUrtB7AXhrbKOIiIjcnh3HoxgSupldJ6Md1gJ9PHmzbRU61S6OxaKJRSLZxpF/4PeBxprVEzpPgrxlzckkptCOF5GMYrHAg584nkh+IhzmPKtJRyIiIpJuKTY73y3dT7tvVjptutQrk5f5A5vQuU4JNV1EspMLh2FaD8cJRm0+hzJNnD9H3JYaLyIZycMLOv3PsYO9Yy4s/dD5c0REREScOHIulq5j1/Dxgl0kpdgNa94eVkY8VImpfetTIq921YpkKwnRqbveY88a6/Wfh9pPmJNJTKXGi0hGu96ko+WfwNaZ5mQSERERl2G325m29ggPfrGcdYcuOKxXLpKb315oxDNNy+Fh1S4XkWzFlgKznobTO4z18i2gxbvmZBLT6YwXkcyQvwJ0ngCTOzqfdFS8jlnJREREJBs7E53Aq7O3sHjnaYc1iwX6NS3H4BYV8PH0MCGdiNzU4pGwZ4GxVqASdBynCUY5mHa8iGSWcs3hwY+NtZQEmNYdIo+ak0lERESyrQXbTtJqzHKnTZcSef0I7deAVx6spKaLSHa1aTKs/tJY88sL3TTBKKdT40UkM9XrC3WfNtYunUq95zMxxpxMIiIikq1ExScxNDScZydv4HxMosN6t3olmD+wKXVL5zUhnYjcksOr4fdBxprVC7pMhrxlTIkk2YdbNF6OHDnCSy+9ROXKlQkICCBv3rzUq1ePUaNGERsbe0evHRUVxbRp0+jbty933303QUFBeHt7U6BAAe677z5GjRrFxYsXM+aNiHtq/RGUvc9YO7kVfu2nSUciIiI53Jr953hwzApmbXTcDZs/0IdxT9Thww7VCfTRLQoi2daFQzD9cbAlGesPfw6lG5kSSbIXi91ut9/8YdlXWFgYPXr0IDIy0ul6xYoVmTdvHmXLpn9O+vz582nfvj0JCQk3fFyhQoWYOnUqzZo1S/c1bsXRo0cpUaIEABERERQvXjxTriOZKO4C/PQAnNtnrDd5Ce5/w5xMIiIiYpr4pBRGLdzNuFUHcfbdeKu7CvFB+2rkC/TJ+nAicuvio2BcSziz01hvMABavW9OJrkjmfH526V3vISHh9O5c2ciIyMJDAzk/fffZ/Xq1SxZsoS+ffsCsHv3btq0acOlS5fS/frnzp0jISEBq9VKq1atGD16NH/99RcbN27kt99+o0uXLgCcOnWKhx9+mM2bN2fk2xN34hcM3aY73tu5YhRsCTUnk4iIiJhi27FIHvl6JT+tdGy6BPp4MqpTDb5/vLaaLiLZnS0FZvVxbLpUaAUt3jEnk2RLLr1ncdCgQcTGxuLp6cmiRYto0KBB2lrz5s2pUKECw4cPZ9euXXz++ee8+eab6Xp9Ly8v+vXrx4gRIyhZsqRhrVatWrRt25ZGjRrx4osvEhsby9ChQ1myZEmGvDdxQ/nLQ+eJMKmDcdLR3AEQXAZK1DUvm4iIiGS6FJud75ftZ8ziPSSlOG5zqV82L6M61aB4sL8J6UQk3f58E/YuMtYKVIbHfgKrDsGWK1z2VqN169ZRr149APr168f333/v8BibzUbVqlXZuXMnwcHBnDp1Ci8vrwzPUrduXdavX4/VauX06dPky5cvQ19ftxq5mXXjIGyIsRZQEPr+BUElzMkkIiIimerwuRiGhIaz4fAFhzVvTyvDW1XkqUZlsFotJqQTkXTbOBF+e8FY88+X+j19cGlTIknG0K1GV5kzZ07a171793b6GKvVSq9evQC4cOECS5cuzZQs9913H5Da6Dl48GCmXEPcSN0+UO8ZYy3mNEztBgnpvyVOREREsi+73c6Uf4/w4BcrnDZdqhTJze8DGvN0k7Jquoi4ikOr4I9rfpBq9YIuv6jpIk65bONlxYoVAAQEBFC7du3rPu7ee+9N+3rlypWZkuXqw3etVpf9TypZqdWHUK65sXZKk45ERETcyemoeJ6asI4Rv24lNjHFsGa1QP9m5ZjTvxEVC+cyKaGIpNv5g84nGLX9Ako1cP4cyfFctkuwc2fqAUbly5fH0/P6R9VUqlTJ4TkZbdmyZQB4enpSvnz5TLmGuBkPT+g4HvJVMNZ3/QF/vWtOJhEREckw87eeoNWY5fy9+4zDWql8/sx4tgHDWlXC29Nlvx0XyXniI2FqV4g7b6w3fBFq9TAnk7gElzxcNz4+nrNnzwLc9H6r4OBgAgICiImJISIiIsOzhIWFsWXLFgBatWpF7ty50/0aR48eveH6iRMnbiubZHN+QdB9OvzYHOIvXqmv/BwKVIQaXc1KJiIiIrcpKj6JkXO3M3vTMafr3e8pyWsPVSbAxyW/DRfJuVKSYeZTcGaXsR7SGh4YaUokcR0u+Sd+dHR02teBgYE3ffzlxsvtjJS+kfPnz9O/f38APDw8ePfd29upcPngHsmB8pWDLpNgUnuwJV+p//ZC6qSjkveYl01ERETSZfW+s7w0I5zjkfEOawVy+fDJY9VpVqmgCclE5I79+QbsW2ysFayiCUZyS1xyb2N8/JW/zLy9vW/6eB8fHwDi4uIyLENKSgo9evTg8OHDALz++uvUqlUrw15fcpAyTeGhT421lESY3gMuHjEnk4iIiNyy+KQU3vl9B91/+tdp0+XBqoVZOKipmi4irmrDBPjnW2PNPz90mwY+OqNJbs4ld7z4+vqmfZ2YmHjTx18+/NbPzy/DMjz//PMsWLAAgDZt2vDGG2/c9mvd7BaoEydOpI3OFjdV5yk4sxv+vWoseswZmNIV+izUH+giIiLZ1LZjkQyevpm9px13Vufy8eTtdnfRvlYxLBZNLBJxSQdXQNhQY83DG7r+AsGlzMkkLsclGy+5cl35EHortw/FxMQAt3Zb0q149dVXGTt2LACNGzdmxowZeHjc/vayjJgLLm6g5ftwdi/sX3Kldno7zH4mdTSdJmaJiIhkG8kpNr5ftp8xi/eSbLM7rDcom49RnWtQLCjjfvAnIlns3H4I7Wk8EgCg7ZdQsr45mcQlueQnOV9fX/Lnzw/c/GDaCxcupDVeMuIslY8//piPPvoIgLvvvps//vgjQ3fSSA7m4QmdxkP+isb67nmw5G1zMomIiIiDg2dj6PTDGkYt2uPQdPH2tPLGw1X45el71HQRcWVpE4wuGOuNBkHNbqZEEtflko0XgMqVKwOwb98+kpOTr/u4XbuunDp9+Tm369tvv+WVV15Je62FCxeSJ0+eO3pNEQPfPNB9GvgFG+urxsDmKaZEEhERkVR2u51J/xzmoS9WsOnIRYf1qsVyE/ZCY/o0LoPVqluLRFxWSjLM6A1n9xjrFdvA/W+Zk0lcmss2Xho3bgyk3ka0YcOG6z5u2bJlaV83atTotq83adIkBgwYAEDZsmVZvHhx2q4bkQyVtyx0ngTWa+4E/H0gHPnHnEwiIiI53KmoeJ4cv4435mwjLinFsGa1wAvNyzP7uUZUKKRz2URc3qLXjLf/AxSqCh3G6vZ/uS0u+6vm0UcfTft6/PjxTh9js9mYOHEiAEFBQTRr1uy2rjV79mx69+6N3W6nePHiLFmyhKJFi97Wa4nckjJNoM3nxlpKIkzrARcOm5NJREQkhwrbcoJWY5azbM8Zh7XS+fyZ+VxDhrasiLeny35rLSKXrf/ZOPACIKAAdJsKPhlzZqjkPC77t0O9evVo0qQJAOPGjWPNmjUOj/nss8/YuXMnAAMHDsTLy8uwPmHCBCwWCxaLhZEjRzq9zqJFi+jWrRspKSkULFiQxYsXU7p06Qx9LyJO1X4C6j9vrMWeTb3XNCHanEwiIiI5SGRcEoOmbaL/lI1cjE1yWH+8fknmDWzC3SWDnTxbRFzOgWUwb5ix5uENXadAUElzMolbcMmpRpd98cUXNGrUiLi4OFq2bMmIESNo1qwZcXFxTJs2LW3yUEhICEOHDr3Jqzn6559/aN++PYmJiXh5eTF69GiSkpLYtm3bdZ9TvHhxgoKCbvctiRi1eDd10tG+P6/UTu+AWU+n/gVgvf1pWiIiInJ9q/ad5aUZ4ZyIjHdYK5jLh086Vue+igVNSCYimeLcfgjt5TjB6JGvoUQ9czKJ23DpxkutWrWYPn06jz/+OFFRUYwYMcLhMSEhIYSFhRlGUN+qBQsWEBsbC0BSUhI9evS46XPGjx/Pk08+me5riTjl4Qkdx8G4lnDmykHR7FkAi0dCy3dNiyYiIuKO4pNS+Gj+LiasPuR0vU21Irz3aFWCA7yzNpiIZJ64izClC8RfNNYbD4EaXcxIJG7GZW81uqxt27Zs2bKFwYMHExISgr+/P0FBQdSpU4ePP/6YTZs2Ub58ebNjitw+3zzQbRr45TXWV38Jmyabk0lERMQNbTl6kTZfrnDadMnl68mYLjX5unstNV1E3ElKMsx4Es7tNdYrPQzN3zAlkrgfi91ut5sdQm7s6NGjlChRAoCIiAiKFy9uciIxxaFVMLEd2K66x9zqBU/8BqUampdLRETExSWn2Pjm7/189ddekm2O3xo3Kp+PTzvWoGiQnwnpRCRTzRsGa8caa4WqwVMLdJhuDpUZn79dfseLSI5RuhE8fM2kI1sSTH8cLhwyJZKIiIirO3DmEo99v4bRi/c4NF18PK281bYKk566R00XEXe07ifHpktAQU0wkgynxouIK7m7FzQYYKzFnoMpXSE+ypxMIiIiLshutzNxzSEe+nIF4REXHdarFctD2IuN6d2oDFarJesDikjm2v83zBturHn4/DfBqIQ5mcRtufThuiI5Uot3Uicd7V14pXZmJ8zqk3oWjCYdiYiI3NDJyHiGzQxnxd6zDmseVgv9m5Xnhebl8fLQzyhF3NLZfTDjCbCnGOvtvoESdc3JJG5Nf5uIuBqrBzz2ExSobKzvXQR/vmlOJhERERfxe/hxWo1Z7rTpUjZ/ALOea8iQFiFquoi4q7gLMLULxEca601eguqdzMkkbk9/o4i4It/c0H0a+Ocz1td8DRsnmpNJREQkG4uMTeLFqZt4YeomIuOSHNZ7NShF2ItNqFkiKOvDiUjWSEmC0Cfg3D5jvXJbaPaaOZkkR9CtRiKuKrg0dPkF/tfWOOnojyGQtyyUbmxaNBERkexkxd4zDJuxhZNR8Q5rhXL78GnHGjQNKWBCMhHJUgtegYPLjLXC1aH9D2DVngTJPPrVJeLKSjWAtl8Ya7YkmN4Tzh80J5OIiEg2EZeYwltzt9Fz3FqnTZe2NYqycFBTNV1EcoK1P6ZOMbpaYKHUMxK9A8zJJDmGdryIuLpaPeDMLlj95ZVa3HmY2hX6LALfPOZlExERMUl4xEUGh27mwJkYh7Xcvp68+2hV2tUsZkIyEcly+/+C+S8ba56+0HUq5NGfA5L5tONFxB08MBJCWhtrZ3bBzKcgJdmUSCIiImZISrEx+s89dPhutdOmS5MK+Vk4uKmaLiI5xZk9EPqk8wlGxWubEklyHjVeRNzB5UlHBasY6/sWw59vmJNJREQki+07fYnHvlvNF0v2kmKzG9Z8vay80+4u/te7HkXy+JmUUESyVOz51AlGCddMMGo6HKp1NCeT5EhqvIi4C59cqfeo+uc31v/5FjZMMCWSiIhIVrDZ7ExYdZA2X65gy9FIh/UaxfMQ9mITejUojdVqMSGhiGS5lCSY8QScP2CsV2kH971qTibJsXTGi4g7CS4FXf+bdJSSeKUeNhTyloMyTczLJiIikglORMYxbMYWVu4767DmYbXwQvPy9G9WHi8P/bxRJMew22HeMDi43FgvUhMe/V4TjCTL6VeciLspWR/afmms2ZIhtCec229OJhERkUwwd/MxWo1e7rTpUrZAALOfa8igB0LUdBHJadaOhQ3jjbXAwtBtKnj7m5NJcjT9LSTijmp2g0aDjLW4C6mTjuIumpFIREQkw1yMTWTAlI0MnLaZqHjHQ+SfbFiasBeaUKNEUNaHExFz7VsMC14x1jx9odsUyF3UnEyS4+lWIxF3df9bcHYv7A67Uju7J3XSUfdQ8NBvfxERcT3L9pxh+MxwTkUlOKwVzu3Lp52q06RCAROSiYjpzuyGGU+B3WasP/odFNMEIzGPdryIuCurFTqMhUJVjfX9S2DRa+ZkEhERuU2xicm8MWcbT/y81mnTpV3Noiwc1FRNF5GcKvY8THEywei+V6FqB3MyifxHP/IWcWc+gan3sv7YHGLOXKn/+z0UqAh1njIvm4iIyC3adOQCQ0LDOXg2xmEtj58X7z1albY1dAuBSI6VnAihveDCQWP9rvZw78vmZBK5ina8iLi7oJLQdQp4eBvr84bBgWXmZBIREbkFSSk2Pl+0m47fr3HadGkaUoBFg5uq6SKSk9ntMO8lOLTCWC9aC9p9CxaNkBfzqfEikhOUqAePfG2s2ZJTfzKgSUciIpIN7TsdTYdvV/PlX/tIsdkNa35eHrz7aFX+17suhXL7mpRQRLKFf7+Hjf8z1nIVga6aYCTZhxovIjlFjS7QeIixFn8x9V5YTToSEZFswmaz8/PKg7T5ciVbj0U6rNcsEcS8gU3oWb8UFv0kWyRn2/snLBxhrHn6pd5qn7uIOZlEnNAZLyI5SfM3Uicb7frjSu3cXpjxJPSYqUlHIiJiquMX4xg2M5xV+845rHlaLQy8vwLP3VcOTw/97FAkxzu9K3Va57UTjNp/l3qbkUg2or+1RHISqxXa/wCFqhnrB/6Gha+ak0lERHI8u93Or5uO0mrMcqdNl3IFAvj1+Ua8cH8FNV1EBGLOwdQukBBlrDd7LfVAXZFsRn9zieQ0lycdBRQ01teOhXU/mZNJRERyrAsxiQyYsonB08OJjk92WO/dqDRhLzahWvE8JqQTkWwnORFCe8KFQ8Z61ceg6TBTIoncjO4rEMmJgkqkTjqa0AZSEq7U5w2HvOWgXDPzsomISI7x9+7TDJ+5hTPRCQ5rRfL4MqpTDRqVz29CMhHJlux2CBsCh1cZ60XvhnbfaIKRZFva8SKSU5Wom/oX1NXsKTDjCTi7z5xMIiKSI8QkJDPi1630Hr/OadOlfa1iLBjUVE0XETH651vYNMlYy1U0dTe3l585mURugXa8iORk1TvBmV2wYtSVWnwkTOkMfZeAX7B52URExC1tOHyBIaGbOXwu1mEtyN+LD9pX46FqmkYiItfYsxAWvW6sXZ5glKuwOZlEbpF2vIjkdM1eg8ptjbXz+yH0CUhJMieTiIi4ncRkG6MW7qbT96udNl3uq1iARYOaqukiIo5O74SZfRwnGHX4AYrWNCWSSHpox4tITnd50tGFw3Byy5X6wWWw4BVo85l52URExC3sPRXNoOmb2X48ymHNz8uD1x+uTPd6JbHofAYRuVbMWZjSBRKjjfXmr0OVduZkEkkn7XgREfAOgG7TILCQsb7uJ1j7ozmZRETE5dlsdn5acYA2X6102nS5u2QQ8wc2occ9pdR0ERFHyQkw/XG4eNhYr9YJmrxkTiaR26AdLyKSKk8x6DoVJjwEyfFX6vNfhnzloFxz87KJiIjLOXYxjpdCw1lz4JzDmqfVwuAWIfRrWhZPD/0cUEScsNvhjyFwZI2xXqwOPPK1JhiJS9HfdCJyRfHazicdhT4JZ/aYEklERFyL3W5n1oajtB693GnTpULBQOb0b0T/ZuXVdBGR61vzNWyebKzlLg5dp4CXrzmZRG6T/rYTEaNqHaHpcGMtIRKmdoHY8+ZkEhERl3A+JpHnJm9k6IxwohOSHdb7NC7D7y80pmqxPCakExGXsXsBLHrDWPPy/2+CUSHnzxHJxnSrkYg4uu9VOLsbdsy9Ujt/AGY8AY/PBg8v87KJiEi29NeuUwyfuZWzlxIc1orm8WVU5xo0LJffhGQi4lJObYdZfQC7sd5hLBSpbkokkTulHS8i4shqhUe/hyI1jfWDy2HesNR7bkVERICYhGRenb2Fpyasd9p06XB3MRYMbqqmi4jc3KUzMLUrJF4y1u9/Eyq3NSeTSAbQjhcRcc77v+2cY5vBpZNX6hvGQ8HKcE8/87KJiEi2sP7QeYaEhnPkfKzDWrC/Fx92qEbrqkVMSCYiLidtgtERY716F2g8xJxMIhlEO15E5PpyF4VuU8DzmgPMFrwC+xabk0lEREyXmGzjkwW76PzDGqdNl+aVCrJwcFM1XUTk1tjt8PsgiPjHWC9eF9p+qQlG4vLUeBGRGytWGx79zliz22DGU3BmtzmZRETENLtPRvPoN6v4dul+bNfceerv7cGHHaox7ok6FMylqSMicotWfwnhU4w1TTASN6LGi4jcXNUOcO8rxlpCJEzRpCMRkZzCZrPz4/IDtP1qJTtORDms1y4VzPyBTehWryQW/XRaRG7Vrnnw51vGmlcAdJ8GgQXNySSSwXTGi4jcmntfTp10tP3XK7ULB2F6T+j5K3h6m5dNREQy1dELsQwNDeffg47Ndi8PC4NbhNCvaTk8rGq4iEg6nNwGs57GOMHIAo/9CIWrmZVKJMNpx4uI3BqrFdp9C0VrGeuHV8K8lzTpSETEDdntdmasj6D1mBVOmy4hhQKZ078Rz99XXk0XEUmfS6dTJxglxRjrD7wFldqYk0kkk6jxIiK3ztsfuk6FXNcclrjxf/Dv9+ZkEhGRTHHuUgL9Jm1g2MwtXEpINqxZLNC3SRl+G9CYu4rmMSmhiLispPjUCUaREcZ6jW7QaJApkUQyk241EpH0yV0kdcz0zw9CctyV+sIRkK88VGhhXjYREckQi3ec4pXZWzh7KdFhrViQH591rkH9svlMSCYiLs9uh98HQsS/xnqJ+tD2C00wErekHS8ikn5Fa0F7J5OOZj4Fp3eZk0lERO7YpYRkXp65hacnrnfadOlUuzgLBjVR00VEbt/K0bBlmrGWpyR0mQyePuZkEslk2vEiIrfnrvZwdi/8/f6VWkIUTO0CT/8FAfqmXETElaw7dJ4hoZuJOB/nsJY3wJsPO1Sj1V2FTUgmIm5j5x+w5B1jzTswdTd1YAFzMolkAe14EZHb13QYVH3MWLtwCEJ7QrLjT0pFRCT7SUhO4cP5O+n8wxqnTZcHKhdk4aCmarqIyJ05sQVmP4PjBKOfoHBVs1KJZAnteBGR22exQLtv4PxBOL7xSv3wKggbAo98pft0RUSysV0noxg0bTO7TkY7rAV4e/Bm2yp0rlMCi/4sF5E7EX0KpnZznGDU4m2o+KA5mUSykHa8iMid8fJL3R6aq6ixvmkS/POtOZlEROSGUmx2fli2n0e+WuW06VK3dDDzBzalS92SarqIyJ1JiofpPSDqqLFeswc0fNGcTCJZTDteROTO5Sr836Sj1sZJR4teT510FNLKvGwiImIQcT6WoaHhrD103mHNy8PC0JYV6dukLB5WNVxE5A7Z7fDbC3B0nbFesgE8PFo7oyXH0I4XEckYRWtChx+MNbsNZvaB0ztNiSQiIlfY7XZC10XQesxyp02XSoVzMbd/Y569t5yaLiKSMVZ8BltDjbUgTTCSnEeNFxHJOFXaQfPXjbXEaJjSBWLOmpNJREQ4eymBvhM3MHzWFmISUwxrFgv0u7cscwc0okrR3CYlFBG3s+M3+OtdY807ELpNh4D85mQSMYluNRKRjNXkJTizG7bOuFK7eBimPw695uqnGyIiWWzR9pO8Onsr52Icp80VD/bj8841qVcmrwnJRMRtnQiHX/tdU7RAx5+hUBVTIomYSTteRCRjWSyp04yK1THWj6yBP4ak3usrIiKZLjo+iWEzwnlm0ganTZcudUqwYFBTNV1EJGNFn/xvglGssd7yXZ37JzmWdryISMbz8oOuU+DH5sYT7DdPhoKVoOEL5mUTEckB/j1wjqEzwjl6Ic5hLV+ANx89Vp0WVQqZkExE3FpSHEzrAVHHjPVaj0ODAeZkEskGtONFRDJHrkKpk468/I31RW/A7gXmZBIRcXMJySl8MG8nXX/8x2nTpUWVQiwc3FRNFxHJeHY7zB0Ax9Yb66UaQRtNMJKcTY0XEck8RapDh7HXFO0wqw+c2m5KJBERd7XjeBTtvl7F2OUHHO7qDPTx5JOO1Rnbszb5A3XWlohkguWjYNtMYy2oFHSeBJ7e5mQSySbUeBGRzFW5Ldz/prGWeAmmdIVLZ8zJJCLiRlJsdr5duo9236xk18loh/V6ZfIyf2ATOtcpgUU/cRaRzLBjLvz9nrHmnQu6T4eAfOZkEslGdMaLiGS+xkNSJx1tmX6lFnkkddLRE79p0pGIyG06ci6WIaGbWX/4gsOat4eVl1qF0KdxWTysariISCY5vhlmXzPByGKFTuOhYGVTIolkN9rxIiKZz2KBtl9C8brGesQ/8PtATToSEUknu93O1LVHaP3FcqdNl8pFcvPbC414pmk5NV1EJPNEnUidYJR8zZlSLd+HCi3MySSSDWnHi4hkDS/f1ElHY5sZJx2FT4UClaDxINOiiYi4kjPRCbwyawtLdp12WLNaoN+95Rj0QAV8PD1MSCciOUZSHEzrDtHHjfW7e0H958zJJJJNqfEiIlknsCB0nwbjWkFSzJX64pGQPwQqPWRaNBERV7Bg20lG/LqV8zGJDmsl8/rzeeca1Cmd14RkIpKj2O0w53k4vtFYL9UYHvpME4xErqFbjUQkaxWuBo/9CFz9F7IdZj0NJ7eZlUpEJFuLik9iaGg4z07e4LTp0q1eCeYNbKKmi4hkjWWfwPbZxlpwGeiiCUYizqjxIiJZr1IbeOAtYy0pBqZ2hUuOW+dFRHKyNfvP8eCYFczaeNRhLX+gD+OeqMOHHaoT6KONzCKSBbb/Cks/MNZ8cqdOMPJX81fEGTVeRMQcjQZBjW7GWmRE6qSjpHhTIomIZCfxSSm898cOuv/0D8cuxjmst7qrEAsHNeH+yoVMSCciOdKxjfDrNee3WKzQcTwUqGhOJhEXoB+NiIg5LBZo+wWcPwAR/16pR/ybOumo/fe6P1hEcqxtxyIZErqZPacuOawF+ngy8pG7eOzuYlj056SIZJWo46mH6V47wajVh1DhAXMyibgI7XgREfN4+kCXXyBPCWN9yzRYOdqcTCIiJkpOsfHN3/to/+0qp02X+mXzsmBQEzrWLq6mi4hkncTY1LHR0SeM9dpPwj39TIkk4kq040VEzBVYALpNg59bQeJVHzKWvJM66ajyw+ZlExHJQofOxjAkdDMbj1x0WPP2tDK8VUWealQGq1UNFxHJQjYbzHkOTmw21ks3gYdGaYeyyC1wix0vR44c4aWXXqJy5coEBASQN29e6tWrx6hRo4iNjc2w60ybNo1WrVpRpEgRfH19KV26ND179uSff/7JsGuI5EiFq8JjP+Ew6Wj2M3Bii1mpRESyhN1u55d/D/PQlyucNl2qFMnN7wMa83STsmq6iEjWW/Yx7JhjrOUtC50ngoeXKZFEXI3FbrfbzQ5xJ8LCwujRoweRkZFO1ytWrMi8efMoW7bsbV8jPj6eTp068ccffzhdt1qtjBw5kjfeeOO2r3EjR48epUSJ1FsxIiIiKF68eKZcR8R0q76AP9801nIXh75/QS4dHiki7ud0VDwvz9rC37vPOKxZLfDcfeUYeH8I3p5u8bMyEXE1W2fCrD7Gmk8eeHoxFAgxJ5NIJsuMz98u/bd4eHg4nTt3JjIyksDAQN5//31Wr17NkiVL6Nu3LwC7d++mTZs2XLrkeJ/0rerTp09a06VZs2bMmTOHtWvXMm7cOMqVK4fNZuPNN9/kp59+ypD3JZJjNXwRavYw1qKOph7kpklHIuJm5m89Qasxy502XUrl82fGsw0Y1qqSmi4iYo6jG2Buf2PN4gGdxqvpIpJOLr3jpVmzZixduhRPT0+WL19OgwYNDOuffvopw4cPB+Dtt9/mzTffdPYyN7Rs2TLuu+8+ANq2bcuvv/6Kh4dH2vrZs2epXbs2R44cITg4mAMHDhAUFHTb78kZ7XiRHCU5ASa2gyNrjPVqnaHDWN1HLCIuLyo+iZFztzN70zGn693vKclrD1UmwEdH8YmISSKPwY/N4dJJY/3BT+GeZ8zJJJJFtOPlKuvWrWPp0qVA6o6Ua5suAEOHDqVy5coAjBkzhqSkpHRf55NPPgHAw8ODb7/91tB0AcifPz8ff/wxABcuXGDcuHHpvoaIXMXTB7pMhqCSxvrWUFjxmTmZREQyyOp9Z2k9ernTpkuBXD6Mf7IuH7SvpqaLiJgnMQamdXNsutTpA/X6mpNJxMW5bONlzpw5aV/37t3b6WOsViu9evUCUpsilxs1t+rSpUssWbIEgBYtWly309WhQwdy584NwOzZs9N1DRFxIiA/dJsO3oHG+l/vwo7fzMkkInIH4pNSeOf3HXT/6V+ORzreOvlg1cIsHNSUZpUKmpBOROQ/Nhv8+iycCDfWy9wLD36snccit8llGy8rVqwAICAggNq1a1/3cffee2/a1ytXrkzXNdauXUtCQoLD61zL29ub+vXrpz3ndnbWiMg1ClWBjj9jnHQE/NrP8ZsBEZFsbNuxSB7+aiU/rzrosJbLx5PPO9fg2x53kzfA24R0IiJXWfoh7Lzmh1x5y0GnCZpgJHIHXLbxsnPnTgDKly+Pp+f1t+NWqlTJ4Tnpvca1r3Oj6yQnJ7N37950XUdEriOkFbR811hLioWp3SD6pPPniIhkE8kpNr5aspdHv1nFvtOOh/w3KJuPBYOb0uHu4lj0U2QRMduWGbD8E2PNNw90nw7+ec3JJOImXPIG4vj4eM6ePQtw04NugoODCQgIICYmhoiIiHRd5+rH3+w6lw/fufy8KlWq3PJ1jh49esP1EydO3PJribidBgPgzC7YNPlKLepY6qSjJ8PAy8+8bCIi13HwbAxDQjez6chFhzVvTysvt65E74alsVrVcBGRbODo+utMMPof5K9gTiYRN+KSjZfo6Oi0rwMDA2/wyFSXGy/pHSmdnusEBASkfZ3e61zdtBGRa1gs0GY0nD8Ih1ddqR/bAHMHwGM/6X5jEck27HY7k/89wgdhO4lLSnFYr1osN6M716RCoVwmpBMRcSLyaOoPtFISjPUHP4ZyzczJJOJmXLLxEh9/5VA6b++b3w/t4+MDQFxcXKZd5/I1buc6InITnt7QeRL82AwuHr5S3zYTClSCe4eZl01E5D+nouIZPnMLy/accVizWqB/s/K80LwC3p4ue6e3iLibxBiY2hUunTLW6/bVBCORDOSSjRdfX9+0rxMTE2/6+MsH5Pr5pe+WhPRc5/I1buc6N7sF6sSJE9SrVy9drynidgLypd5j/FMLSLyyG42/34MCIVClnXnZRCTHC9tygtfmbOVirOMB+6Xz+fN5l5rcXTLYhGQiItdhs8HsZ+DkVmO97H3Q+iNTIom4K5dsvOTKdWV77q3c1hMTEwPc2m1Jt3udy9e4nevc7PwYEflPwcrQaTxM6Qx225X67H4QVAqK1jQtmojkTJFxSbw1dxtzNh93uv54/ZKMeKgy/t4u+S2XiLizv9+HXX8Ya/nK/zfBSH9miWQkl9zr6uvrS/78+YGbH0x74cKFtKZIes9SubohcrPrXL1rRWe2iGSiCi2g5XvGWnJc6qSjKB1ELSJZZ+Xes7Qes9xp06VgLh8m9K7Le49WU9NFRLKfLaGwYpSx5hsE3UPBT7vzRDKaSzZeACpXrgzAvn37SE5Ovu7jdu3a5fCcW3X1ZKKrX+dG1/H09KR8+fLpuo6IpFP95+HuXsZa9HGY1g0SY83JJCI5RlxiCiN/287j4/7lRGS8w3qbakVYOKgp91UsaEI6EZGbiFibOqDgahYP6DwR8pUzJ5OIm3PZxkvjxo2B1Ft8NmzYcN3HLVu2LO3rRo0apesadevWTTtU9+rXuVZiYiL//POPw3NEJJNYLPDQZ1CqsbF+fFPqKES73ZxcIuL2thy9yMNfrWDC6kMOa7l8PRnTpSZfd69FcIC+FxCRbOhihPMJRg99CmXvNSeTSA7gso2XRx99NO3r8ePHO32MzWZj4sSJAAQFBdGsWfrGoeXKlYv7778fgMWLF1/3dqPZs2cTFRUFQPv27dN1DRG5TZ7e0GUSBJcx1rfPhmWfmJNJRNxWcoqNLxbvpcO3q9l/JsZhvVH5fCwc1JRHaxXDohH3IpIdJVxKvTU75prJa/X6Qd0+5mQSySFctvFSr149mjRpAsC4ceNYs2aNw2M+++wzdu7cCcDAgQPx8vIyrE+YMAGLxYLFYmHkyJFOr/PSSy8BkJycTP/+/UlJSTGsnz17lpdffhlIbe48/fTTd/S+RCQd/POmTjryyW2sL/0Ats02J5OIuJ0DZy7x2PdrGL14D8k24446H08rI9tWYdJT91A0KH1TDUVEsszlCUanrplgVK45tPrAnEwiOYjLNl4AvvjiC/z8/EhOTqZly5Z8+OGH/PPPP/z999/069eP4cOHAxASEsLQoUNv6xrNmzena9euAPz222+0aNGC3377jfXr1zN+/Hjq16/PkSNHAPjoo48IDtZhVCJZqkBF6DgeLNf8cTbnOTi20ZxMIuIW7HY7E9cc4qEvVxAecdFhvVqxPIS92IQnG5XBatUuFxHJxv56B3aHGWv5KqR+D6UJRiKZzqV/l9WqVYvp06fz+OOPExUVxYgRIxweExISQlhYmGE0dHr9/PPPREVFMW/ePP7++2/+/vtvw7rVauWNN96gX79+t30NEbkDFR6AVh/Cgpev1JLjU+9h7vsX5C5qXjYRcUknI+MZNjOcFXvPOqx5WC30b1aeF5qXx8vDpX+GJSI5Qfg0WDnaWPMNSt017BdkRiKRHMflv1to27YtW7ZsYfDgwYSEhODv709QUBB16tTh448/ZtOmTXc8ZcjPz4+wsDB++eUXWrRoQcGCBfH29qZEiRJ0796dlStXXvdWJRHJIvf0g9pPGmvRJ1LvZdakIxFJh9/Dj9NqzHKnTZey+QOY9VxDhrQIUdNFRLK/I//Cby8Ya1bP1HPyNMFIJMtY7HaN/8jujh49SokSJQCIiIigePHiJicSyaZSkmBSezi0wliv8mjqVlqrPiSJyPVFxibxxtxt/BZ+3Ol6rwalePXByvh5e2RxMhGR23DxCIxtBrHXNJEfHgN1epsSScQVZMbnb30KERH34eEFnSdC3rLG+o45sOxjUyKJiGtYsfcMrcYsd9p0KZTbh4lP1eOddlXVdBER15AQDVO6OjZd7nlOTRcRE6jxIiLuxT8vdJsOPnmM9WUfwdaZ5mQSkWwrLjGFN+duo+e4tZyMindYb1ujKAsHNaVpSAET0omI3AZbSuoEo9PbjfXyD0DL98zJJJLDufThuiIiThUIgU7j4ZdOYL9qBPzc/hBcBorXNi+biGQb4REXGTx9MwfOxjis5fb15L321Xikhg7nFhEXs+Rt2D3PWMtfETr+rAlGIibRjhcRcU/l74fWHxlrlycdRR4zJ5OIZAtJKTZG/7mHDt+tdtp0aVIhP4sG36umi4i4ns1TYNUXxppfMHSfBr55nD9HRDKdWp4i4r7q9YUzO2H9z1dql07CtG7Qez54B5iXTURMse/0JYaEbmbL0UiHNV8vKyMeqkzP+qWwWCwmpBMRuQOH18BvLxprVk/oMtnx/DsRyVLa8SIi7stigQc/gTJNjfUT4fDrs2CzmZNLRLKczWZnwqqDtPlyhdOmS43ieQh7sQm9GpRW00VEXM+FwzC9B9iSjPU2n0PpxuZkEpE0aryIiHvz8IJO/4O85Yz1nb/B0g/MySQiWepEZBy9fl7LyN93kJBsbLh6WC0MeqACM59rSLkCgSYlFBG5AwnRMLUrxJ4z1uv3h9pPmJNJRAzUeBER9+efF7pPd7y3efmnsGWGOZlEJEvM3XyMVqOXs3LfWYe1sgUCmP1cQwY9EIKXh74lEhEXZEuBWU/D6R3GeoWW0PJdczKJiAN9lyEiOUP+CtBpAlg8jPW5/eHoelMiiUjmuRibyIApGxk4bTNR8ckO6082LE3YC02oUSIo68OJiGSUxW/BngXGWoFK8Ng4sHo4f46IZDk1XkQk5yjXHB782FhLSYCp3SDyqDmZRCTDLd19mpajl/PHlhMOa4Vz+zKpTz1GPnIXft76UCIiLmzTZFj9lbHmlxe6TQPf3OZkEhGn1HgRkZylXl+o29dYizmdem90ouNYWRFxHbGJybw+ZytPjl/H6egEh/V2NYuycFBTmlQoYEI6EZEMdHg1/D7IWLN6/TfBqIwpkUTk+jROWkRyntYfwbm9cGDpldrJrTD7Geg8CazqSYu4mk1HLjAkNJyDZx0bqHn8vHi/fVUerl7UhGQiIhns/EGY5mSC0cOjoXQjczKJyA3p04WI5DwenqnnveQrb6zv+gP+fs+USCJye5JSbHy+aDcdv1/jtOnSNKQAiwY3VdNFRNxDfFTqLt2488Z6gwFwd09zMonITWnHi4jkTH7B0D0UfmwO8Rev1Fd8lnooXfXOpkUTkVuz73Q0g6eHs/VYpMOan5cHI9pU5vF7SmKxWExIJyKSwWwpMKsPnNllrFdoBS3eMSeTiNwS7XgRkZwrXznoPNHJpKMBELHWnEwiclM2m52fVx6kzZcrnTZdapYIYt7AJvSsX0pNFxFxH3++CXsXGWsFq8BjP2mCkUg2p8aLiORsZe+Fhz411lISYFp3uBhhTiYRua7jF+Po+fO/vPPHDhKSbYY1T6uFoS1CmPlsA8rkDzApoYhIJtg4EdZ8baz559MEIxEXocaLiEjdPlCvn7EWcyZ1zHTCJXMyiYiB3W7n101HaTVmOav2nXNYL1cggF+fb8QL91fA00Pf3oiIGzm0Ev4YYqxZvaDLLxBcypxMIpIu+s5ERASg1QdQrrmxduq/SUc2m/PniEiWuBCTSP8pGxk8PZzo+GSH9d6NShP2YhOqFc9jQjoRkUx0/gBM7+k4wajtF1CqgTmZRCTd1HgREYHUSUcdx0O+Csb67jD4SwfWiZjl792naTlmOfO2nnRYK5LHl1+evoe32t6Fr5fONxARNxMfCVOcTDBq+CLU6mFOJhG5LWq8iIhc5hcE3aeDb5CxvnI0bJ5qRiKRHCsmIZkRv26l9/h1nIlOcFhvX6sYCwY1pVH5/CakExHJZCnJMPMpOLvbWA95EB4YaUokEbl9GictInK1fOWgyySY1B5sV93S8PuLkLcslLzHvGwiOcSGwxcYErqZw+diHdaC/L34oH01HqpWxIRkIiJZ5M83YN9iY63gXfDYj5pgJOKCtONFRORaZZo6mXSU+N+koyPmZBLJARKTbYxauJtO36922nS5r2IBFg1qqqaLiLi39ePhn2+NtYAC0H0a+OQyJ5OI3BHteBERcabOU3BmD/z73ZVa7NnUe637LNQ3PiIZbO+paAZN38z241EOa35eHrz+cGW61yuJxWIxIZ2ISBY5uBzmvWSseXinTjAKKmlOJhG5Y9rxIiJyPS3fg/IPGGunt/836SjFnEwibsZms/PTigO0+Wql06bL3SWDmD+wCT3uKaWmi4i4t3P7IbSX8VZngLZf6lZnERenxouIyPV4eELHnyF/RWN99zxY8rY5mUTcyLGLcfT46V/eC9tJYrJxbLun1cKwVhUJ7deA0vkDTEooIpJF4i7C1K4Qd8FYbzwYanYzJZKIZBw1XkREbsQ3T+o91X7BxvqqL2DTL+ZkEnFxdrudWRuO0nr0ctYcOOewXqFgIHP6N6J/s/J4euhbFRFxcynJMLM3nN1jrFdsA83fNCeTiGQofTcjInIzectCl8lgveZYrN8HwuE15mQScVHnYxJ5bvJGhs4IJzrBuJ3eYoGnG5fh9xcaU7VYHpMSiohksUWvwf6/jLVC1aDDWLDq45qIO9DvZBGRW1G6MbT53FizJcH0HnDhsDmZRFzMX7tO0XL0chZsP+mwVizIjylP1+f1h6vg66VRqSKSQ6wbB/9+b6wFFIBuU8En0JxMIpLh1HgREblVtZ+A+v2NtdhzqfdkJ0Sbk0nEBcQkJPPq7C08NWE9Zy8lOKw/dndx5g9qQoNy+UxIJyJikgPLYN4wY83DG7pOgaAS5mQSkUyhcdIiIunR8l04txf2LrpSO70DZj2d+o2SVT+pF7na+kPnGRIazpHzsQ5rwf5efNihGq2rFjEhmYiIiS5PMLJfMyXxka+hRD1zMolIptGOFxGR9LB6wGPjoEAlY33PAlj8ljmZRLKhxGQbnyzYRecf1jhtujSvVJCFg5uq6SIiOU/cBZjSGeIvGutNhkKNLqZEEpHMpR0vIiLp5Zsbuk2DH5tD3Pkr9dVfpY6evrunedlEsoHdJ6MZPH0zO05EOaz5e3vwxsNV6Fq3BBaLxYR0IiImSkmCGU/CuX3GeqWHodnrpkQSkcynHS8iIrcjb5n/Jh15Get/DIZDq8zJJGKyFJudH5cfoO1XK502XWqXCmb+wCZ0q1dSTRcRyZkWvAoHlhprhatB+x80wUjEjel3t4jI7SrdCB4ebazZkmD643D+oDmZREwScT6Wbj/+w/vzdpKYYjOseXlYGN66IqH9GlAqX4BJCUVETLb2R1j3o7EWUDB1F60mGIm4NTVeRETuxN09ocEAYy3ufOqko3jHn/iLuBu73c6M9RE8+MUK1h4877BesVAu5vRvxPP3lcfDql0uIpJD7f8b5r9srHn4pI6NzlPcnEwikmXUeBERuVMt3oEKrYy1M7tgVh+wpTh/jogbOHcpgX6TNjBs5hYuJSQb1iwWeKZpWeYOaMRdRfOYlFBEJBs4uw9mPOE4wajdN1C8jjmZRCRLqfEiInKnrB7w2E9QoLKxvncR/PmmOZlEMtniHadoNWY5i3acclgrFuTH1L71GfH/9u47PIpyi+P4d9NDAqHXhC4QlCJNEAhF6U16UQRFxKtIUbDXe20gKtjFLtKLKB1FqjRBIKD0GnoooaSXvX+sKcNugIRsJpv9fZ6H51nPOztzYJxM9uw77+kYip+3WqyLiBtL62B0yRgPGwu1e5uTk4jkOhVeRERygl8hGDADChQzxjd8DFu/NycnESe4Gp/Es3PCeeSHLZy7mmA33rt+MEtHNadx5WIO3i0i4kaSE2HWILhw0BgP7QotXzAnJxExhdpJi4jklCIVoe9U+L6LbZHdVIuegmJVoGIz01ITyQl/HrnAU7O2E3Eh1m6saIAPb/eoRbvbS5uQmYhIHrTkWTi82hgrXRu6f64ORiJuRle8iEhOqtAEukwyxlKSYOZAuHDInJxEblF8UjJvL9lNny82OCy63BtakmWjwlR0ERFJtflL2PK1MRZYytbByEfd3UTcjWa8iIjktDvvty2uu/7D9FjsBZjWDx75Ffy00Ki4jt2nLjN65nb2nL5iNxbg48krXWrSp0EIFos6FomIAHBghX0HIy8/6DcdgsqZk5OImEozXkREnOHe16BaB2Ps3F6Y8zAkJzl8i0hekpxi5fPVB+n28R8Oiy4NKxZhycgw+jYsr6KLiEiqyH0w+6FMOhjVNycnETGdCi8iIs7g4Qk9v4SStxvjB36DX182JyeRmxRxIYb+kzfyzpI9JCSnGMZ8PD14rkMNZjzahPLFCpiUoYhIHhRzAab3hfhrOhi1eBZq9TInJxHJE1R4ERFxFt+C/3Y6Km6Mb/wUtnxrTk4i12G1Wpn1ZwTtJ65h85ELduM1Shfk5+FNeaxFFTw9NMtFRCRNciLMetB+Pbea90GL50xJSUTyDhVeREScqXB56DcVPH2M8cVj4PAac3ISceDc1XiG/rCVZ+aGE51gnCJvscCwFpX5eXhTQssUMilDEZE8ymq13dePrDXGy9SF+z5TByMRUeFFRMTpyjeGLh8aY6mdjs4fNCcnkQyW/32adh+s4bfdZ+zGgov4M/PRJjzfIRRfL08TshMRyeM2fQFbvzPGAktD/+ngo0cyRUSFFxGR3FG3PzQdZYzFRcH0fhAbZUJCInAlLpGxs3fw6JStnI9OsBvv2yCEpaPCaFSpqAnZiYi4gP2/wbLnjTEvP1vRpVBZc3ISkTxH7aRFRHLLPa/Cuf2wd1F67Nw+mPMQDJgNnvqRLLln06HzPD17B8cvxtqNFQvw4Z2etWlTs5QJmYmIuIjIvbZ7uNW4CDn3fQbl6pmTk4jkSZrxIiKSWzw8oMdkKFXLGD/4Oyx7wZycxO3EJSbz1uLd9Ptyo8OiS5uapVg2OkxFFxGR64m5ANP6QvxlY7zl83BHD3NyEpE8S1+viojkJt9A2/TjL1tBdGR6fPMXUKI6NBxiXm6S7/1z8jKjZ25n75krdmOBvl680qUmvesHY7GoY5GISKaSEmzrtF08bIzf3sPWOlpE5Bqa8SIiktsKh0C/aQ46HY2FQ6vNyUnyteQUK5+uOkC3T9Y5LLo0qlSUJSOb06dBiIouIiLXk9rB6Og6Y7xsPbjvU1sbOBGRa6jwIiJihpBG0PVjY8yaDLMeVKcjyVHHzsfQ94sNjF+6l8Rkq2HMx9ODFzuGMmNoY0KKqvOGiMgNbfwM/vreGCtY1vaFire/OTmJSJ6nwouIiFnq9IXmTxtjcVEwrQ/EXjQlJck/rFYr0zcfo/2kNWw5av//U2iZQvzyZFOGhlXGw0Pf0IqI3ND+X2H5i8aYlz/0nwaFypiTk4i4BBVeRETM1OolqNHZGDt/AGYPhuREU1IS1xd5JZ5Hvt/C8/N2EpOQbBjzsMB/WlZh/hN3U6N0IZMyFBFxMWd3w2wHHYy6fw5l7zQnJxFxGSq8iIiYycMDun8Bpa/pdHRoFSx93pSUxLUt3XWadhPXsGLPWbux8kULMGtYE55tXwNfL08TshMRcUHR520djBKuWSOr1Ytw+32mpCQirkWFFxERs/kGQv8ZEFDSGP/zS9j8pTk5icu5HJfI07N28NiPW7kQnWA33r9RCItHNqdBxaImZCci4qKSEmDWQIg6aozf0RPCxpqTk4i4HLWTFhHJC4KCbW2mv+0IyfHp8SXPQrGqUKWVeblJnrfh4HnGzN7BiahYu7Higb6M61mLe0JLmZCZiIgLs1ph0Wg4+ocxXq4+dPtEHYxE5KZpxouISF4R3MD2i1xG1mSYPQjOHTAnJ8nT4hKTeWPhP/T/cqPDoku720uxbFRzFV1ERLJjwyew7UdjrFA5dTASkSzTjBcRkbykdm84txfWvJsei7tk63Q0dAX4FzEvN8lTdp24xFOztrPvzFW7sYK+XrzW9XZ61CuHRd/Iiohk3b5l8OvLxph3Advs1IKlzclJRFyWZryIiOQ1LV+A0K7G2IWDMGuQOh0JSckpfLLyAN0//cNh0aVx5aIsGdWcnvWDVXQREcmOM//AnCEOOhh9AWXqmJOTiLg0zXgREclrPDxs7SkvHoHT4enxw6thyTPQ6X09V+6mjpyL5qlZ2/nrWJTdmI+XB8+0q87DTSvh4aH/P0REsiX6HEx30MGo9ctQs6vj94iI3IBmvIiI5EU+AbZOR4HXrM2x5Rt1OnJDVquVqZuO0vHDtQ6LLjXLFGLhk814pHllFV1ERLIrKR5mPgBRx4zxWn2g+dPm5CQi+YJmvIiI5FVB5aDfdPiuIyTFpceXPgfFqkDVe8zLTXLN2ctxPDs3nJV7I+3GPCzwn5ZVGHlPNXy89F2KiEi2Wa2w8Ck4tsEYL9cAun6kmaYickv0W5qISF4WXD+TTkcPQeQ+c3KSXLNk5ynaTVzjsOhSoVgBZj/WhLHtaqjoIiJyq9Z/BNuv7WAU/G8HIz9zchKRfEO/qYmI5HW1ekGLZ42x+Eu2Z9BjLpiTkzjVpdhEnpq5nf9M/YuLMfYLKg+4qzyLRzSnfoWiJmQnIpLP7F0Cv75ijKV1MCrl+D0iIlmgR41ERFxBi+cgcg/883N67MIhmPUgDPwJPL3Ny01y1PoD5xgzewcnL8XZjZUo6Mv4nrVpVaOkCZmJiORDZ/6GuY8AVmO8x5dQprYpKYlI/qMZLyIirsDDA+77HMrUNcaPrIXFY2zPpotLi0tM5r8L/mHAV5scFl061irNslFhKrqIiOSUq5EwrR8kXDXG73kVQjubk5OI5EsuX3iJiYnh3XffpVGjRhQtWpTAwEBCQ0MZM2YMx44du/EObiApKYlff/2VsWPH0rx5c0qUKIG3tzeFCxemXr16jBkzhoMHD+bA30RE5AZ8/p32HFjaGN/6HWz6wpSUJGfsOnGJzh+t45s/DtuNFfTz4oO+dfhkQD2KBviYkJ2ISD6U2sHo0jWfF2r3g2ajzclJRPIti9Xqul+THjx4kE6dOrF3716H40FBQUybNo2OHTtma/+RkZGEhoZy/vz5627n4+PD+PHjGTlyZLaOcyPHjx8nJCQEgIiICIKDg51yHBFxESf+gm87GDsdWTxgwGy47V7z8pIsS0pO4bNVB5m0Yj9JKfa347urFGNC7zqULexvQnYiIvmU1Qrz/wM7phvjwY1g0AItpivi5pzx+dtlZ7xcvXqVzp07pxVdhg4dyooVK1i/fj1vvvkmgYGBXLp0id69exMeHp6tY8THx6cVXerWrcurr77K4sWL2bp1K7///jtjx47Fz8+PhIQERo0axeTJk3Ps7ycikqly9eC+z4wxawrMeQgiHReiJe85fC6a3l9s4L1f99kVXXy9PHilc01+HHKXii4iIjntj0n2RZegEOg3VUUXEXEKl53x8tprr/H6668DMH78eMaOHWsY37BhA2FhYSQlJdGqVSt+//33LB/jxIkTPPTQQ/z3v/+lcePGDrfZtGkTrVq1IjY2lqCgICIiIihYsGDW/0LXoRkvIuLQqndg1dvGWJFKMPR3KKBuN3mV1Wrlx03HeGvRbmITk+3G7yhXiA/61OW2Ujl7LxEREWDPYpgxAMNiut4BMGQ5lL7DtLREJO/QjJd/JSYmMmnSJABCQ0N5+umn7bZp0qQJQ4YMAWDlypVs3bo1y8cpV64cy5cvz7ToAnDXXXfx+OOPA3Dp0iV+++23LB9HRCRbWjwLt/cwxi4ehpkDISnBnJzkus5cjmPwt3/y8vxddkUXDws82boq8/7TVEUXERFnOL3LQQcjC/T8SkUXEXEqlyy8rFq1iqioKAAGDRqEh4fjv8bgwYPTXs+bN89p+bRq1SrttRbaFZFcY7HAfZ9C2TuN8aPr1OkoD1oYfpJ2E9ewel+k3VjFYgWY85+7ebptdXy8XPLWLCKSt109C9P7QWK0MX7va1Aje+tBiojcLJf87W7t2rVpr1u0aJHpdg0aNCAgIACAdevWOS2f+Pj4tNeZFYFERJzC2x/6TYeCZYzxv76HjZ85fo/kqksxiYycsY3h07YRFZNoN/5A4/IsHtmceuWLmJCdiIgbSIyDGffDpQhjvM4AaOqc5hgiIhl5mZ1AduzevTvtdY0aNTLdzsvLiypVqhAeHm54T05bvXr1TeWTmePHj193/NSpU1nep4i4kUJlbG2mv+kASbHp8eUvQvHb4LY25uXm5tbtP8eY2Ts4fTnObqxkQV/G96pNy+olTchMRMRNWK2wYAQc32yMhzSGLhNts0dFRJzMJQsvERG2anVAQACFCxe+7rYhISGEh4cTGRlJfHw8vr6+OZrLqVOn+PbbbwEoXry44bGjm5W6cI+ISLaVvRO6fw6zB6XHrCkw+yF45FcoGWpebm4oNiGZcUv38N36Iw7HO9Uuwxvd7qBIgE/uJiYi4m7WfQDhM42xoPLQ90fwytnPBSIimXHJ52KuXLkCQGBg4A23TX3UCGwtqHOS1WrlscceS8vn5Zdfxt9fbT9FxCS33wetXjTGEq7AtL4Qfd6UlNxR+PEoOn+01mHRpZCfF5P61eXj/neq6CIi4my7F8CK140xn0AYMAMCS5iTk4i4JZec8RIXZ5uy7eNz419aM85wiY2Nvc6WWffWW2/xyy+/ALYFdocPH56t/aTO4MnMqVOnaNSoUbb2LSJuJmwsRO6BXXPTY1FHYdZAGDgfvPRh31mSklP4ZOVBPvp9P0kp9gsbN6tanHd716ZMkAr0IiJOdyoc5j16TdACPb+GUrebkpKIuC+nFl6SkpLw9va+5f18++23hg5Ffn5+ACQk3LhdasaFb3NyNsrUqVN5+eWXAahYsSLTpk3L9sK6OdEXXEQEsD2r3u0TuHAYTv6VHj/6BywaDV0/1vPsTnAo8iqjZ+1gR0SU3ZivlwfPd6jBg00q4uGhf3sREae7cgam94fEGGO8zX+hentzchIRt+aSjxoVLFgQuLlHh6Kj01vG3cyjSTdj0aJFPPTQQ1itVkqVKsWvv/5K6dKlc2TfIiK3zNvftthuwbLG+LYfYcMn5uSUT1mtVn7YcISOH651WHSpVS6IRSOaM7hpJRVdRERyQ2IczBgAl69pXlH3Abj7SXNyEhG359QZL15eXjnSTahMGWOb1ODgYDZt2kR0dDRRUVHXXWA39TGeEiVK5MjCuqtWraJXr14kJiZSpEgRli9fTtWqVW95vyIiOapgadsz7N+0N37jt/wlW6ejau3Myy2fOH0pjrFzdrB2/zm7MU8PC0+0qsqTravi7emS33GIiLgeqxV+GQ4nthjj5ZtA5/c141NETOP0NV6y0175RmrWrMncubb1C/bs2UPjxo0dbpeUlMTBgwcBCA299Y4emzdvpkuXLsTFxREYGMiSJUuoXbv2Le9XRMQpytSB7l/Y1ndJY4U5Q2DIcihV07TUXN0vO07y8vxdXIpNtBurXDyA9/vWpW5I4dxPTETEna19D3bONsYKq4ORiJjPJb+Ga9asWdrr1atXZ7rdli1b0h41atq06S0dMzw8nPbt23P16lX8/PxYsGABd9111y3tU0TE6Wp2hdYvGWMJV2B6X4i2n6kh1xcVk8CT07cxYvo2h0WXQU0qsGhEcxVdRERy2z+/wO//M8Z8CkL/mRBQ3JycRET+5ZKFl5YtWxIUFATA999/j9Vq3z0C4Lvvvkt73b1792wfb9++fbRt25aLFy/i7e3N3LlzadmyZbb3JyKSq5qPgVq9jbGoYzDzAUiKd/wesbNmXyTtJq5hwY6TdmOlCvnyw8ONeL3bHfj7eJqQnYiIGzu1A34adk3QAr2+1uxOEckTXLLw4uPjw4gRIwDYvXs3EyZMsNtmw4YNfP311wC0aNGChg0b2m1z5MgRLBYLFosl00LKsWPHuPfeezlz5gyenp5MmzaNjh075txfRkTE2SwWWzejcg2M8WMbYOFTtmfiJVOxCcm88vMuHvxmM2cu2xequtQpy7JRYYRVK2FCdiIibu7KaccdjNq+ofXMRCTPcPoaL84yduxYZs6cyb59+3jmmWc4cOAA/fr1w9/fn5UrV/LWW2+RlJSEv78/EydOzNYxzp8/z7333pu2QO/TTz9NjRo12LVrV6bvKVKkCOXKlcvW8UREnMbbD/pNgy9bGzs9bP8RSlSHpiPMyy0P2xERxeiZ2zl0LtpurJCfF290r0XXOmUdvFNERJwuMfbfDkYnjPE7B0KTJ8zJSUTEAYs1s+d0XMCBAwfo2LEj+/fvdzheqFAhpk6dSufOnR2OHzlyhEqVKgG2WTGrVq0yjK9atYpWrVplKadBgwYZHnHKCcePHyckJASwdWkKDg7O0f2LiBs5FQ7ftLvmm0GLrf109Q6mpZXXJCan8PHvB/h45QGSU+xvk81vK867vepQOsjPhOxERASrFeYOgV1zjfEKTWHgfPDyMSUtEXF9zvj87ZKPGqWqWrUq27ZtY9y4cTRo0IDChQtToEABqlevzujRowkPD8+06CIi4pbK1IYeX14TtMLcR+DM36aklNccOHuVnp+tZ9KK/XZFFz9vD/7b7XZ+eLiRii4iImZa86590aVIRegzRUUXEclzXHrGi7vQjBcRyXFr34MV/zXGgsrD0N8h0D3XKklJsfLDhiO8vWQP8UkpduN1goN4v29dqpQINCE7ERFJ8/d8mD3IGPMtBEN+hZI1TElJRPIPZ3z+dtk1XkRE5BY0ewoi90L4zPTYpWMw834YtAC8fM3LzQSnLsUydnY46w7Yt9j29LDwZOuqPNGqKt6eLj1RVETE9Z3cBj89ZoxZPKDXNyq6iEiepd8gRUTckcUCXT6E4EbGeMQmWDDSbTodWa1Wft5+gnYfrHFYdKlSIoCfHr+bUfdWU9FFRMRsl0/ZOhglxRrjbd+E29qYk5OIyE3Qb5EiIu7K2w/6TYWgEGN8x3T4Y5I5OeWiqJgEhk/fxsgZ27kcl2Q3Pvjuiiwa0ZzawYVzPzkRETFKiIEZ/eHKKWO83iBo/B9zchIRuUl61EhExJ0FlrR1NPq6HSRmaJn822tQ/Dao0cm01Jxp1d6zPDMnnLNX4u3GygT58W6vOjS7rbgJmYmIiB2rFX5+3PaYUUYVm0PHCbZZnCIieZhmvIiIuLvStaDnV0DGX1ytMHconN5pVlZOEZOQxEvzdzL42z8dFl261S3L0pFhKrqIiOQlq8fB3z8ZY0UqQZ8f1MFIRFyCCi8iIgI1OsK9rxljidG2Z+mvnjUlpZy27dhFOn24jh83HrMbC/L35uMBdzKp350EFfA2ITsREXFo1zxY9bYx5lsIBsyEAkXNyUlEJItUeBEREZumI6FOf2PsUgTMuB8S48zJKQckJqfw/vK99Pp8A4fPRduNh1UrwfLRYXSuXdaE7EREJFMntsL8a9ZvsXhA72+hRHVzchIRyQat8SIiIjYWC3SZBBcOQ8TG9PjxzbBgBHT/wuWeo99/5gqjZ21n14nLdmP+3p680CmUB+4qj8XF/l4iIvne5ZMwfQAkXVP4b/c2VL3XnJxERLJJM15ERCSdly/0/RGCyhvj4TNh3Qfm5JQNKSlWvl53mE4frXNYdKkbUpjFI5szsHEFFV1ERPKahJh/H3U9bYzXfwjuGmZOTiIit0AzXkRExCiwBAyYAV+3hYSr6fEVr9s6HYV2MS+3m3AiKpaxs3ew/uB5uzEvDwsj77mN/7SsgpenvnsQEclzUlJg/mNwarsxXikMOr7rcjMvRURAM15ERMSRUrc76HQEzHsUTu0wJaUbsVqt/LTtOO0nrnFYdKlaMpCfHm/Kk/fcpqKLiEhetfod+OdnY6xoZej9PXhq8XMRcU36zVNERByr3gHa/NcYS/x3+veVM+bklImL0Qk8Me0vRs/cwZW4JLvxh5tWYuGTzagVHGRCdiIiclN2zrG1js7INwj6q4ORiLg2PWokIiKZu/tJiNwL239Mj10+ATMGwOBF4O1nXm7/Wrn3LM/MCSfySrzdWNkgPyb0rsPdVYubkJmIiNy041vh5yeMMYsn9PkOSlQzJSURkZyiGS8iIpI5iwU6vw/lmxjjJ7bAL8PBajUnLyA6PokXftrJQ9/+6bDo0v3OciwZFaaii4hIXnfpBMzob9/BqMM4qNLanJxERHKQZryIiMj1pXY6+rIVRB1Lj++cDSWqQ9jYXE9p69GLPDVrO0fPx9iNFS7gzVvda9GxVplcz0tERLIoIRqm94Or1zzC2mAINBpqTk4iIjlMM15EROTGAorbnrH3CTTGf38D/vkl19JISErh3WV76P35eodFl5bVS7B8VJiKLiIiriAlBX56DE6HG+OVWthmu4iI5BOa8SIiIjenVE3o9Q1M6wtkeMTop2FQuDyUrevUw+87c4XRM7fz98nLdmP+3p681DmUAY3KY1GrURER17DqLdh9TfG+WFXoow5GIpK/aMaLiIjcvGrtoO0bxlhap6PTTjlkSoqVr9YeovNH6xwWXeqVL8ySkc25/64KKrqIiLiK8Nmw5l1jzO/fDkb+RczJSUTESTTjRUREsqbJExC5G7Zl6HR05WSGTkf+OXao4xdjGDN7BxsPXbAb8/KwMLpNNYaFVcbLU98jiIi4jONbHHcw6v09FK9qTk4iIk6k31RFRCRrLBbo9AFUaGqMn/i3FWgOdDqyWq3M3XqcDhPXOiy63FYykPlPNOWJVlVVdBERcSWXjttmSSZf042u43io0sqcnEREnEy/rYqISNZ5+UCfKVC4gjG+a6791PEsuhCdwH9+/IunZ+/gSnySYcxigUeaVWLBk824o1zQLR1HRERyWWoHo+izxnjDodDwEXNyEhHJBXrUSEREsiegGAyYBV+3gfgMa6+sfBOKV4Pb78vyLn/fc4Zn5uzk3NV4u7Fyhf2Z0LsOTaoUu4WkRUTEFCkpMO9ROL3TGK/cEtq/Y0pKIiK5RTNeREQk+0rWsHU6slxzO/npMTi57aZ3Ex2fxPPzwnn4uy0Oiy496wWzZFRzFV1ERFzVyjdgz0JjrNht0Ps78NR3wSKSv6nwIiIit+a2NtD2TWMsKdb2DP/lUzd8+5YjF+gwaS3TN0fYjRUp4M3nD9TjvT51KOSn1qIiIi5px0xY+54x5lcYBqiDkYi4BxVeRETk1jX+D9QbZIxdOQUz+kNCjMO3JCSlMG7pHvp8sYFjF+y3uadGSZaNDqP9HWWckbGIiOSGiM3wy3BjzMML+vwAxaqYk5OISC7TvD4REbl1Fgt0nADnD8LRdenxk9vg58eh17e2bf619/QVRs3czu5Tl+12VcDHk1c616RvwxAsGd4jIiIuJuoYzBgAyQnGeMd3oXILc3ISETGBZryIiEjO8PKBvlOgSCVj/O+fYPU4AJJTrExec5AuH61zWHRpUKEIS0Y2p1+j8iq6iIi4svirtkdOoyON8bsegwYPm5OTiIhJNONFRERyToGitmf2v7rX2Olo1duc86vI4zsqsPnwBbu3eXtaGN2mGsPCquDpoYKLiIhLS+1gdGaXMV7lHvs1wURE3IBmvIiISM4qUf3fR4uMt5jAJcOJO/Kn3ebVSxVk/hNNebxlVRVdRETyg9//C3sXGWPFq9m64KmDkYi4IRVeREQk5912L7R72xDysyTypc97lMI248VigUfDKvPz8KbcXjbIjCxFRCSnbZ8O6z4wxvyLQP8Z4F/YlJRERMymwouIiDjFbwXvY66ljSFWyhLFlz7vUTnIg+lDG/NCx1D8vD1NylBERHLUsU2wYIQx5uEFfaaog5GIuDXN9RMRkRx1NT6J/y34h5lbIvBiIGW8T3C35z9p47U9DrOs4jS8K7YzMUsREclRmXUw6vQeVGpuTk4iInmEZryIiEiO2Xz4Ah0mrWHmlggAkvDi8cSRHE4pZdjOe+8vsPodM1IUEZGcFn8FpvWDmHPGeOPHof5gU1ISEclLVHgREZFbFp+UzNtLdtN38gYiLsQaxqIoyNch75DiW8j4ptXjYOecXMxSRERyXEoyzB0KZ/82xqveC23+Z05OIiJ5jB41EhGRW7L71GVGz9zOntNX7MYCfDx5tcvt9G4QjOVQYfixF1iT0zf4+QkoUgmC6+dewiIiknNWvA77lhhjxaurg5GISAaa8SIiItmSnGLl89UH6fbxHw6LLo0qFmXpqDD6NAzBYrFAldbQ/prHi5LiYEZ/uHQil7IWEZEcs20q/DHJGPMvCgNmgJ+61YmIpFIZWkREsiziQgxPz9rB5iMX7MZ8PD14qm01hjavjKeHxTjYaChE7oEtX6fHrp6B6f3g4aXgE+DkzEVEJEcc3QALRhpjHl7QdwoUrWxOTiIieZRmvIiIyE2zWq3M+jOC9hPXOCy61ChdkJ+HN+WxFlXsiy4AFgt0GAeVWhjjp8Php2GQkuKkzEVEJMdcPAIz74eURGO88wdQsZkpKYmI5GUqvIiIyE05dzWeoT9s5Zm54UQnJBvGLBYY1qIyPw9vSmiZQpns4V+e3tDneyhaxRjfvQBWvZXDWYuISI6KuwzT+0PMeWO8yXCo96A5OYmI5HF61EhERG5o+d+neX7eTs5HJ9iNBRfx5/0+dWlUqejN79C/CAyYCV/dA3GX0uNr3rUtyli7dw5kLSIiOSolGeY+Amf/McZvawtt/mtOTiIiLkAzXkREJFNX4hIZM3sHj07Z6rDo0rdBCEtHhWWt6JKq+G3Q+3uweBrjPz8Bx7dkM2MREXGaX1+B/cuMsRKh0PNr8PB0/B4REVHhRUREHNt46DztJ65lztbjdmPFA3348sEGjOtVm0DfW5g8WaWVbc2XjJLjbdPYL9kfV0RETPLXFNjwsTFWoBj0nw5+N3jEVETEzanwIiIiBnGJyby1eDf9v9zIiahYu/G2NUuxbFQYbWqWypkDNhoKDYcaY9FnYVo/iL+aM8cQEZHsO/IHLBxtjHl4Q98foWglc3ISEXEhWuNFRETS/HPyMqNnbmfvmSt2Y4G+XrzapSa96gdjsTjoWHQr2r8D5/fDoVXpsTM7bZ2O+kwBD31PICJiiguHYeYD9h2MukyECnebkpKIiKvRb7IiIkJyipVPVx2g2yfrHBZdGlUqypKRzendICTniy4Anl7Q+zsoVtUY37MQVr6R88cTEZEbi7sM0/tB7AVj/O4n4c4HzMlJRMQFacaLiIibO3Y+hqdmbWfL0Yt2Yz6eHoxtV50hzSrh4eGEgktG/kVgwCz4sjXERaXH175n63RUp69zjy8iIulSkmHOwxC5xxiv1h7ufd2cnEREXJRmvIiIuCmr1cr0zcdoP2mNw6JLaJlC/PJkU4aGVXZ+0SVVsSrQ5wfwuOZ7gV+GQ8Tm3MlBRERg+ctw4FdjrGRN6PmVOhiJiGSRCi8iIm7o7JU4Hvl+C8/P20lMQrJhzMMC/2lZhflP3E2N0iZ0qqjcAjqMN8aSE2DGAIg6lvv5iIi4m63fw8ZPjLECxaH/DPAtaE5OIiIuTI8aiYi4maW7TvH8vJ1cjEm0GytftADv96lDg4pFTcgsg4ZDIHIvbP4iPRYdaWsz/fAy8A00LzcRkfzs8FpY9JQx5ulj62BUpII5OYmIuDjNeBERcROX4xJ5atZ2HvvxL4dFl/6NQlgysrn5RZdU7d6CKq2NsTO7YN5QSEkxJycRkfzswiGYNRBSkozxLpOgQhNzchIRyQdUeBERcQMbDp6nw8S1zPvrhN1Y8UBfvh7UgLd71CbANw9NhPT0gl7fQvFqxvjexbBCCzuKiOSouEswrR/EXrPmV9ORUHeAOTmJiOQTKryIiORjcYnJvLHwH/p/uZETUbF24+1vL82yUc25J7SUCdndBP/CtjUF/IsY439MhO3TzchIRCT/SU6C2Q/Bub3GePWOcM+r5uQkIpKP5KGvNkVEJCftOnGJp2ZtZ9+Zq3ZjBX29eK3r7fSoVw6LJZc6FmVXaqejKd2N098XjICilaB8Y/NyExHJD5a/BAdXGGOl7oAek9XBSEQkB2jGi4hIPpOUnMInKw/Q/dM/HBZdGlcuypJRzelZPzjvF11SVQqDTu8ZY8kJMON+uHjUnJxERPKDLd/Cps+MsYAS0H+6OhiJiOQQzXgREclHjpyL5qlZ2/nrWJTdmI+XB8+0q87DTSvh4eEiBZeM6g+Gs3uMHxBiztk6HQ1Zpg8IIiJZdXgNLB5jjHn6QN+pULi8OTmJiORDmvEiIpIPWK1Wpm46SscP1zosutQsU4iFTzbjkeaVXbPokqrtG1D1XmPs7N8w9xFISTYnJxERV3T+IMx00MGo60dQ/i5zchIRyadUeBERcXFnL8fx8Hd/8uJPu4hJMBYfPCwwvFVV5j/RlGql8sGMEE8v6PUNFK9ujO9bCr+9ZkpKIiIuJzYKpvWFuChjvNloqNPPjIxERPI1FV5ERFzY4p2naDdxDSv3RtqNVSxWgNmP3c2YdtXx8cpHP+79gmCAg05H6z+EbVPNyUlExFUkJ8Gch+D8fmO8Rmdo/Yo5OYmI5HP56DdxERH3cSk2kdEzt/P41L+4GJNoN37/XeVZNKI59SsUcfDufKBoZej7I3hcs1TZgpFwdIM5OYmIuIJlL8DB342xUrWg+xfgoY8GIiLOoJ+uIiIuZv2Bc3SYuIaftp2wGytR0JdvBzfkze61CPDN5+unV2wGnT8wxlISYeb9cPGIKSmJiORpf34Nm78wxgJK/tvBKNCcnERE3IAKLyIiLiIuMZn/LviHAV9t4uSlOLvxjrVKs2xUGK1qlDQhO5PUexAaP2GMxZy3dTqKu2xOTiIiedGh1bB4rDHm6Qv9pkLhEHNyEhFxE/n861ARkfxh14lLjJq5nQNnr9qNFfTz4r/dbue+uuWwWFy4Y1F2tf2fba2C/cvTY2f/sXU66j8dPDzNy01EJC84dwBmPQjWa7q/dfsYQhqZk5OIiBvRjBcRkTwsKTmFj1bs575P/nBYdLm7SjGWjQqj+53B7ll0AVthpefXUKKGMb5/GfyqhSJFxM3FXoTpDjoYNX8aavcxJSUREXejGS8iInnU4XPRPDVrO9uORdmN+Xp58Gz7Ggy+uyIeHm5acMnIrxD0nwFf3WN71CjVho9tBZl6A83LTUTELMmJMHswnD9gjNfoDK1eMiUlERF3pBkvIiJ5jNVqZcrGo3SctNZh0aVWuSAWPtmMh5tVUtElo6KV/u105G2MLxwNR/4wJycRETMtfR4OrTLGSteCHpPVwUhEJBfpJ66ISB5y5nIcg7/9k5fn7yI20fgsvqeHhRGtqzLv8bu5rVRBkzLM4yrcnUmnowfgwmFzchIRMcPmL+HPL42xwFK22YE+AebkJCLiply+8BITE8O7775Lo0aNKFq0KIGBgYSGhjJmzBiOHTvmtOOmpKTQpEkTLBZL2h8RkVuxMPwk7SauYfW+SLuxSsUDmPNYE55qWx1vT5f/0e1c9QbC3U8aY7EXYHo/dToSEfdw8HdY8qwx5ukL/aZBULA5OYmIuDGXXuPl4MGDdOrUib179xrie/bsYc+ePXz11VdMmzaNjh075vixP/30UzZu3Jjj+xUR93MpJpFXftnFz9tPOhwf2LgCz3esQQEfl/6RnbvufR3O7Yd9S9NjkXtgzsMwYKY6HYlI/nVuv21dl2s7GN33KQQ3MCUlERF357Jfm169epXOnTunFV2GDh3KihUrWL9+PW+++SaBgYFcunSJ3r17Ex4enqPHPnHiBC+++CIWi4XixYvn6L5FxL2s23+OdhPXOCy6lCzoy3cPNeR/992hoktWeXhCjy+hZE1j/MCvsPxlc3ISEXG2mAswrS/EXTLGw56BWr3MyUlERFy38DJhwgT27NkDwPjx45k8eTKtW7emSZMmvPDCCyxfvhwvLy9iYmIYNWpUjh57+PDhXL58mYceeojbb789R/ctIu4hNiGZ1375mwe+3sTpy3F2451ql2HZqDBaVi9pQnb5RGqnowLXFMg3fgJbvzcnJxERZ0lOhNmD4MJBYzy0K7R83pycREQEcNHCS2JiIpMmTQIgNDSUp59+2m6bJk2aMGTIEABWrlzJ1q1bc+TY8+bNY/78+RQvXpzx48fnyD5FxL2EH4+i80dr+W79EbuxQn5eTOpXl4/730mRAJ/cTy6/KVLBcaejRU/B4bXm5CQiktOsVljyDBxeY4yXqQPdP1cHIxERk7nkT+FVq1YRFRUFwKBBg/DI5GYyePDgtNfz5s275eNevnyZESNGAPDuu+9SrFixW96niLiPxOQUJv22nx6frudgZLTdeLOqxVk2Ooxudctpwe6cVKEJdJlkjKUkwayBcOGQOTmJiOSkzV/Clm+MscDS0G+6OhiJiOQBLll4Wbs2/VvKFi1aZLpdgwYNCAiw3WzWrVt3y8d97rnnOHHiBGFhYYaijojIjRyMvEqvz9bzwW/7SEqxGsZ8vTx4rUtNfni4EWWC/E3KMJ+7835oOtIYi70I0/rZr4UgIuJKDqyApdd0MPLyg/7TIKicOTmJiIiBS67WuHv37rTXNWrUyHQ7Ly8vqlSpQnh4uOE92bFhwwa++OILvL29+eyzz25pX9c6fvz4dcdPnTqVo8cTkdxjtVqZsvEoby3eTVxiit147eAg3u9Tl6olA03Izs3c8ypE7oN9S9Jj5/bC7IdgwCzwdMlbooi4s8h9tp9h1mvuL/d9CuXqm5OTiIjYccnfMiMiIgAICAigcOHC1902JCSE8PBwIiMjiY+Px9fXN8vHS0xM5NFHHyUlJYVnn32WmjVr3vhNWRASEpKj+xORvOH0pTjGztnB2v3n7MY8PSwMb1WV4a2r4u3pkpMPXY+HJ/T8Er5uB2f/To8fXAHLX4IO75iXm4hIVsVcgGl9IP6aWXstnoM7epqTk4iIOOSSv+1fuXIFgMDAG39DnPqoEdhaUGfHuHHj2LVrF5UqVeLll9WGVERu7JcdJ2k3cY3Dokvl4gHM/c/djG5TTUWX3OZbEAbMgIASxvimz2DLt+bkJCKSVcmJMOtBuHjYGK95H7R41uFbRETEPC454yUuztZ61cfnxh0/Ms5wiY2NzfKx9u/fz5tvvgnAxx9/jL9/zq+/kDqDJzOnTp2iUaNGOX5cEcl5UTEJvPzz3yzYcdLh+KAmFXiuQyj+Pp65nJmkKVwe+k6F7ztDckJ6fPEYKFYFKoWZl5uIyI1YrbafV0eu6cxWpi7c95k6GImI5EFOLbwkJSXh7e194w1v4NtvvzUsZuvn5wdAQkJCJu9IFx8fn/Y6O0WTYcOGERcXR8+ePenYsWOW338zgoODnbJfEclda/ZFMnbODs5cjrcbK1XIl3d71SGsWgkH75RcV/4u6PIhzH8sPZaSBDMHwtDfbQUYEZG8aNMXsPU7Y6xgGeg/HXwKmJKSiIhcn0uWxAsWLAjc3KND0dHpLVtv5tGkjL755htWrlxJwYIFmTRp0o3fICJuKTYhmVd+3sWD32x2WHTpUqcsy0aFqeiS19TtD81GG2NxUTCtL8RGmZGRiMj17f8Nlj1vjHn5Q79pUKisOTmJiMgNOXXGi5eX1y13EwIoU6aM4b+Dg4PZtGkT0dHRREVFXXeB3dTHeEqUKJHlhXXHjRsH2FpWZ2xhndHZs2fTXs+YMQOwrSvTpUuXLB1LRFzT9ogonpq5nUPnou3Ggvy9+d99d9C1jn4ZzrNavwLn9sOehemx8/thzkMwYLY6HYlI3hG51/az6doORt0/g3L1zMlJRERuitN/o7xeu+fsqlmzJnPnzgVgz549NG7c2OF2SUlJHDx4EIDQ0NAsHyf1MaWFCxeycOHCG2wN/fv3B6BChQoqvIjkc4nJKXz0+wE+WXmA5BSr3Xjz24rzbq86lA7yMyE7uWkeHtD9C/imPZzZmR4/+DssewE6jjcvNxGRVGkdjC4b4y1fgNu7m5OTiIjcNJd81KhZs2Zpr1evXp3pdlu2bEl71Khp06ZOz0tE3MOBs1fp+dl6Plyx367o4uftwf+63c4PDzdS0cVV+Aba1ka4ttPR5i/gz6/MyUlEJFVSgm39qYtHjPE7ekKLZ0xJSUREssYlCy8tW7YkKCgIgO+//x6r1f7bZoDvvvsu7XX37ln/NuDIkSNYrdbr/mnRokXa9qmxI0eOZPlYIpL3paRY+faPw3T6cC3hxy/ZjdcJKcyiEc0Z2KQiFovFhAwl2wqH2NZI8LzmkdTFz8ChVaakJCJi62D0NBxdZ4yXrQfdPgHda0REXIJLFl58fHwYMWIEALt372bChAl222zYsIGvv/4asK3R0rBhQ7ttjhw5gsViwWKx0LJlS6fmLCKu7dSlWB78ZjOvL/iH+CTj8/WeHhZG31uNuY81oUqJrC3iLXlISCPo9rExZk2GWYPg3AFzchIR97bxM/jrB2OsYFlbodg76906RUTEHC67auDYsWOZOXMm+/bt45lnnuHAgQP069cPf39/Vq5cyVtvvUVSUhL+/v5MnDjR7HRFxEVZrVZ+2XGSl+fv4nJckt14lRIBfNC3LrWDC+d+cpLzaveByD2w9r30WFwUTO8Lj/wG/kVMS01E3My+5bD8RWPMy9/2aGShMo7fIyIieZLLFl4KFizIokWL6NixI/v372fy5MlMnjzZsE2hQoWYOnUqdevWNSdJEXFpUTEJvDh/F4vCTzkcH3x3RZ7rUAM/b89czkycqtVLtu4hhk5HB2D2YLh/Dnh6m5aaiLiJs7thzsP2HYx6fAFl65qSkoiIZJ9LPmqUqmrVqmzbto1x48bRoEEDChcuTIECBahevTqjR48mPDyczp07m52miLigVXvP0vaDNQ6LLmWC/PhxyF281vV2FV3yIw8P6DEZStcyxg+tgqXPm5KSiLiR6PMwrS8kXDHGW70ENbuZk5OIiNwSizWzlWklzzh+/DghISEAREREEBwcbHJGIvlXTEISby3ezY8bjzkcv69uWV7vegdBBTTrId+7dBwmt4Los8Z4xwnQaKg5OYlI/paUAD90g2PrjfE7ekHPr7SYrohILnDG52+XfdRIRCSn/XXsIk/P2sHhc9F2Y4ULePPmfbXoVFvP1buNoGDbWgrfdoTk+PT4kmehWBWo0tq83EQk/7FaYdFo+6JLufq2hb9VdBERcVku/aiRiEhOSExO4b3le+n12XqHRZcW1UqwbFSYii7uKLiBrWVrRtZk23ov5/abkpKI5FMbPoFtPxpjhcqpg5GISD6gGS8i4tb2n7nC6Fnb2XXist2Yv7cnL3YK5f67ymPRN43uq3ZvOLcX1rybHou7ZFuD4ZHfoEBR83ITkfxh71JY/pIx5l3ANuuuYGlzchIRkRyjGS8i4pZSUqx8ve4wnT5a57DoUjekMItHNueBxhVUdBFo+QKEdjXGLhyE2YMgOdGcnEQkfzjzD8wdAlyz7GKPyVCmjikpiYhIztKMFxFxOyeiYhk7ewfrD563G/PysDDyntv4T8sqeHmqNi3/8vCA7p9D1FE4tSM9fngNLHkGOr2v9RdEJOuiz8H0vpBw1Rhv/TKEdjEnJxERyXH6VCEibsNqtfLTtuO0n7jGYdGlaslAfnq8KU/ec5uKLmLPJwD6TYfAa6b9b/kGNn9pTk4i4rqS4mHmAxB1TRe9Wn2g+dPm5CQiIk6hTxYi4hYuRifwxLS/GD1zB1fikuzGH25aiYVPNqNWcJAJ2YnLCPp3oUsvP2N86bNwYIU5OYmI67FaYeFoOLbBGA9uCF0/0gw6EZF8RoUXEcn3Vu45S9uJa1i887TdWNkgP6Y9chevdKmJn7enCdmJywmuD/d9aoxZU2D2QxC5z5ycRMS1rP8Qtk81xgoF/9vByM/xe0RExGWp8CIi+VZ0fBIv/LSTh777k8gr8XbjPe4sx5JRYdxdtbgJ2YlLu6MntHjWGIu/BNP6QMwFc3ISEdewdwn8+qox5h0AA2ZAYElzchIREafS4roiki9tPXqRp2Zt5+j5GLuxIgW8eat7LTrUKmNCZpJvtHgOIvfCP/PTYxcPw6wH4YF54OVjWmoikked3gVzH8HYwchi62BUupZZWYmIiJNpxouI5CsJSSm8u2wPvT9f77Do0qp6CZaNClPRRW6dhwfc9xmUqWuMH1kLS8ba1nAQEUl1NRKm97PvYHTPKxDa2ZycREQkV2jGi4jkG/vOXGH0zO38ffKy3VgBH09e6lST/o1CsGjRQskpPgWg/3SY3AquZlhDaOt3UCIUGj9mWmoikockxcPM++FShDFeux80G21OTiIikms040VEXF5KipWv1h6i80frHBZd6pUvzOIRzRlwV3kVXSTnFSprK75c2+lo2fOw/zdzchKRvMNqhQUjIWKTMR5yF3T9UB2MRETcgAovIuLSjl+MYcBXG3lj0W4SklIMY14eFsa2q86sYU2oWDzApAzFLZSrZ3vsKCNrCsx5yLYOjIi4rz8mwo7pxlhQCPSdCl6+pqQkIiK5S4UXEXFJVquVuVuP02HiWjYesu8ic1vJQOY/0ZQnWlXFy1M/6iQX3NEDWj5vjMVfVqcjEXe2ZxH89rox5h0A/WdAYAlzchIRkVynTyMi4nLOX43nPz/+xdOzd3AlPskwZrHAI80qseDJZtxRLsikDMVttXgWbu9hjF08AjMHQlKCKSmJiElO74S5Q7HrYNTzKyh9h1lZiYiICbS4roi4lBW7z/Ds3J2cuxpvN1ausD8TetehSZViJmQmgq3yd9+ntmLLyb/S40fXwaKnoOtHWs9BxB1cOQPT+kFitDHe5nWo0dGcnERExDSa8SIiLuFqfBLPzQ1nyPdbHBZdetYLZsmo5iq6iPm8/aHfNChY1hjfNgU2fmpOTiKSexLjbB2MLh83xusMgLtHmJOTiIiYSjNeRCTP23LkAk/N2sGxCzF2Y0UDfHirey3a31HahMxEMlGoDPSfBt90gKTY9Pjyl6DYbVCtrXm5iYjzWK2wYAQc/9MYD2kMXSZqxpuIiJvSjBcRybMSklIYt3QPfb7Y4LDock+Nkiwd1VxFF8mbyt4J3T83xqwpMOdhOLvbnJxExLnWvQ/hM42xwuWhnzoYiYi4MxVeRCRP2nv6Ct0++YPPVh0kxWocK+DjyTs9avHVoAaULOhnToIiN+P2+6DVS8ZYwhWY1heiz5uSkog4ye4FsOK/xphPIPSfCQHFzclJRETyBBVeRCRPSU6xMnnNQbp8tI7dpy7bjTeoUIQlI5vTr1F5LJqyLa4gbAzc0csYizoKMx9QpyOR/OLUDpj36DVBC/T8GkrVNCUlERHJO7TGi4jkGREXYnh69g42H75gN+btaWF0m2oMC6uCp4cKLuJCLBbo9jFcPAwntqbHj62HhaNtYyoiiriuK2dgen9IvOaR2Lb/g+rtzclJRETyFM14ERHTWa1WZm2JoMOktQ6LLtVLFWT+E015vGVVFV3ENaV2OipUzhjf/iNs+NicnETk1iXGwYwBcPmEMV73AWgy3JycREQkz9GMFxEx1bmr8Tw/bye//nPGbsxigUebV+apttXw9fI0ITuRHFSwNPSfDt+0N34zvvxlW6cjfTMu4lqsVvhlOJzYYoyXvxs6v6+ZbCIikkYzXkTENL/+c4b2E9c4LLqUK+zPjKGNeb5jqIoukn+UqQPdv7gmaIW5Q+DMP6akJCLZtHYC7JxtjBWuAH2nqIORiIgYqPAiIrnuanwSz8zZwdAftnDuqv3ior3rB7N0VHPuqlzMhOxEnKxmV2j9sjGWcBWm94Xoc+bkJCJZ88/P8PsbxphPQRigDkYiImJPjxqJSK7afPgCT8/eTsSFWLuxYgE+vN2jFm1vL21CZiK5qPnTELkXds5Kj0Uds3U6evBnfVsukped3A4/PWaMWTyg1zdQMtSUlEREJG/TjBcRyRXxScm8vWQ3fSdvcFh0uTe0FMtGh6noIu7BYoGuH0G5Bsb4sQ22TkdWqzl5icj1XTmdSQejN6BaW3NyEhGRPE8zXkTE6XafuszomdvZc/qK3ViAjyevdrmd3g2CsWghQnEn3n62TkdftobLx9Pj26dCierQdKR5uYmIvcRYW9HlykljvN6D0Phxc3ISERGXoBkvIuI0ySlWPl99kG4f/+Gw6NKoYlGWjgqjT8MQFV3EPRUsZet05F3AGP/1Vdiz2JycRMSe1Qo/PwEn/zLGKzSDju+pg5GIiFyXCi8i4hQRF2LoP3kj7yzZQ0JyimHMx9OD5zvUYPqjjQkpWiCTPYi4iTK1oceX1wStMG8onN5lSkoico0178KuucZYkYrQ5wfw8jElJRERcR0qvIhIjrJarcz88xjtJ65h85ELduM1Shfk5+FNGdaiCp4e+oZQBIDQznDPq8ZYwlWY3g+unjUnJxGx+fsnWPmmMeZbCPrPhAB13xMRkRtT4UVEckzklXiG/rCFZ+fuJDoh2TBmscBjLarw8/CmhJYpZFKGInlYs9FQu58xdinC1ukoKd6cnETc3clt8NN/jDGLB/T6FkrWMCcnERFxOSq8iEiOWPb3adpPXMNvu+2/nQ8p6s+sYU14rkMNfL08TchOxAVYLNBlEgQ3MsYjNsGCkep0JJLbLp+yLaabdE0nvnZvwW33mpOTiIi4JBVeROSWXIlLZMzsHQybspXz0Ql2430bhLBkZBgNKxY1ITsRF+PtB/2mQlCIMb5jOvwx0ZSURNxSQgzM6A9XThnj9QfDXY+ZkpKIiLgutZMWkWzbeOg8T8/awYmoWLux4oE+vN2jNm1qljIhMxEXFlgS+s+Ar9tCYnR6/LfXoXg1qNHJvNxE3IHVCj8/bnvMKKOKzaHjBHUwEhGRLNOMFxHJsrjEZN5avJv+X250WHRpW7MUy0aFqegikl2l74CeXwEZP+BZYe5QOL3TrKxE3MPqcbYFdTMqUsnWwcjT25ycRETEpanwIiJZ8s/Jy3T7+A8mrzlkt+REoK8X7/aqzRcD61Ms0NecBEXyixod4d7XjLHEaJjWD66cMSUlkXxv11xY9bYx5hsEA2ZBAT0yKyIi2aPCi4jclOQUK5+uOkC3T9ax98wVu/G7KhVlycjm9G4QgkXTsEVyRtORUGeAMXb5OMy8HxLjzMlJJL86sRXmP26MWTyg97dQopo5OYmISL6gNV5E5IaOno/m6Vk72HL0ot2Yj6cHY9tVZ0izSnh4qOAikqMsFugyES4cgoiN6fHjf8KCEdD9C603IZITLp+E6QMg6ZqCZvt3oOo95uQkIiL5hma8iEimrFYr0zcfo8OktQ6LLqFlCrHgyWYMDausoouIs3j5Qt8fIai8MR4+E9a9b05OIvlJQgxM7wdXTxvjDR6GRo+ak5OIiOQrmvEiIg6dvRLH83N3smLPWbsxDws81qIKo+6tho+X6rciThdYAgb82+ko4Wp6fMV/odhtULOrebmJuLKUFJj/GJzaYYxXCoMO4zWjTEREcoQKLyJiZ+muUzw/bycXYxLtxsoXLcD7ferQoKIWGRTJVaVuh55f276ZJ8PK1j8NgyIVoEwd01ITcVmr3oZ/fjbGilaG3t+rg5GIiOQYfVUtImkuxyXy1KztPPbjXw6LLv0bhbBkZHMVXUTMUr09tPmvMZYYA9P7q9ORSFbtnANrxhtj6mAkIiJOoBkvIgLAhoPnGTN7ByeiYu3Gigf6Mq5nLe4JLWVCZiJicPeTELkXtv+YHrt8AmYMgMELwdvfvNxEXMXxLQ46GHlCn++g+G2mpCQiIvmXZryIuLm4xGTeWPgP/b/c6LDo0v720iwb1VxFF5G8wmKBzu9D+SbG+Ikt8PNwsFodv09EbC4dtxUqk+ON8Q7joEprc3ISEZF8TTNeRNzYrhOXeGrWdvaduWo3VtDXi9e63k6PeuWwaHFBkbwltdPRl60g6lh6fNccKFkDwsaal5tIXpYQbXs07+o1j+Y1fAQaDTUnJxERyfc040XEDSUlp/DJygN0//QPh0WXJpWLsXR0GD3rB6voIpJXBRSH/jPBp6Ax/vsb9ouFioitg9FPw+B0uDFeuSW0f8eUlERExD1oxouImzlyLpqnZm3nr2NRdmM+Xh480646DzethIeHCi4ieV6pmtDrG5jeF6wp6fF5w6BwBShb17TURPKclW/C7gXGWLGq0Ps7dTASERGn0owXETdhtVqZuukoHSatdVh0ub1sIRY+2YxHmldW0UXElVRrC23+Z4wlxf7b6ei0OTmJ5DXhs2HtBGPML8g2a8y/iDk5iYiI29CMFxE3cPZyHM/ODWfl3ki7MQ8LPN6yKiPuuQ0fL9ViRVxSkycgcg9sm5Ieu3LSVnx5aLE6HYl7i/gTfn7CGLN4Qp8foHhVc3ISERG3ok9ZIvnc4p2naDdxjcOiS8ViBZj92N2MaVddRRcRV2axQKf3oUJTY/zkX7YPnOp0JO4qKsJxB6OO421ru4iIiOQCfdISyacuxSYyeuZ2Hp/6FxdjEu3G77+rPItGNKd+BU2xFskXvHygzxQoUtEY3zUX1rxrSkoipoq/apv1FX3WGG/0qK2LkYiISC7Ro0Yi+dD6A+cYM3sHJy/F2Y2VKOjL+F61aVW9pAmZiYhTBRSzrVnxdRuIv5weX/kmFL8Nbu9uXm4iuSm1g9GZncZ4ldbQ7m1zchIREbelGS8i+UhcYjL/XfAPA77a5LDo0qlWGZaPClPRRSQ/K1nD1unIcs0t/qf/wMlt5uQkktt+/x/sWWiMFbsNen0LnvreUUREcpcKLyL5xM7jl+j80Tq++eOw3VhBPy8m9q3LxwPupEiAjwnZiUiuuq0NtH3TGEvtdHT5lDk5ieSWHTNh3fvGmF9hGDAT/AubkZGIiLg5FV5EXFxScgofrthP90//4MDZq3bjd1cpxrJRYdx3ZzksFrWJFnEbjf8D9QYZY1dOwYz+kBBjTk4izhaxGX4Zbox5eEHfKVCsijk5iYiI29NcSxEXdijyKk/N2sH2iCi7MV8vD55tX4PBd1fEw0MFFxG3Y7FAxwlw4RAcWZseP7kN5v/H9siFh75/kXwk6ti/HYwSjPGO70KlMHNyEhERQTNeRFyS1WplysajdPpwncOiS61yQSwa0YyHm1VS0UXEnXn5QJ8foEglY/yf+bB6nCkpiThFWgejSGP8rsegwcPm5CQiIvIvzXgRcTFnLsfxzJxwVu+LtBvz9LDwRMsqPHnPbXh7qq4qIkCBora1Lb6619jpaPU7UKIa3NHTvNxEckJKCswbCmd2GeNV7rFf60hERMQE+mQm4kIWhp+k3cQ1DosulYoHMOexJjzVtrqKLiJiVKI69P7WvtPR/MfhxFZzchLJKSteh72LjbHi//4/rw5GIiKSB+jTmYgLuBSTyMgZ2xg+bRtRMYl24wMbV2DRiGbcWb6ICdmJiEuoei+0f8cYS4qD6QPg8klzchK5VdunwR8TjTH/IjBgBvgFmZKSiIjItfQ1gEget27/OcbM3sHpy3F2YyUL+vJu7zq0qFbChMxExOU0ehTO7oat36bHrp6G6f3goaXgU8C83ESy6thGWDDSGPPwgj5ToGhlc3ISERFxQDNeRPKo2IRkXvvlbx74epPDokvn2mVYPjpMRRcRuXkWi+MOL6d2wPzHbGtliLiCi0dhxv32HYw6vQ+VmpuTk4iISCZUeBHJg3ZERNHpo7V8t/6I3VghPy8m9avLxwPqUbiAT+4nJyKuzdMben9vPyPgn59h1dvm5CSSFfFXbLO0Ys4Z440fh/qDzMlJRETkOly+8BITE8O7775Lo0aNKFq0KIGBgYSGhjJmzBiOHTuW48fbvXs3Y8eOpXbt2hQpUgR/f38qVqzIvffey1tvvcWRI0dy/JjiPhKTU5j42z56fLaeQ5HRduPNbyvOstFhdKtbzoTsRCTfKFAU+s8E32vWwFgzHnbOMScnkZuRkgxzH4Gz/xjjVdtAm/+Zk5OIiMgNWKxWq9XsJLLr4MGDdOrUib179zocDwoKYtq0aXTs2PGWj2W1Wnn55ZcZN24cSUlJmW73wQcfMGrUqFs+XkbHjx8nJCQEgIiICIKDg3N0/5I3HIy8ylMzt7Pj+CW7MV8vD57vUIMHm1TEw8NiQnYiki8d/B1+7AXW5PSYpy88tBiCG5iXl0hmlr8M6z80xkrUgCHLtZiuiIjkCGd8/nbZxXWvXr1K586d04ouQ4cOpV+/fvj7+7Ny5UrefvttLl26RO/evdmwYQO1a9e+peM9+uijfPXVVwDUqVOHIUOGUKdOHfz9/YmIiOCff/5hzpw5WCz6UCxZY7VambLxKG8t3k1cov36CrWDg3i/T12qlgw0ITsRydeqtIYO42DxmPRYcjzMGABDf4cgFfolD9k21b7o4l8U+quDkYiI5G0uO+Pltdde4/XXXwdg/PjxjB071jC+YcMGwsLCSEpKolWrVvz+++/ZPtY333zDkCFDABg1ahTvvfceHh6On9JKSEjAxydn193QjJf86/SlOMbO2cHa/efsxjw9LAxvVZXhravi7enyTwWKSF628CnY8rUxVro2PLwUfALMyUkko6Mb4PsukJKYHvPwhgd/hopNzctLRETyHWd8/nbJwktiYiIlS5YkKiqK0NBQdu3a5bAQ8thjj/HFF18AsGXLFurXr5/lY125coUKFSpw8eJFWrZsycqVK285/6xS4SV/+mXHSV6ev4tLsYl2Y5WLB/B+37rUDSmc+4mJiPtJToQfe8Lh1cZ4aBfo/QNk8mWDSK64eAS+bA0x543xrh9BvQdNSUlERPIvZ3z+dsnfpFatWkVUVBQAgwYNynT2yeDBg9Nez5s3L1vHmjp1KhcvXgRss2xEblVUTAJPTt/GiOnbHBZdBjWpwKIRzVV0EZHc4+kNfb6HYlWN8d0LYOWb5uQkAhB3Gab1sy+6NBmuoouIiLgMlyy8rF27Nu11ixYtMt2uQYMGBATYpkivW7cuW8eaPXs2ACVLlkw7ltVq5fTp0xw8eJCrV69ma7/intbsi6TdxDUs2HHSbqx0IT+mDGnE693uwN/H04TsRMSt+RexdTq6dq2MtRMgfJY5OYl7S0mGuUMgcrcxfls7aPNfc3ISERHJBpdcXHf37vQbcI0aNTLdzsvLiypVqhAeHm54z81KSUnhzz//BKBx48YkJCTw9ttv88UXX3Dq1CkALBYL9erVY+TIkTzwwAPZWlz3+PHj1x1PPZa4rtiEZN5espsfNhx1ON61Tln+1+0Oggp453JmIiIZFK8Kvb+3PXaUsdPRz8OhSCUIaWhebuJ+fn0F9i83xkqEQs+vwENfUIiIiOtwycJLREQEAAEBARQuXPi624aEhBAeHk5kZCTx8fH4+vpm6ThXrlwBbDNewsLC2LRpk2Ebq9XK1q1befDBB1m4cCFTp07Fyytr/6ypz49J/rQ9IoqnZm7n0Llou7Egf2/euO8OutQpa0JmIiIOVGkFHcfDoqfTYxk7HRXWPUtywV8/wIaPjbECxWDADPArZE5OIiIi2eSSjxqlFkMCA2/cXjf1USMgy48FXbhwIe31lClT2LRpE6GhoSxcuJArV65w5coVFixYQPXq1QGYNWsWL730UpaOIflXYnIK7/+6j56frXdYdGl+W3GWjQpT0UVE8p6Gj0CjR42x6LMwvT/E6xFbcbIjf9g6bWXk4Q19p0KRiqakJCIicitccsZLXFwcwE21bc44wyU2NjZLx4mOTv+wHB8fT0hICOvWraNo0aJp8c6dO9O4cWPq1KnDyZMn+eCDD3jyyScpV67cTR8ndQZPZk6dOkWjRo2ylLuY68DZqzw1azvhxy/Zjfl5e/Bix1AeaFwhW4+miYjkinZvw7n9cChDN78zO+GnYdBnijodiXNcOAwzHzC2jQboMgkqNDEnJxERkVvk1N+akpKSsFgst/znu+++M+zXz88PgISEhBvmEB8fn/ba398/S/mnHifViy++aCi6pCpevDgvvPBCWk5Z7aAUHBx83T9lypTJ0v7EPCkpVr794zCdPlzrsOhSJ6Qwi0Y0Z2CTiiq6iEje5ukFvb+FYrcZ43sWwu//Mycnyd/iLsH0fhB7wRi/ewTceb85OYmIiOQAl5zxUrBgQeDmHh3KOGvlZh5NcnScVB06dMh023bt2qW9Tl2QV9zLqUuxjJ0dzroD5+zGvDwsjLjnNh5vWQUvT31LLCIuwr8IDJgJX7aGuKj0+Lr3oUR1qNPPtNQkn0lJhjlDIHKPMV6tPdz7mikpiYiI5BSnFl68vLyy1U3oWtfO+AgODmbTpk1ER0cTFRV13QV2Ux/jKVGiRJYW1k09jsViwWq1Alz38aGMC+SePXs2S8cR12a1Wvllx0lenr+Ly3FJduNVSgTwQd+61A4unPvJiYjcqmJVoM8P8GMPSMnwM+6XJ6FoZQjRo7CSA5a/DAd+NcZK1lQHIxERyRecPuPleu2es6tmzZrMnTsXgD179tC4cWOH2yUlJXHw4EEAQkNDs3ycgIAAKlSowJEjRwBbe2lPT8c3/+Tk9LabWe1qJK7rYnQCL/28i0Xhjlt+D767Is91qIGft35pFBEXVrkFdHwXFo5OjyUnZOh0VN683MT1bf0ONn5ijBUoDv1ngG9Bh28RERFxJS75zEOzZs3SXq9evTrT7bZs2ZL2qFHTpk2zdaywsLC016lFHEcyjmVlYV1xXav2nqXdxDUOiy5lgvz4cchdvNb1dhVdRCR/aPAw3PWYMRYdqU5HcmsOrzW2Lgfw9IF+U6FIBXNyEhERyWEuWXhp2bIlQUFBAHz//fdpjwJdK+OivN27d8/WsXr27Jn2+nqL5mYca968ebaOJa4hJiGJl+bvZPC3f3L2Srzd+H11y7J0VBjNbituQnYiIk7U9k2oco8xdmYXzBsKKSnm5CSu68IhmDXQ+Agb2DoYlXc8m1lERMQVuWThxcfHhxEjRgCwe/duJkyYYLfNhg0b+PrrrwFo0aIFDRs2tNvmyJEjaZ2TWrZs6fBYnTt35o477gBg3Lhx7N27126bjDmUKFGCHj16ZOvvJXnfX8cu0unDdfy48ZjdWOEC3nwyoB4T+91JkL+3CdmJiDiZpxf0+gaKVzPG9y6GFa+bk5O4prhLMK0vxF40xpuOgroDTElJRETEWVyy8AIwduxYqlWz/eL3zDPPMGzYMFauXMnGjRt5++23adu2LUlJSfj7+zNx4sRsH8fDw4PPPvsMHx8fLl++zN1338348ePZtGkTGzduZNy4cTRt2jStw9JHH31EgQIFcuKvKHlIYnIK7y3fS6/P1nP4XLTdeItqJVg2KoxOtdX6W0TyOf/CtrU3/IsY439MhO3TzMhIXE1yEsx+CM7tM8ard4J7XjUnJxERESeyWDN7TscFHDhwgI4dO7J//36H44UKFWLq1Kl07tzZ4fiRI0eoVKkSYJsVs2rVqkyPNXfuXB566CGuXLnicNzb25sPP/yQxx57zOH4rTh+/Hha16SIiAiCg4Nz/BiSuf1nrjB61nZ2nbhsN+bv7cmLnUK5/67yWCwWE7ITETHJ4bUw5T7jYyKePjBogR4Tketb8ixs+twYK3UHPLwMfAPNyUlERORfzvj87bIzXgCqVq3Ktm3bGDduHA0aNKBw4cIUKFCA6tWrM3r0aMLDwzMtumRVz5492bVrF2PGjCE0NJTAwMC0Yz3xxBP8888/Tim6iHlSUqx8ve4wnT5a57Docmf5wiwe2ZwHGldQ0UVE3E+l5tDpPWMsOQFm3A8Xj5qTk+R9W76xL7oElID+01V0ERGRfMulZ7y4C814yX0nomIZO3sH6w+etxvz8rAw6t7beKxFFbw8Xbp2KSJy65Y+Dxs/NcZK1oQhy9UKWIwOrYYfe9jPkhq8CEIamZeXiIhIBprxIuJkVquVeX8dp/3ENQ6LLreVDGT+E00Z3vo2FV1ERADa/A+q3muMnf0H5j4CKcnm5CR5z/mDMOtB+w5GXT9W0UVERPI9fXIU+deF6AQen/oXT83awZW4JLvxIc0qseDJZtxRLsiE7ERE8qi0TkfVjfF9S+G310xJSfKY2ChbB6O4KGO82VNQp68ZGYmIiOQqL7MTEMkLVu45yzNzw4m8Em83VjbIjwm963B31eImZCYi4gL8gmDADPjyHoi9kB5f/yGUqA53PmBebmKu5CSYPRjOX9MIoUZnaP2yKSmJiIjkNs14EbcWHZ/ECz/t5KHv/nRYdOlxZzmWjApT0UVE5EaKVoa+P4KHtzG+YBQcXW9KSpIHLHseDq00xkrVgu5fgId+DRUREfegO564ra1HL9Lxw7VM23TMbqxIAW8+u78e7/etS5C/t4N3i4iInYpNofP7xlhKIsx8AC4eMSUlMdGfX8HmycZYQEl1MBIREbejwou4nYSkFN5dtofen6/n6PkYu/FW1UuwbFQYHWqVMSE7EREXV+9BaDLcGIs5D9P6Qdxlc3KS3HdwJSx+xhjz9IV+06BwiDk5iYiImERrvIhb2XfmCqNnbufvk/a//Bfw8eSlTjXp3ygEi8ViQnYiIvlEm//CuX2wf3l6LHI3zB0C/WeAh6d5uYnznTsAsweB9ZquVt0+gZCG5uQkIiJiIs14EbeQkmLlq7WH6PzROodFl/oVirBkZHMG3FVeRRcRkVvl4Qk9v4YSocb4/uXw6yvm5CS5I/YiTO8LcZeM8eZjoHZvc3ISERExmWa8SL53/GIMY2bvYOOhC3Zj3p4WRt1bjcdaVMHTQwUXEZEc41fItpbHV/fYHjVKteFjW6ejeg+al5s4R3IizBoE5w8Y46FdoNWL5uQkIiKSB2jGi+RbVquVOVuP02HiWodFl2qlApn/RFOeaFVVRRcREWcoWslxp6OFT8GRdebkJM6z9Dk4vNoYK11bHYxERMTt6S4o+dL5q/E89uNWxszewZX4JMOYxQJDm1fil+HNuL1skEkZioi4iQp3Q5eJxlhKIswcCBcOm5KSOMHmL21djDIKLGVb08cnwJycRERE8gg9aiT5zordZ3h27k7OXY23GytX2J8JvevQpEoxEzITEXFTdz4AkXtg/UfpsdgLML0fDFkOfiqCu7SDv8OSZ40xLz/oNx2CypmTk4iISB6iGS+Sb1yNT+K5ueEM+X6Lw6JLz3rBLBnVXEUXEREz3Ps6VGtvjEXugTkPQ3KS4/dI3he5D2YNdtzBKLi+KSmJiIjkNSq8SL6w5cgFOk5ay4w/I+zGigb48PkD9XmvTx0K+Xk7eLeIiDidhyf0/ApK1jTGD/wGv75sTk5ya2Iu2DoYxV/TwSjsGajVy5ycRERE8iAVXsSlJSSlMG7pHvp8sYFjF2Lsxu+pUZKlo5rT/o7SJmQnIiIGvgVta34UKG6Mb/wUtn5nSkqSTcmJMHsQXDhkjNfsBi2fNycnERGRPEprvIjL2nv6CqNmbmf3qct2YwE+nrzcuSZ9G4ZgsahjkYhInlGkgq3T0Q9dITkhPb7oaShaBSo1Ny83uTlWKyweC4fXGONl6sJ9n6uDkYiIyDV0ZxSXk5xiZfKag3T5aJ3DokuDCkVYMjKMfo3Kq+giIpIXVWgCXSYZYylJMGsgnD9oTk5y8zZPhq3fGmOBpaH/dPApYE5OIiIieZhmvIhLibgQw9Ozd7D58AW7MW9PC0+1qc6jYZXx9FDBRUQkT6s7wLa47h8ZCjCxF22djh75TZ2O8qoDK2Dpc8aYlx/0nwaFypqTk4iISB6nGS/iEqxWK7O2RNBh0lqHRZcapQvy8xPN+E/LKiq6iIi4inteheodjbFz+2D2Q+p0lBdF7rWdG2uKMX7fZ1BOHYxEREQyo8KL5Hnnrsbz6JStPDMnnKvxxl/ELRYYFlaZn4c3pWbZQiZlKCIi2eLhCT0mQ6k7jPGDK2D5i+bkJI7FXIBpDjoYtXgO7uhhTk4iIiIuQo8aSZ726z9neH5eOOeuJtiNlSvsz/t96nBX5WImZCYiIjnCt6BtbZAvW0N0ZHp80+dQojo0eNi83MQmKQFmPQgXDxvjt3eHFs+ak5OIiIgL0YwXyZOuxifxzJwdDP1hi8OiS+/6wSwd1VxFFxGR/KBweeg7FTx9jPHFY+HQanNyEhurFRaPgSNrjfGyd0K3T9XBSERE5Cbobil5zubDF+gwaQ2zthy3GysW4MPkgfV5t3cdCvp5m5CdiIg4Rfm7oOtHxlhKkm2mhTodmWfT5/DX98ZYwTLQTx2MREREbpYKL5JnxCcl8/aS3fSdvIGIC7F2421qlmLZ6DDa3l7ahOxERMTp6vSDZqONsbgo29oisVFmZOTe9v8Ky14wxrz8bY+GFSpjTk4iIiIuSGu8SJ6w+9RlRs/czp7TV+zGAnw8ebXr7fSuH4zFoo5FIiL5WutX4Nx+2LMwPXZ+P8weDPfPAU/96pIrzu6BOQ/bdzDq/pntMSMRERG5aZrxIqZKTrHy2aqDdP14ncOiS6OKRVk6Kow+DUJUdBERcQceHtD9CyhVyxg/tBKWPW9OTu4m+jxM7wvxl43xVi/aFtQVERGRLNHXRmKaiAsxPDVrO38euWg35uPpwdNtq/FI88p4eqjgIiLiVnwDM3Q6Opse3zzZ1umo4SPm5ZbfJSXArIFw8YgxfkdPCBtrSkoiIiKuTjNeJNdZrVZm/nmM9hPXOCy61ChdkJ+HN2VYiyoquoiIuKvCIdBvKnj6GuOLn4GDK83JKb+zWmHRU3D0D2O8bD3o9glo5qmIiEi2qPAiuSrySjxDf9jCs3N3Ep2QbBizWOCxFlX4eXhTQssUMilDERHJM0IaQbePjTFrMsweBOcOmJNTfrbxU9g2xRgrWNY2+8jb35ycRERE8gE9aiS5Ztnfp3lh3k7ORyfYjYUU9ef9PnVpWLGoCZmJiEieVbsPRO6Bte+lx+Iu2dYgeeQ38C9iXm75yb7lsPwlYyy1g1FBdRMUERG5FZrxIk53JS6RMbN3MGzKVodFl34NQ1gyMkxFFxERcazVS1CjszF2/gDMGgTJiebklJ+c3e24g1GPL6BsXVNSEhERyU9UeBGn2njoPO0nrmXO1uN2Y8UDffjqwQa807M2gb6afCUiIpnw8IAek6H0NZ2ODq+Gpc+Zk1N+EX0OpvWFhGs6C7Z+CWp2MycnERGRfEaFF3GKuMRk3lz0D/2/3MiJqFi78Xa3l2LZqDDurVnKhOxERMTl+ARA/xkQeM1948+vYPOX5uTk6pISYOZAiDpqjNfqDc3HmJOTiIhIPqRpBpLj/j55iadm7mDvmSt2Y4G+XrzW9XZ61iuHRd0RREQkK4KCod80+LYjJMenx5c8C8WqQJXW5uXmaqxWWDgajq03xss1gK4fqYORiIhIDtKMF8lRVquVtxbvdlh0uatSUZaMbE6v+sEquoiISPYEN4D7PjXGrMkwazBE7jMlJZe04WPY/qMxVujfwpY6GImIiOQoFV4kR1ksFt7pUZsAH8+0mI+nBy92DGX60MaEFC1gYnYiIpIv1OoFYc8YY/H/djqKuWBOTq5k71JY/rIx5l3g3w5GegRYREQkp6nwIjkupGgBXulSE4DQMoVY8GQzhoZVxsNDs1xERCSHtHweQrsaYxcOwWx1OrquM3/D3CGA1RjvMRnK1DYlJRERkfxOa7yIU/RpEIKnhwdd65TFx0v1PRERyWEeHtD9c9vCsKd2pMcPr4HFY6HzB1qn5FpXI2F6P0i4aozf8wqEdjEnJxERETegT8TiFBaLhV71g1V0ERER5/EJgH7TIbC0Mb71W9g82Zyc8qqkeJj5AEQdM8Zr94VmT5mTk4iIiJvQp2IRERFxXUHloP808PIzxpc+Bwd+MyenvMZqhQWjIGKjMR7cELp8qJlBIiIiTqbCi4iIiLi2cvUddDpKgdkPQ+Rec3LKS9Z/CDumGWNpHYz8HL9HREREcowKLyIiIuL67ugJLZ4zxuIvwTQ373S0ZzH8+qox5h0AA2ZAYElzchIREXEzKryIiIhI/tDiWah5nzF28TDMehCSEkxJyVSnd8HcRzB2MLJAzy+hdC2zshIREXE7KryIiIhI/uDhAfd9BmXqGuNH1sLiMba1TtzF1bO2DkaJ0cb4va9CjU7m5CQiIuKmVHgRERGR/MOnAPSfDgXLGON/fQ+bPjcnp9yWGGfrYHQpwhiv0x+ajjIlJREREXemwouIiIjkL4XK2haO9fI3xpe9APt/NSen3GK1woKRELHJGA+5C7pMUgcjERERE6jwIiIiIvlPuXrQ/TNjzJoCcx6Gs3vMySk3/DERwmcYY0Eh0HcqePmakpKIiIi7U+FFRERE8qfbu0PLF4yx+MswvS9EnzcnJ2favRB+e90Y8wmE/jMgsIQ5OYmIiIgKL+7O6k4LDYqIiPtp8Yyt1XRGF4/ArIH5q9PRqXCY9yj2HYy+gtJ3mJWViIiIoMKL27PoWW8REcnPLBbo9gmUrWeMH/0DFj2VPzodXTkD0/vbdzBq8zpU72BOTiIiIpJGhRcRERHJ37z9bYvtFixrjG+bAhs/NSennJIYBzPvh8vHjfG698PdI8zJSURERAxUeBEREZH8r1AZW5vpazsdLX8J9i0zJ6dbZbXCL0/C8T+N8fJNoPMH6mAkIiKSR6jwIiIiIu6hbF3o8YUxZk2BOUPg7G5TUrola9+DnbOMscLloe+P6mAkIiKSh6jwIiIiIu6jZjdo9ZIxlnAFpvWF6HPm5JQd//wCv//PGPMJhP4zIaC4OTmJiIiIQyq8iIiIiHsJGwN39DLGoo7CzAcgKd6cnLLi1A74adg1QQv0+gZK1TQlJREREcmcCi8iIiLiXiwW6PYxlKtvjB/bAAvzeKejK6f/7WAUY4y3/R9Ua2dOTiIiInJdKryIiIiI+0ntdFSonDG+/UfY8LE5Od1IYizMuB8unzDG73wAmgw3JycRERG5IRVeRERExD0VLG3rdORdwBhf/jLsXWpOTpmxWuHn4XBiizFeoSl0UgcjERGRvEyFFxEREXFfZepA92s6HWGFuUPgzN+mpOTQmgmwa44xVrgC9JkCXj7m5CQiIiI3RYUXERERcW81u0Lrl42xhKswvR9cjTQnp4z++RlWvmGM+RSEATMhoJg5OYmIiMhNU+FFREREpPnTUKuPMRZ1zPxORye3w7xrOhhZPKD3t1Ay1JSUREREJGtUeBERERGxWKDrRxDc0BiP2AgLRpnT6Si1g1FSrDHe9k24rU3u5yMiIiLZosKLiIiICIC337+djoKN8R3TYP2HuZtLYqyt6HLlpDFe70Fo/J/czUVERERuiQovIiIiIqkCS8KAGeAdYIz/+irsWZw7OVitMP9xOPmXMV6hGXR8Tx2MREREXIwKLyIiIiIZla4FPSYDGQscVpj7CJze5fzjrx4Pf88zxopUgr7qYCQiIuKKVHgRERERuVZoZ7jnFWMsMfrfTkdnnXfcv3+CVW8ZY76FbB2MChR13nFFRETEaVy+8BITE8O7775Lo0aNKFq0KIGBgYSGhjJmzBiOHTuWY8eJjIzkjTfe4O6776Zo0aJ4e3tTuHBh6tevz7PPPsvRo0dz7FgiIiKSBzQbDbX7GWOXImydjhLjcv54J/6Cn65Zv8XiAb2+hRLVc/54IiIikissVqsZy/TnjIMHD9KpUyf27t3rcDwoKIhp06bRsWPHWzrOihUr6Nu3L+fPn890mwIFCvDVV1/Rv3//WzqWI8ePHyckJASAiIgIgoODb/AOERERyRFJ8fB9F4jYZIzX7gfdP8+59VYun4QvW8OVU8Z4+3HQ+LGcOYaIiIjckDM+f7vsjJerV6/SuXPntKLL0KFDWbFiBevXr+fNN98kMDCQS5cu0bt3b8LDw7N9nMOHD9O1a9e0oku3bt2YM2cOmzdvZv78+QwePBiLxUJMTAwDBw5kw4YNOfL3ExERkTzAyxf6ToWgEGM8fAas+yBnjpEQ828Ho2uKLvUHw13DcuYYIiIiYhovsxPIrgkTJrBnzx4Axo8fz9ixY9PGmjRpQqtWrQgLCyMmJoZRo0bx+++/Z+s477//PjExMQCMHTuW8ePHG8a7detGvXr1GDFiBMnJybz99tv88ssv2fxbiYiISJ4TWAL6z4Cv29rWeUm14r9QvJptPZjsSkmB+f+BU9uN8YrNoeMEdTASERHJB1xyxktiYiKTJk0CIDQ0lKefftpumyZNmjBkyBAAVq5cydatW7N1rD/++AMAi8XCSy+95HCb4cOHU7SobcG79evXZ+s4IiIikoeVvgN6foVdp6N5j8Kp7M+sZfU4+Ge+MVa0MvT5ATy9s79fERERyTNcsvCyatUqoqKiABg0aBAeHo7/GoMHD057PW/ePIfb3EhCQgIAxYoVo1ChQg63sVgsVK5cGYD4+PhsHUdERETyuBod4d7XjLHE6H8fEzqT9f3tmgur3zHGfIOgvzoYiYiI5CcuWXhZu3Zt2usWLVpkul2DBg0ICAgAYN26ddk6VrVq1QA4f/48ly9fznS7Q4cOGbYXERGRfKjpSKgzwBi7fBxm3p+1TkcntsL8x40xiyf0/hZK6HcJERGR/MQlCy+7d+9Oe12jRo1Mt/Py8qJKlSp278mKYcNsi9pZrVbeeusth9t88sknXLhwwbC9iIiI5EMWC3SZCCGNjfHjf8IvT8LNNIu8dAKmD4Ckawo17d+BqvfkWKoiIiKSN7jk4roREREABAQEULhw4etuGxISQnh4OJGRkcTHx+Pr65ulY7Vr145nn32WcePGMW7cOPbv38/9999P+fLlOXXqFPPnz+e7774D4P77709bVyYrjh8/ft3xU6dOXXdcREREcpGXL/SbCl+2gqhj6fGds6BEdQgbk/l7E6JhRn+4etoYbzAEGg11Tr4iIiJiKpcsvFy5cgWAwMDAG26b+qgR2FpQZ7XwAvDOO+/QunVr3n77bebNm2e3Xsydd97Jc889R58+fbK8byCtR7iIiIi4iIDitrVYvm4DCVfT47//z9bpqGZX+/ekdTDaYYxXagEdxqmDkYiISD7lko8axcXZpub6+PjccNuMhZbY2NhsHe/UqVP88MMPbNy40eH4zp07mTp1alp7axEREXEDpWpCz68xdjoCfhpmX1wBWPU2/POzMVa0CvT+Th2MRERE8jGnFl6SkpKwWCy3/Cf1UZ5Ufn5+QHrHoevJ2GXI398/y3+H3bt306hRI6ZOnUpAQACffvopERERJCQkcPr0aX744QfKli3LL7/8QpMmTQwL/96siIiI6/7ZvHlzlvcpIiIiuaB6e2j7P2MsMebfTkcZHicKnw1rxhu38wuCAepgJCIikt+55KNGBQsWBGyPDt1IdHR02uubeTTpWgMHDuT48eMUKFCAtWvXEhoamjZWqlQpBg4cyD333EO9evU4c+YM/fv35+DBg1l6pCk4ODjLeYmIiEge0WQ4nN0D239Mj10+ATMGwOBFcOZv+PkJ43ssntD7eyh+W+7mKiIiIrnOqYUXLy+vbHcTyqhMmTKG/w4ODmbTpk1ER0cTFRV13QV2UxfiLVGiRJbXd9mxYwdbt24FbAvnZiy6ZFS2bFmefPJJXnrpJU6cOMHSpUvp1q1blo4lIiIiLspigc7vw4VDcGx9evzEVpgzBE5sgeR443s6jIMqrXI3TxERETGF02e8XK/dc3bVrFmTuXPnArBnzx4aN27scLukpCQOHjwIkGnR5HoyFo3q1at33W3r16+f9nrPnj0qvIiIiLgTL1/oOwW+bA1RR9PjexfZb9twqDoYiYiIuBGXXFy3WbNmaa9Xr16d6XZbtmxJe9SoadOmWT6Ol1d6XSopKem62yYmJjp8n4iIiLiJgOK2NVt8Cma+TeWW0P6dXEtJREREzOeShZeWLVsSFBQEwPfff4/VanW4XcZFebt3757l41SqVCnt9Y0Wzc1YAMr4PhEREXEjJUOh1zdgcfArVrGq/3Yw0hc0IiIi7sQlCy8+Pj6MGDECsD0ONGHCBLttNmzYwNdffw1AixYtaNiwod02R44cSeuc1LJlS7vxO++8k3LlygEwd+5cVqxY4TCfv/76i88//xyAAgUK0Lp162z9vURERCQfqNYW2r5hjPkVhgGzwL+IKSmJiIiIeVz2K5exY8cyc+ZM9u3bxzPPPMOBAwfo168f/v7+rFy5krfeeoukpCT8/f2ZOHFito7h4eHB22+/zYMPPkhycjIdOnRg2LBhdOnShZIlS3LhwgWWL1/ORx99RExMDADPP//8dRf7FRERETfQ+HFIToB1H0BgKbjvMyhWxeysRERExAQWa2bP6biAAwcO0LFjR/bv3+9wvFChQkydOpXOnTs7HD9y5EjaY0EtWrRg1apVDrebMGECL7zwgmEdl2tZLBZGjhzJ+++/j8Viydpf5AaOHz9OSEgIYOvSpPbTIiIiIiIiIjnPGZ+/XXbGC0DVqlXZtm0bn3zyCbNnz+bAgQMkJCQQEhJCx44dGTlyJBUqVLjl44wZM4YuXbowefJkVq9ezYEDB7h69SoFChSgQoUKNGvWjEceecTQ2UhERERERERExKVnvLgLzXgRERERERERcT5nfP52ycV1RURERERERERcgQovIiIiIiIiIiJOosKLiIiIiIiIiIiTqPAiIiIiIiIiIuIkKryIiIiIiIiIiDiJCi8iIiIiIiIiIk6iwouIiIiIiIiIiJOo8CIiIiIiIiIi4iQqvIiIiIiIiIiIOIkKLyIiIiIiIiIiTqLCi4iIiIiIiIiIk6jwIiIiIiIiIiLiJCq8iIiIiIiIiIg4iQovIiIiIiIiIiJOosKLiIiIiIiIiIiTqPAiIiIiIiIiIuIkKryIiIiIiIiIiDiJCi8iIiIiIiIiIk6iwouIiIiIiIiIiJOo8CIiIiIiIiIi4iQqvIiIiIiIiIiIOIkKLyIiIiIiIiIiTqLCi4iIiIiIiIiIk6jwIiIiIiIiIiLiJCq8iIiIiIiIiIg4iQovIiIiIiIiIiJOosKLiIiIiIiIiIiTeJmdgNxYUlJS2utTp06ZmImIiIiIiIhI/pXxM3fGz+K3QoUXFxAZGZn2ulGjRiZmIiIiIiIiIuIeIiMjqVix4i3vR48aiYiIiIiIiIg4icVqtVrNTkKuLy4ujp07dwJQokQJvLzy/kSlU6dOpc3O2bx5M2XKlDE5I8kqnUPXpvPn+nQOXZ/OoevTOXRtOn+uT+fQ9bniOUxKSkp76qRWrVr4+fnd8j7z/id4wc/Pj4YNG5qdRraVKVOG4OBgs9OQW6Bz6Np0/lyfzqHr0zl0fTqHrk3nz/XpHLo+VzqHOfF4UUZ61EhERERERERExElUeBERERERERERcRIVXkREREREREREnESFFxERERERERERJ1HhRURERERERETESVR4ERERERERERFxEhVeREREREREREScxGK1Wq1mJyEiIiIiIiIikh9pxouIiIiIiIiIiJOo8CIiIiIiIiIi4iQqvIiIiIiIiIiIOIkKLyIiIiIiIiIiTqLCi4iIiIiIiIiIk6jwIiIiIiIiIiLiJCq8iIiIiIiIiIg4iQovIiIiIiIiIiJOosKLiIiIiIiIiIiTqPAiIiIiIiIiIuIkKry4sWPHjjFmzBhCQ0MJCAigaNGiNGrUiAkTJhATE5Njx5kxYwbt2rWjTJky+Pn5UbFiRQYOHMjGjRtveh/nz5/n1VdfpU6dOgQFBVGoUCHq1KnDq6++yvnz53MsV1fjzHN4+fJlZsyYwdChQ6lXrx6FCxfGx8eHEiVK0LJlSyZMmEBUVNQN91OxYkUsFssN/1SsWPGW8nVFzjx/r7322k39u1ssFlatWnXD/ekadMxZ53DVqlU3ff5S/7Rs2dLhvnQN2jt79iwLFy7klVdeoUOHDhQvXjzt32Hw4MFOOabuhTkrt86h7oXOkVvnT/dC58mNc6h7oXP99ddfvPXWW3To0IGQkBB8fX0JDAykWrVqDB48mLVr1+b4Md36XmgVt7Rw4UJrUFCQFXD4p3r16taDBw/e0jFiY2OtnTt3zvQYHh4e1v/+97833M/mzZutZcqUyXQ/ZcuWtf7555+3lKsrcuY5XLx4sdXX1zfTfaf+KVWqlPX333+/7r4qVKhww/0A1goVKmQrV1fl7Gvw1Vdfval/d8C6cuXK6+5L16BjzjyHK1euvOnzl/rn0UcfdbgvXYP2rvfvMGjQoBw9lu6FzpEb51D3QufJrWtQ90LnyY1zqHuh84SFhd3Uv8fAgQOt8fHxt3w83QutVi/E7ezYsYM+ffoQExNDYGAgzz//PK1atSI2NpYZM2bw5ZdfsnfvXjp16sSff/5JYGBgto4zZMgQFi5cCECrVq0YOXIkZcuWZefOnbz11lscPHiQV155hTJlyvDII4843MeJEyfo0qULZ86cwcvLi6eeeorOnTsDsHDhQt5//31OnjxJ586d2bp1K+XKlcveP4qLcfY5PH/+PPHx8Xh4eNCmTRvat29PnTp1KFy4MMePH2fq1KnMnDmTM2fO0LlzZ/744w/q1q173X1269aNN954I9NxHx+fLOXoynLrGky1c+fO645XqlQp0zFdg445+xw2bNjwhucNYPjw4axevRqAQYMGXXdbXYOOhYSEEBoayvLly52yf90Lnc9Z51D3wtzh7Gswle6FzuOsc6h7ofOcOHECgLJly9K7d2+aN29O+fLlSU5OZsOGDbz33nucOHGCKVOmkJSUxLRp027peLoXgma8uKGWLVtaAauXl5d1/fr1duPjx49Pqxq+/vrr2TrGqlWr0vbRpUsXa1JSkmE8MjLSWr58eStgLVKkiPXixYsO9zNo0KC0/cyaNctufNasWWnjDz30ULZydUXOPoczZsywDhs2zHr06NFMt/nwww/TjtG6detMt0v9hiGnv0V2ZblxDWb8lu9W6Bp0LDfO4Y1cvHgx7dv4qlWrZrqdrkF7r7zyinXBggXW06dPW61Wq/Xw4cNO+bZd90LnyY1zqHuh8+TWNah7ofPk1jm8Ed0Ls6dTp07WmTNn2t2XUkVGRlqrVauWdk7XrFmT7WPpXmijwoub2bx5c9r/kMOGDXO4TXJysjU0NDTtf/6EhIQsH6djx45WwOrp6WmNiIhwuM306dPTcpkwYYLd+OnTp62enp5WwNquXbtMj9WuXbu0Y6X+8M/Pcusc3owGDRqkTQ88d+6cw210ozPKrfOXE79s6hp0LK9cg59//vlNFXd0Dd6Ysz4w6F6Ye8z60Ge16l6YE/Jy4UXX4M0x6xrUvdB5FixYkPZvO2LEiGzvR/dCGy2u62bmz5+f9vqhhx5yuI2HhwcPPvggABcvXrypxcYyunr1KitWrACgTZs2BAcHO9yuR48eFCpUCIB58+bZjf/yyy8kJydfN1cgbQGv5ORkfvnllyzl6opy4xzerNQFzFJSUjh8+LBTjpHf5KXzdyO6Bh3LK+fwhx9+AMBisTBw4MAc37/cGt0L3YfuhfmbrsG8TfdC58m4UPHBgweztQ/dC9Op8OJmUlenDggIoH79+plu16JFi7TX69aty9IxNm/eTHx8vN1+ruXj40Pjxo3T3pOYmOgw1xvt51ZydUW5cQ5vVup5BtsHTbmxvHT+bkTXoGN54RwePHiQ9evXA9C8efPrrk0g5tC90H3oXpi/6RrMu3QvdK6EhIS019n92aZ7YTrdHdzM7t27AahatSpeXpmvrVyjRg2792T1GNfu53rHSUpKYv/+/Q73ExQUROnSpTPdR5kyZdIqpFnN1RXlxjm8WakLmXl5eVG1atXrbrtmzRpq165NQEAABQoUoFKlSvTt25f58+djtVqdkl9eZMb5a9OmDcWKFcPHx4eSJUvSsmVL3nnnHS5evHhTueoaNMoL12DqN3xw44UEU+kazF26F7oP3Qtdg+6F+Y/uhc6V+rMNbnwfy4zuhelUeHEjcXFxnDt3DiDTaV6pihQpQkBAAAARERFZOk7G7W90nJCQEIfvy/jfN9pHxv1kNVdXk1vn8GYsWrSI8PBwANq1a5f2Qy4zhw8fZufOncTExBAbG8uRI0eYNWsW3bt3p3nz5mmrq+dnZp2/3377jQsXLpCYmEhkZCSrV6/m+eefp3Llyvz888+Zvk/XoL28cg3++OOPAPj7+9OrV6+beo+uwdyle6F70L3QdehemP/oXug8KSkpvPPOO2n/3adPn2ztR/fCdGon7UauXLmS9vpmWpsGBAQQHR3N1atXnXac1A8lgN1xUvdzs7k62kd+k1vn8EYuXLjAE088AYCnpyf/+9//Mt3Wx8eHrl270rZtW+644w6CgoKIiopiw4YNfPbZZ0RERPDHH3/Qpk0bNmzYQFBQUI7mmpfk9vmrVasW9913H40aNaJs2bIkJiayd+9epk6dyvLly4mKiqJnz54sWLCADh06ZJqvrsF0eeEaXLt2LYcOHQKge/fuN/ygp2vQHLoX5n+6F7oG3QvzJ90LneuDDz5g8+bNgO3ft0GDBtnaj+6F6VR4cSNxcXFpr2+mR72vry8AsbGxTjtO6jEcHSd1P87M1dXk1jm8nuTkZO6//36OHj0KwEsvvcSdd96Z6fabN2+mcOHCdvGWLVsyfPhwevXqxfLly9m9ezevv/4677//fo7lmtfk5vkbNWoUr732ml38rrvu4sEHH+SLL77gscceIzk5mUceeYQDBw7g7+/vMF9dg+nywjU4ZcqUtNepC/hej65Bc+hemL/pXugadC/Mv3QvdJ7Vq1fz3HPPAVCyZEk+++yzbO9L98J0etTIjfj5+aW9zrhYUmZSF0K69gaUk8fJuCDdtcdJ3Y8zc3U1uXUOr+fxxx9n6dKlAHTq1ImXX375uts7usmlKliwILNmzaJYsWIATJ48+ab+Xq4qN8/f9f7dAYYNG8YjjzwCwMmTJx2uIK9r0J7Z12B8fDyzZ88GoGzZstx77703fI+uQXPoXpi/6V7oGnQvzJ90L3Sev//+m+7du5OUlISvry+zZs2iVKlS2d6f7oXpVHhxIwULFkx7fTNTr6Kjo4Gbm9KV3eOkHsPRcVL348xcXU1uncPMPP/880yePBmAZs2aMXv2bDw9PW9pn0FBQfTr1w+w5btly5ZbzjOvMvv8XWvYsGFprzMuoJZK16A9s8/hzz//TFRUFAD333//LV9/4F7XYG7SvTD/0r0wf9G90PXoXugchw8fpm3btly8eBFPT0+mT59+3Q5CN0P3wnQqvLgRPz8/ihcvDsDx48evu+3FixfT/qfNuNDRzci46NGNjpNx0aNrj5O6nxvtI+N+spqrq8mtc+jIuHHj0hbZqlevHgsXLsyxSnLNmjXTXufnRc3MPH+O3OjfXdegPbPPYcYODjcztfpmucs1mJt0L8yfdC/Mf3QvdD26F+a8kydPcu+993Ly5EksFgvffPMN3bt3v+X96l6YToUXNxMaGgrAgQMHSEpKynS7PXv22L3nZmX8oZVxP9c7jqMWjKn7uXTpEqdPn850H6dOneLy5cvZytUV5cY5vNann36a9qxnaGgoy5Yty9FFx9ypfZ8Z5y8zN/p31zXomFnn8OzZsyxbtgywfeC74447bnmfqdzpGswtuhfmP7oX5k+6F7oW3Qtz3rlz52jTpk3aYsUfffRRjhW0dC9Mp8KLm2nWrBlgm4K1devWTLfLONWyadOmWTpGw4YN0xY+cjRlM1VCQgIbN260e8+1ud5oP7eSqyvKjXOY0ZQpUxg+fDgAlStX5rfffkv7xj+n/PPPP2mvy5Ytm6P7zmty+/xdz43+3XUNOmbWOZw2bVpaoScnv+ED97oGc4vuhfmL7oX5l+6FrkX3wpx16dIl2rVrl/Z3f+edd9K6teUE3QszsIpb2bRpkxWwAtZhw4Y53CY5OdkaGhpqBayFCxe2JiQkZPk4HTp0sAJWLy8va0REhMNtpk+fnpbL+PHj7cZPnTpl9fDwsALWdu3aZXqsdu3aWQGrh4eH9dSpU1nO1dXk1jm0Wq3WuXPnWj09Pa2ANTg42Hr48OFbyNyxqKgoa7FixayAtUCBAta4uLgcP0Zekpvn70aGDBmSlsuUKVPsxnUNOmbWObzzzjvTfq6ePXv2lveXyt2uQUcOHz6cdk4HDRqUY/vVvTD3OOscWq26F+YGZ56/G9G9MGfk1jnUvTDnREdHW5s2bZp23l588UWnHEf3QhsVXtxQ8+bN0/7nX79+vd34+PHj0/7Hf/XVV+3Gv/322+uOW61W64oVK9K26dq1qzUpKckwHhkZaS1fvnzah5ILFy443M/AgQPT9jN79my78VmzZpl2ozZTbpzDZcuWWX18fKyAtWTJktY9e/ZkOc8lS5ZYY2JiMh2/fPmytW3btmm5PPnkk1k+hity9vkLDw+37t+//7o5fP7552n7KF26tPXq1asOt9M16FhuXIMZ7dq1K237Ll263HSeugZvTnY+MOhemLc46xzqXpg7nHH+dC/MXc66BjPSvTDnxMfHG/7OI0eOzNZ+dC+8eV6I25k0aRJNmzYlNjaWtm3b8sILL9CqVStiY2OZMWNG2kr91apV4+mnn87WMVq3bk2/fv2YMWMGv/zyC23atGHUqFGULVuWnTt38uabb3Ls2DHANqWtSJEiDvfz5ptvsnTpUiIjI+nfvz9btmyhc+fOACxcuJD33nsPgBIlSvDGG29kK1dX5OxzuHHjRrp3705CQgLe3t588MEHJCYmsmvXrkzfExwcbNeq75133uH++++nR48eNGvWjCpVqhAYGEhUVBQbNmzgs88+S1sAq3r16rz22mtZztUVOfv8bd26lUceeYRWrVrRoUMHatWqRbFixUhKSmLPnj38+OOP/PrrrwB4enryxRdfEBAQ4HBfugYdy42foxl9//33aa8HDRp00+/TNejYunXrOHDgQNp/nzt3Lu31gQMH+O677wzbDx48OFvH0b3QeXLjHOpe6Dy5cf50L3Su3Po5mpHuhTmnf//+LF++HLDdq4YMGXLdn20+Pj5Uq1YtW8fSvfBfZld+xBy//PKLtVCh91TlfwAAAvBJREFUQmlVwWv/VKtWLdNvCW62Oh0TE2Pt2LFjpsfw8PC4qer2xo0braVLl850P6VLl7Zu3Lgxm/8SrsuZ5/DVV1/NdL+Z/fn222/t9tOiRYubem9YWJj1+PHjOfwvlLc58/xlHL/en2LFilnnz59/w1x1DTqWGz9HrVbbY0vlypWzAtYiRYpkafqzrkHHBg0alKWfb47oXmiu3DiHuhc6T26cP90LnSs3f45arboX5rSs/myrUKGCw/3oXnjzNOPFTXXp0oXw8HAmTZrEokWLOH78OD4+PlStWpXevXszfPhwChQocEvH8Pf3Z9GiRUybNo3vvvuOHTt2EBUVRalSpWjevDnDhw+nSZMmN9zPXXfdxc6dO5k0aRLz58/nyJEjAFSqVIlu3boxatQoihUrdku5uqLcOIe3asKECaxYsYINGzawd+9ezp07R1RUFAUKFKBs2bLcdddd9O/fn7Zt22KxWEzNNbc58/x17NiRr7/+mg0bNrBt2zbOnDnD+fPnsVqtFC1alDp16tC+fXsGDx5MoUKFbrg/XYOO5dY1uGLFirS2ln379sXX1/em36tr0Hy6F4quQ3PoXpi/6F7o2nQvBIvV6qZ9s0REREREREREnEztpEVEREREREREnESFFxERERERERERJ1HhRURERERERETESVR4ERERERERERFxEhVeREREREREREScRIUXEREREREREREnUeFFRERERERERMRJVHgREREREREREXESFV5ERERERERERJxEhRcRERERERERESdR4UVERERERERExElUeBERERERERERcRIVXkREREREREREnESFFxERERERERERJ1HhRURERERERETESVR4ERERERERERFxEhVeREREREREREScRIUXEREREREREREnUeFFRERERERERMRJVHgREREREREREXESFV5ERERERERERJxEhRcRERERERERESdR4UVERERERERExElUeBERERERERERcZL/A7wpuvou7o4jAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 413, "width": 559 } }, "output_type": "display_data" } ], "source": [ "plt.plot(poly_codes[:, 0], label='Linear')\n", "plt.plot(poly_codes[:, 1], label='Quadtratic')\n", "plt.legend();" ] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: balance R-squared: 0.338\n", "Model: OLS Adj. R-squared: 0.333\n", "No. Observations: 300 F-statistic: 75.70\n", "Covariance Type: nonrobust Prob (F-statistic): 2.70e-27\n", "===========================================================================================\n", " coef std err t P>|t| [0.025 0.975]\n", "-------------------------------------------------------------------------------------------\n", "Intercept 9.7715 0.237 41.165 0.000 9.304 10.239\n", "C(hand, Poly).Linear 3.1149 0.411 7.576 0.000 2.306 3.924\n", "C(hand, Poly).Quadratic -3.9864 0.411 -9.696 0.000 -4.796 -3.177\n", "===========================================================================================\n", "\n", "Notes:\n", "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" ] } ], "source": [ "print(results_poly.summary(slim=True))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Challenge\n", "\n", "Using the mean for each level of `hand` you calculated earlier and the `poly_codes` matrix below try to recreate the value for the linear and quadratic estimates above.\n", "\n", "*Hint: Think about using `np.dot`...*\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "shape: (3, 3)
linearquadratichand
f64f64str
-0.7071070.408248"bad"
-1.6940e-17-0.816497"good"
0.7071070.408248"neutral"
" ], "text/plain": [ "shape: (3, 3)\n", "┌─────────────┬───────────┬─────────┐\n", "│ linear ┆ quadratic ┆ hand │\n", "│ --- ┆ --- ┆ --- │\n", "│ f64 ┆ f64 ┆ str │\n", "╞═════════════╪═══════════╪═════════╡\n", "│ -0.707107 ┆ 0.408248 ┆ bad │\n", "│ -1.6940e-17 ┆ -0.816497 ┆ good │\n", "│ 0.707107 ┆ 0.408248 ┆ neutral │\n", "└─────────────┴───────────┴─────────┘" ] }, "execution_count": 143, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Use the first 2 columns of this matrix\n", "poly_codes" ] }, { "cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Linear contrast: 3.115\n", "Quadratic contrast: -3.986\n" ] } ], "source": [ "# Solution\n", "linear_codes = poly_codes[:, 0].to_numpy()\n", "linear_contrast = np.dot([bad, good, neutral], linear_codes)\n", "\n", "quadratic_codes = poly_codes[:, 1].to_numpy()\n", "quadratic_contrast = np.dot([bad, good, neutral], quadratic_codes)\n", "\n", "print(f\"Linear contrast: {linear_contrast:.3f}\")\n", "print(f\"Quadratic contrast: {quadratic_contrast:.3f}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "201b", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.10" } }, "nbformat": 4, "nbformat_minor": 2 }