
Notation

This section provides a concise reference describing the notation used throughout
this book. If you are unfamiliar with any of the corresponding mathematical
concepts, we describe most of these ideas in chapters 2–4.

Numbers and Arrays

a A scalar (integer or real)

a A vector

A A matrix

A A tensor

In Identity matrix with rows and columnsn n

I Identity matrix with dimensionality implied by
context

e( )i Standard basis vector [0, . . . , 0,1, 0, . . . , 0] with a
1 at position i

diag( )a A square, diagonal matrix with diagonal entries
given by a

a A scalar random variable

a A vector-valued random variable

A A matrix-valued random variable
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Sets and Graphs

A A set

R The set of real numbers

{ }0 1, The set containing 0 and 1

{ }0 1, , . . . , n The set of all integers between and0 n

[ ]a, b The real interval including anda b

( ]a, b The real interval excluding but includinga b

A B\ Set subtraction, i.e., the set containing the ele-
ments of that are not inA B

G A graph

PaG(xi) The parents of xi in G

Indexing

ai Element i of vector a, with indexing starting at 1

a−i All elements of vector except for elementa i

Ai,j Element of matrixi, j A

Ai,: Row of matrixi A

A:,i Column of matrixi A

Ai,j,k Element of a 3-D tensor( )i, j, k A

A: :, ,i 2-D slice of a 3-D tensor

ai Element of the random vectori a

Linear Algebra Operations

A Transpose of matrix A

A+ Moore-Penrose pseudoinverse of A

A B Element-wise (Hadamard) product of andA B

det( )A Determinant of A
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Calculus
dy

dx
Derivative of with respect toy x

∂y

∂x
Partial derivative of with respect toy x

∇xy Gradient of with respect toy x

∇Xy Matrix derivatives of with respect toy X

∇Xy Tensor containing derivatives of y with respect to
X

∂f

∂x
Jacobian matrix J ∈ R

m n× of f : Rn → Rm

∇2
xf f f( ) (x or H )( )x The Hessian matrix of at input point x

f d( )x x Definite integral over the entire domain of x


S

f d( )x x xDefinite integral with respect to over the set S

Probability and Information Theory

a b The random variables a and b are independent⊥

a b c They are conditionally independent given c⊥ |

P ( )a A probability distribution over a discrete variable

p( )a A probability distribution over a continuous vari-
able, or over a variable whose type has not been
specified

a Random variable a has distribution∼ P P

Ex∼P [ ( )] ( ) ( ) ( )f x or Ef x Expectation of f x with respect to P x

Var( ( ))f x Variance of under xf x( ) P ( )

Cov( ( ) ( ))f x , g x Covariance of and under xf x( ) g x( ) P ( )

H( )x Shannon entropy of the random variable x

DKL( )P Q Kullback-Leibler divergence of P and Q

N ( ; )x µ,Σ Gaussian distribution over x with mean µ and
covariance Σ
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Functions

f f: A B→ The function with domain and rangeA B

f g f g◦ Composition of the functions and

f( ; )x θ A function of x parametrized by θ. (Sometimes
we write f(x) and omit the argument θ to lighten
notation)

logx xNatural logarithm of

σ x( ) Logistic sigmoid,
1

1 + exp( )−x
ζ x x( ) log(1 + exp(Softplus, ))

|| ||x p Lp norm of x

|| ||x L2 norm of x

x+ Positive part of , i.e.,x max(0 ), x

1condition is 1 if the condition is true, 0 otherwise

Sometimes we use a function f whose argument is a scalar but apply it to a
vector, matrix, or tensor: f (x), f(X), or f (X). This denotes the application of f
to the array element-wise. For example, if C = σ(X), then C i,j,k = σ(Xi,j,k) for all
valid values of , and .i j k

Datasets and Distributions

pdata The data generating distribution

p̂data The empirical distribution defined by the training
set

X A set of training examples

x( )i The -th example (input) from a dataseti

y( )i or y( )i The target associated with x( )i for supervised learn-
ing

X The m n× matrix with input example x( )i in row
Xi,:
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