
In this chapter we consider the very simplest models—models with one or even no
parameters. These simple models make the same prediction for all data observations;
there are no differential predictions conditioned on whatever else we might know about
each observation. Such a simple model may not seem very realistic or useful. However,
this simple model provides a useful baseline against which we can compare more
complicated models, and it will turn out to be more useful than it might appear at first.
For many of the questions we will want to ask about our data, the appropriate Model C
will be the simple model with no parameter or one parameter; this will be compared to
the more complex Model A. Also, the simple model provides a useful first-cut description
of data.

OVERVIEW OF THE SIMPLE MODEL

Formally, the simplest model is:

Yi = B0 + !i

where B0 is some specified value not based on this particular batch of data (i.e., it is a
specific a priori numeric value), and !i is the true error or the amount by which Yi differs
from B0. This simple model in which no parameters are estimated from the data is not
frequently used in the social sciences because we seldom have theories sufficiently
powerful to make an explicit prediction for a parameter. Such models are much more
common in fields such as biology. For example, a medical study measuring human body
temperature might reasonably consider the model: except for error, all temperatures are
37°C. In this case, B0 = 37 so the formal model would be:

Yi = 37 + !i

Although we will sometimes want to consider a specified or hypothesized value of
B0 in order to ask an explicit question about data, it is much more common to consider
the equation:

Yi = "0 + !i

where "0 is a true parameter that is estimated from the data. Continuing with the medical
example, suppose that the body temperatures were all from people who had taken a certain
drug. We might suspect that, except for error, they all have the same body temperature,
but it is not the usual body temperature of 37°C. We use "0 to represent whatever the
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body temperature might be for those who have taken the drug. It is important to realize
that "0 is unknowable; we can only estimate it from the data. In terms of these true
values, !i is the amount by which Yi differs from "0 if we were ever to know "0 exactly.
We use b0 to indicate the estimate of "0 that we derive from the data. Then the predicted
value for the ith observation is:

Ŷi = b0

and

DATA= MODEL + ERROR

becomes

Yi = b0 + ei

where ei is the amount by which our prediction misses the actual observation. Thus, ei

is the estimate of !i. The goal of tailoring the model to provide the best fit to the data
is equivalent to making the errors:

ei = Yi – b0

as small as possible. We have only one parameter, so this means that we want to find
the estimate b0 for that one parameter "0 that will minimize the errors. However, we are
really interested not in each ei but in some aggregation of all the individual ei values.
There are many different ways to perform this aggregation. In this chapter, we consider
some of the different ways of aggregating the separate ei into a summary measure of
the error. Then we show how each choice of a summary measure of the error leads to
a different method of calculating b0 to estimate "0 so as to provide the best fit of the
data to the model. Finally, we consider expressions that describe the “typical” error.

Measures of location or measures of central tendency are the traditional names for
the parameter estimates of "0 developed from the different definitions of error. These
names are appropriate because the parameter estimate in the simple model tells us about
the location of a typical observation or about the center of a batch of data. Specific
instances include the mode, median, and mean. Measures of variability or measures 
of spread are the traditional names for the expressions for typical errors. These names
are appropriate because expressions for typical errors tell us how variable the observa-
tions are in a batch of data or, equivalently, how far the data spread out from the 
center. Specific instances include the median absolute deviation and standard deviation.
Together, measures of central tendency and spread are known as descriptive statistics.
However, this suggests a false distinction between these statistics and those to come
later. We want to emphasize that the parameter estimates for "0 in the simple model 
are no more nor less descriptive than the parameter estimates we will develop for 
more complicated models. Models and their parameter estimates always provide
descriptions of data. Hence, we will generally avoid the phrase “descriptive statistics”
and just refer to parameter estimates. The reader should be aware, however, that when
other textbooks refer to descriptive statistics they are generally referring to the material
in this chapter.
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CONCEPTUAL EXAMPLE

Before considering simple models and measures of error more formally, we consider
some conceptual examples that will help to build useful intuitions so that the subsequent
mathematical formulas will be less abstract. Suppose that the data consisted of the five
observations 1, 3, 5, 9, 14, representing the number of books read over the summer by
each of five elementary school students. These observations are plotted in Figure 2.1.

The simple model makes the same prediction for all five observations. The horizontal
line represents the value of that constant prediction. The vertical lines drawn from each
observation to the prediction line represent the amount by which the prediction misses
the actual data value. In other words, the length of the line is ei. One way to find the
best value for Ŷ and, equivalently, the best estimate b0 for "0 is to adjust the Ŷ line up
or down so that the length of the lines is a minimum. (Note that we have dropped the
subscript i from Ŷi because all the predictions are the same for the simple model.) In
other words, we can use trial and error to find the best estimate. For example, we might
want to try 7 as our estimate. The data, the prediction line for Ŷ = b0 = 7, and the errors
are graphed in Figure 2.2. Note that the five line lengths are now 6, 4, 2, 2, 7, with a
sum of 21.

For an estimate of 5, the line lengths were 4, 2, 0, 4, 9, with a sum of 19. The
estimate b0 = 5 thus produces less total error than b0 = 7, so we can eliminate 7, in favor
of 5, as an estimate if our goal is to minimize the total error. We can continue to try
other estimates until we find the best one. Figure 2.3 shows the sum of the line lengths
for different choices of b0 between 0 and 10. The sum of the line lengths reaches a
minimum of 19 when b0 = 5, so that is our best estimate of "0. We would get more total
error, a larger sum of line lengths, if we used a value of b0 that was either lower or
higher than 5. Hence, b0 = 5 is the optimum estimate. Note that 5 is the middle of our
five observations; the middle observation in a batch of data that have been sorted from
smallest to largest is often called the median.

It is interesting to ask how we would have to adjust the estimate b0 if one of the
observations were dramatically changed. For example, what if the 14 were replaced by
140 so that the five observations were 1, 3, 5, 9, and 140? Before reading on, test your
intuitions by guessing what the new value for b0 will be. Figure 2.4 shows the sum of
the line lengths for different possible values of b0. Although all of the sums are much
larger than before, the minimum of 145 still occurs when b0 = 5! The middle or median
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FIGURE 2.1 Error as the sum of line lengths
(estimate is Ŷ = b0 = 5)

FIGURE 2.2 Error as the sum of line lengths
(estimate is Ŷ = b0 = 7)



observation is still the best estimate even though one of the observations has been
increased by a factor of 10.

Above we used the sum of the error line lengths as an aggregate summary index of
error. This simple sum may not always be reasonable. For example, the simple sum
implies that several small errors (e.g., four errors of length 1) are equivalent to one large
error (e.g., one error of length 4). Instead, we may want to charge a higher penalty in
the error index for big errors so that an error of 4 counts more than four errors of 1. One
way to accomplish this is to square the line lengths before summing them. For example,
42 = 16 adds a lot more to the error sum than 12 + 12 + 12 + 12 + 4. Figure 2.5 depicts
the original set of five observations with this new definition of error; each ei is now
represented by a square, the length of whose side is determined by the distance between
the observation and the horizontal line representing the constant prediction Ŷi of the simple
model. The aggregate error is simply the sum of those squares.

Again, we can use brute force to find a value of Ŷi and b0 that will make that sum 
of squares as small as possible. Let us consider the possible estimates of 5 and 7, which
we evaluated when we were using the sum of the line lengths as the error measure. For
b0 = 5, the five areas of the squares are:

42 = 16,  22 = 4,  02 = 0,  42 = 16,  92 = 81
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FIGURE 2.3 Sum of absolute error (SAE) as a
function of Ŷi

FIGURE 2.4 Sum of absolute error (SAE) as a
function of Ŷi with extreme observation (140)

FIGURE 2.5 Error as the sum of squares (estimate is Ŷi = b0 = 5)
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and the sum of those squares is 117. For b0 = 7, the five areas are 36, 16, 4, 4, 49, and
the sum of squares is 109. So b0 = 5, which was the best estimate when using line lengths,
is no longer the best estimate when we use squares, because b0 = 7 produces a smaller
sum of squares or smaller error. Figure 2.6 shows the sum of squares for different possible
values of b0 between 0 and 10. The best value for b0 is about 6.4 with a minimum sum
of squares of about 107. The estimates of 5 and 7 are not bad—sums of squares of 117
and 109, respectively—but clearly inferior to the optimum estimate of 6.4. Although
not obvious, we will prove later that the best estimate when using squared errors is simply
the arithmetic average or mean of the observations. For the five observations:

which produces b0, the best estimate of "0.
It is interesting to ask again what would happen to the estimate b0 if one of the

observations were dramatically changed: say, the 14 were replaced by 140. Before reading
on, again check your intuition by guessing the new estimate b0. Figure 2.7 shows the
sum of squares for the revised set of observations. The minimum sum of squares no
longer occurs when b0 = 6.4; instead, the minimum now occurs when b0 is a whopping
31.6, which is again the average of the five observations. But note that although that
estimate is the best, it is not very good, with a total sum of squares of about 14,723.

Before formalizing these examples in equations, it is useful to summarize the
concepts introduced. First, the best estimate b0 for a simple, one-parameter model is the
constant prediction Ŷ, which minimizes the sum of the errors. Although we will generally
have better ways to estimate the parameter than brute force, it is important to realize
that the best estimate could be found by trial and error until we could no longer make
the error any smaller. In fact, computer programs sometimes use precisely this strategy.
Second, the choice of a method for summarizing or expressing the error—the lengths
of the error lines or their squares in the above examples—affects the best estimate b0.
We will soon see that there are many other plausible choices for error terms. Third, if
total error is the sum of the line lengths, then the median of the observations provides
the best estimate b0, where the median is simply the middle observation. Fourth, if total
error is the sum of the squared line lengths, then the best estimate b0 is the arithmetic

1 + 3 + 5 + 9 + 14
5

=
32
5
= 6.4

FIGURE 2.6 Sum of squared errors (SSE) as a
function of Ŷi

FIGURE 2.7 Sum of squared errors (SSE) as a
function of Ŷi with extreme observation (140)



2 · Simple Models: Definitions of Error and Parameter Estimates 15

average or mean of the observations. Fifth, the median does not change when an extreme
observation is made more extreme, but the mean can change dramatically. Sixth, many
times in this book we will encounter the phrase “sum of squares”; it is useful to realize
that it can indeed be represented geometrically as a literal summation of squares.

FORMALITIES FOR SIMPLE MODELS

As always, we begin with the basic equation for data analysis:

DATA = MODEL + ERROR

For simple models, MODEL states that all observations in DATA are essentially the
same, so:

Yi = "0 + !i

where "0 represents the true, but unknown, parameter and !i represents the individual
error disturbances around the unknown parameter. Then b0 is the estimate of that
parameter based on the data at hand. So the actual model used for predicting each Yi

becomes:

MODEL: Ŷi = b0

The basic data analysis equation can then be written as:

Yi = Ŷi + ei or  Yi = b0 + ei

The error or residual associated with each observation is then simply the difference
between the data and the model prediction, or:

ei = Yi – Ŷi

Our problem is how to select a single value for b0 to represent all of the data. Clearly,
we want b0 to be in the “center” of the data so that it will be more or less close to all
of the observations. Hence, estimates of b0 are often called measures of central tendency.
But we need to be much more precise about defining the center and what we mean by
“close.” As always, the key is to make ei as small as possible. Instead of looking at each
individual ei, we need to consider ways of aggregating the separate ei values into a
summary measure of the total error. Once we have done that, it should be a simple
procedure to choose a b0 that will make the summary measure of error as small as possible.
We now turn to a consideration of possible summary measures.

Count of errors (CE)

One possibility is simply to count the number of times Yi does not equal Ŷi. This ignores
the size of the individual errors and only counts whether an error occurred. Formally:

where I(ei) = 1 if ei = 0 and I(ei) = 0 if ei = 0. Functions such as I () are often called
indicator functions and are simply a fancy way of representing whether or not something
is to be included in an equation.

ERROR =

n

i = 1

I(ei) =
n

i = 1

I(Yi − Ŷi) =
n

i = 1

I(Yi − b0)



Sum of errors (SE)

In order not to lose information about the size of the ei, we might add all the ei values
so that:

But this is clearly unsatisfactory because it allows positive and negative errors to cancel
one another. For example, suppose that b0 underestimated one observation by 1000 and
overestimated another observation by the same amount so that e1 = 1000 and e2 = –1000.
Adding those two errors would produce zero, incorrectly implying that there was no
error. We have no reason to be more interested in overestimates than underestimates,
so one solution is to ignore the positive and negative signs of the ei.

Sum of absolute errors (SAE)

One way to remove the signs is to sum the absolute values of the errors:

The sum of absolute errors is the formal equivalent of summing the line lengths in
Figure 2.1. As noted in the conceptual example above, it may not always be desirable
to count one big error (e.g., an error of 4) as being the same as the equivalent amount
of small errors (e.g., four errors of 1). The conceptual example therefore suggests the
next measure of error.

Sum of squared errors (SSE)

Another way to remove the signs from the ei is to square each one before summing
them:

The sum of squared errors is the formal equivalent of adding up the error squares in
Figure 2.5. Besides removing the signs, the squaring has the additional effect of making
large errors more important.

Weighted sum of squared errors (WSSE)

So far, all of the suggested error measures have given equal weight to each observation.
For a variety of reasons we may want to give more weight to some observations and
less weight to others when calculating the aggregate error. For example, we may have
reason to believe that certain observations are questionable or suspect because they were
collected with less precision or less reliability than the other observations. Or we may
not want to count an error of 10 as being the same when Ŷi = 1000 as when Ŷi = 5. 
In the former instance, the error of 10 amounts to only a 1% error, while in the latter

ERROR =

n

i = 1

|ei| =
n

i = 1

|Yi − Ŷi| =
n

i = 1

|Yi − b0|

ERROR =

n

i = 1

ei =

n

i = 1

(Yi − Ŷi) =
n

i = 1

(Yi − b0)

ERROR =

n

i = 1

e2
i =

n

i = 1

(Yi − Ŷi)2 =

n

i = 1

(Yi − b0)2
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instance it is an error of 200%. Or, finally, we might be suspicious of a couple of extreme
observations just because they are “outliers” with respect to other observations. Whatever
our reasons, it is easy to incorporate a weight wi for each observation into the formal
definition:

The weights wi might be assigned a priori based on judgments of data quality or some
formal index of each observation’s reliability. One possibility is to weight all observations
equally, in which case wi = 1 for all i. This weighted sum of squared errors becomes
simply the sum of squared errors above. 

Statisticians have created some very clever ways of defining weights to solve a variety
of complicated problems. We will encounter examples of those weights later in the
context of specific problems. For now, just be aware that the use of weights gives us a
great deal of flexibility in defining the aggregate measure of error.

ESTIMATORS OF "0

As demonstrated by the conceptual examples presented earlier in this chapter, the choice
of a method for aggregating the ei influences the estimate b0. It should not be surprising,
therefore, that for each definition of aggregate error presented above there is a different
way of calculating b0 from the data. We could use the brute-force method for each
definition of error by trying different values of b0 until we found the one that gave the
minimum value for error. However, it turns out that for each of the above definitions of
error we can define a way of calculating b0 from the data so that b0 is guaranteed to
produce the minimum possible value for error. While we will almost always use the
calculation method, it is important to remember that the definition of the best estimate
of "0 is the value of b0 that produces the least error. We list in Figure 2.8 the definition
of b0 for each definition of error considered so far.

Proof that the Mean Minimizes SSE

In this section, we present a formal proof that the mean Y
–

does indeed produce the
smallest possible value of SSE. Although we generally avoid proofs, we think it is
important to understand that the choice of the mean as an estimator is not arbitrary;
instead, the choice of SSE as an aggregate measure of ERROR also dictates the choice
of the mean as the best estimator. Similar proofs can be given to show that the indicated
estimator minimizes the corresponding definition of error in the list in Figure 2.8.

ERROR =

n

i = 1

wie
2
i =

n

i = 1

wi(Yi − Ŷi)2 =

n

i = 1

wi(Yi − b0)2

FIGURE 2.8 Estimators for each definition of error

Error definition b0, estimator of "0

Count of errors Mode = most frequent value of Yi

Sum of absolute errors Median = middle observation of all the Yi

Sum of squared errors Mean = average of all the Yi

Weighted sum of squared errors Weighted mean = weighted average of all the Yi



Let us begin by assuming that Ŷ, the best estimator for reducing the sum of squared
errors, is something other than 

(Note that here Ŷ does not have an i subscript because we make the same prediction for
all observations in the simple model.) Our strategy is to proceed with that assumption
until we reach a point where we can see that it is a bad assumption. At that point we
will know that the only reasonable assumption is Ŷ = Y

–
.

The sum of squared errors is:

Obviously, Y
–

– Y
–

= 0; we can add zero within the parentheses without changing the
sum of squared errors. That is:

Rearranging the terms slightly, we get:

Squaring gives:

Breaking the sums apart yields:

The last term contains no subscripts so the summation is equivalent to adding up the
same quantity n times; hence, the summation sign can be replaced by multiplication by
n. Similarly, the quantities without subscripts in the middle term can be taken outside
the summation sign to give:

 Ȳ =

n

i = 1

Yi

.
n

SSE =

n

i = 1

(Yi − Ŷ)2

SSE =

n

i = 1

(Yi − Ŷ)2

SSE =

n

i = 1

[(Yi − Ȳ) + (Ȳ − Ŷ)]2

SSE =

n

i = 1

[(Yi − Ȳ)2 + 2(Yi − Ȳ)(Ȳ − Ŷ) + (Ȳ − Ŷ)2]

SSE =

n

i = 1

(Yi − Ȳ)2 +

n

i = 1

[2(Yi − Ȳ) (Ȳ − Ŷ)] +

n

i = 1

(Ȳ − Ŷ)2

SSE =

n

i = 1

(Yi − Ȳ)2 + 2(Ȳ − Ŷ)
n

i = 1

(Yi − Ȳ) + n(Ȳ − Ŷ)2
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Now let us concentrate on the middle term. Note that:

Hence, the middle term of SSE includes a multiplication by zero, which eliminates that
term. We are left with:

We want SSE to be as small as possible. We have no freedom in the first term: Yi

and Y
–

are whatever they happen to be. We do, however, have freedom to choose Ŷi in
the second term to make SSE as small as possible. Clearly, n(Y

–
– Ŷ)2 is positive, so it

is making SSE larger. But if we let Ŷ = Y
–

, then n(Y
–

– Ŷ)2 = 0 and we are no longer
adding anything extra to SSE. For any estimate of Ŷ other than Y

–
, we will be making

SSE larger. Hence, SSE is as small as possible when Ŷ = Y
–
, and the minimum is:

Any other choice for Ŷ would produce a larger SSE; thus, the mean is the best estimator
for reducing SSE in the simple model.

Describing Error

If the goal is simply to describe a batch of data, then we can apply the simple model
and use one or all of the measures of central tendency—mode, median, and mean—as
descriptive statistics. When doing so, it is also useful to present a description of the
typical error. Reporting the total error (e.g., SAE or SSE) is not desirable because the
total depends so heavily on the number of observations. For example, aggregate error
based on 50 observations is likely to be larger than aggregate error based on 15
observations, even if the typical errors in the former case are smaller. For each measure
of central tendency there is a corresponding customary index of the typical error. We
consider each below.

n

i = 1

(Yi − Ȳ) =
n

i = 1

Yi − nȲ

=

n

i = 1

Yi − n

n

i = 1
Yi

n

⎛ ⎞
⎜ ⎟
⎝ ⎠

=

n

i = 1

Yi −

n

i = 1

Yi

= 0

SSE =

n

i = 1

(Yi − Ȳ)2 + n(Ȳ − Ŷ)2

SSE =

n

i = 1

(Yi − Ȳ)2
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Modal error

When we use the count of the errors (CE) as the aggregate index of error, there can only
be two values for ei: either ei = 0 when Yi = Ŷ or ei = 1 when Yi ≠ Ŷ. The typical error
is simply the more frequent or modal error. Modal error is seldom used, but we have
presented it for completeness.

Median absolute deviation

When we use the sum of absolute errors (SAE) as the aggregate index of error, it is
customary to use the median absolute error or deviation from the prediction to represent
the typical error. To find the median absolute deviation, simply sort the |ei | into ascending
order and find the middle one.

Standard deviation

When we use the sum of squared errors (SSE) as the aggregate index of error, the index
is somewhat more complex. We will be making extensive use of SSE throughout this
book. To avoid having to introduce more general formulas later, we present the more
general formula now and then show how it applies in the case of simple models. In 
a general model with p parameters, those p parameters have been used to reduce the
error. In principle, the maximum number of parameters we could have is n—one
parameter for each observation—in which case the error would equal zero. Thus, there
are n – p potential parameters remaining that could be used to reduce the remaining
error. A useful index of error is then the remaining error per remaining potential
parameter. This index has the name mean squared error (MSE) and is given by:

For the simple model considered in this chapter there is only the one parameter "0 to
be estimated, so p = 1 and the estimate of Yi is b0 = Y

–
, the mean value. For the simple

model, MSE has the special name variance and is commonly represented by s2, that is:

MSE represents the typical squared error; to express the typical error in the units in
which the original data were recorded, it is useful to take the square root of MSE, which
is often referred to, especially on computer printouts, as ROOT MSE. For the simple
model, the square root of the variance or the MSE has the special name standard
deviation and is given by:

MSE =
SSE
n − p

=

n

i = 1
(Yi − Ŷi)2

n − p

Variance = s2 = MSE =
SSE
n − 1

=

n

i = 1
(Yi − Ȳ)2

n − 1

Standard deviation = s = MSE =

n

i = 1
(Yi − Ȳ)2

n − 1
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Another index sometimes used when SSE is used as the aggregate index of error is
the coefficient of variation. It is common for the size of the standard deviation to be
proportional to the size of the mean. For example, if Y

–
=  10,000, we would expect the

typical error or standard deviation to be much larger than when Y
–

= 10. Although this
need not be the case, it usually is true. To remove the effect of the overall magnitude
of the data from the description of the error, the coefficient of variation expresses the
size of the standard deviation as a proportion of the mean, that is:

An example

We will use the percentage of households that had internet access in the year 2013 by
US state, which are listed in Figure 1.1, as an example to illustrate the simple model
and the descriptors of central tendency and error. To facilitate finding the mode and the
median, we have rearranged the data of Figure 1.1 in Figure 2.9 in order of increasing
percentages. Our goal is to fit to these data the simple model that has just one parameter.
Thus, the basic data analysis equation is:

Yi = "0 + !i

and we want to fit the model to the data by finding the estimate b0 for "0 that minimizes
error—the ei in the equation:

Yi = b0 + ei

How we find the estimate b0 depends on which definition of aggregate error we adopt.
If CE is adopted as the criterion, then the best estimate for "0 is the mode. To find

the mode, we simply observe which percentage is the most frequent. For these data,
there are eight values that occur twice (i.e., 72.2, 72.9, 73.0, 75.3, 76.5, 77.5, 78.9, and
79.6) and none that occurs more than twice. Thus, there are really eight modes. It is
frequently the case with continuous variables that there is no mode, or at least not a
single mode, so the mode is usually not as useful as either the median or the mean for
such data. If we were to round the data to the nearest whole number, there would be
only two modes of 73 and 79. Using a mode of 73 (or 79) to predict the rounded data,
the prediction would be accurate 6 times and incorrect 44 times.

If SAE is adopted as the criterion, then the best estimate for "0 is the median. There
are 50 observations, so there are two middle values—the 25th and 26th. (If there is an
odd number of observations then there will be only one middle observation.) The 25th
and 26th values are both 73.0; so, in this case, the best estimate is 73.0. (If the two
middle observations were different, they could be averaged to produce the single estimate
of the median.) The middle columns of Figure 2.10 present the prediction Ŷi, the error 
ei = Yi – Ŷi , and the absolute error based on the median as the estimate b0. In this case,
total error = 200.3. Any other estimate for "0 would produce a larger value for SAE.
Although it is not obvious from Figure 2.10, the 25th and 26th largest absolute errors
are 3.20 and 3.30, so the median absolute deviation or MAD = 3.25.

If SSE is adopted as the criterion, then the best estimate for "0 is the mean. The
average of the 50 observations gives 72.806 as the estimate b0. The last set of columns

Coefficient of variation CV= =
s
Y



in Figure 2.10 gives the values of Ŷ (or b in the case of the simple model), e = Y – Ŷ,
and e2

i . Note that the sum of the errors equals zero exactly and, necessarily, that the sum
of the data observations equals the sum of the predictions. This is characteristic of
predictions based on minimizing the SSE. The actual SSE equals 1355.028. Again, any
other estimate for "0 would produce a larger SSE. The variance or, more generally, the
MSE equals:

and the standard deviation or root-mean-squared error equals:

Finally, CV is given by:

Note that in this particular example the three estimates of "0 (using the three
definitions of error) were very similar: 73 (the first mode), 73.0, and 72.806. This is
often the case for “well-behaved” data, but there is no guarantee that data will be well

s2 =
SSE
n − 1

=
1355.028

49
= 27.654

s = MSE = 27.654 = 5.259

Ȳ
=

5.259
72.806

s
= .072
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FIGURE 2.9 Percentage of households that had internet access in 2013 by US state (sorted by percentage)

i State Percentage Rank i State Percentage Rank

24 MS 57.4 1
4 AR 60.9 2
1 AL 63.5 3

31 NM 64.4 4
18 LA 64.8 5
48 WV 64.9 6
40 SC 66.6 7
36 OK 66.7 8
42 TN 67.0 9
17 KY 68.5 10
14 IN 69.7 11
25 MO 69.8 12
22 MI 70.7 13
33 NC 70.8 14
41 SD 71.1 15
35 OH 71.2 16
43 TX 71.8 17
26 MT 72.1 18
10 GA 72.2 19
15 IA 72.2 20
38 PA 72.4 21
34 ND 72.5 22
19 ME 72.9 23
27 NE 72.9 24
16 KS 73.0 25

49 WI 73.0 26
12 ID 73.2 27
3 AZ 73.9 28

13 IL 74.0 29
9 FL 74.3 30
8 DE 74.5 31

32 NY 75.3 32
45 VT 75.3 33
50 WY 75.5 34
28 NV 75.6 35
46 VA 75.8 36
23 MN 76.5 37
39 RI 76.5 38
7 CT 77.5 39

37 OR 77.5 40
5 CA 77.9 41

11 HI 78.6 42
20 MD 78.9 43
47 WA 78.9 44
2 AK 79.0 45

30 NJ 79.1 46
6 CO 79.4 47

21 MA 79.6 48
44 UT 79.6 49
29 NH 80.9 50
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FIGURE 2.10 Predictions and errors using the median and mean to estimate b0 in the simple model

Median Mean

i US state Percentage Ŷi ei |ei | Ŷi ei ei
2

1 AK 79.0 73 6.0 6.0 72.806 6.194 38.366
2 AL 63.5 73 –9.5 9.5 72.806 –9.306 86.602
3 AR 60.9 73 –12.1 12.1 72.806 –11.906 141.753
4 AZ 73.9 73 0.9 0.9 72.806 1.094 1.197
5 CA 77.9 73 4.9 4.9 72.806 5.094 25.949
6 CO 79.4 73 6.4 6.4 72.806 6.594 43.481
7 CT 77.5 73 4.5 4.5 72.806 4.694 22.034
8 DE 74.5 73 1.5 1.5 72.806 1.694 2.870
9 FL 74.3 73 1.3 1.3 72.806 1.494 2.232

10 GA 72.2 73 –0.8 0.8 72.806 –0.606 0.367
11 HI 78.6 73 5.6 5.6 72.806 5.794 33.570
12 IA 72.2 73 –0.8 0.8 72.806 –0.606 0.367
13 ID 73.2 73 0.2 0.2 72.806 0.394 0.155
14 IL 74.0 73 1.0 1.0 72.806 1.194 1.426
15 IN 69.7 73 –3.3 3.3 72.806 –3.106 9.647
16 KS 73.0 73 0.0 0.0 72.806 0.194 0.038
17 KY 68.5 73 –4.5 4.5 72.806 –4.306 18.542
18 LA 64.8 73 –8.2 8.2 72.806 –8.006 64.096
19 MA 79.6 73 6.6 6.6 72.806 6.794 46.158
20 MD 78.9 73 5.9 5.9 72.806 6.094 37.137
21 ME 72.9 73 –0.1 0.1 72.806 0.094 0.009
22 MI 70.7 73 –2.3 2.3 72.806 –2.106 4.435
23 MN 76.5 73 3.5 3.5 72.806 3.694 13.646
24 MO 69.8 73 –3.2 3.2 72.806 –3.006 9.036
25 MS 57.4 73 –15.6 15.6 72.806 –15.406 237.345
26 MT 72.1 73 –0.9 0.9 72.806 –0.706 0.498
27 NC 70.8 73 –2.2 2.2 72.806 –2.006 4.024
28 ND 72.5 73 –0.5 0.5 72.806 –0.306 0.094
29 NE 72.9 73 –0.1 0.1 72.806 0.094 0.009
30 NH 80.9 73 7.9 7.9 72.806 8.094 65.513
31 NJ 79.1 73 6.1 6.1 72.806 6.294 39.614
32 NM 64.4 73 –8.6 8.6 72.806 –8.406 70.661
33 NV 75.6 73 2.6 2.6 72.806 2.794 7.806
34 NY 75.3 73 2.3 2.3 72.806 2.494 6.220
35 OH 71.2 73 –1.8 1.8 72.806 –1.606 2.579
36 OK 66.7 73 –6.3 6.3 72.806 –6.106 37.283
37 OR 77.5 73 4.5 4.5 72.806 4.694 22.034
38 PA 72.4 73 –0.6 0.6 72.806 –0.406 0.165
39 RI 76.5 73 3.5 3.5 72.806 3.694 13.646
40 SC 66.6 73 –6.4 6.4 72.806 –6.206 38.514
41 SD 71.1 73 –1.9 1.9 72.806 –1.706 2.910
42 TN 67.0 73 –6.0 6.0 72.806 –5.806 33.710
43 TX 71.8 73 –1.2 1.2 72.806 –1.006 1.012
44 UT 79.6 73 6.6 6.6 72.806 6.794 46.158
45 VA 75.8 73 2.8 2.8 72.806 2.994 8.964
46 VT 75.3 73 2.3 2.3 72.806 2.494 6.220
47 WA 78.9 73 5.9 5.9 72.806 6.094 37.137
48 WI 73.0 73 0.0 0.0 72.806 0.194 0.038
49 WV 64.9 73 –8.1 8.1 72.806 –7.906 62.505
50 WY 75.5 73 2.5 2.5 72.806 2.694 7.258

Sum 3640.3 3650 –9.7 200.3 3640.3 .000 1355.03



behaved and that the three estimates will be similar. Later we will see that a major
discrepancy between the three estimates, especially between the median and the mean,
should alert us to special problems in the analysis of such data. Note also in this example
that the median absolute deviation and the standard deviation produce different estimates
for the typical error—3.25 and 5.26, respectively. This is not surprising given the
different definitions of error used.

SUMMARY

In terms of the basic data analysis equation:

DATA = MODEL + ERROR

the simple model with one parameter is expressed as:

Yi = "0 + !i

Fitting the model to the data consists of finding the estimator b0 of "0 that makes the
errors ei as small as possible in the equation:

Yi = b0 + ei

To fit the simple model to data, we must first define how the individual error terms ei

are to be aggregated into a summary index of error. Once we have chosen an aggregate
index of error, we can find, by trial and error if necessary, the best estimate b0 of "0 that
minimizes error. Important definitions of aggregate error are: (a) the count of errors, (b)
the sum of absolute errors, and (c) the sum of squared errors. For each of these definitions,
there is a different, well-defined best estimator for "0 that can be found by calculation
rather than by trial and error. These estimators are, respectively: (a) the mode—the most
frequent value of Yi, (b) the median—the middle value of all the Yi, and (c) the mean—
the arithmetic average of all the Yi. Also, for each of these three definitions of aggregate
error there is an expression for representing the “typical” value for ei . These expressions
are, respectively: (a) the modal error, (b) the median absolute deviation, and (c) the
standard deviation. Collectively, these best estimators and these expressions for the typical
error are known as descriptive statistics because they provide a first-cut description of
a batch of data. We prefer to view them simply as estimators for the simple model using
different definitions of error.

In Chapter 3, we will choose one of the three definitions of error to be our standard
definition. We will make this choice on the basis of reasoned principles. However, the
estimates and aggregate indices for the sum of squared errors are more easily obtained
from the standard computer statistical systems than are those for other definitions of
aggregate error. The reader should therefore anticipate that we will choose the sum of
squared errors to be our standard definition of aggregate error.
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