Simple Models

Statistical Inferences about
Parameter Values

In Chapter 2 we considered various alternatives for how we should measure aggregate
error in the equation:

DATA = MODEL + ERROR

Although the sums of both the absolute errors and the squared errors seem to be
reasonable alternatives, we decided in Chapter 3, for reasons of efficiency, practicality,
and tradition, to define total error as the sum of the squared errors. In the simplest models,
where we are estimating the single parameter 3, the choice of the sum of squared errors
as the definition of error implies that the best estimate is the sample mean (as we proved
in Chapter 2).

In this chapter, we develop procedures for asking questions or testing hypotheses
about simple models. Defining and answering interesting questions is the purpose of
data analysis. We first consider the logic of answering questions about data for the case
of the simplest models because it is easy to focus on the logic when the models are
simple and because the logic generalizes easily to more complex models. The specific
statistical test presented in this chapter is equivalent to the “one-sample ¢-test.” We do
not derive this test in terms of the ¢ statistic; we prefer instead to construct this test using
concepts and procedures that are identical to those required for the more complex models
we will consider later.

The generic problem is that we have a batch of data for which we have calculated
by, the mean, as an estimate of B,. Our question is whether 8 is equal to some specific
value. For example, we might want to know whether the body temperatures of a group
of patients administered a therapeutic drug differed from the normal body temperature
of 37°C. We will let B, equal the value specified in our question. The statement:

By =B,

represents our hypothesis about the true value of B,. Such statements are often called
null hypotheses. The calculated value of b, will almost never exactly equal B, the
hypothesized value of B,. That is, the compact model:

MODEL C: Y, =B, + &,

in which no parameters are estimated will almost always produce a larger error than the
augmented model:

MODEL A: Y, = B, + &,
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in which B, is estimated by b, the mean of the batch of data. We will calculate PRE,
the proportional reduction in error index developed in Chapter 1, to see how much better
the predictions of Model A are than those of Model C. The original question then becomes
not whether Model A is better than Model C, but whether Model A is better enough
than Model C that we should reject the hypothesis that 8, = B,. Deciding what value of
PRE is “better enough” is the essence of statistical inference and is the focus of this
chapter.

To be less abstract, we will consider a detailed example. Suppose that 20 tickets
were available for a lottery that had a single prize of $1000. How much would individuals
be willing to pay for a 1 in 20 or 5% chance of winning the $1000 prize? The expected
value of a ticket in this particular lottery would be $1000/20 tickets or $50. One might
hypothesize that people would focus on the magnitude of the prize (i.e., the $1000 payoff)
and thus be willing to pay more than the expected value of a ticket (i.e., $50). But one
might also hypothesize that people would focus on the likelihood of losing whatever
amount they paid and thus be generally willing to pay less than the $50 expected value
of a ticket. Formally, we are comparing these two models:

MODEL A: Bid = 8, + &,
MODEL C: Bid =50 + &,

Suppose that 20 individuals participated in our hypothetical lottery by submitting the
following bids to buy a ticket:

41 50 51 28 29
24 82 37 42 37
45 50 37 22 52
25 53 29 65 51

These data are displayed in Figure 4.1 in what is called a Stem and Leaf plot, where the
left column of numbers indicates the left-most digit of each bid (the values of ten) and
the numbers to the right of this column indicate the second digit of each bid (i.e., there
were six bids in the twenties: 22, 24, 25, 28, 29, 29).

The average bid is $42.5, which is obviously less than the expected value of $50.
However, we want to know whether these bids are really different from $50 or whether
their mean is below $50 simply as a result of random variation in the data. In other
words, even if the true state of the world were such that people generally are willing to

pay the expected value of $50, it is unlikely that the

FIGURE 4.1 Stem and Leaf plot average bid in our sample would equal $50 exactly.
for the 20 lottery bids So, we need to determine whether the average bid of
2 245899 42.5 that we obta.in.ed is different enough from 50 that
3777 we would be willing to conclude that, on average,
4125 people are willing to pay less than the expected value.
Z 201 123 In this example, B, represents the true typical amount

that people would be willing to pay for a lottery
ticket. We do not know, nor can we ever know,
exactly what this #7ue value is. The hypothesized
value for B, is By, and in this example it equals 50,

7
82

Stem width = 10.00
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the expected value of a ticket in our lottery. Note that $50 was not estimated from
our data. Rather, $50 is an a priori hypothesized value: it is a specific value that was
determined before looking at the data. The estimated value for 3, is b,, and in this case
it equals 42.5, the mean or average of the 20 bids, because the mean minimizes the sum
of squared errors. In other words, for the compact model (which represents the null
hypothesis), the prediction is given by:

MODEL C: Y, =50

and for the augmented model (in which B, is estimated from the data), the prediction is
given by:

MODEL A: Y,=42.5

So our question is whether the predictions of Model A are better enough to infer that
Model C is unreasonable.

To answer our question, we want to calculate PRE. To do so, we first need to calculate
the error for each model. The necessary calculations are displayed in Figure 4.2. For the
compact model, fiC = 50, so the sum of squared errors from the compact model, SSE(C),
is given as:

n 20
SSE(C) = > (¥, ¥,cf = > (¥, - 50)*= 5392
i=1 i=1
The squared error using the compact model for each bidder is listed in the third

column of Figure 4.2, along with the sum of 5392 for SSE(C). For the augmented model,
Y, =425, so:

20

SSE(A) = > (Y,= Y,)? = > (Y- 42.5 = 4267

i=1

The squared error using the augmented model for each bidder is listed in the fourth
column, along with its sum of 4267 for SSE(A). Then the proportional reduction in error
using Model A instead of Model C is given by:

SSE(C) - SSE(A) 53924267
SSE(C) 5392

That is, Model A using b, the estimated value of B, has 20.9% less error than Model
C using B,, the hypothesized value of B, Later in this chapter, we will determine
whether 20.9% less error is enough to warrant rejecting Model C ($50) in favor of
Model A.

We note in passing that for Model A one observation (bidder 7) is responsible for
a substantial proportion of the total SSE. Although the presentation of formal procedures
for investigating outliers must wait until Chapter 13, large errors associated with a few
observations should make us suspect the presence of outliers. Remember that SSE and
its associated estimators, such as the mean, are not resistant to outliers.
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FIGURE 4.2 Lottery bids and error calculations for 20 bidders in a
hypothetical lottery

Squared errors

Bid Compact Augmented
Bidder number Y, (Y; = By)? (Y; = by)?
1 41 81 2.25
2 50 0 56.25
3 51 1 72.25
4 28 484 210.25
5 29 441 182.25
6 24 676 342.25
7 82 1024 1560.25
8 37 169 30.25
9 42 64 0.25
10 37 169 30.25
11 45 25 6.25
12 50 0 56.25
13 37 169 30.25
14 22 784 420.25
15 52 4 90.25
16 25 625 306.25
17 53 9 110.25
18 29 441 182.25
19 65 225 506.25
20 51 1 72.25
Sum 850.00 5392.00 4267.00
Mean 42.50

DECOMPOSITION OF SSE

At this point it is useful to introduce a table that summarizes our analysis so far. The
sum of squares reduced (SSR) is defined as:

SSR = SSE(C) — SSE(A)

and represents the amount of error that is reduced by using Model A instead of Model
C. Then it is obvious that:

SSE(C) = SSR + SSE(A)

In other words, the original error SSE(C) can be decomposed into two components: (a)
the reduction in error due to Model A (i.e., SSR) and (b) the error remaining from Model
A (i.e., SSE(A)). It is common to summarize the results of an analysis in a table having
separate rows for SSR, SSE(A), and SSE(C). Figure 4.3 provides the generic layout for
such tables, which are referred to as analysis of variance or ANOVA tables because they
analyze (i.e., separate or partition) the original variance or error into component parts.
Figure 4.4 presents the ANOVA summary table for our example. Note that the SS (sum
of squares) for the total line, which represents SSE(C), is indeed the sum of SSR and
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FIGURE 4.3 Generic ANOVA layout

FIGURE 4.4 ANOVA summary table for lottery

Source ss PRE example
Reduction using Model A SSR SSRISSE(C)  ~ource > PRE
Error for Model A SSE(A) Reduction (using B,) 1125 209
Total SSE(C) Error (using By) 4267

Total (error using By) 5392

SSE(A); for our example, 5392 = 1125 + 4267. PRE is readily obtained from the SS
column using the formula:

SSR
SSE(C)

PRE =

We will use these tables, which give the decomposition of the sums of squares, as the
basic summary for all our statistical tests. Later, we will add several other useful columns
to such tables.

SSR is easily understood and often easily calculated as the difference between
SSE(C) and SSE(A). However, there is another representation for SSR, which provides
additional insight for the comparison of Models C and A. It can be shown (we essentially
did it in Chapter 2 for the case of the simple model; the more general proof does not
provide useful insights so we omit it) that:

(Yie— Y. (4.1)

SSR =

n
i=

where ?ic and fl ., are, respectively, the predictions for the ith observation using Model
C and Model A. This formula will be useful later for calculating certain SSRs that
are not automatically provided by typical computer programs. More important are the
insights it provides. For a fixed SSE(C), the larger SSR is, the larger PRE is, and the
larger the improvement provided by using Model A instead of Model C. This formula
shows that SSR is small when Models C and A generate similar predictions for each
observation. In the extreme case when Models C and A are identical (i.e., they produce
the same predictions), then SSR = 0 and PRE = 0. Conversely, SSR will be large to the
extent that Models C and A generate different predictions. Thus, SSR is a direct measure
of the difference between Models C and A and PRE = SSR/SSE(C) is a proportional
measure of that difference.

Equation 4.1 is useful for calculating the SSR for the simple models considered in
this chapter. Although we generally avoid multiple computational formulas, we present
this one because many computer programs do not conveniently provide the necessary
information for computing PRE in our terms. We will illustrate the use of Equation 4.1
by computing the SSR for the lottery example. The value predicted by MODEL A is
};,- , = Y =42.5 and the value predicted by Model C is the hypothesized value );,-C =B,
= 50. So, according to Equation 4.1:

20 20

SSR = > (Vo= ¥, )%= > (50 - 4257 = > (7.5) = 20(56.25) = 1125
i=1

i=1 i=1
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That is, SSR equals the constant 7.5% = 56.25 summed 20 times. Thus, SSR = 20(56.25)
= 1125, which is the same value that we obtained by calculating SSR directly as
SSE(C) — SSE(A) in Figure 4.3. Thus, for simple models, by comparing a Model A that
estimates one parameter with a Model C that estimates none, the following formula is
often handy:

SSR = > (B, - 1) = n(B, - ¥Y’ 4.2)
i=1

We will have many occasions to use Equation 4.2.

SAMPLING DISTRIBUTION OF PRE

It might seem that a difference in parameter estimates of 50 — 42.5 = 7.5 and PRE =
20.9% are “large enough” to infer that Model C is unreasonable relative to Model A.
Unfortunately, such a conclusion may not be warranted statistically, and it is important
to understand why. To gain this understanding, we need to focus on the error term ¢,
that is included in the full statement of Model C:

MODEL C: Y,= B, + ¢,

As noted before, this model says that were it not for random perturbations represented
by &, all the Y, values would equal B, exactly. In Chapter 3 we made the assumption
that the &, values are all sampled randomly and independently from a normal distribution
with mean 0 and variance o>. We also saw in Chapter 3 that the exact value for the
mean calculated from a sample of size » would depend on the particular sample of errors.
Sometimes the calculated mean would be above the true value B, and sometimes it
would be below. That is, there would be a sampling distribution for the mean. If Model
C were correct, sometimes the sample mean would be somewhat higher than 50 and
other times it would be somewhat lower, but it would seldom equal 50 exactly. For
example, we would most likely have obtained a different mean if the bids had been
gathered before lunch or the day before or a day later, because the pattern of random
perturbations would have been different.

Similar to the sampling distribution for the mean, there is also a sampling distribution
for PRE. Just as b, calculated from the data, is the estimate of the unknown true parameter
By so too PRE, calculated from the data, is the estimate of the unknown true proportional
reduction in error . For the moment, let us assume that Model C is correct (i.e., that
B, = B,) and consider what the sampling distribution for PRE would be. In other words,
we begin by assuming that the null hypothesis is true. In these terms, 1> = 0 is equivalent
to Model C being correct and to Model A making absolutely no improvement rela-
tive to Model C. We saw in Chapter 3 that b, has a sampling distribution, so even if
Model C is correct we would not expect our estimate b, to equal B, exactly. But we
know that b, produces the smallest possible sum of squared errors, so SSE(A), using b,
must always be at least a little smaller than SSE(C), using B,,. For example, in the lottery
data the mean will seldom equal 50 exactly, even if the true parameter value were 50,
and thus the SSE calculated using the sample mean will always be a little less than SSE(C)
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(see the proof in Chapter 2). Hence, even if the true proportional reduction in error 1
= 0 (as it must when Model C is correct), the calculated PRE will always be at least a
little greater than zero (never less than zero). PRE is therefore a biased estimator of n?
because PRE will always overestimate the true value of 2. We will return to this issue
of the bias in PRE later. For now, the important point is that we should not expect the
calculated PRE to equal zero even when Model A makes no improvement on Model C.
Thus, we cannot base our decision about the validity of Model C simply on whether or
not PRE = 0.

If we cannot use PRE = 0 as a criterion for rejecting Model C, then we need to
consider the sampling distribution of PRE to determine whether the calculated value of
PRE is a likely value, assuming that Model C is correct. If the calculated value of PRE
is a likely value, then we ought not to reject Model C and its equivalent null hypothesis
that 8, = B,,. On the other hand, if the calculated value of PRE is an unlikely value when
Model C is assumed to be true, then we ought to reject Model C in favor of Model A.
In terms of our example, we need to consider the sampling distribution of PRE to
determine for this case whether PRE = .209 is a likely value, assuming that Model C is
correct (i.e., that B, = 50). If it is a likely value, then we ought not to reject Model C
and its equivalent hypothesis that 8, = B, = 50; there would be no evidence that the
lottery bids are different from what would be expected if the null hypothesis were true.
If PRE = .209 is an unexpected value, then we ought to reject Model C and its hypothesis
in favor of Model A and its estimate that B, = b, = 42.5; in other words, we would
conclude that the lottery bids were significantly lower than the expected value of $50
for a ticket.

We could develop the sampling distribution for PRE in this example using the same
simulation strategy we used in the previous chapter. That is, we could put error tickets
of the appropriate size into a bag and then do many simulation rounds, in each of which
we would randomly select 20 error tickets, add 50 to each, and calculate PRE for that
sample. The only problem with this strategy is that we do not know what size error
tickets to place in the bag to be sampled. In other words, we do not know the variance
o? of the normal distribution of errors. However, as was noted in the previous chapter,
the mean squared error provides an estimate of 2. In particular, for Model A with one
parameter the estimate is:

2_SSE_ZAZI(Y,-—1?)2_4267
YTao1T a1 T

=224.58

We could therefore conduct the simulation by sampling error values from a normal
distribution with mean 0 and variance 224.58. The 100 error tickets in Figure 3.1 were
sampled from such a normal distribution, so they could be used as the bag of error tickets
for the simulation.

As an example of a simulation round, suppose that the following 20 error tickets
were drawn from Figure 3.1:

17 31 -2 -6 -17
—4 28 29 17 1
-12 -6 3 =25 2

24 15 -20 4 -3
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These error terms when added to the value of B, = 50 of Model C yield the following
20 scores:

67 81 48 44 33
46 78 79 67 51
38 44 53 25 52
74 65 30 54 47

The mean of the resulting 20 scores is 53.8 and SSE(C), using 50 as the model prediction
for all the observations, and SSE(A), using 53.8 as the model prediction, are easily
calculated to be 5554 and 5265.2, respectively. Thus:

5554 - 5265.2
PRE=——F——"""—=.052
5554

Then a new simulation round with a new sample of error values would produce a different
mean and PRE. These simulation rounds could conceptually be repeated until there were
enough PRE values to make a sampling distribution for PRE.

Alas, the simulation strategy outlined above for generating the sampling distribution
of PRE will not work because s> = 224.58 is only an estimate of the true variance of
the errors o2, Just as it is unlikely that ¥ = b, (the calculated mean for a sample) will
equal B, exactly, it is also unlikely that the calculated variance s* will equal o2 exactly.
In other words, we are uncertain about the exact size of the error tickets that should be
placed in the bag.

We could conduct a more complex sampling simulation to account for our uncertainty
about the size of the error tickets. However, it would be tedious if we had to do a new
simulation round for each data analysis. Fortunately, this is not necessary because
mathematical statisticians have specified the sampling distribution for PRE based on the
assumptions we made in Chapter 3 about the behavior of the errors ¢, Even though we
will not actually do simulations for generating a sampling distribution, it is important
to remember that the mathematical formula for that distribution is derived from the
assumption that the error values are randomly sampled from a distribution with mean 0
and variance o and that the sampling could be represented by drawing error tickets
from a bag.

Figure 4.5 provides a tabular description of the sampling distribution of PRE
for the particular case of samples of size 20, again assuming the validity of Model C.
That is, if Model C were correct (in our case, 3, = 50), and if we compared Model C
(}; = 50) with Model A (); = b, = Y) from samples, then Figure 4.5 presents the propor-
tional frequency and cumulative proportion for each range of PRE. The proportional
frequencies are plotted in Figure 4.6. As we would expect, the sampling distribution in
Figure 4.6 shows that values of PRE near zero are the most likely. It also shows that
values of PRE greater than .2 are infrequent.

The cumulative proportions are generally more useful than the proportions for
individual ranges. The cumulative proportion is simply the total proportion for the range
of PREs from zero to the value of interest. For example, to find the cumulative proportion
for the range from 0 to .03, we simply add the proportions for the three component
ranges: 0 to .01, .01 to .02, and .02 to .03. For this range, .334 + .125 + .088 = .547.
That is, 54.7% of the simulated PRE values are less than or equal to .03. The cumulative
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FIGURE 4.5 Tabular description of the sampling
distribution of PRE for testing the simple model
with 20 observations

PRE range Proportion Cumulative
proportion
.00-.01 334 334
.01-.02 125 459
.02-.03 .088 .547
.03-.04 .068 615
.04-.05 .055 .670
.05-.06 .045 716
.06-.07 .038 754
.07-.08 .032 .786
.08-.09 .028 814
.09-.10 .024 .838
J10-.11 .021 .858
11-12 .018 .876
12-13 .016 .892
13-14 .014 .905
14-15 .012 917
.15-.16 .010 928
16-.17 .009 937
17-18 .008 .945
.18-.19 .007 952
.19-.20 .006 .958
.20-.21 .005 .963
21-22 .005 .968
22-23 .004 972
23-24 .004 976
.24-25 .003 979
.25-.26 .003 .982
26-.27 .002 .984
27-.28 .002 .986
.28-.29 .002 .988
.29-.30 .002 .990
.30-.31 .001 991
31-32 .001 993
.32-33 .001 .994
.33-34 .001 .995
.34-.35 .001 .995
.35-.36 .001 .996
.36-.37 .001 997
.37-.38 .001 997
.38-.39 .000 .998
.39-.40 .000 .998

FIGURE 4.6 Sampling distribution of PRE for testing
the simple model with 20 observations

Relative frequency

FIGURE 4.7 Cumulative proportions for n — PA =
19 (PA = number of parameters for Model A)

Cumulative probability

o
©

0.6

proportions are displayed in the last column of Figure 4.5 and graphed in Figure 4.7.
We can see, for example, from both the table and the graph of the cumulative proportions

that PRE is less than .1 about 84% of the time.

We can now ask whether a value for PRE of .209 is likely if Model C is correct.
From the table in Figure 4.5 we see that approximately 96% of the time PRE would be
less than .209. Or, in other words, a PRE as large as .209 would be obtained only about
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4% of the time if Model C were correct. We can finally answer our question. It is unlikely
(less than 5% chance) that we would have obtained a PRE this large had Model C been
correct. We can therefore reasonably reject Model C in favor of Model A. This is
equivalent to rejecting the null hypothesis that g, = B, = 50. Substantively, the data
indicate that participants were willing to pay less than the expected value of the lottery
tickets.

CRITICAL VALUES

From the mathematical equations describing the sampling distribution for PRE, we can
determine for our example data that if Model C were correct (and thus 1 = 0) we would
expect 95% of the simulated values of PRE to be below the precise value of .187. This
sampling distribution is plotted in Figure 4.8. In the social sciences it is customary to
consider a value of PRE to be surprising if it occurs by chance less than 5% of the time
when the null hypothesis is true. Thus, .187 is the critical value for this example; any
value of PRE > .187 causes us to reject Model C. Using the equations, for any number
of observations we can calculate the value of PRE for which we would expect 95% of
the simulated PRE values to be below if Model C were correct. Figure 4.9 gives the
95% (and 99%) critical values for selected numbers of observations.

FIGURE 4.8 Distribution of PRE for n — PA = 19, assuming that 2 = 0 (PA = number of
parameters for Model A)

n?=0
>
2
El
8
2
G
Q
o 5%
0 .187366 .6
PRE
STATISTIC F

Figures of the critical values for PRE are rare in statistics books. Much more common,
for largely historical reasons, are tables of F, a statistic closely related to PRE. As we
shall see below, F is a simple function of PRE, so if we know PRE, the number of
observations, and the number of parameters in Models C and A, then we also know F
and vice versa. By re-expressing PRE, F also provides additional insights about the
proportion of error reduced. We therefore turn to the motivation for calculating " and
then consider its sampling distribution.
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FIGURE 4.9 Critical values (95% and 99%) for PRE and F for testing models
that differ by one parameter (PA = number of parameters for Model A)

95% 99%

n-PA PRE F PRE F
1 .994 161.45 1.000 4052.18
2 .903 18.51 .980 98.50
3 71 10.13 919 34.12
4 .658 7.71 .841 21.20
5 .569 6.61 .765 16.26
6 499 5.99 .696 13.75
7 444 5.59 .636 12.25
8 399 532 .585 11.26
9 .362 5.12 .540 10.56
10 332 4.97 .501 10.04
" .306 4.84 467 9.65
12 .283 4.75 437 9.33
13 264 4.67 A1 9.07
14 247 4.60 .388 8.86
15 232 4.54 .367 8.68
16 219 4.49 .348 8.53
17 .208 4.45 331 8.40
18 197 4.41 315 8.29
19 187 4.38 .301 8.19
20 179 4.35 .288 8.10
22 .164 4.30 .265 7.95
24 151 4.26 .246 7.82
26 140 4.23 229 7.72
28 130 4.20 214 7.64
30 122 4.17 .201 7.56
35 105 4.12 75 7.42
40 .093 4.09 155 7.31
45 .083 4.06 .138 7.23
50 .075 4.03 125 7.17
55 .068 4.02 115 7.12
60 .063 4.00 .106 7.08
80 .047 3.96 .080 6.96
100 .038 3.94 .065 6.90
150 .025 3.90 .043 6.81
200 .019 3.89 .033 6.76
500 .008 3.86 .013 6.69
0 3.84 6.63

The two reasons for calculating F' are (a) to examine the proportional reduction in
error per additional parameter added to the model and (b) to compare the proportion
of error that was reduced (PRE) with the proportion of error that remains (1 — PRE). In
the context of the simple models that we are considering in this chapter, PRE is obtained
by the addition of only one parameter. But later we will want to consider the improvement
produced by models that add more than one parameter. To avoid having to present
different formulas as the models become more complex, we will present the general
definition of F here. The key idea is that a given PRE, let us say .35, is more impressive
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when obtained by the addition of a single parameter than when it is obtained by the
addition of several parameters. So, we want to consider PRE per parameter. That is, we
divide PRE by the number of additional parameters used in Model A that are not used
in Model C. We will let PA and PC represent the number of parameters for Model A
and Model C, respectively. Then, the number of additional parameters is simply PA —
PC. Hence, F is based on the quantity:

PRE
PA - PC

which is simply the proportional reduction in error per additional parameter. For the
simple models of this chapter, there are no parameters to be estimated for Model C and
only one for Model A, so PC =0, PA =1, and PA-PC=1.

Similarly, we need to consider the remaining proportion of the error, 1 — PRE, in
terms of the number of additional parameters that could be added to reduce it. As noted
in Chapter 1, the most parameters we can have is one for each observation Y,. If there
are n observations and we have already used PA parameters in Model A, then at most
we could add n — PA parameters to some more complex model. So:

1 - PRE
n-PA

is the proportion of remaining error per parameter that could be added to the model. In
other words, this is the average remaining error per additional parameter. If we added
a parameter to the model at random, even a parameter that was not really useful, we
would expect at least some reduction in error. The proportion of remaining error per
parameter or the average remaining error tells us the value of PRE to expect for a
worthless parameter. If the parameter or parameters added to the model are genuinely
useful, then the PRE per parameter that we actually obtain ought to be substan-
tially larger than the expected PRE per parameter for a useless, randomly selected
parameter. An easy way to compare PRE per parameter obtained with the expected PRE
per parameter is to compute the ratio of the two quantities; this gives the definition of
F as:

_ PRE/(PA - PC) 43)
(1I-PRE)/(n-PA)

We can think of the numerator of F as indicating the average proportional reduction
in error per parameter added, and the denominator as the average proportional reduc-
tion in error that could be obtained by adding all possible remaining parameters. For
Model A to be significantly better than Model C, we want the average error reduction
for the parameters added to be much greater than the average error reduction we could
get by adding the remainder of the possible parameters. Hence, if F' is about 1, then we
are doing no better than we could expect on average, so values of F near 1 suggest that
we should not reject the simpler Model C. Values of F much larger than 1 imply
that the average PRE per parameter added in Model A is much greater than the average
that could be obtained by adding still more parameters. In that case, we would want to
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reject Model C (and its implicit hypothesis) in favor of Model A. For the example of
Figure 4.2 where PRE = .209 and n = 20:

PRE/(PA -PC)  .209/(1-0) .209
" (1-PRE)(n-PA) .791/20-1) .0416

=5.02

In other words, we obtained a 20.9% reduction in error per parameter by using Model
A, and the further reduction we could get by adding all the additional parameters is only
4.16% per parameter. Their ratio of 5.02 suggests that adding to Model C the one specific
additional parameter 3,, which is estimated by the mean, yields a substantially better
(about five times better) PRE than we could expect by randomly adding a parameter
from the remaining ones. In other words, the increased complexity of Model A is
probably worth it. But again we need to consider the sampling distribution of F to
determine whether a value of 5.02 is indeed “surprising.”

Again, mathematical equations exist for describing the sampling distribution of F,
given the assumptions about error discussed in Chapter 3. If we assume that the errors
&; are independently, identically, and normally distributed, then F" has what is known as
an F distribution. The 95% and 99% critical values for F for testing simple models are
listed in Figure 4.9 next to their corresponding values of PRE. ' and PRE are redundant
in the sense that one exceeds its critical value if and only if the other one exceeds its
critical value. For the example, PRE = .209 exceeds its critical value of .187, and so
necessarily the corresponding /' = 5.02 exceeds its critical value of 4.38. Thus, either
PRE or F leads us to reject Model C and its implicit hypothesis that 8, = B, = 50. Note
that for most reasonable numbers of observations the 95% critical value for F is about
4. If we ignore the fractional part of F, then a useful rule of thumb that reduces the need
to consult statistical tables frequently is to reject Model C in favor of Model A whenever
F is greater than 5. If F' is between 4 and 5, then you will probably have to look it up
in the table, and if it is below 4, then there is no hope unless the number of observations
is extremely large. Critical values of PRE and F for testing the more complex Model A
that differs from Model C by more than one parameter are listed in the Appendix as a
function of PA — PC, often called the “numerator degrees of freedom” because that term
appears in the numerator of the formula for /' (Equation 4.3), and n — PA, often called
the “denominator degrees of freedom” because it appears in the denominator of the
formula for F.

It is useful to add the degrees of freedom (df) and F to the basic summary table we
began earlier. Figure 4.10 presents such a table for our example. It is our policy to avoid
multiple computational formulas for the same quantity and instead to present only one
conceptual formula. However, we must break that policy for F in this instance because
F is traditionally calculated by an equivalent but different formula based on Figure 4.10.
Figures constructed using the alternative formula for F are ubiquitous, so the reader has
no choice but to learn this alternative in addition to the conceptual formula for F
presented above. The alternative formula for F is:

SSR/(PA - PC) MSR
 SSE(A)/(n-PA) MSE




56 Data Analysis: A Model Comparison Approach

For our example, this yields:

_ SSR/PA-PC)  1125/(1-0) 1125
" SSE(A)/(n - PA) 4267/(20 - 1) 224.58

=5.01

This agrees with our previous calculation except for a small rounding error. MSR
represents the mean squares reduced, and MSE represents the mean square error. To
facilitate this calculation, we usually add an “MS” column to the summary table. The
final column, labeled “p,” gives the probability of obtaining a PRE and F that is that
large or larger if n? = 0. In this case, PRE and F exceed the 95% critical values so the
probability of getting a PRE or F that is that large or larger if Model C were correct is
less than .05. With the additional columns, Figure 4.11 provides a detailed summary of

our analysis of the lottery bids.

FIGURE 4.10 Analysis of variance summary table: decomposition of sums of squares

Source SS df MS F PRE p
Reduce, Model A SSR PA — PC M SSR MSR SSR
" PA-PC  MSE SSE(C)
Error for Model A SSE(A) n - PA SSE (A)
MSE =
n-PA
Total SSE(C) n - PC

FIGURE 4.11 ANOVA summary table for lottery example

Source SS df MS F PRE p
Reduce, Model A 1125 1 1125.00 5.01 .209 <.05
Error for Model A 4267 19 224.58

Total 5392 20

STATISTICAL DECISIONS

We have now defined the essence of statistical inference: if PRE and F exceed their
respective critical values then the simpler Model C is rejected in favor of the more
complex Model A. We now have a rule for resolving the inherent tension in data analysis
between reducing the error as much as possible and keeping the model of the data as
parsimonious as possible. It is important to recognize, however, that statistical inference
is probabilistic and therefore not infallible. That is, if Model C is actually the correct
model, then 5% of the time we will obtain values of PRE and F that exceed their 95%
critical values. Our rule is to reject Model C if those statistics exceed their 95% critical
values, so in such instances we will have made a mistake in rejecting Model C. There
is no way to avoid making occasional mistakes of that type. By adopting a 95% critical
value, we are implicitly accepting that for those data for which Model C is correct we
are willing to risk a 5% chance of incorrectly rejecting it. Mistakes of this type are known
as Type I errors. The choice of 5% as an acceptable rate of Type I errors is inherently
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arbitrary. If we want to be more cautious we could choose a rate of 1%, or if we are
willing to risk more Type I errors then we might choose a rate of 10%.

We also can commit a Type Il error. A Type II error occurs when Model C is incorrect
but the obtained values of PRE and F still do not exceed their critical values. Thus, a
Type 11 error occurs when we fail to reject Model C when we should. That is, Model C
is incorrect and Model A is significantly better, but we are unlucky in terms of the error
tickets drawn and miss seeing the difference. Figure 4.12 summarizes the statistical
decision that confronts us and defines the ways in which both the right and wrong
decisions can be made. Statistical inference can be viewed as a game with Nature. Nature
determines whether Model C is correct or incorrect. The goal of the data analyst is to
“guess” which is the case. The data analyst uses the data to make an informed guess.
Specifically, if PRE and F exceed their critical values, then the decision is to “reject
Model C”; otherwise the decision is “do not reject Model C.” If Nature has determined
that Model C is correct, then, using a 95% critical value, we will decide correctly 95%
of the time and incorrectly (i.e., make a Type I error) 5% of the time. The chance of
making a Type I error is often labeled « and referred to as the significance level.

On the other hand, if Nature has determined that Model C is incorrect, then we will
decide correctly the proportion of times that PRE and F exceed their critical values, and
we will decide incorrectly (i.e., make a Type II error) the proportion of times that PRE
and F fall below their critical values. The chance of making a Type II error is,
unfortunately, often labeled B, which should not be confused with B,, B, etc., which
we use to represent parameters in a model. The proportion of times the correct decision
is made when Nature has determined that Model C is incorrect, 1 — 8, is often referred
to as the power of a statistical test.

FIGURE 4.12 The statistical decision and the two types of errors

True state of Nature

Statistical decision Model C correct Model C incorrect
"Reject Model C” Type | error Correct decision
“Do not reject Model C” Correct decision Type Il error

ESTIMATING STATISTICAL POWER

To determine the chances of a Type II error or to determine the power, we need to know
the sampling distribution for PRE and F, assuming that Model C is incorrect. We cannot
determine such a sampling distribution in general because to say that Model C is
incorrect is to say only that the true proportional reduction in error 7? is greater than
zero. However, using the equations provided by mathematical statisticians, we can easily
derive the sampling distributions for the specific values of > we might want to consider.
For our example in which PA — PC =1 and n — PA = 19, Figure 4.13 displays plots of
the sampling distribution for PRE assuming progressively greater true values of PRE,
that is, n?. Note that if > = .1, the probability of obtaining a PRE greater than the critical
value and thus rejecting Model C is 29% as compared with only 5% if Model C is correct
and 7> = 0. Figure 4.14 displays the cumulative probability distributions for other
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FIGURE 4.13 Distributions of PRE for PA — PC = 1 and n — PA = 19, assuming various values
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observed values of PRE if we were to assume that n? were equal to 0, .05, .1, .3, .5, and
.75, but again only for the very particular conditions of our example: PA — PC = 1 and
n—PA =19. Different sampling distributions would be obtained for other combinations
of PA — PC and n — PA. The column for > = 0 corresponds exactly to the cumulative
probability distribution of Figure 4.5. Each entry in Figure 4.14 is the probability that
PRE calculated from the data would be less than the value of PRE specified for that
row. For example, the value of .08 in the row for PRE = .30 and the column for n* =
.50 means that if 7’ (i.e., the true PRE) were really .5, then the probability of obtaining
a PRE (calculated from the data) of .3 or lower is 8%.

We can use the cumulative probability distributions of PRE for different values of
7 to perform “what if” analyses. For example, we can ask, “what would the chances
of making a Type II error be if 5> = .3?” To answer this question, we first must decide
what chance of a Type I error we are willing to risk. If we adopt the customary value
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FIGURE 4.14 Cumulative sampling distributions of PRE for various n*> when PA — PC = 1
andn-PA=19

True PRE, v’

PRE 0 .05 1 .3 .5 .75

.00 .00 .00 .00 .00 .00 .00
.05 .67 47 31 .03 .00 .00
.10 .84 .65 .49 .08 .00 .00
.15 92 .78 .63 .16 .01 .00
.20 .96 .86 74 .25 .02 .00
.25 .98 92 .83 .37 .04 .00
.30 .99 .95 .89 49 .08 .00
.35 1.00 .97 .94 .61 14 .00
.40 1.00 .99 .96 72 23 .00
.45 1.00 .99 .98 .81 .35 .00
.50 1.00 1.00 .99 .88 48 .00
.55 1.00 1.00 1.00 .93 62 .01
.60 1.00 1.00 1.00 .97 .75 .04
.65 1.00 1.00 1.00 .99 .86 11
.70 1.00 1.00 1.00 1.00 94 .25
.75 1.00 1.00 1.00 1.00 .98 47
.80 1.00 1.00 1.00 1.00 .99 73
.85 1.00 1.00 1.00 1.00 1.00 .92
.90 1.00 1.00 1.00 1.00 1.00 .99
.95 1.00 1.00 1.00 1.00 1.00 1.00

in the social sciences of a = .05, then, as before, we select the critical value of PRE so
that the calculated value of PRE has only a .05 probability of exceeding that critical
value if n? = 0. In this case, we see from Figure 4.14 that the probability of obtaining
a PRE less than or equal to .20 equals .96, so only 4% of the observed values of PRE
should be greater than .20 if n? = 0. Remember that n? = 0 implies that Model C and
Model A are identical, so our decision rule will be to reject Model C in favor of Model
A if PRE > .20. Now we can use the column for n? = .3 to answer our “what if” question.
The entry in that column for the row for PRE = .20 reveals that the probability that the
calculated PRE will be less than .20 is .25. That is, even if *> = .3 (i.e., there is a real
difference between Model C and Model A), there is still a 25% chance that we will
obtain a value of PRE below the critical value and hence will not reject Model C. In
other words, the probability of making a Type II error is .25. Conversely, 1 — .25 = .75
is the probability of obtaining PRE > .20 and hence rejecting Model C in favor of
MODEL A if %* = .3. In other words, the power (probability of not making a Type II
error) is .75.

We can easily do the “what if” analysis for other values of n?. For example, if 7?
= .05, which implies a small difference between Models C and A, then power equals
1 — .86 = .14. That is, the chances of obtaining a PRE large enough to reject Model C
in favor of Model A would be only 14% for this small difference between the two
models. On the other hand, if n? = .75, which implies a very large difference between
Models C and A, then power equals 1 — .00 = 1. That is, for this large difference we
would be virtually certain to obtain a PRE large enough to reject Model C in favor of
Model A.
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FIGURE 4.15 Power table for @ = .05 when PC = 0 and PA =1

Prob(PRE > critical value)

Critical values True PRE, 1’

n F PRE 0 .01 .03 .05 .075 1 2 3
2 161.45 994 .05 .05 .05 .05 .05 .06 .06 .07

3 18.51 1903 .05 .05 .05 .06 .06 .07 .08 1
4 10.13 771 .05 .05 .06 .06 .07 .08 1 15

5 7.71 .658 .05 .05 .06 .07 .08 .09 14 21
6 6.61 .569 .05 .05 .06 .07 .09 .10 A7 .26

7 5.99 499 .05 .06 .07 .08 10 12 .20 31
8 5.59 444 .05 .06 .07 .09 1 13 .23 .36
9 5.32 .399 .05 .06 .08 .09 12 14 .26 41
10 5.12 .362 .05 .06 .08 .10 13 .16 .29 .46
11 4.96 332 .05 .06 .08 .1 14 7 .32 .50
12 4.84 .306 .05 .06 .09 1 15 18 .35 .54
13 475 .283 .05 .06 .09 12 .16 .20 .38 .58
14 4.67 264 .05 .06 .09 13 A7 21 41 .62
15 4.60 247 .05 .07 .10 13 .18 23 44 .66
16 4.54 232 .05 .07 .10 14 .19 24 .46 .69
17 4.49 219 .05 .07 .10 14 .20 .25 .49 72
18 4.45 .208 .05 .07 .M 15 21 27 .52 74
19 4.41 197 .05 .07 1 .16 22 .28 .54 77
20 4.38 187 .05 .07 12 .16 .23 .29 .56 .79
22 4.32 71 .05 .07 12 .18 25 32 61 .83
24 4.28 157 .05 .08 13 .19 27 .35 .65 .87
26 4.24 145 .05 .08 14 .20 .29 .37 .69 .89
28 4.21 135 .05 .08 .15 22 31 40 72 92
30 4.18 126 .05 .08 .15 .23 .33 42 .75 .93
35 4.13 .108 .05 .09 17 .26 .37 48 .82 .96
40 4.09 .095 .05 .10 .19 .29 42 .54 .87 .98
45 4.06 .085 .05 .10 21 .32 .46 .59 91 .99
50 4.04 .076 .05 1 23 .36 51 .64 .93 **
55 4.02 .069 .05 1 .25 .39 .55 .68 .95 *x
60 4.00 .064 .05 12 .27 42 .58 72 97 ol
80 3.96 .048 .05 14 .34 .53 71 .84 .99 i
100 3.94 .038 .05 7 41 .62 .81 91 ol ol
150 3.90 .026 .05 23 .57 .80 93 .98 el **
200 3.89 .019 .05 .29 .70 .90 .98 *x ** *x
500 3.86 .008 .05 .61 .98 il el il il il

** Power > .995

of .20.)

The cumulative sampling distributions are unwieldy, and only a few of the numbers
are actually needed for the “what if” analyses, so a “power table” that only gives the
power probabilities for specified levels of %% is more useful. Figure 4.15 gives the power
probabilities for selected values of n* and n when PC =0, PA =1, and a = .05. We can
use this table to do the same “what if” analyses that we did above, as well as many
others. For our example problem we simply use the row for n = 20: for n* = .05,
power = .16; and for n? = .3, power = .79. (The small differences from the power
calculations above are due to using the more precise critical value of .187 for PRE instead
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The power table allows us to ask another kind of “what if”” question: “What would
the power be if the sample size were increased?” For example, how much would the
power increase if the lottery bids were evaluated with 30 bidders instead of 20? If % =
.05, then power = .23, which is better than .16 for 20 bidders, but still not very good.
If »? = .3, then power = .93, which is much higher than .79 for 20 bidders and gives an
excellent chance of rejecting Model C in favor of Model A. Note that for n = 50 we are
virtually certain of rejecting Model C whenever the true PRE 7 is equal to or greater
than .3.

Too many researchers fail to ask “what if” power questions before they collect their
data. The consequence is often a study that has virtually no chance of rejecting Model
C even if the idea that motivated the study is correct. With power tables such as Figure
4.15 (most software programs, such as R and SAS, have easily accessible procedures
for calculating power), asking “what if”” power questions is so easy that there is no excuse
for not asking those questions before collecting data. A natural question is how high
should statistical power be? Cohen (1977) suggested that power should be at least .8.
However, the ultimate decision is how much the researcher is willing to accept the risk
of not finding a significant result even when the ideas motivating the study are correct.

Now that we know how to answer easily “what if” power questions, we need to
know what values of true PRE or 7? are appropriate for those “what if” questions. There
are three ways to obtain an appropriate value for n? to use in the power analysis: (a)
obtain values of PRE from similar research; (b) use Cohen’s (1977) suggested values
for “small,” “medium,” and “large” effects; and (c) compute expectations for PRE from
guesses about the parameter values. We consider each in turn.

First, with sufficient experience in a research domain, researchers often know
what values of PRE are important or meaningful in that domain. Those values of PRE
from experience can be used directly in the power table. For example, if, based on past
experience, we thought that important effects (such as the effect of the lottery bids)
produced PREs greater than or equal to .1, then we could use the n? = .1 column of the
power table. If we wanted to ensure that power > .8, then going down the column we
find that the first power > .8 requires a sample size between 60 and 80, probably about
73, which is a much greater number of participants than we included in our test of whether
people were willing to pay significantly less than the expected value of a lottery ticket.

In using the results of past studies to select an appropriate n? for the “what if” power
analysis, we must remember that calculated values of PRE are biased because on average
they overestimate n?. The following simple formula can be used to remove the bias
from PRE:

-PC
Unbiased estimate of n*=1 - (1 - PRE){n ]

n-PA
For our example in which we calculated PRE = .209, the unbiased estimate of 7* equals:

20-0 20
1-(1- .209)[—} =1- .791[—} =.167
20-1 19

Thus, although the value of PRE calculated from the data is .209, for planning further
research our best unbiased guess for the true value of »? is only .167. The correction
for bias has more of an effect for small values of n — PA than for large values. In essence,
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the adjustment corrects for the ability of least squares to capitalize on chance for small
sample sizes. These unbiased estimates are thus sometimes referred to as “adjusted”
values.

A second and related method for finding appropriate values of 77 is to use the
values suggested by Cohen (1977) as “small” (n*> = .02), “medium” (n* = .13), and “large”
(7> = .26). Our power table does not have columns for these specific values of n?, but
.03, .1, and .3 could be used instead. Although these suggested values for small, medium,
and large effects are inherently arbitrary, they do represent experience across a wide
range of social science disciplines. If you have sufficient experience in a research domain
to consider these suggested values unreasonable, then simply use those values that are
reasonable based upon your experience. The goal of a power analysis conducted before
the collection of data is not an exact calculation of the statistical power but an indication
of whether there is much hope for detecting the effect you want to find with the sample
size you have planned. If a study would not have much chance of distinguishing between
Model C and Model A for a large effect (n? = .26 or .3), then there is little if any reason
for conducting the study.

As an example of this approach, let us estimate the power for detecting small,
medium, and large effects for the lottery bids using our sample of 20 bidders. Using the
row of the power table for n = 20 and the columns for > =.03, .1, and .3, we find that
the respective powers are .12, .29, and .79. In other words, we would not have much
chance of detecting small and medium effects but a decent chance of detecting a large
effect. If we wanted to be able to detect medium effects, then we would need to increase
the number of participants in our study.

A third approach to finding an appropriate value of n? to use in “what if” power
analyses involves guesses about the parameter values and variance. To have reasonable
expectations about the parameter values and variance generally requires as much or more
experience in a research domain as is necessary to know typical values of PRE. Thus,
this third approach is generally less useful than the first two. We present this approach
in order to be complete and because the derivation of this approach provides further
useful insights about the meaning of PRE and »?. Also, this approach requires describing
in detail the data that one expects to obtain, and such an exercise can often be useful
for identifying flawed research designs.

We begin with our familiar definition of PRE:

SSE(C) - SSE(A) _SSR
SSE(C)  SSE(C)

We have noted before that SSE(C) = SSE(A) + SSR (i.e., the error for the compact
model includes all the error of the augmented model plus the error that was reduced by
the addition of the extra parameters in the augmented model). Hence, substituting for
SSE(C) yields:

PRE =

SSR 1

PRE = -
SSE(A) + SSR  SSE(A)/SSR + 1

To obtain a definition of the true proportional reduction in error n?, we simply estimate
SSE(A) and SSR, using not the data but the parameter values of B, and 3, that are of
interest.
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For example, we noted above that:

(Yie— Vi)

1

SSR =

n

i

If we thought that the effect of the lottery bids would be to decrease the mean bid from
50 to 40, then Y, = B, = 50 represents the null hypothesis and Y,, = B8, = 40 represents
an alternative hypothesis that we want to test. For that situation we would expect:

20 20

20
SSR = > (50 - 40)? = > 102 = > 100 = 2000

i=1 i=1 i=1
In other words, the SSR that we expect is simply 100 added up 20 times (once for each
bidder). We saw in Chapter 2 that SSE/(n — PA) was an estimate of the variance o2. If
we use our expected value of B, = 40 to calculate SSE(A), then we are not using data
to estimate any parameters, so PA = 0. Hence, SSE(A)/n = ¢?, so the value of SSE(A)
that we expect to obtain is:

SSE(A) = no?

Thus, if we have a reasonable guess or expectation for the variance, then we can
easily calculate the value of SSE(A) that we would expect. Having good intuitions about
what variance to expect is usually as difficult or more difficult than knowing what PRE
to expect. Both are based on previous experience in a research domain. Good guesses
for the variance often depend on previous experience with the particular measure for Y.
For our example, suppose that past data for the lottery lead us to expect that o is about
400; then, we would expect:

SSE(A) = no? = (20)400 = 8000

We now can return to our formula for PRE to calculate the value that we expect for
the true proportional reduction in error 7 (given our guesses for B, B,, and a?).

1 1
= = =.2
SSE(A)/SSR +1 8000/2000+1 4+1

Expected n* =

In other words, n> = .2 corresponds to our guesses about B, B,, and o>. We now can
use the power tables to find the power we would have for comparing Model C, which
predicts that the mean bid will be 50, against Model A, which predicts that the mean
bid will be 40, when the variance is about 400. Using Figure 4.15, we find that for 20
observations the probability of rejecting Model C (i.e., deciding that the lottery bids
were less than the expected value of a ticket) is only about .56 even if we think that it
will on average be $10 less than the expected value of $50. This means that the researcher
has only a little more than a 50/50 chance of deciding that lottery bids are lower than
the expected value of a ticket even when they really are lower by $10. Using the power
table, we can see that testing our hypothesis with twice the number of persons would
increase the power substantially to .87. In this case, it would seem advisable to test our
hypothesis with a larger sample size rather than with a sample size that offered little
hope of finding the effect. We can similarly calculate the power for other “what if”
values of B, B,, and o? that we might want to consider.
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IMPROVING POWER

The relatively low power—the high probability of making a Type Il error—for the
apparently reasonable evaluation of the hypothesis we have been considering may be
startling. Unfortunately, low power is a problem that plagues data analysis far more
frequently than is commonly realized. Low power creates serious difficulties. For
example, consider the plight of researchers trying to evaluate the effectiveness of an
innovative educational curriculum or a new therapy for a serious illness. If the power
of detecting the effect is only about 50/50, there is a fairly high risk of concluding that
the new curriculum or therapy is not effective even when it actually is. When one
considers the time and money that may be invested in research—not to mention the
potential of the findings to benefit people and advance science—it generally makes little
sense to design and conduct studies that have little chance of finding effects even when
the effects really exist. In our particular example, the obtained value of PRE allowed us
to reject the hypothesis that B, = 50; we were either lucky, or the true value of B, was
considerably less than the alternative value of 50 that we considered above. In general,
however, we want to increase the power of the statistical inference. There are three basic
strategies for improving power: reduce error, increase «, and/or increase the number of
observations. We consider each in turn.

Reducing Error

One way to reduce error is to control as many of the possible random perturbations as
possible. In our lottery example, one might reduce error and obtain more power by
providing clear instructions to participants, making sure participants were well rested,
eliminating distractions in the bidding environment, and using a more reliable bidding
procedure. In other words, error is reduced by obtaining data of better quality. In the
equation:

DATA = MODEL + ERROR

the model will account for a higher proportion of the data if the data are of higher quality
and hence have less error. Less error allows us to obtain a more powerful look at our
data. Although reducing error by such means may be the most effective method for
improving power, the techniques for doing so are usually domain-specific and outside
the scope of this book.

Another way to reduce error is to improve the quality of the model. Again in the
equation:

DATA = MODEL + ERROR

error will be smaller for data of fixed quality if the model can be improved to account
for more of the data. How to use models more complex than the simple models we have
been considering in these beginning chapters is the subject of the remainder of the
book, so we cannot give too many details here. The general idea is to build models that
make predictions conditional on additional information we have about the observations.
In the lottery example we might know, say, which bidders had participated in lotteries
before and which ones, if any, had ever won a lottery. If having participated in a lottery
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before makes a difference in the amount an individual is willing to pay for a lottery
ticket, then we can make different predictions conditional on whether (or perhaps how
often) the bidder had participated in lotteries previously. By doing so we will have, in
essence, removed what was formerly a random perturbation—previous participation in
lotteries—from the error and included it in the model. Again the reduced error will give
us a more powerful look at our data. In later chapters we explicitly consider the addition
of parameters to the model for the purpose of improving power.

Increasing «

A different way to improve power is to increase «, the probability of a Type I error.
The probabilities of Type I and II errors are linked in that if we choose a critical value
that increases (decreases) « then we simultaneously and unavoidably decrease (increase)
the probability of a Type II error. For our lottery data with n = 20, Figure 4.16 shows
power as a function of ? and a. As « increases from .001 to .25 the critical values for
F and PRE decrease. It obviously becomes easier for the values of " and PRE calculated
from the data to beat these critical values, so the power increases as « increases. For
example, if we do a “what if” power analysis with n? = .2, then the power at o = .05 is
.56, but if we increase « to .1, then power increases to .70.

Editors of scientific journals are wary of Type I errors and will seldom accept the
use of a > .05 for statistical inference. However, there are many practical data analysis
problems when a higher « is justified to increase power. Characteristics of such data
analyses are (a) that increasing power in any other way is infeasible, (b) that rejection
of Model C if it is indeed false would have important practical consequences, and (c)
that the costs associated with a Type I error are not great. Consider, for example, the
statistical decision problem faced by a researcher testing the effectiveness of an innovative
new curriculum. It may be difficult for the researcher to control any other sources of
error to increase power. It would certainly be important to identify a curriculum that
could improve student learning. The consequence of a Type I error would probably be
further trial use of the curriculum in several classrooms the following year, which may
not involve a significant cost. Thus, the researcher might well adopt a higher « to choose
the critical values for PRE and F for her statistical inference.

Conversely, note that reducing « also reduces power. In the lottery example, lowering
a to .01 would increase our protection against the possibility of a Type I error but would

FIGURE 4.16 Power for PA =1, PC =0, and n = 20 for various levels of «

Prob(PRE > critical value)

Critical values True PRE, 12

«a F PRE 0 .01 .03 .05 .075 1 2 3

.001 15.08 443 .00 .00 .00 .01 .01 .02 .09 22
.005 10.07 .346 .01 .01 .02 .03 .05 .07 21 43
.01 8.18 301 .01 .02 .03 .05 .08 AR .30 .54
.025 5.92 238 .03 .04 .07 .10 15 .20 44 .69
.05 4.38 .187 .05 .07 12 .16 .23 .29 .56 .79
A 2.99 .136 .10 13 .20 .26 .34 42 .70 .88
.25 1.41 .069 .25 .29 .38 46 .55 .63 .85 .96
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reduce power to less than .30, a level for which it would not likely be worth conducting
the study. If the costs of a Type I error are very high—for example, if reliance on the
research findings involved extensive teacher retraining in the case of an innovative new
curriculum—then the use of restrictive values of « may be appropriate. However, in
some cases, such as when the sample size is very small, as it is for our lottery study,
reducing a would reduce the power so much that it would no longer be worthwhile to
do the study—the chances of seeing anything are too low with such a low-powered
“microscope.”

Increasing n

Probably the most common technique for increasing the power of statistical tests is
to increase the number of observations. Figure 4.17 is a graphical display of the 95%
(a=.05) and 99% (a = .01) critical values of Figure 4.9 as a function of the number of
observations. The value of PRE required to reject Model C drops dramatically as the
number of observations increases. For example, had there been 51 participants instead
of 20 in our lottery study, a PRE of only .075 would have been required (a« = .05) to
reject the Model C that assumed B, = 50 instead of the PRE of .187 required in our
example. The drop in the critical values for /' and PRE needed to reject Model C
corresponds to an increase in power, as we have noted several times. For example,
for 7> = .2 as a “what if” value of the true proportional reduction in error, the power
for 20 observations is .54 (see Figure 4.15), but with 51 observations the power increases
to .93.

There are two reasons for not routinely using a large number of observations. First,
it may be infeasible, due to cost or other data collection constraints, to obtain more
observations. Second, power might be so high that some statistically significant results
may be misleading. By turning up the power on our metaphorical statistical microscope
to extraordinary levels, we might detect flaws in Model C that are statistically reliable
but are trivial substantively. For example, with 120 observations any PRE greater than
.032 is cause to reject Model C in favor of Model A. However, the 3.2% reduction in
error means that Model A may be a trivial improvement over Model C. For this reason,
one should always report not just the statistical inference about whether Model C is or
is not rejected but also the obtained values for PRE and F so that the reader can evaluate

FIGURE 4.17 Critical values of PRE as a function of the number of observations
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the magnitude by which Model A improves on Model C. All else being equal, more
statistical power is always better; we just need to be careful in interpreting the results
as substantively important when power is very high.

It is also important not to dismiss a small but reliable PRE just because it is small.
Rejecting Model C in favor of Model A may be important theoretically even if Model
A provides only a slight improvement. Whether a given PRE is substantively interesting
will depend on theory and prior research experience in the particular domain.

CONFIDENCE INTERVALS

Confidence intervals provide an alternative way for considering statistical inference.
Although, as we shall see later, confidence intervals are exactly equivalent to statistical
inference as described above, they reorganize the information in a way that can give
useful insights about the data and our model.

A confidence interval simply consists of all those possible values of a parameter
that, when used as a hypothesis for Model C, would not cause us to reject Model C. For
example, the mean for the 20 lottery bids is 42.5 and estimates the parameter 8, in Model
A. We have already determined that 50 is not in the confidence interval for 8, because,
when we used 50 as the prediction for Model C, we obtained an unlikely PRE value
that would occur less than 5% of the time. Any value greater than 50 would produce an
even larger PRE, so none of those values is included in the confidence interval.
Conceptually, we could find the boundary of the confidence interval by trying increasingly
higher values (i.e., higher than b,) for B, in Model C until we found a value for B, that
produced a PRE that would not cause us to reject Model C. For example, if we tried B,
= 45, the respective sums of squared errors for Models C and A would be 4392 and
4267, yielding PRE = .028, which is below the critical value for @ = .05; hence 45 is in
the confidence interval for B, and the boundary must be somewhere between 45 and
50. We would also need to search for the lower boundary below the estimated value of
42.5. We can avoid this iterative search because it can be shown that the boundaries are
given by:

F, MSE

bo + crit;1, n - Lia (44)
n

For the simple model of the lottery bids, MSE = s> = SSE/(n — 1) = 4267/19 = 224.58.
F i1 1.0 18 the critical value at level « for F'with 1 degree of freedom for the numerator
(i.e., the difference in the number of parameters between the two models) and n — 1
degrees of freedom for the denominator (i.e., the number of observations minus the
number of parameters in Model A). For a = .05, the critical value of F o o5 = 4.38.
For these data, b, = the mean = 42.5, so the boundaries of the confidence interval are
given by:
(4.38)224.58

425+ T or 42.5%+7.01

Thus, the lower boundary is 42.5 — 7.01 = 35.49 and the upper boundary is 42.5 + 7.01
= 49.51. We are therefore 95% (1 — «) confident that the true value for B, is in the



68 Data Analysis: A Model Comparison Approach

interval [35.49, 49.51]. Any B, not in this interval that we might try for Model C would,
with the present data, produce values of PRE and F that would lead us to reject Model
C. Any B, in this interval would produce values of PRE and F below the critical values,
so we would not reject Model C.

When estimating statistical power we described how to do an a priori power analysis.
Those “what if” power analyses are necessarily inexact. Confidence intervals are useful
for describing post hoc the actual statistical power achieved in terms of the precision of
the parameter estimates. Wide confidence intervals represent low statistical power and
narrow intervals represent high statistical power.

EQUIVALENCE TO THE t-TEST

In this optional section we demonstrate the equivalence between the statistical test for
the simple model developed in this chapter and the traditional one-sample t-test presented
in most statistics textbooks. We do so to allow readers with exposure to traditional
textbooks to make the comparison between approaches.

The one-sample #-test answers whether the mean of a set of observations equals
a particular value specified by the null hypothesis. The formula for the one-sample
t-test is:

_ (Y- B))
N

n-1

where # is the number of observations, Y is the calculated mean, B, is the value specified
by the null hypothesis, and s is the standard deviation of the set of observations. With
the appropriate assumptions about Y—the same assumptions that we made about the
distribution and independence of the &—calculated values of ¢ can be compared to critical
values of Student’s t-distribution. Tables of this distribution are available in many
statistics textbooks. However, separate tables are not really needed because squaring ¢
with n — 1 degrees of freedom yields an F with 1 and n — 1 degrees of freedom. Thus,
the F tables in the Appendix may readily be used.

To show the equivalence between F as presented in this chapter and the usual #-
test, we begin with the definition of F for the simple model; that is:

- PRE/1
M (1= PREY(n - 1)

We know that PRE = SSR/SSE(C), and it is easy to show that:

SSR  SSE(C)-SSR SSE(A)

1-PRE=1- - -
SSE(C) SSE(C) SSE(C)

Substituting these values into the definition for F yields:

o SSR/SSE(C) ~ SSR
T [SSE(AYSSE(O)/(n - 1) SSE(A)(n - 1)
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But from Equation 4.2 we know that for the simple model SSR can be replaced with
n(B, — Y)?, and from Chapter 2 we know that SSE(A)/(n — 1) is s, the variance of the
set of observations. Substituting these values yields:

Taking the square root of this last equation gives the final result of:

V‘fm = n(Y - By)
s

We provide the above derivation not to present yet another computational formula
but to show that our model comparison approach to statistical inference is statistically
identical to the traditional approach. The use of PRE and F for comparing models is
nothing more than a repackaging of the traditional approach. This repackaging has the
important consequence of making it easy to generalize to more complicated models and
data analysis questions. We will use PRE and F just as we did in this chapter for statistical
inference throughout the remainder of the book. In contrast, the traditional 7-test does
not generalize nearly so easily. Also, even though the #-test must produce exactly the
same conclusion with respect to the null hypothesis, it does not automatically provide
a measure of the magnitude of the result. In our model comparison approach, PRE
automatically provides a useful measure of the magnitude.

AN EXAMPLE

In this section we illustrate the techniques of this chapter using the internet access data
that were presented in Figure 1.1. Suppose that marketing researchers had projected that
75% of households would have internet access by the year 2013. Was the marketing
researchers’ projection overly optimistic? The question is equivalent to comparing the
following two models:

MODEL A: Y, =B, + ¢
MODEL C: Y, =75+ ¢
We know that the mean is ¥ = 72.806 (see Chapter 2), so the estimated Model A is:

Y, =72.806

For the statistical inference we need to calculate PRE and F from SSE(A) and
SSE(C). We also know that the variance or the MSE is 27.654 (see Chapter 2). Since
MSE = SSE(A)/(n — 1), we can easily obtain SSE(A) by multiplying MSE by n — 1;
thus, SSE(A) =27.654 (49) = 1355.046; this value (within rounding error) is also given
in Figure 2.10. We can compute SSR using:

SSR = n(B,— Y)* = 50(75 — 72.806)* = 240.682
Then it is easy to get SSE(C) from:
SSE(C) = SSE(A) + SSR = 1355.046 + 240.682 = 1595.728
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The computations of PRE and F are then easy:

SSR 240.682
PRE = = =
SSE(C) 1595.728
and
PRE/1 151
Fl,49

_ - ~8.71
(1-PRE)/(n-1) .849/49

From the tables in the Appendix, the critical values for PRE and F (for o = .05) are,
respectively, about .075 and 4.03. The obtained values clearly exceed the critical values,
so we can reject Model C in favor of Model A. Thus, the 15.1% reduction in error
obtained by using the estimate b, = 72.806 instead of the null hypothesis value of B, =
75 is statistically significant. We can therefore conclude that the percentage of households
that had internet access was significantly lower than the marketing researchers’ projection.
We might summarize our results for a journal article as follows:

On average, across states the percentage of households that had internet access in
the year 2013 (M = 72.806) was significantly lower than the projected value of 75%,
PRE = .151, F(1, 49) = 8.71, p < .05.

From the above it is also easy to calculate the 95% confidence interval for B,, the true
average percentage of households that had internet access across states. Substituting the
appropriate values into Equation 4.4 yields:

4.03(27.654)
72.806 * 0 or 72.806 * 1.493

which gives an interval of [71.313, 74.299]. Using this interval, we can easily ask other
questions. For example, had the marketing researchers projected that B, = 73, we would
not conclude that the actual percentage of households with internet access was
significantly less than the projection, because 73 is included in the 95% confidence
interval.

SUMMARY

In Chapter 1 we noted that the equation:
DATA = MODEL + ERROR

implies an inherent tension in data analysis between reducing error as much as possible
and keeping the model as simple or parsimonious as possible. Whenever we consider
adding an additional parameter to the model so that it will fit the data better and thereby
reduce error, we must ask whether the additional complexity of the model is worth it.
In this chapter we have developed inferential machinery for answering whether the
additional complexity is worth it.

To decide whether the benefits of the additional parameters in Model A outweigh
the benefits of the parsimony and simplicity of Model C, we first calculate SSE(A) and
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SSE(C), respectively, the sum of squared errors for the augmented model (which
incorporates the additional parameters) and the compact model (which does not include
those parameters). The sum of squares reduced, SSR, is simply the difference between
them:

SSR = SSE(C) — SSE(A)

Then we calculate the proportional reduction in error attributable to the additional
parameters, which is given by:

_ SSE(C) - SSE(A)  SSR

PRE -
SSE(C) SSE(C)

Another related statistic is the ratio of the proportional reduction in error per
parameter added to the potential proportional reduction in error per remaining unused
parameter, which is given by:

__PRE/(PA - PC)
(1 -PRE)/(n - PA)

We then compare the calculated values of PRE and F to the distribution of values we
would expect if Model C, the compact model, were true. If the calculated values of
PRE and F would have been unlikely if Model C were true, then we reject Model C and
conclude that the extra complexity of Model A is worth it. On the other hand, if the
calculated values are ones that might reasonably have been obtained if Model C were
true, then we do not reject Model C and without further evidence we would not accept
the additional complexity of Model A.

This inferential machinery is merely a guide for decision making and is not infallible.
There are two kinds of errors that we can make. A Type I error occurs when Model C
is in fact correct but by chance we happen to get unusual values of PRE and F and so
reject Model C. The probability of a Type I error is « and defines how unusual PRE
and F have to be before we reject Model C. A Type II error occurs when Model C is
in fact false or inferior to Model A but by chance we happen to get values of PRE and
F that are not unusual and so fail to reject Model C. We generally select «, the probability
of a Type I error, and try to reduce the chances of a Type II error by collecting better
data with less error and by increasing the number of observations. Reducing the chances
of a Type II error is referred to as increasing the statistical power of an inference.

We developed this inferential machinery in the context of asking a question for the
simple model. However, exactly the same procedure will work for all the more complex
models we consider in subsequent chapters. In this chapter, we have learned all we need
to know as data analysts about statistical inference. The remainder of our task is to learn
how to build more complex and interesting models of our data.



