
We have used the simple single-parameter model to illustrate the use of models, the
notion of error, and inference procedures to be used in comparing augmented and
compact models. We have focused on this single-parameter model in so much detail
because the estimation and inference procedures that we developed within this very simple
context generalize to much more complicated models. That is, regardless of the
complexity of a model, estimation from here on will be done by minimizing the sum of
squared errors, just as we did in the single-parameter case, and inference will be done
by comparing augmented and compact models using PRE and F. So the detail on single-
parameter models has been necessitated by our desire to present in a simple context all
of the statistical tools that we will use in much more complex situations.

However, as we noted, single-parameter models are only infrequently of sub-
stantive or theoretical interest. In many ways, the example from the last chapter, where
we wanted to test the hypothesis that people were willing to pay the expected value of
$50, is unusual in the behavioral sciences. More frequently such a priori values do not
exist, and instead we may be asking whether the mean in one group of respondents 
(e.g., those who were trained in the meaning of expected values) differs from the mean
in another group of respondents (e.g., those who received no such training). Or, returning
to the data on internet access, while it is certainly possible that we would be interested
in testing whether some a priori percentage (e.g., 75%) is a good estimate of mean internet
access, it is much more likely that we would be interested in examining the determinants
or correlates of internet access rates. In other words, our interest is more likely to center
on attempts to explain the internet access data than on tests of alternative values for the
mean access rate.

To examine these types of substantive issues, we need to consider models having
more than a single parameter. Initially, we will consider only two-parameter models,
taking the following form:

Yi = !0 + !1Xi + "i

The exact definition of the terms in this two-parameter model will be detailed below.
For the present we simply note that we are making predictions of Yi conditional upon
some other variable Xi, since the model’s predictions from this two-parameter model
change as Xi changes, assuming that !1 takes on some value other than zero.

Actually, there are two variations on this two-parameter model, each of which is
illustrated by one of the two examples we have just discussed. In the first example,
concerning whether training in the meaning of expected values influences how much
one is willing to pay for a lottery ticket, we want to examine whether those who receive
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such training are willing to pay more or less than those who do not. This amounts to
asking whether we need different predictions from the model for the two groups of
respondents or whether a single prediction suffices regardless of whether training was
received or not. In other words, we want to compare a model in which predictions are
made conditional on knowing whether or not a given respondent received the training
with one where the identical prediction is made for every respondent. For this comparison,
the augmented model is a two-parameter model, defining Xi in such a way that it
identifies whether or not the respondent received training. We might, for instance, define
Xi as follows:

Xi = –1, if a respondent did not receive training

Xi = +1, if a respondent did receive training

If the estimated value of !1 in the above two-parameter model is something other than
zero, the model then gives different predicted values for participants in the two groups.
For example, if b0 (the estimated value of !0) equals 46 and b1 (the estimated value of
!1) equals 3, then the prediction for the respondents without training is:

Ŷ = b0 + b1Xi = 46 + 3(–1) = 46 – 3 = 43

and the prediction for the respondents who receive training is:

Ŷ = b0 + b1Xi = 46 + 3(1) = 46 + 3 = 49

Notice that there are only two possible values for Xi in this example, and hence only
two predicted values. Respondents either receive training or not, and our decision about
the numerical values used to represent this training is arbitrary. For instance, had we
defined Xi differently, giving respondents with training a value of 2 on Xi and those
without training a value of 4, the two-parameter model would still generate different
predictions for the two groups of students, assuming the estimated value of !1 does not
equal zero.

Now consider the second example. Suppose we wanted to explain variation in the
internet access data and we suspected that average educational level of residents in the
US states, measured as the percentage of residents with a college degree, might be a
reasonable candidate for an explanatory factor. In other words, we thought that internet
access rates might be higher in states where more people had graduated from college.
So we might use the two-parameter model to make predictions for states conditional on
college graduation rates, defining this as Xi. This variable has many possible values, and
it would be unlikely that any two states would have exactly the same graduation rate
and, hence, the exact same values on Xi. Therefore, instead of making two different
predictions as in the lottery example, our two-parameter model now is likely to make
different predictions for each state, since each state is likely to have a unique value of
Xi. Another difference between this two-parameter model and the lottery example is that
here values on Xi are less arbitrary than they were in the lottery example. Each state has
an actual college graduation rate that can be compared with other states and the
information about such state-to-state differences needs to be represented in the values
we assign to Xi for each state.

The difference between these two examples lies in the nature of the units of
measurement of the predictor variable, the variable upon which the predictions are
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conditional. In the lottery example, no training versus training is a categorical variable,
in the sense that all participants are in one group or the other. This means that while Xi

needs to code the distinction between the two training conditions, it does not matter
which group of respondents is given the higher value on Xi nor does it matter which two
values are used. On the other hand, college graduation rate is what we call a continuous
predictor variable, in the sense that different states have different values and the
differences among these values are meaningful.

While all of the procedures for building models, estimating parameters, and
comparing augmented and compact models can be used regardless of whether the
predictor variable (or variables) is categorical or continuous, it is conceptually useful to
treat models with categorical predictor variables separately from models whose predictors
are assumed to be continuously measured. Initially, we will consider models that contain
only predictors presumed to be continuously measured.

In the current chapter, we treat two-parameter models having a single, continuously
measured predictor variable. Then, in Chapters 6 and 7, we consider models with
multiple continuously measured predictors. In traditional statistical jargon these three
chapters (Chapters 5, 6, and 7) deal with simple and multiple regression, including
polynomial and moderated regression models. Then in Chapters 8 and 9 we turn our
attention to models having categorical predictors. Again, in traditional statistical jargon,
these chapters deal with analysis of variance. Finally, in Chapter 10 we consider models
in which some predictors are categorical variables and some are continuous variables.
Such models are traditionally referred to as analysis of covariance models. Our approach,
however, to each type of model, regardless of the chapter, will be uniform. Rather than
describing seemingly different statistical techniques for multiple regression, analysis of
variance, and analysis of covariance, we will estimate parameters just as we have done
in the simple single-parameter case, and we will test hypotheses by comparing augmented
and compact models. So, while our treatment of categorial predictors is located in
different chapters from our treatment of continuous predictors, the same procedures will
be used throughout.

DEFINING A LINEAR TWO-PARAMETER MODEL

We now confine our attention to two-parameter models with a single continuous pre-
dictor variable. As an example, we will use the data contained in Figure 5.1 to ask 
whether differences between US states in their internet access rates are predictable from
differences in their college graduation rates. As we speculated above, it seems reasonable
that internet access may be higher in states where the population is relatively better
educated.

Figure 5.2 is a scatterplot of the tabular data from Figure 5.1. The vertical axis
represents internet access rates, and the horizontal axis represents college graduation
rates. Each point in this plot represents one of the 50 US states. The question that we
would like to ask is whether we can use graduation rates to predict internet access. Or,
expressed differently, do our predictions of internet access improve by making those
predictions conditional on knowledge of graduation rates?

We will use a simple linear model to generate such conditional predictions. As
already discussed, this model is:



Yi = !0 + !1Xi + "i

where Yi is a state’s internet access rate and Xi is its
college graduation rate. Returning to our generic equation:

DATA = MODEL + ERROR

we see that the model in this two-parameter equation is
represented by

!0 + !1Xi

In terms of estimated parameter values, the predictions
made by this model for each state’s access rate are given
by:

Ŷi = b0 + b1Xi

Because ERROR equals DATA minus MODEL, the
residuals in this two-parameter model can be expressed
as follows:

ei = Yi – Ŷi

= Yi – (b0 + b1Xi)

Let us examine each of the parameter estimates in
this model and see what each is telling us. First, consider
b0. In the single-parameter model, we saw that b0 equaled
the mean value of Yi, assuming that we define error as the
sum of squared errors. Another way of saying the same
thing is that in the single-parameter model b0 is our
predicted value for each state. However, in this two-
parameter model we wish to take further information into
account in making each state’s prediction. We are making
each state’s prediction conditional on its college
graduation rate. Therefore, b0 is not the predicted value
for each state, because the predictions vary as a function
of graduation rates:

Ŷi = b0 + b1Xi

There is one case, however, when this model predicts
an internet access rate equal to b0. This is clearly when
Xi equals zero, for then:

Ŷi = b0 + b1 (0) = b0

This, then, provides the interpretation for the parameter
estimate b0 in this two-parameter model: b0 is our
prediction of Yi when Xi equals zero. As we will see for
our example, this prediction may not be very useful
because the data from which we estimate this parameter
may not include data points having values of Xi near zero.
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FIGURE 5.1 Internet access rates and
college graduation rates

US state Internet College 
access graduation 
rate rate

AK 79.0 28.0
AL 63.5 23.5
AR 60.9 20.6
AZ 73.9 27.4
CA 77.9 31.0
CO 79.4 37.8
CT 77.5 37.2
DE 74.5 29.8
FL 74.3 27.2
GA 72.2 28.3
HI 78.6 31.2
IA 72.2 26.4
ID 73.2 26.2
IL 74.0 32.1
IN 69.7 23.8
KS 73.0 31.1
KY 68.5 22.6
LA 64.8 22.5
MA 79.6 40.3
MD 78.9 37.4
ME 72.9 28.2
MI 70.7 26.9
MN 76.5 33.5
MO 69.8 27.0
MS 57.4 20.4
MT 72.1 29.0
NC 70.8 28.4
ND 72.5 27.1
NE 72.9 29.4
NH 80.9 34.6
NJ 79.1 36.6
NM 64.4 26.4
NV 75.6 22.5
NY 75.3 34.1
OH 71.2 26.1
OK 66.7 23.8
OR 77.5 30.7
PA 72.4 28.7
RI 76.5 32.4
SC 66.6 26.1
SD 71.1 26.6
TN 67.0 24.8
TX 71.8 27.5
UT 79.6 31.3
VA 75.8 36.1
VT 75.3 35.7
WA 78.9 32.7
WI 73.0 27.7
WV 64.9 18.9
WY 75.5 26.6
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The second parameter estimate in the model, b1, tells us how our predictions change
as Xi changes. Suppose we had two observations differing in their values on Xi by one
unit, with Xi for the first observation being one unit larger than Xi for the second.
According to the model, our predictions for the two data points would differ by b1 since:

Ŷ1 – Ŷ2 = (b0 + b1X1) – (b0 + b1X2)
= b1X1 – b1X2

= b1(X1 – X2)
= b1

So, b1 tells us by how much our predictions of Yi change as Xi increases by one unit.
Notice that in this derivation we did not specify what the actual values of X1 and X2

were. We only specified that they were one unit apart from each other. Hence, this implies
that b1 in this two-parameter model is constant, regardless of the level of Xi. This is what
was meant by the definition of this sort of two-parameter model as a linear model. As
Xi changes by some set amount, our predictions of Yi change by a constant amount,
regardless of the value of Xi.

To review, b0 and b1 tell us very different things: b0 is a predicted value (a Ŷi) at a
particular value of Xi, namely when Xi equals zero; b1 is not a predicted value, rather it
is the difference between two predicted values as we move from a smaller Xi to one that
is one unit larger.

Let us look at this two-parameter model graphically for the example in which internet
access is predicted from college graduation rates. Figure 5.3 presents the graph of the model
set against the data. All of the predictions Ŷi lie on the line defined by the model. Errors
of prediction, ei, as in the single-parameter model, are defined as vertical distances between
the line and an actual observation. That is, an error or residual is the difference between
Yi and Ŷi. b0 is the value of Ŷi when Xi equals zero; it is frequently called the intercept
because it is the value on the vertical axis of the graph where the prediction function crosses
or “intercepts” it. b1 is the difference in Ŷi for each unit increase in Xi. We can think of it
as the slope of the line, since algebraically it is the difference in predicted values between
any two points on the line per their difference in Xi values: rise over run:

FIGURE 5.2 Scatterplot of internet access rates and college graduation rates for each of 
the 50 US states



where the subscripts designate any two points on the line. Notice that the slope can take
on any positive or negative value. If the slope is positive, it means that the model predicts
higher values of Yi as Xi increases. If the slope is negative, the model predicts lower
values of Yi as Xi increases.

ESTIMATING A LINEAR TWO-PARAMETER MODEL

Given some sample of data, how do we estimate the parameters of this sort of model?
We want to use our sample of data to generate values of b0 and b1 in the equation:

Ŷi = b0 + b1Xi

that are good estimates of the true (but unknown) parameters !0 and !1. To do this, we
decided in Chapter 3 that for the single-parameter model we would derive estimates that
minimize the sum of squared errors. This preference was due to the fact that if the errors
are normally distributed, least-squares parameter estimates are unbiased, consistent, and
relatively efficient. This continues to be the case in the context of the present two-
parameter model and will continue to be the case in more complicated models with many
parameters, which we consider in subsequent chapters. For now, we want to derive
estimated values of !0 and !1 that minimize "(Yi – Ŷi)2. The resulting least-squares
parameter estimates are given as:

The derivation of these estimates is given in Box 5.1.

b1 =
(Ŷ2 − Ŷ1)
(X2 − X1)

b1 =
(Xi − X̄)(Yi − Ȳ)

(Xi − X̄)2

b0 = Ȳ − b1X̄

Σ
Σ
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FIGURE 5.3 Scatterplot with two-parameter model predicting internet access from college
graduation rates



78 Data Analysis: A Model Comparison Approach

Box 5.1 Algebraic Derivation of Least-Squares Estimates of !0 and !1

SSE = "(Yi – Ŷi)
2 = "(Yi – b0 – b1Xi)

2

given that Ŷi = b0 + b1Xi. We now add (Y
–

– Y
–
) and b1(X

–
– X

–
) inside the parentheses

to this expression for SSE. Since both of these expressions equal zero, we have
not changed the equality. Thus:

SSE = "(Yi – Y
–

+ Y
–

– b0 – b1Xi + b1X
–

– b1X
–
)2

Grouping terms yields the equivalent expression:

SSE = "[(Yi – Y
–
) + (Y

–
– b0 – b1X

–
) – b1(Xi – X

–
)]2

If we square the term in brackets and distribute the summation sign, this gives the
equivalent expression:

SSE = "(Yi – Y
–
)2 + 2(Y

–
– b0 – b1X

–
) "(Yi – Y

–
)

–2b1 "(Yi – Y
–
)(Xi – X

–
) + n (Y

–
– b0 – b1X

–
)2

–2b1(Y
–

– b0 – b1X
–
) "(Xi – X

–
) + b2

1 "(Xi – X
–
)2

Since both "(Yi – Y
–
) and "(Xi – X

–
) equal zero, this expression reduces to:

SSE = "(Yi – Y
–
)2 – 2b1 "(Yi – Y

–
)(Xi – X

–
) + n(Y

–
– b0 – b1X

–
)2

+ b2
1 "(Xi – X

–
)2

Since the third term in this expression, n(Y
–

– b0 – b1X
–
)2, is necessarily positive,

to minimize SSE we would like to set it equal to zero. Therefore, we wish values
of b0 and b1 such that:

n(Y
–

– b0 – b1X
–
) = 0

Dividing both sides of this equality by n gives us:

Y
–

– b0 – b1X
–

= 0 

or, equivalently:

b0 = Y
–

– b1X
–

We have now reduced our expression for SSE, assuming the desire to minimize
it, to:

Let us now add to and subtract from this expression the quantity:

SSE = (Yi − Ȳ)2 − 2b1 (Yi − Ȳ)(Xi − X̄) + b2
1 (Xi − X̄)2

= (Yi − Ȳ)2 + (Xi − X̄)2 b2
1 − 2b1

(Yi − Ȳ)(Xi − X̄)
(Xi − X̄)2Σ

Σ

Σ

Σ Σ

Σ
Σ

(Xi − X̄)2 (Xi − X̄)(Yi − Ȳ)
(Xi − X̄)2

2

Σ
Σ

Σ



We can think about the formula for the estimated slope in a couple of different ways.
One way is to divide both the numerator and denominator of the formula by n – 1:

In this last expression, the numerator of the slope, sXY, is known as the covariance of X
and Y, and the denominator is, of course, the variance of X.

Examining the crossproduct of (Xi – X
–
)(Yi – Y

–
) for any given observation helps to

conceptualize the meaning of the covariance between two variables. To aid with this
conceptualization, in Figure 5.4 we have added a horizontal line at the mean of Y and
a vertical line at the mean of X to the scatterplot of the data. Any given observation will
have a positive value for its crossproduct if it lies either in the upper right quadrant of
the scatterplot or the lower left quadrant of the scatterplot, where the quadrants are defined
by the intersecting lines at the two means. Positive values of the crossproduct thus come
from observations that are either above the mean on both variables or below the mean
on both. On the other hand, observations with negative values for their crossproducts
will lie in the other two quadrants, having values that are below the mean on one variable
but above the mean on the other. The covariance is (roughly) the average of all these

b1 =
(Xi − X̄)(Yi − Ȳ)/(n − 1)

(Xi − X̄)2/(n − 1)

=
sXY

s2
X

Σ
Σ

Thus:

Rearranging terms and taking the square root of the term in brackets gives us:

The last term in this expression for SSE is necessarily positive. Therefore, to
minimize SSE we want this last term to equal zero. This occurs if:

SSE = (Yi − Ȳ)2

+ (Xi − X̄)2 b2
1 − 2b1

(Xi − X̄)(Yi − Ȳ)
(Xi − X̄)2 +

(Xi − X̄)(Yi − Ȳ)
(Xi − X̄)2

2

− (Xi − X̄)2 (Xi − X̄)(Yi − Ȳ)
(Xi − X̄)2

2

Σ
Σ

Σ

Σ
Σ Σ

ΣΣ

Σ

SSE = (Yi − Ȳ)2 − (Xi − X̄)2 (Xi − X̄)(Yi − Ȳ)
(Xi − X̄)2

2

+ (Xi − X̄)2 b1 −
(Xi − X̄)(Yi − Ȳ)

(Xi − X̄)2

2

Σ

Σ

Σ
Σ

Σ

Σ
Σ

b1 =
(Xi − X̄)(Yi − Ȳ)

(Xi − X̄)2

Σ
Σ
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individual crossproducts. Given that the denominator of the slope is always positive in
value, the sign of the slope is determined by the sign of the covariance. This means that
the slope will be positive if most of the observations in a scatterplot are either above
the means on both variables or below the means on both variables. A negative slope
happens when most of the observations fall into the other two quadrants: above the mean
on one variable but below it on the other. A slope near zero would occur when the
observations are randomly distributed throughout all four quadrants.

The other way to think conceptually about the meaning of the slope involves
applying a bit of algebra to the original formula for the slope given above, yielding:

The term in the brackets in this equation can be thought of as the slope suggested by
each individual observation—it is the rise over run of a line that goes between the joint
mean of the two variables and a particular observation. In Figure 5.5 we have added a
few of these individual “slopes” for a few observations. The wi can be thought of as a
weight assigned to each observation, where the weight represents the proportion of the
total sum of squares of X that is attributable to the particular observation. In essence,
we can think of each observation as having a slope that it “prefers” (between the joint
mean and itself), that gets a certain weight or vote in determining the value of the slope
for all the observations. The more extreme the observation is on X, the greater the vote.

Using the above formulas to calculate both parameter estimates, b0 and b1, or more
efficiently using a regression routine in one of the various statistical software packages,
we can calculate the estimated intercept and slope for the model where we regress internet
access rates on college graduation rates. (Notice here that in regression terminology one
regresses Y on X, not the other way around.) The resulting estimated two-parameter model
for these data is:

Ŷi = 47.912 + 0.862Xi

This prediction function is graphed in Figure 5.6 as a straight line on the scatterplot we
saw before.

b1 = wi

Yi − Ȳ
Xi − X̄

, where wi =
(Xi − X̄)2

(Xi − X̄)2Σ
Σ

FIGURE 5.4 Scatterplot with horizontal line at Y
–

and a vertical line at X
–



(This figure is identical to Figure 5.3 where we plotted the slope and intercept prior to
indicating how they were estimated.)

Let us interpret each of the regression coefficients, b0 and b1, in this equation. The
first equals 47.912. This is the value predicted by the model for a state’s internet access
rate if none of the population in the state had graduated from college. While this intercept
is the best unbiased estimate of this prediction based on a linear model of these data, it
is clearly a relatively meaningless value, because no state in the data had a college
graduation rate anywhere near zero.

The value of the slope, 0.862, tells us that if we found two states differing in college
graduation rates by 1%, our model predicts that the internet access rate would be .862%
higher in the better educated state.

In Figure 5.7 we present for each state its Yi, Xi, Ŷi, residual, and squared residual.
The sum of these squared residuals, "(Yi – Ŷi)

2, across all 50 states is also given. Having
used the least-squares criterion guarantees that no other values of b0 and b1 would give
us a smaller sum of squared residuals for these data.
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FIGURE 5.5 Scatterplot with individual slopes

FIGURE 5.6 Scatterplot with two-parameter model: Ŷi = 47.912 + 0.862Xi
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FIGURE 5.7 Predicted values and residuals for internet access data by state

US state Yi Xi Ŷi ei ei
2

AL 63.5 23.5 68.169 –4.669 21.780
AK 79.0 28.0 72.048 6.952 48.330
AZ 73.9 27.4 71.531 2.369 5.612
AR 60.9 20.6 65.669 –4.769 22.743
CA 77.9 31.0 74.634 3.266 10.667
CO 79.4 37.8 80.496 –1.096 1.201
CT 77.5 37.2 79.978 –2.478 6.140
DE 74.5 29.8 73.600 0.900 0.810
FL 74.3 27.2 71.358 2.942 8.655
GA 72.2 28.3 72.307 –0.107 0.011
HI 78.6 31.2 74.806 3.794 14.394
ID 73.2 26.2 70.496 2.704 7.312
IL 74.0 32.1 75.582 –1.582 2.503
IN 69.7 23.8 68.428 1.272 1.618
IA 72.2 26.4 70.669 1.531 2.344
KS 73.0 31.1 74.720 –1.720 2.958
KY 68.5 22.6 67.393 1.107 1.225
LA 64.8 22.5 67.307 –2.507 6.285
ME 72.9 28.2 72.220 0.680 0.462
MD 78.9 37.4 80.151 –1.251 1.565
MA 79.6 40.3 82.651 –3.051 9.309
MI 70.7 26.9 71.100 –0.400 0.160
MN 76.5 33.5 76.789 –0.289 0.084
MS 57.4 20.4 65.497 –8.097 65.561
MO 69.8 27.0 71.186 –1.386 1.921
MT 72.1 29.0 72.910 –0.810 0.656
NE 72.9 29.4 73.255 –0.355 0.126
NV 75.6 22.5 67.307 8.293 68.774
NH 80.9 34.6 77.737 3.163 10.005
NJ 79.1 36.6 79.461 –0.361 0.130
NM 64.4 26.4 70.669 –6.269 39.300
NY 75.3 34.1 77.306 –2.006 4.024
NC 70.8 28.4 72.393 –1.593 2.538
ND 72.5 27.1 71.272 1.228 1.508
OH 71.2 26.1 70.410 0.790 0.624
OK 66.7 23.8 68.428 –1.728 2.986
OR 77.5 30.7 74.375 3.125 9.766
PA 72.4 28.7 72.651 –0.251 0.063
RI 76.5 32.4 75.841 0.659 0.434
SC 71.1 26.1 70.410 –3.810 14.516
SD 67.0 26.6 70.841 0.259 0.063
TN 71.8 24.8 69.290 –2.290 5.244
TX 79.6 27.5 71.617 0.183 0.033
UT 75.3 31.3 74.893 4.707 22.156
VT 75.8 35.7 78.685 –3.385 11.458
VA 78.9 36.1 79.030 –3.230 10.433
WA 64.9 32.7 76.099 2.801 7.846
WV 73.0 18.9 64.204 0.696 0.484
WI 75.5 27.7 71.789 1.211 1.467
WY 75.5 26.6 70.841 4.659 21.706

SSE = 480.003



We can divide the sum of squared errors by the remaining degrees of freedom for
error, n – p (which in this case equals n – 2), to calculate the mean square error:

Just as b0 and b1 are unbiased estimates of !0 and !1 under the least-squares criterion,
so also the mean square error is an unbiased estimate of the variance of #i. It estimates
how variable the errors of prediction are at each level of Xi. As we will discuss, it is
assumed that the variance of these errors is constant across all values of Xi. The square
root of this mean square error is known as the standard error of prediction.

We will do one more example using two other variables from the states dataset. For
this example, we are going to examine whether a state’s population density (measured
in 2010 as hundreds of people per square mile) can be used to predict the automobile
fatality rate in the state (measured in 2010 as the number of fatalities per 100 million
vehicle miles traveled). One certainly might expect more automobile accidents in states
that are more densely populated, but it is less clear what one might expect in terms of
fatalities from such accidents. On the one hand, if the accident rate is higher in more
densely populated states, one might also predict a higher fatality rate. On the other hand,
in more densely populated states, perhaps accidents are less likely to result in fatalities
since more of the accidents are likely to be simply fender-benders rather than more serious
high-speed collisions.

The parameter estimates from the regression model make clear how these variables
are related:

Ŷi = 1.28 – 0.05Xi

Let us interpret both parameter estimates in this model. Doing so will make clear that
their interpretation depends on the metric in which the two variables are measured. First,
the intercept, 1.28, represents the predicted number of fatalities (per 100 million vehicle
miles driven) if a state’s population density were zero. Of course this number is not very
informative, since no state has a population density that is zero. Yet, it is the best linear
prediction from these data, albeit well outside of the range of actual values of density
found in the data. The slope, –0.05, is negative, meaning that in more densely populated
states the fatality rates are lower. The exact interpretation is that for every increase in
population density of 100 people per square mile (the measurement metric of Xi) we
predict a decrease in the fatality rate of .05 per 100 million vehicle miles driven (the
measurement metric of Yi).

AN ALTERNATIVE SPECIFICATION

It will prove useful at later points to be able to specify regression models in which the
predictor variables have been put into “mean-deviation” form or “centered.” What this
means is that for every observation we have taken the value of the variable and subtracted
from it the variable’s mean value. Thus, if the predictor variable is Xi, the mean-deviated
or centered variable is (Xi – X

–
). This centered variable will necessarily have a mean of

zero, i.e., (X
–

– X
–

) = 0. We will then regress Yi on (Xi – X
–
) rather than on Xi:

MSE =
(Yi − Ŷi)2

n − 2
=

480.003
48

= 10.00
Σ
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Yi = b′0 + b′1 (Xi – X
–
)

The question is how these new parameter estimates, when the predictor is centered, differ
from the parameter estimates that result from the estimation we have considered to this
point, with an uncentered predictor:

Ŷi = b0 + b1Xi

To answer this question, we can examine the formulas for the parameter estimates that
we gave earlier, but this time with a centered Xi:

Since (X
–

– X
–
) = 0, it follows that

In other words, centering the predictor has no effect upon the slope, i.e., b′1 = b1, but it
does change the intercept. The intercept with the predictor in mean-deviated or centered
form will be the mean of Yi.

Conceptually, if we think graphically about the scatterplot of data and the
superimposed regression line, by centering all we are really doing is changing the scale
of the Xi axis in the scatterplot, redefining the value of Xi so that its mean equals zero.
Such a scatterplot with the Xi axis centered is given in Figure 5.8. As this makes clear
we have not changed the observations in the scatterplot at all; we have simply shifted
the origin point in the plot. In a fundamental sense, our prediction function has not
changed at all; the same line, having the same slope, minimizes the squared errors of
prediction. The only change derives from the change in the location of the zero point
on the horizontal axis. That zero point is now at the mean of Xi and, accordingly, the
value of the intercept (i.e., the value of Yi where the prediction function crosses the vertical
axis) changes. It is now Y

–
. Obviously, this means that the regression line inevitably goes

through the point defined by the joint means of the two variables.
In the case of the estimated model predicting internet access rates from college

graduation rates, when the latter variable is centered, the resulting least-squares parameter
estimates are:

Ŷi = 72.806 + 0.862(Xi – X
–
)

The slope is unchanged by the centering of Xi but the intercept has changed. It no longer
equals 47.912, rather it equals Y

–
, which is 72.806. One can still use the conventional

interpretation for the intercept: It remains the predicted value when the predictor 
equals zero, i.e., when (Xi – X

–
) equals zero. And of course (Xi – X

–
) equals zero when

Xi = X
–
.

Because all that has changed with centering the predictor is the zero point on the
horizontal access of the scatterplot, we are still dealing fundamentally with the same

b1́ =
(((Xi − X̄) − (X̄ − X̄))(Yi − Ȳ))

((Xi − X̄) − (X̄ − X̄))2

b0́ = Ȳ − b1(X̄ − X̄)

Σ
Σ

b1́ =
(Xi − X̄)(Yi − Ȳ)

(Xi − X̄)2 = b1

b0́ = Ȳ

Σ
Σ
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data and the same regression line, making the same predictions for each observation.
Unsurprisingly, then, centering the predictor leaves the mean squared error of the model
unchanged. In a deep sense the regression results are unchanged by this transformation.

STATISTICAL INFERENCE IN TWO-PARAMETER MODELS

Now that the basics of estimation and interpretation in simple regression models are
clear, we turn to the issue of statistical inference, asking questions about parameter values
in such models. Our approach to statistical inference in the case of two-parameter
models will be identical to the approach we adopted in the single-parameter case. That
is, we will compare an augmented model (in which both parameters are estimated from
the data) to a compact one (in which one or more parameters are fixed at a priori values).
We will calculate the sum of squared errors associated with both the augmented and
compact models; from these we will then compute PRE, the proportional reduction in
error as we go from the compact to the augmented model. This PRE, and its associated
F statistic, can then be compared to their critical values, making the assumptions of
normality, constant variance, and independence of residuals. Such a comparison permits
a test of the null hypothesis that the values of the parameters fixed in the compact model
are in fact the true unknown parameter values. Put the other way around, we are testing
whether the estimated parameter values in the augmented model depart significantly from
their a priori values specified in the compact model.

Given that the augmented model for such comparisons is now the two-parameter
simple regression model, there are alternative compact models with which it may be
compared. On the one hand, one may be interested in asking questions about the slope,
comparing the augmented model to a compact one in which the slope parameter has
been set to some a priori value. On the other hand, there may arise occasions when one
is interested in testing a null hypothesis about the intercept in this two-parameter model,
comparing it to a compact one in which the intercept has been fixed at some a priori
value. We consider each one in turn.

FIGURE 5.8 Scatterplot and prediction function with centered X



Inferences about !1

To ask statistical inference questions about the slope is to ask about associations: as the
predictor variable (Xi) increases, what is our conclusion about whether the dependent
variable (Yi) increases or decreases, and at what rate. Our augmented two-parameter model
for such questions is the one we have been using throughout this chapter:

MODEL A: Yi = !0 + !1Xi + #i

The compact one, in its generic form, with which we will be making comparisons, is:

MODEL C: Yi = !0 + B1Xi + #i

where B1 is some a priori value to which the slope parameter has been set. As before,
the null hypothesis that is to be tested by the comparison between these two models is:

H0 : !1 = B1

In words, the inferential test is whether the slope differs significantly from the a priori
value.

By far the most common form this comparison takes is when the a priori value of
the slope in the compact model equals zero. In this case the compact model is:

MODEL C: Yi = !0 + 0Xi + #i

Yi = !0 + #i

and the null hypothesis is:

H0 : !1 = 0

The question being asked is whether Xi is a useful predictor of Yi. If it is a useful predictor,
then the predicted values of Yi should change, either increasing or decreasing, as Xi

changes. If we do no better with the augmented model (in which the slope is estimated
from the data) than with the compact one (where the slope is constrained to equal zero)
then it implies that the two variables may be unrelated. We do just as well making a
constant prediction of all Yi values regardless of an observation’s Xi value as we do making
conditional predictions.

For this comparison, the compact model is what was considered as the augmented
model in the previous chapter. This will frequently be the case throughout the remainder
of the book as we consider more complex models and additional inferential questions:
What is for one question the augmented model becomes the compact model for a
different question. So, in Chapter 4, we tested null hypotheses about a constant predicted
value for every observation. Now we are testing whether we need to make conditional
predictions and the compact model is one in which we estimate from the data a constant
predicted value for each observation. That constant predicted value, when we estimate
b0 in Model C from the data, will not be the same as the intercept in Model A, when
we estimate that model in our data. The best least-squares estimate of !0 in Model C
will be the mean of Yi, just as it was (when we treated it as the augmented model) in
Chapter 4. In the estimated augmented model (with two parameters), however, the
estimate of !0 will in general not be the mean of Yi (unless of course the predictor has
been centered). This makes clear another important point that will remain true as we
consider more complex models in later chapters: the best estimate for a given parameter
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in general depends on what other parameters are estimated in the model. In the compact
single-parameter model that we are considering, the best estimate of !0 will not in general
be the same as the best estimate of !0 in the two-parameter augmented model.

To ask whether the slope equals zero, and thus whether Xi is a useful predictor of
Yi, is the most common inferential question that one might ask about the slope. But it
is certainly not the only question one might ask. Other Model Cs, with other values of
B1, and thus other null hypotheses, might occasionally also be of interest. For instance,
there are occasions when we are interested in testing the null hypothesis that:

H0 : !1 = 1

In this case, the augmented model remains the same two-parameter simple regression
model, but Model C becomes:

MODEL C: Yi = !0 + 1Xi + #i

By casting all statistical inference questions in the form of Model A/Model C
comparisons, testing such a null hypothesis becomes entirely feasible, even if standard
statistical texts and software programs do not routinely provide such tests.

Testing the null hypothesis that !1 = 0

In the context of our model that predicted states’ internet access rates from their college
graduation rates, let us test the first of the above null hypotheses, asking whether
predictions of internet access are improved by making them conditional on college
graduation rates, compared to a compact model that sets the slope at zero and thus makes
a constant prediction for internet access for all states.

In terms of parameters, the models to be compared are:

MODEL A: Yi = !0 + !1Xi + #i

MODEL C: Yi = !0 + #i

These are estimated as:

MODEL A: Ŷi = 47.0912 + 0.862Xi

MODEL C: Ŷi = 72.806

In Figures 5.9 and 5.10, we present the results of these two models for each state. In
the first two columns of values in Figure 5.9 both Yi (internet access rate) and Xi (college
graduation rate) values for each state are given. Then the next three columns provide
the results of Model C. The first of these provides the predicted values, ŶiC . These are
necessarily the same value for every state, since Model C predicts simply the mean
internet access rate for each. Next, for each state we give its error, ei, and its squared
error, ei

2. Across all 50 states, the sum of squared errors for Model C equals 1355.028.
This model has a single estimated parameter, hence n – PC equals 49 (with 50 states).
Thus, the mean square error for Model C is:

1355.028/49 = 27.654

Given that this is the simplest single-parameter model, as defined in the previous chapter,
this mean square error is also called the variance of Yi.
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FIGURE 5.9 Model comparison for internet access data

US state Internet College ŶiC eiC e2
iC ŶiA eiA e2

iA (ŶiA–ŶiC)2

access graduation
rate rate

AL 63.5 23.5 72.806 –9.306 86.602 68.169 –4.669 21.780 21.502
AK 79.0 28.0 72.806 6.194 38.366 72.048 6.952 48.330 0.575
AZ 73.9 27.4 72.806 1.094 1.197 71.531 2.369 5.612 1.626
AR 60.9 20.6 72.806 –11.906 141.753 65.669 –4.769 22.743 50.937
CA 77.9 31.0 72.806 5.094 25.949 74.634 3.266 10.667 3.342
CO 79.4 37.8 72.806 6.594 43.481 80.496 –1.096 1.201 59.136
CT 77.5 37.2 72.806 4.694 22.034 79.978 –2.478 6.140 51.438
DE 74.5 29.8 72.806 1.694 2.870 73.600 0.900 0.810 0.630
FL 74.3 27.2 72.806 1.494 2.232 71.358 2.942 8.655 2.097
GA 72.2 28.3 72.806 –0.606 0.367 72.307 –0.107 0.011 0.249
HI 78.6 31.2 72.806 5.794 33.570 74.806 3.794 14.394 4.000
ID 73.2 26.2 72.806 0.394 0.155 70.496 2.704 7.312 5.336
IL 74.0 32.1 72.806 1.194 1.426 75.582 –1.582 2.503 7.706
IN 69.7 23.8 72.806 –3.106 9.647 68.428 1.272 1.618 19.167
IA 72.2 26.4 72.806 –0.606 0.367 70.669 1.531 2.344 4.567
KS 73.0 31.1 72.806 0.194 0.038 74.720 –1.720 2.958 3.663
KY 68.5 22.6 72.806 –4.306 18.542 67.393 1.107 1.225 29.301
LA 64.8 22.5 72.806 –8.006 64.096 67.307 –2.507 6.285 30.239
ME 72.9 28.2 72.806 0.094 0.009 72.220 0.680 0.462 0.343
MD 78.9 37.4 72.806 6.094 37.137 80.151 –1.251 1.565 53.949
MA 79.6 40.3 72.806 6.794 46.158 82.651 –3.051 9.309 96.924
MI 70.7 26.9 72.806 –2.106 4.435 71.100 –0.400 0.160 2.910
MN 76.5 33.5 72.806 3.694 13.646 76.789 –0.289 0.084 15.864
MS 57.4 20.4 72.806 –15.406 237.345 65.497 –8.097 65.561 53.422
MO 69.8 27.0 72.806 –3.006 9.036 71.186 –1.386 1.921 2.624
MT 72.1 29.0 72.806 –0.706 0.498 72.910 –0.810 0.656 0.011
NE 72.9 29.4 72.806 0.094 0.009 73.255 –0.355 0.126 0.202
NV 75.6 22.5 72.806 2.794 7.806 67.307 8.293 68.774 30.239
NH 80.9 34.6 72.806 8.094 65.513 77.737 3.163 10.005 24.315
NJ 79.1 36.6 72.806 6.294 39.614 79.461 –0.361 0.130 44.289
NM 64.4 26.4 72.806 –8.406 70.661 70.669 –6.269 39.300 4.567
NY 75.3 34.1 72.806 2.494 6.220 77.306 –2.006 4.024 20.250
NC 70.8 28.4 72.806 –2.006 4.024 72.393 –1.593 2.538 0.171
ND 72.5 27.1 72.806 –0.306 0.094 71.272 1.228 1.508 2.353
OH 71.2 26.1 72.806 –1.606 2.579 70.410 0.790 0.624 5.741
OK 66.7 23.8 72.806 –6.106 37.283 68.428 –1.728 2.986 19.167
OR 77.5 30.7 72.806 4.694 22.034 74.375 3.125 9.766 2.462
PA 72.4 28.7 72.806 –0.406 0.165 72.651 –0.251 0.063 0.024
RI 76.5 32.4 72.806 3.694 13.646 75.841 0.659 0.434 9.211
SC 66.6 26.1 72.806 –6.206 38.514 70.410 –3.810 14.516 5.741
SD 66.6 26.6 72.806 –1.706 2.910 70.841 0.259 0.063 3.861
TN 71.1 24.8 72.806 –5.806 33.710 69.290 –2.290 5.244 12.362
TX 67.0 27.5 72.806 –1.006 1.012 71.617 0.183 0.033 1.414
UT 71.8 31.3 72.806 6.794 46.158 74.893 4.707 22.156 4.356
VT 79.6 35.7 72.806 2.494 6.220 78.685 –3.385 11.458 34.563
VA 75.3 36.1 72.806 2.994 8.964 79.030 –3.230 10.433 38.738
WA 75.8 32.7 72.806 6.094 37.137 76.099 2.801 7.846 10.844
WV 78.9 18.9 72.806 –7.906 62.505 64.204 0.696 0.484 73.994
WI 64.9 27.7 72.806 0.194 0.038 71.789 1.211 1.467 1.034
WY 75.5 26.6 72.806 2.694 7.258 70.841 4.659 21.706 3.861
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The next three columns in Figure 5.9 give the parallel results for Model A, first the
predicted values (ŶiA) and then errors of prediction and squared errors. Notice in this
case that the predicted values now are not constant; rather, they are a linear function of
the value of Xi for each state. And, again, the sum of the squared errors across the 50
states is SSE for Model A, equaling 480.00. In Model A we have estimated two
parameters, accordingly PA equals 2, n – PA equals 48, and the mean square error for
this model is 10.00.

Model A, since it uses an additional parameter to model the data, necessarily does
better than Model C in terms of sums of squared errors. That is not to say, however,
that in every state the prediction made by Model A is better than that made by Model
C. Examine Kansas (KS) for instance. Its internet access rate is 73.0%. Model C predicts
it to be the mean of 72.806, which is a difference of 0.194. Model A, on the other hand,
making a prediction conditional on Kansas’ college graduate rate, predicts it to be 74.720,
missing by 1.720. For this particular state, the Model A prediction is not as accurate as
the Model C prediction. Yet, on average across states the squared errors of prediction
must be at least as small from Model A as they are from Model C, simply because an
additional parameter has been estimated.

Figure 5.10 presents the results graphically. The horizontal line superimposed on
the data points is the prediction function of Model C. The other line is the prediction
function of Model A. The inferential question that we now want to ask is whether 
the reduction in the SSEs when we replace Model C with Model A has been worth the
reduction in the error degrees of freedom due to estimating an additional parameter.
Graphically, the question is: Do we do sufficiently better with the sloped line to merit
the added complexity over and above the horizontal prediction function? To answer 
this, we compute PRE, the proportional reduction in error as we move from Model C
to Model A:

PRE =
SSE(C) − SSE(A)

SSE(C)
=

1355.028 − 480.003
1355.028

= .6458

FIGURE 5.10 Model C and Model A



Thus, when we make conditional predictions in this example, the total errors of prediction
are reduced by more than 64% compared to simply predicting the mean level of internet
access for each state.

The numerator of PRE is the sum of squares reduced (SSR) and can be calculated
directly by taking the squared difference between the predicted value for Model A and
that for Model C, and summing these across the 50 states:

SSR = SSE(C) – SSE(A) = #(ŶiA – ŶiC)2

In the final column of Figure 5.9, we present these squared differences in predicted values
for every state. The sum of the numbers in this final column necessarily equals the
difference in the sum of squared errors between the two models, i.e., 1355.028 – 480.003
or 875.025.

We can also compute the F statistic associated with the comparison between these
two models. Below we do this with the equivalent expressions for F, either in terms of
PRE or in terms of the sums of squares of the two models:

Using the appropriate tables in the Appendix, we compare the computed values of
either PRE or F with their critical values, given that the assumptions of normality,
constant variance, and independence of errors are met. The critical values at $ = .05
(with 1 and 48 degrees of freedom) are approximately .08 for PRE and 4.04 for F. Clearly,
our computed values exceed these, and hence we can reject Model C in favor of the
two-parameter Model A that makes conditional predictions. Our conclusion is that
college graduation rates are a useful predictor of internet access rates in these data.
Further, once we have rejected the null hypothesis of no relationship between the two
variables, we can make a conclusion about the direction of the relationship between them,
based on the sign of the estimated slope: In states where the percentage of people who
graduated from college is higher, there are higher rates of internet access.

Figure 5.11 summarizes the results of the statistical analysis in an ANOVA table
of the same type as we developed in Chapter 4. The first row provides information about
the reduction in error achieved by including Xi as a predictor in the model (i.e., by using
Model A instead of Model C). The entry in the SS column for that row is the SSR
computed earlier. Associated with this SSR is a single degree of freedom, PA – PC =
1, for this comparison. The next row provides information about the error remaining in
Model A, and its associated degrees of freedom (n – PA). The final row provides similar
information for Model C. Calculating MS = SS/df provides the basis for calculating 
F according to the sum of squares formula presented above. In the p column is indicated
the fact that the computed PRE and F exceed the critical value with $ = .05. Finally,
the value of PRE is given, computed as the SSR divided by SSE for Model C.

One final comment is appropriate about the statistics we have just computed.
Throughout this book, we will use PRE to refer to the proportional reduction in error
when replacing any compact model with an augmented one. In this sense, PRE is a very

F =
PRE/(PA−PC)

(1 − PRE)/(n − PA)
=

.6458/1
(1 − .6458)/48

= 87.50

=
SSR/(PA − PC)
SSE(A)/(n − PA)

=
875.025/1

480.003/48
= 87.50
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general statistic that is informative regardless of the specifics of the models that are being
compared. However, in the history of inferential statistics, a variety of specific names
for PRE have been developed for particular model comparisons. For the case at hand,
testing whether the slope in a single predictor model is different from zero, the square
root of PRE is known as the Pearson correlation coefficient, commonly referred to simply
as the correlation or r. Thus, the inferential test we have just conducted is equivalent 
to a test of whether the true correlation between two variables differs from zero. If PRE
and F do not surpass their critical values, then it means that the true value of PRE (%2)
may equal zero. In fact, since the F statistic we have computed has only a single degree
of freedom in its numerator, its square root is a t statistic with n – PA (n – 2 in this case)
degrees of freedom. It is simple algebra to show that the square root of the F formula
we have given is the same as the t that is typically given in traditional statistics texts
for testing whether a correlation between two variables is significantly different from
zero:

As a result, our conclusion in this case that Model A does significantly better than Model
C is equivalent to concluding that the two variables are related, that !1 differs from zero,
that the true correlation differs from zero, and that the true PRE (%2) differs from zero.

Testing null hypotheses for other values of !1

There may be occasions when theory makes strong predictions about particular values
of slopes other than zero. For instance, if two variables are measured in the same metric,
then we might be interested in whether a one-unit difference on one variable is associated
with a one-unit difference on the other. To illustrate, we continue to use the internet
access/college graduation example. Since they are both measured in the same metric
(percentage of the state who either has internet access or has attended college), we will
ask the question of whether a 1% increase in college graduation is associated with a 1%
increase in internet usage on average across the states. Obviously, we do not have any
strong theory that would make this prediction; we use it for illustrative purposes only.
The model comparison for this question is:

MODEL A: Yi = !0 + !1Xi + "i

MODEL C: Yi = !0 + 1Xi + "i

And the null hypothesis is that !1 = 1.

tn − 2 =
r

1 − r2

n − 2

FIGURE 5.11 ANOVA source table test of H0: !1 = 0 in simple regression context

Source SS df MS F p PRE

Reduction (using b1 = 0.862) 875.025 1 875.025 87.50 < .001 .646
Error (using b1 = 0.862) 480.003 48 10.000

Total error (using b1 = 0) 1355.028 49 27.654



Unfortunately few statistical programs readily permit the estimation of parameters
in a model in which some parameters are fixed at values other than zero. In this case,
however, we can easily estimate !0 in Model C by noting that if we subtract Xi from
both sides of Model C we obtain:

Yi – Xi = !0 + "i

so the mean of the constructed variable Yi – Xi = 43.922 estimates !0 in Model C. The
estimated models are then:

MODEL A: Yi = 47.912 + 0.862Xi + ei

MODEL C: Yi = 43.922 + 1Xi + ei

The SSE for Model C equals 502.486, again with n – PC equal to 49. Model A makes
better predictions, since as we saw above its sum of squared errors equals 480.003. SSR
equals 22.483, with PRE and F computed as:

These values do not beat their respective critical values. Thus we cannot reject the null
hypothesis—there is no evidence to conclude that the true slope is different from 1.00.

Confidence intervals of !1

Recall from Chapter 4 that the confidence interval defines the range of values for the
parameter for which we would fail to reject the null hypothesis. In other words, if we
tested a null hypothesis that the parameter equals a value that lies within the confidence
interval, we would fail to reject that null hypothesis. If the null hypothesis to be tested
specifies that the parameter equals a value that lies outside of the confidence interval,
we would reject that null hypothesis. In this sense, the confidence interval is entirely
redundant with inferential tests about the value of a parameter.

In the case of !1 in the two-parameter model we are considering, its confidence
interval is given as:

where Fcrit 1,n–2;$ is the critical value of F at level $, with degrees of freedom of PA –
PC = 1 and n – PA = n – 2. MSE is the mean square error from the augmented model,
again based on n – 2 degrees of freedom. And s2 is the variance of the predictor variable.

For the internet access/college graduation example, the critical F with 1 and 48
degrees of freedom, using $ = .05, equals 4.04, MSE from Model A equals 10.00, and
the variance of the predictor variable (college graduation rates) equals 24.04. Accordingly,
the confidence interval for !1 is:

PRE =
22.483

502.486
= .045

F1,48 =
22.483/1

502.486/48
= 2.15

b1 ±
Fcrit; 1, n − 2; MSE

(n − 1)s2
X

α

0.862 ±
4.04(10.00)
49(24.04)

= 0.862 ± 0.185
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or

0.677 & !1 & 1.047

Based on the present data, we can thus say we are confident that the true value for the
slope in this two-parameter regression model, predicting internet access rates from
college graduation rates, lies somewhere between 0.677 and 1.047. Notice that zero lies
outside of this interval and that 1.00 lies within it. Both of these are consistent with the
results already reported for our two null hypotheses: the null hypothesis that the parameter
equals zero was rejected; the null hypothesis that it equaled 1.00 was not.

Although we might lament the fact that many statistical packages do not permit 
the estimation of models in which parameter values are fixed at values other than 
zero, the confidence interval permits a general approach for testing any null hypothesis
about the slope. If the value that is specified by the null hypothesis lies within the interval,
it would not be rejected. All other null hypotheses would be.

The formula for the confidence interval provides some insights into the factors that
influence statistical power—the probability of rejecting the null hypothesis when it is
false—and how to improve it. In general, the narrower the confidence interval, the more
precision we have in estimating a parameter and statistical power means that we have
greater precision, i.e., narrower confidence intervals. According to the formula, what are
the factors that affect the width of the interval, and therefore power?

First, the critical value of F affects its width. If we use a smaller $ level, thus reducing
Type I errors, the critical value of F increases, thereby widening the confidence interval
and resulting in less power and greater probability of Type II errors. This is the inherent
tradeoff between Type I and Type II statistical errors.

Second, the width of the confidence interval is affected by the mean square error
from the augmented model. As the variability of errors of prediction is reduced, the
confidence interval becomes narrower. Thus, whatever we can do to reduce error, such
as improving the quality of measurement of Yi, will increase power.

Third, as n increases, all else being equal, power increases. This is reflected by the
fact that n – 1 appears in the denominator of the confidence interval.

And, finally, the variance of the predictor variable Xi appears in the denominator.
As Xi becomes more variable, the interval narrows and power improves. Given some
predictor variable, we will examine its effects as a predictor with more precision
(assuming a linear model) if we make sure that we sample widely across its values.

Power analysis in tests of simple regression

In Chapter 4 we performed “what if” power analyses for the simple model making a
constant prediction for each observation. We can use exactly the same process to ask
“what if” power analysis questions for simple regression models using one predictor
variable. We perform “what if” power analyses for particular values of the true
proportional reduction in error, %2, which may be of interest, in exactly the same way
as before. For example, for the internet access data, we might want to know the power
of detecting a relationship between it and some variable—detecting that the slope for a
predictor is different from zero—when in fact we think that %2 = .20. To do this, we 
can use a software program, such as R or SAS, to calculate power as we mentioned in
the last chapter. For this Model A/Model C comparison, PA – PC = 1 and n – PA = 48. 



If %2 = .20 then the power calculator in SAS informs us that the power of our test is
roughly .92. That is, if we were to do a study with an n of 50 and expect to find a
relationship between a predictor and Yi with a true PRE of .20, we would have roughly
a 92% chance of correctly rejecting the null hypothesis.

Given that we now know the procedure for asking questions to determine the power
with which we can assess whether one variable is significantly related to another in a
simple regression model, we need to know what values of %2 are appropriate and
expected for such comparisons. As before, prior experience in a research domain may
provide values of PRE that can be used directly in the power table. For the simple
regression case, we might have estimates of PRE available from previous research,
typically reported as the correlation between two variables, rather than as PRE itself. In
this case, we need to square the correlation coefficient to obtain the estimate of PRE,
since PRE = r2 for this question. As before, we would want to convert past empirical
values of PRE to unbiased estimates of %2, using the same adjustment formula as before:

To illustrate, suppose prior research has reported a correlation between two variables 
of .33 based on a sample size of 30. We intend to do a study, examining the relation-
ship between the same two variables, but we intend to use an n of 50. What we would
like to know is the power of our planned study, if in fact the two variables are related
as strongly as they were reported to be in the prior research. To do this, we first convert
the previously reported correlation to PRE, by squaring it: .332 = .11. We then convert
this PRE to an unbiased estimate of %2 using the above formula and the sample size
from the prior study that reported the .33 correlation:

We then use SAS to estimate our power in the new study we plan to conduct. With an
n of 50, n – PA for our study will be 48, and with an anticipated %2 of .078, our power
is approximately .51. Given this result, we may want to think further about our anticipated
study. It might be worthwhile, for instance, to recruit a larger sample to increase power.

If we do not have relevant prior experience for estimating %2, we can use the values
suggested in Chapter 4 for “small” (%2 = .03), “medium” (%2 = .10), and “large” (%2 =
.30) effects. From these and the anticipated n for a new study, we can get the approximate
power.

A third and final approach for finding an appropriate value of %2 for “what if” power
analyses for the simple regression model involves guesses about the parameter values
and variances, just as in Chapter 4. Again, to have reasonable expectations about the
parameter values and variances generally requires as much or more experience in a
research domain as is necessary to know typical values of PRE. We present it, however,
for completeness.

The formula that relates true values of the parameters to %2, the true value of 
PRE, is:

Unbiased estimate of 2= 1 −
(1 − PRE)(n − PC)

n − PA
%

Unbiased estimate of 2 = 1 −
(1 − .11)(29)

28
≈ .078%

2 = 2
1

2
X
2
Y

% β
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where !1 is the true parameter value for the slope, ' x
2 is the true variance of the predictor

variable, and ' y
2 is the true variance of the dependent variable. In other words, given

some alternative hypothesis that specifies what we think is the correct value for the slope,
!1, and given that we want to determine the power of our test of the null hypothesis that
!1 equals zero, we can calculate the corresponding %2 using the above expression,
assuming we have estimates of the variances of both Xi and Yi. We can then take that
value, and the anticipated n – 2 for the study in the planning, and estimate power.

Inferences about !0

Our discussion so far has concentrated exclusively on inferences about the slope in the
two-parameter simple regression model. But one may certainly also compare this
augmented two-parameter model with a compact one that fixes the intercept, rather than
the slope, at some a priori value:

MODEL A: Yi = !0 + !1Xi + "i

MODEL C: Yi = B0 + !1Xi + "i

where B0 represents an a priori value for the intercept. The null hypothesis tested by
such a comparison would then be:

H0 : !0 = B0

Although perhaps not of frequent theoretical interest in the behavioral sciences, one
particular form of this compact model involves what is known as “regression through
the origin” in which the intercept is fixed at zero:

MODEL C: Yi = 0 + !1Xi + "i

Recall that the intercept is defined as the value predicted by the model when Xi equals
zero. Thus, regression through the origin means that the line goes through the (0, 0)
point on the scatterplot.

Importantly, null hypothesis tests about the intercept are of a fundamentally different
nature than those about the slope. When we are making inferences about the slope, we
are asking about the rate of change in predicted values. And when we test that the slope
is zero, we are asking whether there is any change in the predicted values when the
predictor varies, i.e., whether Xi and Yi are related. On the other hand, inferences about
the intercept are inferences about predicted values, not inferences about changes in
predicted values. Specifically, we are asking whether the predicted value of Yi when Xi

equals zero differs significantly from some a priori value, be it zero (in regression through
the origin) or some other value.

In many cases, there is no intrinsic interest in the predicted value of Yi when Xi

equals zero. This may be because the value of zero lies outside of the range of the 
Xi values represented in the dataset, as in the data that we have been using where no
state has a college graduation rate that is near zero. Even if zero is a value within the
range of Xi in the dataset, it may not be a point that has much theoretical interest. However,
with simple transformations of Xi, such as centering it or deviating it from its mean
(discussed earlier), the zero value becomes of considerably greater potential interest.
Earlier in this chapter we saw that when Xi is centered the intercept in the estimated
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model will equal the mean of Yi (i.e., Y
–
). Accordingly, with a centered predictor, the

following Model A/Model C comparison is equivalent to asking questions about the
mean of Yi:

MODEL A: Yi = !0 + !1 (Xi – X
–
) + "i

MODEL C: Yi = B0 + !1 (Xi – X
–
) + "i

with the following null hypothesis:

H0: !0 = B0 or  (Y = B0

where (Y is the true mean of Yi.
Let us illustrate such a test with the internet access data that we have used throughout

this chapter, asking the same question that we did at the end of the last chapter—whether
the projection of a mean rate of 75% was overly optimistic for the year 2013. But this
time, we will ask the question in the context of a simple regression model that makes
conditional predictions of internet access based on states’ college graduation rates. We
will then compare our test in this model with our results from Chapter 4 to examine
how the present test differs from that used there.

Estimating a model in which internet access rates are regressed on college graduation
rates, with the latter variable in its centered or mean-deviated form, gives the following
estimates:

MODEL A: Ŷi = 72.806 + 0.862(Xi – X
–
)

with a sum of squared errors of 480.003. As explained earlier, the intercept in this model
is now the mean value for the internet access variable, while the slope has not changed
compared to the model in which Xi was not centered. Additionally, in a deep sense, this
model is identical to the one with Xi uncentered, in that it makes the same predictions
and therefore necessarily has the same sum of squared errors.

To test the null hypothesis that the true mean of Yi equals 75, we want to compare
this model to a compact one in which the intercept has been fixed at 75:

MODEL C: Ŷi = 75 + b1(Xi – X
–
)

This comparison permits a test of the null hypothesis:

H0: !0 = 75  or  (Y = 75

As we said previously, many computer packages for data analysis do not readily permit
the estimation of models in which parameters have been fixed at values other than zero.
In this case, with a centered predictor, it can be shown that the best least-squares estimate
for !1 does not change even if we fix the intercept at some a priori value.1 Accordingly,
Model C is estimated as:

MODEL C: Ŷi = 75 + 0.862(Xi – X
–
)

The sum of squared errors from this model can be directly computed across the
observations. More simply, it can be computed by first calculating the sum of squares
reduced (SSR) as we move from Model C to Model A.
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Recall that SSR = #(YiA – YiC)2, accordingly:

SSR = #((72.806 + 0.862(Xi – X
–
)) – (75 + 0.862(Xi – X

–
)))2

Because both predicted values have the same slope for the centered predictor, this 
reduces to:

SSR = #((72.806) – (75))2 = 50(–2.194)2 = 240.682

Accordingly, the sum of squared errors for the compact model is: 

SSE(C) = SSE(A) + SSR = 480.003 + 240.682 = 720.685

Now that we have the sums of squared errors, we can calculate PRE and F for the
comparison and the test of the null hypothesis:

All of this is summarized in the ANOVA source table of Figure 5.12.
Let us now compare these results with the test of the same null hypothesis reported

at the end of Chapter 4, in the context of the simplest single-parameter model. There,
estimated Models A and C were:

MODEL A: Ŷi = 72.806 

MODEL C: Ŷi = 75

The sum of squared errors associated with Model A was 1355.046, that is, the total sum
of squares of Yi around its mean. While the SSR was found to be:

SSR = #((72.806) – (75))2 = 50(–2.194)2 = 240.682

Thus, the results of this test of the same null hypothesis yielded the ANOVA source
table in Figure 5.13.

Although both tests resulted in the rejection of the null hypothesis, clearly the two
approaches differ substantially in terms of the obtained PRE and F. Those values, in the
context of the two-parameter simple regression model, are more than twice what they
were for the same test in the context of the single-parameter model of Chapter 4. And
this difference is attributable entirely to the difference in the sum of squared errors 
for Model A (and the concomitant difference in n – PA). The sum of squared errors for
Model A in the context of the simple regression model equals 480.003, with n – PA
equal to 48. The same values in the context of the single-parameter model of Chapter
4 are SSE = 1355.046 and n – PA = 49. As a result, the MS error values (denominators
of F) are markedly different: 10.00 (for the simple regression model) versus 27.654 (for
the Chapter 4 single-parameter model). Importantly, the numerator of F is the same in
both tests, with SSR equal to 240.682 and PA – PC = 1.

The difference in the sums of squared errors for Model A in the two source 
tables is, not surprisingly, the sum of squares that is attributable to the predictor variable

PRE =
SSR

SSE(C)
=

240.682
720.685

= .334

F =
.334/1

(1 − .334)/48
=

240.682/1
480.003/48

= 24.07
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(college graduation rates), on the basis of which conditional predictions are made in the
simple regression model. That is, earlier, we reported that the SSR attributable to a Model
A that made conditional predictions of internet access, using college graduation rates as
a predictor, compared to a Model C that predicted the mean value of Yi, was 875.025.
This is exactly the difference between each Model A used in these two tests. Model A
for the Chapter 4 single-parameter version of the test makes unconditional predictions
of Yi; Model A for the simple regression version of the test makes predictions of 
Yi conditional on (centered) Xi. Making these conditional predictions means that Model
A in the simple regression context has one fewer degrees of freedom for error (n – PA
= 48) than Model A in the Chapter 4 version of the test (where n – PA = 49). But the
loss in degrees of freedom has been more than compensated for by the substantial
difference between the sums of squared errors of the two Model As. As a result, the test
in the context of the conditional simple regression model has substantially more statistical
power than the same test conducted in the context of the single-parameter model of
Chapter 4.

In Chapter 4 we mentioned that the test we reported is known as the single-sample
t-test. The advantage of our model comparison approach is that we have been able to
generalize this test to cases where conditional predictions are made by the models that
are compared. In the jargon traditionally used in the statistical inference literature, we
have just conducted a single-sample t-test while controlling for a “covariate.”

A further advantage of our approach is that it permits us to conduct inferential tests
about predicted values other than the mean. Suppose, for instance, that we had some
reason to want to ask about internet usage rates in states where the college graduation
rate was 70%. Rather than centering the predictor around its mean value, one could
deviate the predictor from the value of 70. Then one could estimate a Model A in which
the predictor variable was this deviated variable:

MODEL A: Yi = !0 + !1(Xi – 70) +  "i

In a deep sense we would be dealing with the same conditional model; we have simply
moved the zero point on the x-axis to what was the value of 70. Accordingly, the slope
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FIGURE 5.12 ANOVA source table test of H0: !0 = (Y = 75 in simple regression context

Source SS df MS F p PRE

Reduction (using b0 = 72.806) 240.682 1 240.682 24.07 < .001 .334
Error (using b0 = 72.806) 480.003 48 10.000

Total error (using b0 = 75) 720.685 49 14.708

FIGURE 5.13 ANOVA source table test of H0: !0 = (Y = 75 in single-parameter model 
(from Chapter 4)

Source SS df MS F p PRE

Reduction (using b0 = 72.806) 240.682 1 240.682 8.71 < .01 .151
Error (using b0 = 72.806) 1355.046 49 27.654

Total error (using b0 = 75) 1595.728 50 31.915



remains the same, while the estimated intercept in the model would be the predicted
value of Yi when Xi equals 70. This model might then be compared to a Model C that
uses the same deviated predictor but fixes the intercept at some a priori value of interest.2

Confidence interval for the intercept

The confidence interval for the intercept represents the range of values for the intercept
that would not be rejected by an inferential statistical test. In simple regression models,
with a single predictor variable, the confidence interval for the intercept is:

This is the confidence interval for the intercept regardless of whether the predictor has
been deviated from some value or not. If it has been deviated, then of course the Xi

terms in the confidence intervals are the new values following deviation.
When using a centered predictor, deviated from its mean value, then X

–
for the

centered predictor equals zero, and the above formula for the confidence interval 
reduces to:

which is the formula that we gave in Chapter 4 for the confidence interval for !0 in the
single-parameter model (except there the critical F value had 1 and n – 1 degrees of
freedom). Of course, with a predictor variable in the model that is a useful predictor of
Yi, the MSE in the numerator of this confidence interval should be considerably smaller
than the MSE in the numerator of the interval used in Chapter 4, without a predictor.
This difference reflects the increase in power when conducting inferential tests about
the mean in the context of a useful predictor compared to the same test in the single-
parameter context of Chapter 4.

To illustrate, with the centered predictor from the simple regression model used in
this chapter, the confidence interval for !0 (equivalently for (Y) equals:

On the other hand, in the context of the single-parameter model of Chapter 4, the same
confidence interval equals:

Clearly, the confidence interval for the mean of Yi is smaller in the context of the simple
regression model, reflecting the substantial increase in power resulting from the inclusion
of the predictor variable (with its associated reduction in errors of prediction).

b0 ±
Fcrit; 1, n − 2; MSE( X2

i)
n (Xi − X̄)2Σ

Σα

b0 ±
Fcrit; 1, n − 2; MSE

n
α

β

72.806 ±
4.04(10.000 )

50
71.907 ≤ 0 ≤ 73.705

β

72.806 ±
4.03(27.654)

50
71.313 ≤ 0 ≤ 74.299
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Using the general formula for the confidence interval for !0 in this two-parameter
model given above:

We can generate confidence intervals for predicted values at all possible levels of the
predictor variable (by deviating the predictor from each of those levels and then
calculating the resulting confidence intervals for the varying intercepts). In Figure 5.14
we have graphed the 95% confidence limits for the predicted values of internet access
at values of the predictor (college graduation rate) ranging from 10% to about 45%. The
middle straight line in the graph represents the predicted values and the curved lines
above and below it represent the upper and lower confidence limits. What this figure
makes clear is that the confidence interval is narrowest near the mean value of the
predictor, where the predicted value is the mean of the dependent variable, and it
becomes wider as we depart in either direction from that mean. Thus, we have greater
precision in inferring predicted values near the joint mean of the bivariate distribution
than when we move further away along the horizontal axis.

Two-Parameter Model Comparisons

To conclude this chapter on two-parameter simple regression models, we should note
that MODEL A/MODEL C comparisons are now also possible involving PA – PC > 1.
For instance, suppose we wanted to simultaneously ask about fixed a priori values both
for the intercept and for the slope:

MODEL A: Yi = !0 + !1Xi + "i

MODEL C: Yi = B0 + B1Xi + "i

α

Σ
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b0 ±
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where both B0 and B1 are fixed a priori values (zero or any other value). The resulting
null hypothesis from this comparison has two different components to it:

H0 : !0 = B0; !1 = B1

To illustrate a situation where this sort of model comparison might be of interest,
suppose we had data on the heights of each member of father–son pairs and we wanted
to examine how these two height measures were related. We might estimate a Model A
predicting each son’s height from his father’s height, estimating both the slope and
intercept as in Model A above. This model might then be meaningfully compared with
a Model C in which the intercept was fixed at 0 and the slope at 1, yielding the following
model comparison and null hypothesis:

MODEL A: Yi = !0 + !1Xi + "i

MODEL C: Yi = Xi + "i

H0 : !0 = 0; !1 = 1

Such a comparison asks whether sons and fathers are perfect resemblances of each other
in terms of height. Except for error, Model C assumes that sons’ heights equal their
fathers’ heights.

There is nothing statistically wrong with such a two-parameter model comparison
and such a compound null hypothesis. The resulting PRE and F would be computed in
the same ways as always, albeit with PA – PC = 2 degrees of freedom for the numerator.
Since there is nothing to estimate in Model C, the predicted values and sum of squared
errors from this model could be easily obtained.

The problem comes in interpreting the results. If Model C is rejected in favor of
Model A (i.e., if the null hypothesis is rejected) we will not be able to be confident about
why it was rejected. Maybe it is the case that the a priori value in Model C for the intercept
is wrong. Maybe it is the case that the a priori value in Model C for the slope is wrong.
Maybe both a priori values are wrong. All we can say is that Model A is preferred over
Model C, but we will not know why.

It is for this reason that we prefer model comparisons where PA – PC = 1, where
the numerator of the F statistic has only a single degree of freedom. There is nothing
wrong with statistical tests involving more than one degree of freedom in the numerator
of F, and we will occasionally discuss them and even recommend them. In general,
however, we will refrain from such unfocused model comparisons. We simply note that
in the context of the present two-parameter simple regression model they become
possible for the first time.

SUMMARY

In this chapter we considered models with a single predictor, measured more or less
continuously. We started by considering the definitions of both the intercept and 
slope in such models, with the former being a particular predicted value (when the
predictor equals zero) and the latter being the unit difference between predicted values.
We then provided formulas for estimating these parameters and used these to illustrate
alternative ways of thinking about what a slope estimate means. Finally, we considered
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models in which the predictor is centered or put into mean-deviation form. In such cases,
the slope of the predictor is unchanged while the intercept equals the mean of the data
variable, Y.

The second half of the chapter was devoted to model comparisons, treating the two-
parameter, single-predictor model as Model A and comparing it to an alternative Model
C, testing inferences about the slope and the intercept (and both simultaneously).
Inferential tests of the slope most frequently make comparisons with a Model C that
fixes the slope at zero, thus testing the null hypothesis that the predictor is not a useful
one, or equivalently that the predictor and Y are unrelated to each other. There are
occasions, however, when other null hypotheses about the slope are of interest and we
illustrated these. Inferences about the intercept are most frequently of interest when the
predictor has been centered, thus permitting inferences about the mean of Y. Testing
null hypotheses about the mean of Y will be more powerful in the presence of a predictor
when in fact that predictor is a useful predictor; that is, it explains a significant amount
of variation in Y. This was illustrated by making comparisons with the simplest model
comparisons of Chapter 4.

Notes
1 It is only in the case of a centered predictor in simple regression models that the estimate of

the slope will remain constant regardless of whether the intercept is estimated or fixed at
various a priori values. Unless predictors are centered around their mean, this will generally
not be the case.

2 Importantly, the estimated slope in such a Model C will differ from the estimated slope in
Model A. As we mentioned previously, only when the predictor variable is centered around
its mean will the estimated slope remain the same regardless of whether the intercept is
estimated or fixed. For all other cases, the slope estimate will vary.
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