
To this point we have relied on regression models where the predictor variables have
been treated as continuous variables. Our purpose in this chapter and the following two
is to examine our basic approach to data analysis when predictors are categorical
variables. In the language of traditional statistics books, earlier chapters concerned
multiple regression. The present chapter concerns one-way analysis of variance
(ANOVA) models or, equivalently, models with a single categorical predictor. In the
next chapter we consider models having multiple categorical predictors, or higher order
ANOVA models. Chapter 10 is devoted to models in which some predictors are categor -
ical and some are continuous. Such models have been traditionally labeled analysis of
covariance models. By integrating these into a common approach, we will not only
explore these traditional topics but also consider others that considerably extend the sorts
of questions that we are able to ask of our data, in the context of categorical predictor
variables. Throughout we will continue to use our basic approach to statistical inference,
testing null hypotheses by the comparison of augmented and compact models.

THE CASE OF A CATEGORICAL PREDICTOR 
WITH TWO LEVELS

Figure 8.1 contains hypothetical data from a study in which the impact of a SAT training
course was evaluated. Twenty high-school seniors were randomly assigned to either take
the 2-week training course, designed to improve SAT performance, or to a control no-
course condition. As we can see, 10 students wound up in each of the two groups. At
the end of the 2-week period, all 20 students took the SAT test and their performance
was recorded. What we would like to do is examine whether the course made a difference
in subsequent performance. Our question thus is whether we can reliably predict
subsequent SAT performance as a function of whether a student was in the Course group
or the No Course control group.

If we are to tell the computer to specify a model in which SAT performance is
predicted by which of the two groups a student was in, we need some way of coding or
numerically representing the group variable. This variable is categorical rather than
numerical or continuous, meaning that students in the two groups differ on whether or
not they have taken the course, but no automatic numerical representation of that
difference is implied. Such variables require some coding scheme to represent them
numerically, so that they can be used as predictor variables in models. It turns out that
any numerical representation of this group variable would do, as long as we used that

One-Way ANOVA
Models with a Single Categorical
Predictor
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numerical representation consistently. By consistent
use, we mean that if a given value on the variable that
repre sents group (Course versus No Course) numeric -
ally is assigned to one group, then every student in that
group has that same value on the variable, and no
student in the other group has that value.

To illustrate, suppose we created a variable Xi to
represent group numerically, arbitrarily assigning the
value of –1 to students in the No Course group and 
+1 to students in the Course group. Since every student
is in one group or the other, all students have values
of either –1 or +1 on variable Xi. Notice that our
purpose in creating this variable is simply to differen -
tiate numerically between the two groups. Since group
is a categorical variable, no rank order or interval
information need be preserved in our coding scheme.
We could just as easily have given the value of –1 to
the Course group and +1 to the No Course group.
Similarly, we could have given the value of 203 to
students in the Course group and the value of –20.5 
to students in the No Course group. The point is that
the values that represent the categorical variable are arbitrarily defined, but they must
be consistently used.

Throughout all of the rest of the book we will use a convention for coding nominal
predictors known as contrast codes. Contrast codes are simply one of the possible
arbitrary coding schemes for numerically representing categorical predictors. Two
conditions define contrast codes and differentiate them from other coding schemes. For
now, we will only define one of these two conditions. The other is only relevant when
the categorical variable has more than two categories and will be given later in this
chapter. Let us define a value on a contrast-coded categorical variable Xi as !k (“lambdak”),
where the subscript k refers to the level of the categorical variable being coded. In this
case, k refers to the two levels of the group variable: Course versus No Course. Across
levels of k, or across all categories of the variable, a contrast code is one where:

Notice that we are summing here across levels or categories rather than across individual
observations. In other words, the condition is that the values of the contrast variable sum
to zero across the two categories, not across the individual observations in those two
categories.

In our example, the values of +1 for students in the Course group and –1 for students
in the No Course group constitute values of a contrast-coded variable, since the sum of
these two values across the two categories equals zero. Another valid contrast-coded
variable would use values of +.5 for the Course group and –.5 for the No Course group.
Notice, however, that the values of 203 for the Course group and –20.5 for the No Course
group do not meet the condition for a contrast-coded variable. Note also that in this
example the values of a contrast-coded variable, say +1 and –1, sum to zero not only

k

λk = 0
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FIGURE 8.1 Two-group SAT data

Student Group SAT

1 Course 580
2 Course 560
3 Course 660
4 Course 620
5 Course 600
6 Course 580
7 Course 590
8 Course 640
9 Course 620

10 Course 600
11 No Course 580
12 No Course 530
13 No Course 590
14 No Course 550
15 No Course 610
16 No Course 590
17 No Course 600
18 No Course 530
19 No Course 590
20 No Course 600
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across the two categories but also across the 20 students in those two categories. This
will be the case when a contrast-coded variable is used and when there are an equal
number of observations in the two groups or categories. Had we had more students in
one of the two groups than in the other, then the sum of the values across the two groups
would be zero, but the sum of the values across all the students would not be.

In the following sections, we will use two different contrast-coded predictors to
predict SAT performance with the data presented in Figure 8.1. We will first use 
the values of +1 and –1 and then we will use the values of +.5 and –.5. These possible
values of a contrast-coded predictor are simply two from an infinite number of such
values that might be used. At a later point, we will also briefly discuss the estimation
of models using coding conventions other than contrast codes.

Model Estimation and Inference with a Contrast-Coded Predictor

We start by estimating a model in which we predict SAT performance with a contrast-
coded predictor having values of +1 for students in the Course group and –1 for students
in the No Course group. SAT is thus our Yi variable and our predictor, Xi, is the contrast-
coded predictor. Our model is the simple regression model with a single predictor
variable of Chapter 5. We will want to compare this model, making predictions of SAT
conditional on Xi, with a compact one in which we predict the same value for every
student regardless of whether they were in the Course group or the No Course group:

MODEL A: Yi = "0 + "1Xi + #i

MODEL C: Yi = "0 + #i

Assuming that "1 ≠ 0, the augmented model makes conditional predictions of SAT
performance, conditional on whether students were in the Course group or the No
Course group. On the other hand, the compact model makes the same prediction for all
students, regardless of their group.

The least-squares estimates for these models are:

MODEL A: Ŷi = 591 + 14Xi

MODEL C: Ŷi = 591

Both of these models, as well as the data on which they are based, are graphed in Figure
8.2. The horizontal prediction function is Model C, while the prediction line that makes
differential predictions is Model A. The sums of squared errors of these two models are
16,060 for Model A and 19,980 for Model C.

The calculations of these two sums of squares are shown in Figure 8.3 where we
derive for each observation the predicted value from each model, the residual, and the
squared residual. The sums of these squared residuals, given in the last row of Figure
8.3, are the sums of squared errors for the two models.

The comparison of these two models, asking whether the predictions conditional on
the contrast-coded predictor do a better job than the unconditional predictions, yields:

PRE =
19,980 − 16,060

19,980
=

3920
19,980

= .196
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Model A contains two parameters and Model C one, hence PA – PC equals 1 and
n – PA equals 18. Accordingly, we can compute the F statistic for this comparison either
from the computed value of PRE or from the values of the sums of squares:

F1,18 =
PRE/(PA − PC)

(1 − PRE)/(n − PA)
=

.196/1
(1 − .196)/18

= 4.39

F1,18 =
SSR/(PA − PC)

SSE(A)/(n − PA)
=

3920/1
16,060/18

= 4.39

FIGURE 8.2 Models A and C for the SAT data

FIGURE 8.3 Calculation of SSE for Models C and A

Compact Augmented

Student Group Xi SAT (Yi ) Ŷi ei ei
2 Ŷi ei ei

2

1 Course 1 580 591 −11 121 605 −25 625
2 Course 1 560 591 −31 961 605 −45 2025
3 Course 1 660 591 69 4761 605 55 3025
4 Course 1 620 591 29 841 605 15 225
5 Course 1 600 591 9 81 605 −5 25
6 Course 1 580 591 −11 121 605 −25 625
7 Course 1 590 591 −1 1 605 −15 225
8 Course 1 640 591 49 2401 605 35 1225
9 Course 1 620 591 29 841 605 15 225

10 Course 1 600 591 9 81 605 −5 25
11 No Course −1 580 591 −11 121 577 3 9
12 No Course −1 530 591 −61 3721 577 −47 2209
13 No Course −1 590 591 −1 1 577 13 169
14 No Course −1 550 591 −41 1681 577 −27 729
15 No Course −1 610 591 19 361 577 33 1089
16 No Course −1 590 591 −1 1 577 13 169
17 No Course −1 600 591 9 81 577 23 529
18 No Course −1 530 591 −61 3721 577 −47 2209
19 No Course −1 590 591 −1 1 577 13 169
20 No Course −1 600 591 9 81 577 23 529

SSE(C) = 19,980 SSE(A) = 16,060



These statistics fall just short of their critical values, with 1 and 18 degrees of freedom,
with $ set at .05. Hence, we are unable to conclude that the conditional predictions of
SAT are significantly better than the unconditional one made by Model C.

So far, once we have coded our categorical predictor, there is nothing different about
this simple regression model from those simple models using continuous predictors that
were discussed in Chapter 5. The estimation of the model parameters and the calculations
of PRE and F proceed just as before. Since all of the assumptions underlying the use of
the critical values of PRE and F involve assumptions about the distribution of Yi, or
really of #i, and since the categorical nature of Xi has no effect on the distribution of #i,
none of the assumptions underlying this analysis have been impacted by the use of the
categorical predictor.

What has changed somewhat, however, is the interpretation of the estimated
parameters of the model and, accordingly, the interpretation of the statistical inference
results. It is not the case that the old interpretations (those developed in Chapter 5) are
incorrect, for the value of the intercept in the augmented model, 591, is still the predicted
value of Yi when Xi equals zero. The coefficient for Xi, 14, is still a slope—the amount
by which the predicted value of Yi changes for each unit increase in Xi. And PRE and
F still tell us about the reduction in errors of prediction. Rather, when we have categorical
predictors, new interpretations of these statistics become possible.

To understand these new interpretations, it is helpful to consider the predicted
values that the augmented model makes. These are contained in Figure 8.3. If we are
dealing with a student in the Course group, the predicted value from the augmented
model is:

Ŷ+1 = 591 + 14(+1) = 605

And if we are dealing with a student in the No Course group, the predicted value from
the augmented model is:

Ŷ–1 = 591 + 14(–1) = 577

These predicted values turn out to be the mean SAT scores of the 10 students in each
of the two groups. That is, 605 is the mean SAT score of those students who received
the course, and 577 is the mean SAT score of those students who did not. And given
our use of +1 and –1 as the values of the contrast-coded predictor, the slope associated
with that predictor equals half the difference between the means of the two groups:

Y
–

C – Y
–

NC = Ŷ+1 – Ŷ–1 = 605 – 577
= (591 + 14(+1)) – (591 + 14(–1))
= 14(+1) – 14(–1)
= 2(14)

In general, the least-squares parameter estimate or slope associated with a contrast-coded
predictor is given by:

λ
b =

k
kȲk

k

2
k

λ
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which, in the example at hand, is evaluated as:

This is a very general and useful formula for interpreting the slope associated with any
contrast-coded predictor. The numerator represents a comparison between group means,
in this case the difference between the mean for the Course group and that for the No
Course group, and the denominator is a scaling factor dependent on the specific values
used for the contrast-coded predictor. The important point is that the regression coefficient
associated with any contrast-coded predictor tells us about the difference between group
means, the direction of that difference being determined by which group is coded with
a positive value and which group is coded with a negative value.

The estimated intercept of 591 equals, as always, the predicted value of Yi when Xi

equals zero. Since Xi equals zero halfway between the two values of +1 and –1 that code
the two groups, the estimated value of the intercept is necessarily equal to the average
of the two group means. This result is made clear by the graph of the model in Figure
8.2. It can also be shown algebraically as follows:

Ŷ+1 = Y
–

C = 591 + 14(+1)

Ŷ–1 = Y
–

NC = 591 + 14(–1)

Adding these two equalities gives:

Notice that this interpretation of the intercept in the augmented model, including
the contrast-coded predictor, is not the same as the interpretation of the intercept in the
compact model, the one making unconditional predictions. The intercept in the compact
model is estimated as the mean of all the observations, what we might call the grand
mean, Y

–
, defined as:

On the other hand, the intercept in the augmented model is the mean of the group means,
defined as:

where m is the total number of groups, in this case 2.
In the dataset that we have been using, the values of these two intercepts, one from

the compact model and one from the augmented, are identical, i.e., 591, because there

(−1)577 + (+1)605
(−1)2 + (+1)2 =

28
2
= 14

ȲC + ȲNC = (591 + 14(+1)) + (591 + 14(−1))
ȲC + ȲNC = (2)591

ȲC + ȲNC

2
= 591

b0C = Ȳ =
i

Yi

n

b0A =
k

Ȳk

m
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are an equal number of students in the two groups. In general, however, they estimate
different things. The intercept in the compact model, the one making unconditional
predictions, is the mean of all the observations. The intercept in the augmented model,
the one making predictions conditional on group, is the mean of the group means.

One last result when using contrast-coded predictors is important to know. Just as
the regression coefficient for any contrast-coded predictor can be represented as a
comparison among group means:

so too can the SSR associated with any such predictor be similarly expressed. As always,
the SSR associated with a predictor is the difference between the SSE(A) and SSE(C)
for compact and augmented models with and without that predictor. And, as always,
that SSR equals:

SSR = %(ŶiA – ŶiC)2

In the case of a categorical predictor, as we have seen, the predicted values for the
augmented model in this expression are the group or category means, Y

–
k , and the

predicted value from the compact model is the grand mean of all the observations, Y
–
.

As a result, it is possible to show that the SSR associated with any contrast-coded
predictor can be expressed as a function of the category means (and the number of
observations in each group, nk) as follows:

In the case at hand, we have seen that SSE(C) equals 19,980 and SSE(A) equals 16,060,
resulting in an SSR associated with the contrast-coded predictor of 3920. That is
equivalently computed as:

Estimation with Alternative Values for the Contrast-Coded
Predictor

If we had defined the values of the contrast-coded predictor as +.5 for the Course group
and –.5 for the No Course group, rather than +1 and –1, the estimated model would be:

MODEL A: Ŷi = 591 + 28Xi′

where Xi′ is the new contrast-coded predictor. Importantly, this model makes exactly
the same predictions for students in the two groups, i.e., their respective group means:

b =
k

kȲk

k

2
k

λ

λ

SSR =
k

kȲk

2

k

( 2
k/nk)

λ

λ

((−1)577 + (+1)605)2

((−1)2/10) + ((+1)2/10)
= 3920
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Ŷ+.5 = 591 + 28(+.5) = 605 = Y
–

C

Ŷ–.5 = 591 + 28(–.5) = 577 = Y
–

NC

Accordingly, in a deep sense, it is the same augmented model with the same sum of
squared errors. The slope for the contrast-coded predictor now equals 28 instead of 14,
since now there is a one-unit difference on Xi– that separates the two groups (between
–.5 and +.5) rather than the two-unit difference that separated them on Xi (between +1
and –1). And that slope now equals the difference between the two group means:

Of course, since this Model A is in a deep sense the same as the one where the contrast-
coded predictor had values of +1 and –1, the model comparison of it with the compact
model, making predictions that were not conditional on group, yields the exact same
SSR, PRE and F statistics. Recomputing the SSR for this comparison, using these new
codes and the formula given for the SSR in terms of the group means, gives us:

Equivalence with ANOVA and Two-Group t-Test

The slope in the augmented model, making conditional predictions, informs us about
the difference between the two group means (regardless of the values of !k used to
construct the contrast-coded predictor). Therefore, the comparison of this augmented
model with the compact one making unconditional predictions asks both whether the
parameter associated with the contrast-coded predictor departs from zero and whether
the two group means differ from each other. In other words, the model comparison we
have examined addresses the following equivalent null hypotheses:

H0: "1 = 0

H0: &C = &NC

where &C and &NC are the true but unknown means of the two groups.
In more traditional statistical textbooks, the test of a null hypothesis about the

difference between two group means is usually conducted by computing a two-group
ANOVA or a two-group independent samples t-test. It is therefore important to show
that our model comparison and its associated PRE and F statistics are identical to those
generated by these more traditional approaches.

In Figure 8.4 we give the ANOVA source table for the model comparison we have
just conducted, using the formulas developed in Chapter 5 and earlier. We also provide
the source table using the numeric values generated by our data example.

The formula for the SSR for the model comparison that we have given before is:

λ

λ

b1 =
k

kȲk

k

2
k

=
(−.5)577 + (+.5)605

(−.5)2 + (+.5)2 =
.5(605 − 577)

.5
= 605 − 577 = 28

((−.5)577 + (+.5)605)2

((−.5)2/10) + ((+.5)2/10)
= 3920

SSR =
i

(ŶA − ŶC)2
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summing across all individual observations. In the present case, ŶC is the mean of all
of the observations, Y

–
, and the predicted values from the augmented model, ŶA, are the

two group means Y
–
C and Y

–
NC . Let us generically represent these group means as Y

–
k ,

thereby indicating the group mean for the kth group. Then we can write the above
expression for the sum of squares reduced as:

where nk is the number of observations in the kth group.
We can also re-express the formula for SSE(A) and SSE(C) in terms of means, since

those are the predicted values from each model:

Accordingly, the formulas in the source table that we have used all along for summarizing
our computations of PRE and F (given in the top half of Figure 8.4) can, in this case,
be equivalently written with the formulas used to compute an analysis of variance to
compare group means in traditional statistics textbooks. This revised version of the source
table is given in Figure 8.5.

The names given to the rows in this version of the source table have been changed
to reflect those traditionally used in analysis of variance. So, the sum of squares reduced
and its mean square are traditionally called the sum of squares and mean square between
groups, and the sum of squares and mean square from Model A are traditionally called
the sum of squares and mean square within groups. But fundamentally and algebraically
this is the same source table, yielding the exact same F and PRE, as the one we are more
used to, given in Figure 8.4.

The square root of F is the t statistic (since n – PA =1), with n – 2 degrees of freedom,
that is traditionally called the two-group independent samples t-test.

All of this is simply to demonstrate that our integrated approach to statistical
inference, resting on model comparisons estimated with any least-squares multiple

SSR =
i

(ŶA − ŶC)2 =
i

(Ȳk − Ȳ)2 =
k

nk(Ȳk − Ȳ)2

SSE(A) =
i

(Yi − ŶiA)2 =
i

(Yi − Ȳk)2

SSE(C) =
i

(Yi − ŶiC)2 =
i

(Yi − Ȳ)2
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FIGURE 8.4 ANOVA source tables

Source SS df MS F p PRE

Reduction SSR PA – PC MSR
MSR SSR
––––– –––––
MSE(A) SSE(C)

Error SSE(A) n – PA MSE(A)

Total SSE(C) n – 1 MSE(C)

Source SS df MS F p PRE

Reduction 3920 1 3920.00 4.39 < .10 .196
Error 16060 18 892.22

Total 19980 19 1051.58



regression program, yields the same results as the cookbook recipes given in more
traditional statistical textbooks. Our model comparison in this case, testing whether the
regression coefficient for a single contrast-coded predictor departs from zero, is exactly
equivalent to a two-sample t-test for examining whether the means of two groups differ
from each other.

Confidence Interval for the Slope of a Contrast-Coded Predictor

The formula that we gave in Chapter 6 for the confidence interval for a regression
coefficient continues to be applicable in the situation where predictor variables are
contrast-coded. The confidence interval for the slope associated with any predictor
variable was given there as:

Since the slope of a contrast-coded predictor informs us about the magnitude of the
difference between group means, so its confidence interval also informs us about the
confidence interval associated with that mean difference. To see this, let us take the case
where the contrast-coded predictor used values of –.5 for the No Course group and +.5
for the Course group. The resulting slope in this case equaled 28 and the confidence
interval for that slope is calculated as:

where 4.41 is the critical F value with 1 and 18 degrees of freedom, 892.22 is the mean
square error from our Model A, n – 1 equals 19, the variance of the 20 individuals on
the contrast-coded predictor is 0.263, and its tolerance is of course 1 since it is the only
predictor in the model. This confidence interval can also be written as:

–0.06 ' "1 ' 56.06

Since the parameter that is being estimated here, with this contrast-coded predictor, is
also an estimate of the true mean difference between the two groups, this confidence
interval can be equivalently expressed as

–0.06 ' &C – &NC ' 56.06

b ±
Fcrit MSE

(n − 1)s2
X (tol)

28 ±
4.41(892.22)
19(0.263)1

28 ± 28.06
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FIGURE 8.5 ANOVA source table

Source SS df MS F p PRE

Between 1 MSB MSB SSB
–––– ––––
MSW SST

Within n − 2 MSW

Total n − 1 MST

k

nk (Ȳk − Ȳ)2

i

(Yi − Ȳk)
2

i

(Yi − Ȳ)2



When the contrast-coded predictor used the values of –1 and +1 rather than –.5 and
+.5, the estimated slope was half the difference in the group means (i.e., 14) and its
confidence interval is computed as:

The term that is different in this interval (other than the value of the estimated slope
itself) is the variance of the predictor (coded +1 and –1), which is 1.052 rather than
0.263.

In this case, the confidence interval is given equivalently as:

Thus, it continues to tell us about the confidence interval for the mean difference, except
with these codes of course it is the confidence interval for half the mean difference. If
we multiply this expression by 2, we get the confidence interval for the mean difference.

CATEGORICAL PREDICTORS WITH MORE THAN 
TWO LEVELS

Suppose a developmental psychologist is interested in the effects of feedback about
performance on subsequent motivation to do a task. She hypothesizes that subsequent
motivation will decline if children are told that they earlier failed at the task. To test
this hypothesis, she randomly assigns children to three conditions; in one condition they
are told that they failed on the task; in a second condition they are given no feedback;
and in a third condition they are told they succeeded. The experimenter then monitors
the number of tasks they subsequently complete, after the differential feedback has 
been given. Twenty-four children are run in total, eight in each of the three conditions.
The hypothetical raw data are given in Figure 8.6.

14 ±
4.41(892.22)
19(1.052)1

14 ± 14.03

β

&&

−0.03 ≤ 1 ≤ 28.03

−0.03 ≤ C − NC

2
≤ 28.03
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FIGURE 8.6 Hypothetical experimental data for three conditions (values represent number of
tasks each subject completes)

Failure No Feedback Success

2 4 4
2 3 6
2 4 5
3 5 4
4 5 6
4 2 4
3 4 3
4 3 3

Y
–
k 3.000 3.750 4.375



Contrast Codes for Multilevel Categorical Predictors

In order to examine the effects of feedback on the number of tasks subsequently
completed, we need to derive a coding scheme to represent the three levels of the
categorical feedback variable. We might think that a single variable that codes all three
conditions would be appropriate, giving observations from the Success condition a
higher value on the variable than observations for the No Feedback condition who in
turn receive a higher value than observations from the Failure condition. We could then
see if such a coded variable would be predictive of Yi. The problem with using a single
variable to code the three levels of this categorical variable is that with such a coding
scheme we are assuming that the categories can be ordered in an a priori manner and
that the relationship between the values of the single predictor variable and Yi is a linear
one. While we may have a reason for expecting that Yi should be lower in the Failure
condition than in the other two, we do not have any reason for assigning particular values
to the groups, expecting linear predictions as a function of those particular values. In
other words, a single-predictor variable that codes the three conditions with particular
values does not make much sense, given that we are dealing with a categorical variable
whose levels do not differ in a neat linear way.

To ask whether we can predict Yi as a function of some categorical variable having
in general m levels or groups is equivalent to asking whether there are differences among
the m group means (Y

–
k) across those levels (with k varying from 1 to m). To answer this

question, we need to employ m – 1 contrast-coded predictor variables in our model. We
will then be able to ask about mean differences among the groups, allowing for all possible
orderings of those means. To define these m – 1 contrast-coded predictors, it is now
time to introduce the second defining condition for contrast codes. The first condition,
you will recall, was that for a contrast-coded variable the sum of the ! values across the
groups or levels of the categorical variable must equal zero: %

k
!k = 0. When we use

more than a single contrast-coded predictor to code a categorical variable having more
than two levels, the second condition that must be met is that across levels of the
categorical variable all pairs of contrast codes must be orthogonal to each other. Given
that the first condition is met, this second condition of orthogonality will be met whenever
the sum (across k or the levels of the categorical variable) of the products of the ! values
from pairs of contrast codes equals zero.

In our example, we have three levels of the categorical variable. We will therefore
use two contrast codes to code it. Each value of ! now has two subscripts, the first one
designating which contrast code we are talking about and the second one designating
the level of the categorical variable (k). The condition of orthogonality is met when:

To make this second defining condition of contrast codes more understandable, let us
illustrate codes that do and do not meet it for the example at hand. In Figure 8.7, two
sets of codes, with two codes in each set, are given for coding the three levels of the
categorical predictor variable: Failure, No Feedback, and Success.

Each of the four codes meets the first defining condition for a contrast code, in that
the sum of the ! values for any given code, computed across the three levels of the
categorical variable, equals zero. The second defining condition, however, is only met

k
1k 2k = 0λ λ
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by the codes in Set A. If we multiply the value of !1k by the value of !2k at each of the
levels of the categorical predictor variable and then we add up the resulting three
products, we get a sum of 0 from Set A (i.e., 0 + (–1) + 1 = 0) and a sum of 1 from Set
B (i.e., 0 + 0 + 1 = 1). Accordingly, only the codes in Set A can legitimately be called
contrast codes.

This second defining condition means that a given code cannot be defined as a
contrast code in isolation. We could not, for instance, look at the code for !1k in Set A
and identify it as a contrast code, unless we looked at the other code or codes with which
it is used in combination to code the categorical predictor variable. For instance, if we
changed the values of !2k in Set A to be –1, –1, and 2 for Failure, No Feedback, and
Success, respectively, then the codes in Set A would no longer be contrast codes, even
though we had not changed the values of ! for the first code. This set of codes would
no longer be contrast codes since the sum of the products of the ! values across the
category levels would no longer equal zero.

If our categorical predictor variable had four levels, we would need three contrast
codes to code it completely. The second defining condition for contrast codes would be
met in such a case if the sums of the products of the ! values for all possible pairs of
codes equaled zero. Suppose, for instance, that we had a categorical variable with four
levels, as in Figure 8.8. There we define three contrast codes with values of !1k, !2k, and
!3k. We then have three pairs of codes, and for each of these pairs the sum of the products
of the ! values must equal zero. For codes 1 and 2, the sum of the products of the !jk

values equals (–3)0 + 1(–2) + 1(1) + 1(1) = 0. For codes 1 and 3, the sum of the products
of the !jk values equals (–3)0 + 1(0) + 1(–1) + 1(1) = 0. And for codes 2 and 3, the sum
of the products of the !jk values equals 0(0) + 0(–2) + 1(–1) + 1(1) = 0.

With a categorical predictor having three levels, then, we need two contrast codes
and a single sum of products of ! values must equal zero. With a categorical predictor
having four levels, we need three contrast codes. Those three codes result in three possible
pairs of codes, and hence three sums of products of ! values must equal zero. In general,
with a categorical variable having m levels, we need m – 1 contrast codes to code it.
From these m – 1 contrast codes, there are (m – 1)(m – 2)/2 pairs of codes. This many
sums of products of ! values must equal zero to meet the second defining condition of
contrast codes.

For any given categorical predictor, there are an infinite number of sets of contrast
codes that could be used. The choice of codes to be used should be guided by some
theoretical or substantive notions about how the groups defined by the categorical
predictor variable are expected to differ on the dependent variable. For instance, in the
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FIGURE 8.7 Sets of codes for a three-level categorical predictor

Failure No Feedback Success

Set A
!1k −2 1 1
!2k 0 −1 1

Set B
!1k −1 0 1
!2k 0 −1 1



illustration at hand, we expected subjects in the Failure condition to have lower scores
than subjects in the other two conditions. Since, as we saw in the case of a categorical
predictor with only two levels, the regression coefficient for a contrast code tells us about
the relative mean difference between observations having different values on the contrast
code, it makes sense to derive a code that will allow us to examine this prediction about
mean differences on the dependent variable. In other words, given that we want to see
whether the observations in the Failure condition have lower scores than observations
in the other two conditions, the first contrast code we gave in Set A of Figure 8.7 is one
that we may well choose to examine.

As was the case with a single contrast-coded predictor that codes a categorical
variable with two levels, the regression coefficient associated with a contrast-coded
predictor in the case of a categorical variable with more than two levels tells us about
mean differences among the various groups or levels of the categorical variable, according
to the following formula:

But this will be the case only if a complete set of m – 1 coded predictors are included
in the model and only if the contrast codes used meet the orthogonality condition that
we have just defined. At a later point in this chapter we will discuss estimation in the
presence of nonorthogonally coded predictors. For now, the important point is that slopes
tell us about coded mean differences among the categories only with a complete set of
codes and only with orthogonality.

Based on theoretical considerations, then, we are interested in the comparison that
is made by the first contrast code of Set A in Figure 8.7. With three levels of our
categorical variable and one code chosen, the second code is constrained to be one that
compares the means in the No Feedback and Success conditions, like the second code
in Set A. In general, with m levels of a categorical variable and m – 1 contrast codes,
the final code is constrained once the first m – 2 codes have been defined, in order to
meet the orthogonality condition.

We can use these two codes to define two predictor variables, X1i based on the codes
–2, 1, 1 (for Failure, No Feedback, and Success respectively) and X2i based on the 
codes 0, –1, 1, and then estimate a multiple regression model in which these are used
as simultaneous predictors of Yi. If we did this, we can exactly specify the mean
differences estimated by the two resulting slopes using the formula for the slope of a
contrast-coded predictor in the context of a model with a full set of orthogonal contrast-
coded predictors:

λ

λ
b =

k
kȲk

k

2
k
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FIGURE 8.8 Codes for a four-level categorical predictor

Level 1 Level 2 Level 3 Level 4

!1k −3 1 1 1
!2k 0 −2 1 1
!3k 0 0 −1 1



In general, such slopes will inform us about differences among category means following
the codes used, with the numerator of the above expressions representing the mean
difference, and the denominator representing a scaling factor. Notice that group means
for levels of the categorical variable that are coded with a zero value of ! on a particular
contrast-coded predictor drop out of the numerator of the slope and thus do not figure
in the comparison that is made (i.e., the group mean for the Failure condition does not
play a role in the slope of the second contrast-coded variable).

To show the impact of the scaling factor in the denominator of the slope expression,
had we used fractional values for ! (–2⁄3, 1⁄3, 1⁄3 for X1i′ , and 0, –1⁄2, 1⁄2 for X2i′ ) rather than
those defined above, then the following would be the values of the slopes:

The advantage of such fractional codes is that their slopes will equal the mean differences
rather than fractions of mean differences.

Without practice, it may seem difficult to come up with a set of orthogonal contrast
codes, particularly when dealing with a categorical variable having more than three or
so levels. Our advice is that one should initially create codes that represent mean
comparisons one would like to make theoretically, and then derive the remainder of the
codes so that orthogonality is preserved. One way to do this, once one or more initial
codes have been defined, is to construct further contrast codes that compare category
means that were tied (or received the same value of !) on already used code(s). With
some practice, deriving orthogonal codes becomes a relatively easy task.

In the absence of any motivated comparisons, one can always use a convention called
Helmert codes, regardless of the number of levels. A simple algorithm generates such
codes. If there are m levels of the categorical variable, one defines the first of m – 1
contrast codes by assigning the value of m – 1 to the first level and the value of –1 to
each of the remaining m – 1 levels. For the second contrast code, the first level is given
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the value of 0, the second level is given the value of m – 2, and all remaining levels are
given the value of –1. For the third contrast code, the first two levels of the categorical
predictor are assigned values of 0, the third level is given the value of m – 3, and the
remaining levels are given the value of –1. One proceeds in this manner to define all m
– 1 contrast codes, with the last one having values of 0 for all levels of the predictor
variable except for the last two. These last two levels have values of 1 and –1. The
resulting code values are presented in Figure 8.9.

Estimation and Inference with Multilevel Categorical Predictors

Using the data in Figure 8.6, we estimated the parameters of the following multiple
regression model, with X1i and X2i as contrast-coded predictors, given the values of !
defined by Set A in Figure 8.7:

MODEL A: Yi = "0 + "1X1i + "2X2i + #i

The parameter estimates are:

MODEL A: Ŷi = 3.7083 + .3542X1i + .3125X2i

and the sum of squared errors is 23.375.

Unsurprisingly, the predicted values from this model are the means of the three
categories (given in Figure 8.6) of the categorical independent variable:

ŶF = 3.7083 + .3542(–2) + .3125(0) = 3.000

ŶNF = 3.7083 + .3542(1) + .3125(–1) = 3.750

ŶS = 3.7083 + .3542(1) + .3125(1) = 4.375

As we have said before, a model with a categorical independent variable will make
predictions of the group or category level means whenever a complete set of m – 1 codes
is used as predictors.

We have already discussed the interpretations of the two parameter estimates
associated with the contrast-coded predictors in terms of the category means. Let us
revisit these interpretations now that we have the numerical estimates:
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FIGURE 8.9 Helmert contrast codes

Category level

Code 1 2 3 … m−2 m−1 m

!1k m−1 −1 −1 … −1 −1 −1
!2k 0 m−2 −1 … −1 −1 −1
!3k 0 0 m−3 … −1 −1 −1
! ! ! ! … ! ! !

!m−2k 0 0 0 … 2 −1 −1
!m−1k 0 0 0 … 0 1 −1



And just as we found with a categorical predictor with two levels, the estimated intercept
in this model equals the mean of the three category means:

Although these interpretations for the regression coefficients in models with contrast-
coded predictors are typically the most useful, interpretations we gave earlier for
parameter estimates in multiple regression models continue to be entirely appropriate.
Thus slopes of a predictor can be interpreted as differences in Ŷi values as the predictor
increases by one unit, holding constant other predictors. In the case of the slope for X1i,
as we move from a score of –2 (for the Failure condition) to a score of +1 (for the 
No Feedback and Success conditions) the predicted values go from the mean of the Failure
condition (3.000) to the means in the No Feedback and Success conditions (3.750 and
4.375). Thus, for a three-unit increase in X1i, we go from a predicted value of 3.000 to
one of 4.0625, meaning that the increase in predicted values for a one-unit increase in
X1i is .3542. And for X2i, as we go from a score of –1 to 1, the predicted value goes
from 3.75 to 4.375. Accordingly, per unit increase in X2i, we predict a .3125 increase in
Ŷi. And finally, the intercept equals the predicted value when both contrast-coded
predictors equal zero. When do these predictors equal zero? From the first condition
used to define contrast codes, the mean of each contrast code, across categories, equals
zero. Accordingly, the intercept is the predicted value for the average of the categories.

There are, of course, many Model Cs with which we can compare this model to test
various null hypotheses. One obvious comparison is with the single-parameter simplest
model, estimating just the intercept:

MODEL C: Yi = "0 + #i

and predicting the grand mean, Y
–
, for all the observations. Since, in this example, each

of the levels of the categorical variable has the same number of observations, the overall
grand mean of the 24 observations is the same as the mean of the category means. Hence,
it is the case that the estimated parameter in this Model C is identical to the intercept
in the three-parameter Model A with which we are comparing it:

MODEL C: Ŷi = 3.7083

This estimated Model C has a sum of squared errors of 30.9583.
What exactly is the null hypothesis that is tested by this model comparison?

Obviously it is that the two predictors have slopes of zero, that is, that using them as
predictors does nothing to improve the quality of our predictions:

H0: "1 = "2 = 0
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But this null hypothesis can also be expressed in terms of the equality of the category
means, since Model C predicts the grand mean, Y

–
, for every observation and Model A

makes predictions that are conditional on category membership, predicting the category
mean, Y

–
k , for each observation. Accordingly, the null hypothesis can equivalently be

expressed as:

H0: &F = &NF = &S

where these are the true but unknown means of the three levels of the categorical
independent variable.

The comparison of these two models yields the following values of PRE and F:

And these come just short of beating the critical values for 2 and 21 degrees of freedom.
Hence, we cannot reject the null hypothesis that there are no mean differences among
these three categories or conditions.

This conclusion does not mean, of course, that we should accept the null hypothesis
of no mean differences. And in this case, since we clearly had an expectation that the
mean in the Failure condition would be less than the mean in the other two conditions,
we should certainly proceed to directly test that hypothesis, which is the comparison
made by the first contrast-coded predictor. Within the analysis of variance tradition, it
is sometimes maintained that one should not test specific focused comparisons among
category means unless the overall multiple-degree-of-freedom test that we have just
conducted—that there are no mean difference among the categories—is rejected. We
strongly disagree with this point of view. For reasons we have explained earlier, we are
generally not enamored of model comparisons where PA – PC is > 1. One of the distinct
advantages of a regression-based approach to traditional analysis of variance procedures
is that one is forced to construct individual one-degree-of-freedom comparisons or con -
trasts among group means. Many traditional ANOVA programs automatically provide
only the omnibus, multiple-degree-of-freedom test, and this, we think, is a distinct
disservice.

As we have seen, the regression coefficients for X1i and X2i estimate particular
differences among category means, the first comparing the Failure mean with the average
of the No Feedback and Success means, and the second comparing the No Feedback
and Success means. Hence, model comparisons that test whether these two parameters
depart from zero are equivalently tests of mean differences among the three categories.
Specifically, one model comparison is whether the parameter associated with X1i equals
zero:

MODEL A: Yi = "0 + "1X1i + "2X2i + #i

MODEL C1: Yi = "0 + "2X2i + #i

PRE =
30.9583 − 23.3750

30.9583
= .245

F2,21 =
PRE/(PA − PC)

(1 − PRE)/(n − PA)
=

.245/2
(1 − .245)/21

= 3.406

F2,21 =
SSR/(PA − PC)

SSE(A)/(n − PA)
=

7.583/2
23.375/21

= 3.406
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with the following equivalent null hypotheses:

H0: "1 = 0

H0: &F = (&NF + &S)/2

And the other model comparison tests whether the parameter associated with X2i equals
zero:

MODEL A: Yi = "0 + "1X1i + "2X2i + #i

MODEL C2: Yi = "0 + "1X1i + #i

with the following equivalent null hypotheses:

H0: "2 = 0

H0: &NF = &S

Model A for both of these comparisons is the same three-parameter augmented model
that we estimated earlier, with a sum of squared errors of 23.375. Model C1 for the first
comparison is estimated as follows:

MODEL C1: Ŷi = 3.7083 + .3125X2i

with a sum of squared errors of 29.396. And Model C2 for the second comparison is
estimated as follows:

MODEL C2: Ŷi = 3.7083 + .3542X1i

with a sum of squared errors of 24.937. Note that the estimated intercept and slope in
these models are unchanged from what they were in the Model A with both predictors.
This results from the conjunction of two conditions: First, we have employed contrast-
coded predictors, which by definition are orthogonal at the level of the three categories.
Second, we have an equal number of observations in each of the three conditions. As a
result of these two conditions, the contrast-coded predictors are uncorrelated with each
other across the 24 individual observations. Their tolerance in Model A is 1.00.

The first model comparison, asking whether "1 differs from zero, yields the following
PRE and F statistics:

This F statistic exceeds the critical value of F with $ at .05. Hence, we conclude that
"1 differs significantly from zero. Equivalently, we conclude that the mean value of 
Yi in the Failure condition is significantly different from the average of the mean values
in the Success and No Feedback conditions. Since the sample mean in the Failure
condition is less than the average of the other two sample means, we conclude that 
Failure feedback in this study decreases subsequent performance relative to Success and
No Feedback.

The test of the second null hypothesis, that "2 equals zero, yields the following PRE
and F statistics:

PRE =
29.396 − 23.375

29.396
= .205

F1,21 = 5.41
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Since this F does not exceed its critical value, we conclude that "2 does not differ
significantly from zero. Equivalently, we cannot conclude that the mean performance
under the Success condition is different from that under No Feedback.

Earlier in this chapter we gave a general formula for the SSR due to a contrast-
coded predictor expressed in terms of the category means:

This expression for the SSR of a contrast-coded predictor continues to apply in the case
of categorical variables with more than two levels, as long as a full set of m – 1 contrast-
coded predictors is included in Model A. Thus, in the present case, we have seen that
the SSR for the Model A/Model C1 comparison that tested whether "1 equaled zero was
equal to:

SSRX1
= SSE(C1) – SSE(A) = 29.396 – 23.375 = 6.021

This can be obtained equivalently in terms of the category means as:

Likewise, we saw that the SSR for the Model A/Model C2 comparison that tested whether
"2 equaled zero was equal to:

SSRX2
= SSE(C2) – SSE(A) = 24.937 – 23.375 =  1.562

This can be obtained equivalently in terms of the category means as:

We have now done three different tests comparing the augmented model, which
includes both contrast-coded predictors, with three different compact ones. The results
of these three tests are presented in Figure 8.10. Notice that we have given labels, in
parentheses, for each of these tests to indicate the questions they are examining in terms
of the group means. The two-degree-of-freedom test, done first, comparing Model A to
a Model C that predicted the grand mean for all observations, was an omnibus test of
any group mean differences. The second, comparing models with and without X1i as a
predictor, examined whether the mean in the Failure condition differed from the average
of the two in the other conditions. And the third, comparing models with and without
X2i as a predictor, examined whether the means in the No Feedback and Success
conditions differed. We want to emphasize again that even though the two-degree-of-

PRE =
24.937 − 23.375

24.937
= .063

F1,21 = 1.40
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((−2)3.00 + (+1)3.750 + (+1)4.375)2
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freedom test did not prove to be significant, we did find a significant mean difference
when we tested the more focused contrast question represented by X1i. As always, we
strongly encourage focused PA – PC = 1 model comparisons.

As the sums of squares in this source table show, the SSRs for the individual predictor
variables sum to the SSR for the first model comparison, where the overall augmented
model was compared to a compact single-parameter model, predicting the grand mean
for all observations. As we saw in Chapter 6, this will be the case whenever predictors
are completely nonredundant, with tolerances of 1.0. In the present case, this results
from the conjunction of two conditions: the use of contrast-coded predictors, which are
by definition orthogonal at the level of the groups or categories; and the fact that each
category contains the same number of observations.

A Quick Look at Alternative Contrast Codes

Earlier we stated that there were many, many possible sets of contrast codes that could
be used to code a categorical predictor. Let us examine the same data that we have been
focusing on using a different set of codes. Suppose we now define our contrast codes
as follows:

Failure No Feedback Success

!1k –1 0 1
!2k –1 2 –1

To differentiate these codes from the earlier set, we define Z1i and Z2i as contrast-coded
predictors, assigning individuals the indicated values to represent category membership.
We then regress Yi on Z1i and Z2i with the estimated parameters:

Ŷi = 3.7083 + .6875Z1i + .0208Z2i

While the parameter estimates for the two contrast-coded predictors in this model are
quite different from those that we estimated using the earlier set, in a deeper sense this
model is equivalent to the model we developed under the old set of codes. Substituting
for the values of Z1i and Z2i, we see that the group or condition means continue to be
the predictions made by the model for all observations:

ŶF = 3.7083 + .6875(–1) + .0208(–1) = 3.000

ŶNF = 3.7083 + .6875(0) + .0208(+2) = 3.750

ŶS = 3.7083 + .6875(+1) + .0208(–1) = 4.375
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FIGURE 8.10 Summary source table

Source b SS df MS F PRE

Model (between conditions) 7.583 2 3.792 3.406 .245
X1 (Failure vs. No Feedback, Success) .3542 6.021 1 6.021 5.409 .205
X2 (No Feedback vs. Success) .3125 1.562 1 1.562 1.403 .063
Error 23.375 21 1.113

Total 30.958 23



Since the model makes the same predictions for all observations as the model with the
previous set of contrast-coded predictors, the sum of squared errors is identical to what
it was before, that is, 23.375.

The regression coefficients for the contrast-coded predictors have changed since the
new contrast codes are making different comparisons among condition means from the
comparisons made by the old set of codes. The contrast-coded predictor Z1i is now
comparing the means in the Success and Failure conditions. The value of its regression
coefficient equals half the difference between these two group means. The second
contrast-coded predictor, Z2i, compares the mean in the No Feedback condition with the
average of the means of the other two conditions. Its regression coefficient equals one-
third of the difference between the mean in the No Feedback condition and the average
of the other two means. These values for the regression coefficients are easily derived
using the formula we gave earlier for the regression coefficient for a contrast-coded
predictor. They also follow immediately once we realize the comparisons made by the
contrasts and the number of units that separate observations in the various conditions
on Z1i and Z2i. The intercept has not changed in value as a result of the new set of codes.
It still equals the mean of the three condition means, as it will whenever a full set of
contrast-coded predictors is used.

Since the change in codes has not changed the predicted values or the sum of squared
errors for this model, a test of the null hypothesis that both "1 and "2 equal zero produces
the same values of PRE and F as it did under the old set of codes. The compact single-
parameter model is:

MODEL C: Ŷi = 3.7083

with a sum of squared errors of 30.958. PRE continues to equal .245, which converts
to an F of 3.406 with 2 and 21 degrees of freedom. Thus, a test of the omnibus null
hypothesis—that all of the condition means equal one another—reaches the same
conclusion regardless of our choice of contrast codes.

Single-degree-of-freedom tests of whether "1 or "2 equals zero, however, reach rather
different conclusions than they did before. These regression coefficients now estimate
different comparisons between the condition means from those estimated with the earlier
set of contrast codes. A test of whether "1 equals zero is now equivalent to a test of
whether the means in the Failure and Success conditions are equal to each other. The
compact model for this test is:

MODEL C1: Ŷi = 3.7083 + .0208Z2i

with a sum of squared errors of 30.938. The resulting PRE equals: 

which converts to an F statistic of 6.793 with 1 and 21 degrees of freedom. Since this
exceeds the critical value, our test reveals both that "1 is significantly greater than zero
and that the mean in the Success condition is significantly greater than the mean in the
Failure condition. As before, the sum of squares reduced associated with this contrast-
coded predictor can be computed as a function of the relevant condition means that are
being compared:

30.938 − 23.375
30.938

= .244
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The test of whether "2 differs from zero is equivalently a test of whether the No Feedback
mean is significantly different from the average of the Failure and Success means. The
compact model for this test is:

MODEL C2: Ŷi = 3.7083 + .6875Z1i

with a sum of squared errors of 23.396. The resulting PRE equals .001, which converts
to an F of 0.019 with 1 and 21 degrees of freedom. Clearly, the difference between the
No Feedback mean and the average of the means in the other two conditions is not
significant. As before, the SSR for this comparison can be directly calculated from the
condition means:

Since these two new contrast-coded predictors are nonredundant, just as were the
earlier two, the two SSRs explained by each predictor over and above the other can be
added to equal the SSR explained by them both as a set. The three tests we have just
conducted can be summarized in Figure 8.11. Note that the only changes in this source
table compared to the one using the earlier set of contrast codes (Figure 8.10) occur in
the two rows of the table testing the specific comparisons made by the coefficients
associated with Z1i and Z2i. All we have done is divide up the sum of squares between
conditions (7.583) differently here, focusing on a different set of contrasts. As we have
said before, with m category levels, there are only m – 1 orthogonal contrasts or
comparisons that can be used. And whether we use these codes or those we discussed
earlier is only a matter of theoretical preference.

SSRZ1
=

[(−1)3.00 + (0) 3.750 + (+1)4.375]2

(−1)2/8 + (0)2/8 + (+1)2/8
= 7.562

SSRZ2
=

[(−1)3.00 + (+2)3.750 + (−1)4.375]2

(−1)2/8 + (+2)2/8 + (−1)2/8
= 0.021

190 Data Analysis: A Model Comparison Approach

FIGURE 8.11 Summary source table

Source b SS df MS F PRE

Model (between conditions) 7.583 2 3.792 3.406 .245
Z1 (Failure vs. Success) .6875 7.562 1 7.562 6.793 .244
Z2 (No Feedback vs. Failure, Success) .0208 0.021 1 0.021 0.019 .001

Error 23.375 21 1.113

Total 30.958 23

Problems and Pitfalls in Using Nonorthogonal Codes

Suppose we were interested in asking the following two questions of these data, coded
by the following set of codes:

Failure No Feedback Success

!1k –2 +1 +1
!2k –1 0 +1



The first question is whether the Failure mean differs from the average of the means
in the other two conditions. This was the first of the codes that we used in our first set,
used to create the predictor X1i. The second is whether the means in the Failure and
Success conditions differ. This was the first of the codes that we used in our second set,
used to create the predictor Z1i. As we have seen, these are perfectly legitimate questions
that we might want to ask of these data, but they are not orthogonal questions about the
mean differences, as revealed by the fact that the second condition for contrast codes is
not met by these two codes if we use them simultaneously:

It is for this reason that we have not called them “contrast codes” when we think about
them as a set. But, of course they are perfectly valid questions to ask of the data, albeit
nonorthogonal.

If we were interested in these two questions, we might be tempted to use the two
resulting predictors, X1i and Z1i, created with these codes to simultaneously predict Yi,
even though the codes themselves are not orthogonal. The resulting model would be:

Ŷi = 3.7083 + .0417 X1i + .6250Z1i

This model, even with these nonorthogonal codes, is the same in a deep sense as the
earlier model, in that it makes the same predictions of the condition means for every
observation:

ŶF = 3.7083 + .0417(–2) + .6250(–1) = 3.000

ŶNF = 3.7083 + .0417(+1) + .6250(0) = 3.750

ŶS = 3.7083 + .0417(+1) + .6250(+1) = 4.375

And, as a result, it has the same sum of squared errors, 23.375. A model comparison
between it, as Model A, and the single-parameter Model C, making a constant prediction
for all observations, thus still provides the omnibus two-degree-of-freedom test about
whether there are any differences among the category means. The resulting test of the
overall model is summarized in the first row of the source table given in Figure 8.12
(PRE = .245, F(2,21) = 3.406). Both this row and the final two rows of the table are
identical to what they were in the earlier source tables that we presented from these 
data. However, when we estimate the model in a regression program and examine 
the regression coefficients for the individual predictor variables and their respective 
SSRs, as given in the source table of Figure 8.12, they are not the values that we might
expect.

λ λ
k

1k 2k = (−2)(−1) + (+1)(0) + (+1)(+1) = +3
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FIGURE 8.12 Summary source table using nonorthogonal codes

Source b SS df MS F PRE

Model (between conditions) 7.583 2 3.792 3.406 .245
X1 .0417 0.021 1 0.021 0.019 .001
Z1 .6250 1.562 1 1.562 1.403 .063

Error 23.375 21 1.113

Total 30.958 23



The coefficient for X1i, when it was embedded in an orthogonal set of contrast-coded
predictors (i.e., with X2i), equaled .3542, which was shown to be:

and its associated SSR was 6.021, which was shown to equal:

Now, however, when it is used to predict Yi along with the nonorthogonal predictor Z1i,
its estimated coefficient equals .0417 and its SSR equals 0.021.

Similarly, the coefficient for Z1i in this model equals .625, whereas its coefficient
when used in the orthogonal set with Z2i equaled .687, which was half the difference
between Y

–
S and Y

–
NF. And now its SSR equals 1.562, whereas earlier, when used in the

orthogonal set with Z2i, its SSR was 7.562, which was shown to equal:

The important point is that predictors that code the levels of a categorical independent
variable will not yield coefficients that equal the expected mean differences and their
associated SSRs unless a full set of orthogonal contrast-coded predictors is used. In other
words, the following important equalities will not hold, unless a full set of contrast-
coded predictors is included in the augmented model:

Serious interpretative errors can ensue if one thinks that a given categorical predictor
codes a particular mean difference when it is embedded in a nonorthogonal set.
Orthogonality here depends solely on meeting the second defining condition of contrast
codes—that the sum of the products of their coded values across category levels equals
zero. As we will show, unequal numbers of observations can result in redundant contrast-
coded predictors, redundant across observations, but this creates no interpretative
problems as long as the codes are themselves orthogonal contrasts.

Given this, how might one proceed if one really were interested in testing the
nonorthogonal questions of whether the Failure mean differs from the average of the

ȲNF + ȲS

2
− ȲF

3

((−2)ȲF + (+1)ȲNF + (+1)ȲS)2

(−2)2/8 + (+1)2/8 + (+1)2/8

((−1)ȲF + (0)ȲNF + (+1)ȲS)2

(−1)2/8 + (0)2/8 + (+1)2/8
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No Feedback and Success means (i.e., the question implicit in the X1i codes) and of
whether the Failure and Success means differ (i.e., the question implicit in the Z1i

codes)? Obviously, one could test these sequentially by specifying two models, one using
both X1i and X2i as predictors and the other using Z1i and Z2i as predictors, just as we
did in the earlier sections. Alternatively, one could simply rely on two bits of knowledge
to test the mean differences implied by these contrasts without doing both estimations.
First, as we have shown, the SSE(A) for a Model A that incorporates any complete set
of contrast-coded predictors will be the same regardless of the specific set of such
predictors used. Second, if a given contrast-coded predictor were included in a complete
set of contrast-coded predictors, its SSR would be given by the following formula:

Accordingly, in the case at hand, had one simply estimated the model that included X1i

and X2i as predictors, one would have known that the SSE(A) for a model that used any
full set of contrast-coded predictors would equal 23.375 with 21 degrees of freedom.
One then could calculate the SSR associated with Z1i if it were embedded in a full set
of contrast-coded predictors, that is:

Then one could calculate the values of PRE and F that would result if one tested Z1i in
the context of a complete set of contrast-coded predictors:

When doing this, one should recognize that the questions represented by these two
contrast codes are not independent. The question of whether the Failure mean differs
from the No Feedback and Success means is not entirely independent of the question
of whether the Failure and Success means differ from each other. The answer to one is
partially informative about the answer to the other.

Dummy Codes

There is another coding convention, known as dummy coding, that is widely used in
some of the literature. Under this convention, one of the groups defined by the categorical
variable is given values of zero on all m – 1 codes, and the other groups are given values
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=
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= 7.562

PRE =
7.562

23.375 + 7.562
= .244

F1,21 =
7.562/1

23.375/21
= 6.793
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of zero on all but one of the codes. So, for instance, in the case at hand the following
codes are consistent with this convention:

Failure No Feedback Success

!1k 0 +1 0
!2k 0 0 +1

Obviously dummy codes do not meet either of the conditions that define contrast 
codes. As a result, it takes care to interpret exactly what is examined when one uses
such codes to form predictor variables. One might think that a predictor that uses the
first codes above would be comparing the No Feedback group to the other two groups 
and that a predictor that uses the second code above would be comparing the Success
group with the other two groups, but in fact the regression coefficients for these two
coded predictors, if included simultaneously, would each be asking whether the 
group coded zero on both codes differs from the group coded with a 1 for the predictor
that is being examined. So, the predictor with the first code would examine the Failure–
No Feedback difference and the predictor with the second code would examine the
Failure–Success difference.

Because of the fact that interpretive mistakes can follow from the use of dummy
codes, unless one is thoroughly familiar with them, we strongly recommend that
researchers adopt the contrast-coding convention that we have explicated and that we
will use in the remainder of this book.

CONTRAST CODES WITH UNEQUAL CELL SIZES

Historically, the procedure of ANOVA to detect mean differences was developed for
data from experimental designs in which there were equal numbers of observations in
every cell or condition of the design. In this sense, it was developed as an arithmetic
shortcut, based on the assumption that predictors would be nonredundant. Of course,
with the wide availability of computer programs that permit the estimation of linear
regression models with partially redundant predictors, the assumption of nonredundant
predictors is no longer necessary and, as we have just shown, ANOVA is easily
implemented within general purpose multiple regression procedures, even with unequal
numbers of observations in the various conditions.

In this section we present a new example with four levels of a categorical variable
having unequal numbers of observations in each level or category. The bottom line is
that, as long as estimation is done with a full set of contrast-coded predictors, all inter -
pretations that we have previously given continue to be applicable, even though with
unequal n values those predictors will be partially redundant across observations.

Let us assume that you are in a Psychology Department of a major university in
which there are four PhD programs to which students are admitted every year: Clinical,
Developmental, Experimental, and Social. The number of students who are admitted
varies across the programs. Your question is whether there are mean differences in 
the verbal Graduate Record Examinations (GREs) of admitted students across the four
programs. The data for a given year are presented in Figure 8.13, along with the 



four group means and the contrast-coded predictors that we will use. We simply use the
Helmert coding convention here to derive these codes, as we have no strong expectations
about where mean differences might be found.

We create three contrast-coded predictors, X1i, X2i, and X3i, using these codes. We
then proceed to estimate a Model A in which these three are used to predict verbal GRE
scores:

Ŷi = 680.875 + 13.042X1i – 8.917X2i – 19.250X31

This model has a sum of squared errors of 21,595 and makes predictions of the category
means for all observations.

The model’s parameter estimates can be interpreted as we have done previously,
based on the fact that we used a full set of contrast-coded predictors, even though those
predictors are now partially redundant because of the unequal numbers of observations
(i.e., the tolerances of all three predictors are less than 1.0).

The intercept, 680.875, is the mean of the four category means. It is not the mean
of all 19 observations, which equals 687.778. The values of the three slopes equal
differences among the category means, according to the following formulas:
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FIGURE 8.13 Hypothetical GRE scores, group means, and contrast codes

Program

Clinical Developmental Experimental Social

750 700 640 690
730 630 660 720
710 620 710 750
690 620 670
670 650
770

Y
–

k 720 650 657.5 696
nk 6 3 4 5
!1k 3 −1 −1 −1
!2k 0 2 −1 −1
!3k 0 0 1 −1
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FIGURE 8.14 Summary source table for analysis of GRE scores

Source b SS df MS F PRE

Model (between groups) 14,516.00 3 4838.70 3.14 .40
X1 (C vs. D, E, S) 13.04 10,727.00 1 10,727.00 6.95 .33
X2 (D vs. E, S) −8.92 1605.00 1 1605.00 1.04 .07
X3 (E vs. S) −19.25 3293.89 1 3293.89 2.14 .13

Error 21,595.00 14 1542.5

Total 36,111.00 17

Figure 8.14 presents the source table that results from a comparison of this Model A
with four different Model Cs. The first row of the table is a comparison between this
Model A and the single-parameter Model C that predicts the grand mean for all
observations. The null hypothesis for this comparison is that all the group means are
equal to each other. The second row of the table gives the model comparison between
this Model A and a Model C that omits the X1i predictor. The null hypothesis here is
that "1 equals zero or, equivalently, that the mean of the Clinical group (C) is equal to
the average of the means of the other three groups. The third row of the table gives the
model comparison between this Model A and a Model C that omits the X2i predictor.
The null hypothesis here is that "2 equals zero or, equivalently, that the mean of the
Developmental group (D) is equal to the average of the means of the Experimental (E)
and Social (S) groups. And the fourth row of the table gives the model comparison
between this Model A and a Model C that omits the X3i predictor. The null hypothesis
here is that "3 equals zero or, equivalently, that the mean of the Experimental group is
equal to the mean of the Social group. All the resulting SSRs for these single-degree-
of-freedom comparisons can be expressed in terms of the means, according to the
formula we have frequently used before:

In short, all interpretations and computations explicated in this chapter for the
analysis of a categorical independent variable apply regardless of whether there are equal
numbers of observations across the levels of the categorical variable, as long as (once
again) a full set of contrast-coded predictors is employed. The only thing that differs in
this example from those presented earlier, as a function of the unequal values of nk, is
that the sums of squares for the individual single-degree-of-freedom tests in the above
source table cannot be added up to equal the overall SSR for the model as a whole. 
In this case, the sum of the SSRs for the single-degree-of-freedom comparisons equals
15,625.89, while the overall test of the model yields an SSR of 14,516. This difference
is due to the fact that across observations the predictors are now somewhat redundant.
But all model comparisons and interpretations remain as they have been all along
throughout the chapter.
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kȲk

2

k

( 2
k/nk)



ORTHOGONAL POLYNOMIAL CONTRAST CODES

Sometimes the observations fall into discrete categories
on an independent variable of interest even though the
underlying variable itself can be thought of as a con -
tinuum. For instance, suppose we were interested in age
differences among elementary school children in their
performance on a standardized arithmetic test. We take
children from three different elementary school classes,
those in the fourth, fifth, and sixth grades, and give them
the standardized test. We then want to know if there are
class mean differences. Our conceptual independent
variable of interest is the children’s age, but what we
measure is their year in school and observations are
clearly in three distinct categories on this measured
variable.

Imagine that we had data from the 14 children given in Figure 8.15. In cases like
this one, there is a special set of contrast codes that are sometimes useful for assessing
trends in category means. These special codes are really just regular contrast codes, but
they have the special name of “orthogonal polynomials” when values on the categorical
independent variable can be ordered on some underlying continuum, as they clearly can
in this case. In Figure 8.16 we present orthogonal polynomial contrast codes for
categorical predictors having up to five levels.

As we indicate there, these codes have names that refer to the trend in the category
means, across levels of the categorical independent variable, that they examine. So, 
with a two-level categorical variable, we can only examine whether the means go up or
down, in essence fitting a linear function to the category means. With three levels, we
can fit both a linear trend to the three category means and also ask whether the mean of
the middle level is higher or lower than it ought to be given a simple linear ordering
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FIGURE 8.15 Hypothetical scores on
standardized arithmetic test

Grade

Fourth Fifth Sixth

68 68 80
72 75 75
76 68 78
65 72
70 65

80
69

Y
–

k 70.20 71.00 77.67
nk 5 7 3

FIGURE 8.16 Orthogonal polynomial contrast codes

Trend Category

1 2
Linear −1 1

1 2 3
Linear −1 0 1
Quadratic −1 2 −1

1 2 3 4
Linear −3 −1 1 3
Quadratic 1 −1 −1 1
Cubic −1 3 −3 1

1 2 3 4 5
Linear −2 −1 0 1 2
Quadratic 2 −1 −2 −1 2
Cubic −1 2 0 −2 1
Quartic 1 −4 6 −4 1



(the quadratic trend). With four levels, we can fit not only linear and quadratic trends,
but also a cubic one, having two bends rather than one. And so forth.

With the three-level categorical variable in our data, let us use the two codes from
the orthogonal polynomials to fit the linear and quadratic trends to these data. We create
two contrast-coded predictors, X1i and X2i, using the codes specified in Figure 8.16 for
a three-level categorical variable (4th grade is category level 1, etc.). The estimated model,
using these to predict the standardized test scores, is:

Ŷi = 72.96 + 3.73X1i – .98X2i

with a sum of squared errors of 237.47. Of course this model, with a full set of contrast
codes, exactly predicts the group means:

Y
–

4th = 72.96 + 3.73(–1) – 0.98(–1) = 70.20

Y
–

5th = 72.96 + 3.73(0) – 0.98(+2) = 71.00

Y
–

6th = 72.96 + 3.73(+1) – 0.98(–1) = 77.67

And as always the parameter estimates can be interpreted in terms of the group means.
The intercept, 72.96, is the mean of the three means, 3.73 is half the difference between
Y
–

6th and Y
–

4th and –0.98 is one-third of the difference between Y
–

5th and the average of
the other two group means. The source table that summarizes the analysis of these data
is given in Figure 8.17.

So far, there is nothing new about this model or its interpretations. So why do we
refer to the codes we have used as orthogonal polynomials? The reason is that the slope
of the first one is the slope that results if we were to fit a straight line to the three group
means, going from the fourth grade up to the sixth grade. And the slope of the second
contrast-coded predictor estimates the degree to which the group mean for the fifth grade
does not lie on that prediction line, that is, the degree to which that prediction function
deviates from a straight line if it is to predict all three group means. Given the significance
of the coefficient associated with X1i, we can conclude that there is a linear increase in
performance on the standardized test as we go up from children in the fourth grade to
children in the sixth grade.

An obvious question is how these results would differ from what would be obtained
if we simply regressed Yi on Grade itself, treated as a continuous variable, numerically
coded as 4, 5, and 6. Such a model would be a simple regression model, asking if there
is a linear relationship between Grade and test performance. It is estimated as:

Ŷi = 55.62 + 3.38Gradei

with a sum of squared errors of 268.62. A test of whether there is a linear relationship
between grade and performance yields an SSR of 88.31, PRE = .25, and F = 4.27 with
1 and 13 degrees of freedom. In this model, the slope associated with the Grade predictor
variable informs us about the degree to which predicted performance on the standardized
math test increases as grade goes up by one unit, that is, from fourth to fifth and from
fifth to sixth.

While these are obviously different models in a variety of ways, the important
conceptual difference is that in the one using the orthogonal polynomial contrast codes
we are predicting the group means and asking about differences among those group
means. And in the simple linear regression model, using Grade as our predictor, we are
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simply fitting a linear function to all the individual observations, rather than to the group
means. Given that the group sizes are very unequal, modeling the group means and
modeling the individual observations yield different results.

TYPE I ERROR RATES IN TESTING MEAN DIFFERENCES

Earlier we discussed the general strategy for testing any mean difference that was of
interest in designs with multiple levels (m) of a categorical independent variable. One
first derives a full set of contrast codes (m – 1 of them) and uses them to estimate an
augmented model, which predicts the category means. This model provides tests of the
specific mean differences that were used as codes for the predictors. Importantly, it also
provides the SSE(A) and the mean square error for any model that used a full set of
codes, regardless of which set was used. Then, for any additional mean comparison of
interest, one calculates the SSR associated with that contrast as if it were used as a
predictor in a complete set of orthogonal contrast-coded predictors:

Dividing this SSR by the MSE from the estimated model yields the F statistic associ-
ated with the mean comparison of interest, and the PRE for that comparison can be
calculated as:

When there are more than two or three levels of the categorical variable, the number
of potential mean differences that might be tested can become very large. For instance,
with only four levels, one could in theory test the means of individual groups against
each other, the means of all pairs of groups against each other, the mean of each triad
of groups against the mean of the remaining group, and so forth. A problem that arises
in this case, where many mean differences might be tested, is that the probability of a
Type I statistical error may become unacceptably large. While $ may be set at .05 for
any one mean comparison, across many such comparisons the probability that somewhere
a Type I error has been committed can quickly become quite large. For instance, if we
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FIGURE 8.17 Summary source table for analysis of arithmetic scores

Source b SS df MS F PRE

Model (between groups) 119.47 2 59.73 3.019 .34
X1 3.73 104.506 1 104.506 5.28 .31
X2 −0.98 31.17 1 31.17 1.57 .12

Error 237.47 12 19.79

Total 356.93 14



had four groups and we asked whether each mean differed from each other mean, that
would be six contrasts tested (in addition to others included in the orthogonal set of
codes used initially to generate Model A). If on each test $ was set at .05, across the
six tests, the probability that we would make at least one Type I error is equal to:

1 – (1 – .05)6 = 1 – .956 = .265

In other words, even if the null hypothesis were true and all the true group means were
equal to each other, at least one of the six mean comparisons would be significant more
than a quarter of the time. In the ANOVA literature many different procedures have
been developed for dealing with this issue. We focus on only two of them, and the crucial
difference between these two is whether the mean comparison that is tested is a planned
comparison or a post hoc comparison.

Planned comparisons

Planned comparisons are those that the researcher had theoretical or substantive reasons
for examining before conducting the experiment. In other words, the researcher specified
all the planned comparisons of interest before collecting or examining the data. Ideally,
as many of these planned contrasts as possible would be included in the set of orthogonal
contrast-coded predictor used to generate the initial Model A. Regardless, one adds up
the number of comparisons that one intends to examine, both in the initial model and
in the other models of theoretical interest. Let us say that number is c. To keep $ at .05
across all c tests, one wants to compare each obtained F to a critical value of F, using
$/c to determine the critical F. So, for instance, if there are six tests to be conducted,
one would use a critical value of F at .05/6 = .0083 rather than at .05.1

Post hoc comparisons

Post hoc comparisons are those that do not occur to us until after we have examined the
data. Often when looking at the data certain comparisons that we did not anticipate appear
to be interesting. It is natural to want to test those interesting, unanticipated contrasts.
However, it is impractical to use the above procedure for planned comparisons because
when looking at the data we are implicitly doing many, many comparisons—all those
that do not strike us as interesting—that ought to be included in c, the total number of
comparisons made. Instead of trying to count all those implicit comparisons, standard
practice is to compare F to the following critical value developed by Scheffé (1959):

(m – 1)Fcrit;m–1,n–PA;$

There are two important features of using the Scheffé adjusted critical value. First, the
overall probability of making at least one Type I error will remain at $ no matter how
many contrasts are evaluated using the adjusted critical value. Thus, the researcher can
do as much snooping and exploring with contrasts as desired without undue risk of
making Type I errors. Second, there will be at least one contrast whose F exceeds the
Scheffé adjusted critical value if and only if the omnibus test, comparing Model A to a
Model C that predicts the grand mean for all observations, is statistically significant.
Thus, if the omnibus test is not significant, then there is no point in evaluating any post
hoc contrasts using the Scheffé criterion.
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POWER ANALYSIS FOR ONE-WAY ANOVA

Estimating Statistical Power

The advantage of consistently adhering to the model comparison approach is that all
that we have learned before still applies as we consider new types of models. Thus, the
methods for estimating statistical power presented in Chapter 6 for multiple regression
apply unaltered to one-way ANOVA. In particular, you can use prior research to estimate
the value of (2 (the expected proportional reduction in error) for either the omnibus test
of any mean differences or specific one-degree-of-freedom contrasts. As before, you
should consider adjusting empirical estimates of (2 based on the number of observations
and parameters. This is especially important for experiments in which the number of
observations is often small relative to the number of model parameters. Also, as before,
you may use either Cohen’s values for small, medium, and large effects for your power
analyses, or values from the literature of your substantive research topic. For example,
if we wanted to re-do the SAT coaching study (with which we began this chapter) with
a larger number of observations, we would start our power analysis by adjusting the
PRE of .196 reported in that study:

A quick check of the power associated with this value suggests that about 50 participants
would be required to have an 80% chance of detecting an effect of this magnitude.

Earlier we also saw how estimates of the parameter values—the regression slopes
and the variance of the error—can provide estimates of the effect size for power analysis.
However, in one-way ANOVA, rather than having prior ideas about the values of
regression parameters, a researcher more commonly has notions about the values of the
group means that determine the regression slopes. Hence, it is worth examining how we
can estimate the expected effect size by beginning with expectations of the cell means.
We begin with our usual definition of PRE:

We have noted before that SSE(C) = SSE(A) + SSR (i.e., the error for the compact
model includes all the error of the augmented model plus the error that was reduced by
the addition of the extra parameters in the augmented model). Hence:

To obtain a definition of (2, we simply calculate SSE(A) and SSR using the true
parameter values ("0, "1, etc., #2) instead of the estimated parameters (b0, b1, etc., s2).
For one-way ANOVA, we can start with our expectations about what the true group
means, &k, might be, and use those in the formula for the SSR for a contrast-coded
predictor:

(̂ 2 = 1 − (1 − PRE)
n − PC
n − PA

= 1 − (1 − .196)
20 − 1
20 − 2

= .15

PRE =
SSE(C) − SSE(A)

SSE(C)
=

SSR
SSE(C)

PRE =
SSR

SSE(A) + SSR
=

1
(SSE(A)/SSR) + 1
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For a complete model, SSE(A) depends only on )2, the within-cell variance. Specifically:

where n is the grand total of observations. We multiply by n instead of by (n – PA)
because we have not estimated any parameters from data in the calculations of SSE(A).
Substituting these values for SSR and SSE(A) calculated from the presumed true
parameters into the formula for PRE yields the following formula for (2:

If nk, the number of observations in each group, is equal for all groups and if m is the
number of groups so that n = mnk, then the above formula reduces to:

which does not depend on either the total number of observations or the number of
observations in each group. Therefore, to find a value for (2 to use in our power
calculations, we need only specify the values for )2 and for &k that we expect to obtain
in our study. And, of course, we need to specify the !k values for the contrast code for
which we want to estimate the statistical power.

As an example of this direct approach for estimating (2, let us again consider the
feedback study described earlier in this chapter. Suppose the researcher on the basis of
prior research had expected values of 3, 4, and 4 for the means of the Failure, No
Feedback, and Success groups, respectively, and a within-cell variance of about 1.5.
Then for the {–2,1,1} contrast the expected effect size is:

From this we estimate that about 60 observations, 20 per group, would be necessary to
provide a statistical power of .8.

Power and Research Design

When planning experiments, researchers must choose how many groups to use and how
many observations should be in each group. It is important to consider the consequences
that such choices have for statistical power. We first consider the design implications
for the omnibus test of whether there are any differences among the means and then for
the power of specific contrasts.

The statistical power of the omnibus test of whether there are any mean differences
among the groups is maximized when there are an equal number of observations in each
group. In that case, the omnibus F statistic equals the average of all the F statistics for
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a set of orthogonal contrasts. This highlights a common mistake in research design: If
too many groups are used, then there are many contrasts where no differences are
expected, which in turn lowers the omnibus F. Sometimes using too many groups cannot
be avoided. For example, biopsychological researchers must sometimes use multiple
control groups (e.g., handling the animal, injecting with a drug vehicle, injecting with
a placebo) in comparison to a single treatment group. If there are no differences expected
among the different control groups, then the possible magnitude of the omnibus F statistic
is reduced. In this case, the omnibus F is often misleading and researchers should simply
focus on the treatment versus controls contrast.

Researchers using ordered category levels over which they expect polynomial trends
often use too many groups. For example, researchers expecting linear and perhaps
quadratic trends sometimes err in using as many as five levels. With equal numbers of
observations at each level, the omnibus F is reduced because it is the average of not
only the expected linear and quadratic contrasts but also the not-expected cubic and
quartic contrasts. Even the power of the separate tests of the linear and quadratic
contrasts is reduced because some of the study’s valuable resources—the observations—
have been allocated to test for the cubic and quartic effects. At the same time, testing
more polynomial trends than expected increases the chances of making Type I errors.

For specific contrasts, allocating an equal number of observations to all groups
effectively gives equal importance to all contrasts. If one or two contrasts are more
important to the research purpose than the other contrasts, one may want to allocate the
number of observations unequally across the groups so as to maximize the statistical
power of the contrasts of greater importance. Power for a contrast is maximized when
the allocation of observations to groups is proportional to the absolute values of the
contrast weights. For example, for the t-test where the weights are {–1,+1}, statistical
power is maximized with an equal number of observations in each group. However, for
the quadratic contrast for three groups with weights {–1,+2,–1}, power is maximized
by allocating a quarter of the observations to each of the extreme categories and the
remaining half of the observations to the middle category. The biopsychology researcher
comparing the treatment group to four control groups could maximize the power of that
comparison by allocating half the total observations to the treatment group and one-
eighth of the observations to each of the four control groups.

SUMMARY

In this chapter we have considered models with a single categorical predictor having two
or more levels or categories. Such predictors need to be numerically coded and we have
given our strong preference that the codes to be used are orthogonal contrast codes. A full
set of such codes means that there are m – 1 contrast-coded predictors with m category
levels. Additionally, given that the sum of the codes for any predictor equals one, orthog -
onality is assured by codes where the sum of all pairs of crossproducts equals zero.

Assuming that a full set of codes is used to predict the data variable, then the predicted
values from such a model will equal the category means of that data variable. Accord -
ingly, inferences about slopes are then equivalently inferences about difference among
category means. And these models are then equivalent to traditional independent 
sample t-tests (given m = 2) and one-way ANOVA models (given m > 2). Although
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one-way ANOVA has traditionally emphasized omnibus tests to examine whether there
are any mean differences among the groups or categories, our strong preference is for
single-degree-of-freedom model comparisons, testing specific focused contrasts that are
of theoret ical interest. We encourage analysts to ask about mean differences that are of
interest to them, even when those differences are not themselves orthogonal. We discuss
appropriate procedures for asking about such nonorthogonal differences, given the
constraint that a full set of codes be orthogonal. Finally, we discuss procedures for
avoiding inflated $ levels when conducting many mean comparisons, whether a priori
or post hoc.

Note
1 The use of $/c instead of $ is based on the Bonferroni inequality and so some manuals for

statistical programs refer to this as the Bonferroni method of multiple comparisons. Sometimes
this is also referred to as the Dunn method.
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