
In the previous chapter we developed models with one categorical predictor. In this
chapter we expand our consideration to models with two or more categorical predictor
variables. Our reasons for wanting to include more than one categorical variable as a
predictor in our model are the same as those that motivated us to expand from simple
regression models with one predictor to multiple regression models with two or more
pre dictors in Chapter 6. Models in which predictions are conditional on two or more
categorical variables may be required by our data and, more importantly, by the under -
lying process that generates the data. Just as in multiple regression, controlling for one
categorical variable by including it in the model often allows us to have a better look
at the effects of other categorical variables. Also, as in multiple regression, we are 
often interested in modeling the joint effect of two or more categorical variables. 
With categorical variables we will be especially interested in whether the effect of a
given categorical variable depends on the levels of the other categorical variables; that
is, we are interested in whether or not there is an interaction between the categorical
variables analogous to the interactions of continuous variables in multiple regression
considered in Chapter 7.

The generalization of models with one categorical predictor (one-way ANOVA of
the previous chapter) to models with two categorical predictors (two-way ANOVA) and
to models with more than two categorical predictors (q-way factorial ANOVA, where
q is the number of categorical predictors) is straightforward. As we shall demonstrate,
classical analysis of variance with two or more categorical predictors is nothing more
than a simple one-way ANOVA with a specific, clever set of contrast codes. In other
words, the only new thing to learn is how to generate the appropriate set of contrast
codes; fitting the model and testing hypotheses are exactly the same as for one-way
ANOVA in Chapter 8.

FACTORIAL ANOVA AS ONE-WAY ANOVA

We begin by considering the hypothetical dataset in Figure 9.1. In this hypothetical
experiment clinically depressed patients either receive psychotherapy (treatment) or not
(control) and receive one of three drugs (A, B, or placebo). After six months each patient
completes a mood questionnaire on which higher scores mean improved mood or
decreased depression.
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The experimental design depicted in Figure 9.1 is known as a factorial design because
every level of one categorical variable or factor is combined with every level of the
other categorical variable or factor. There are three levels of the Drug variable and two
levels of the Psychotherapy variable, so there are a total of 3 ! 2 = 6 different
combinations, each defining a group or cell in the design. We often refer to this as a 
3 ! 2 design. In this hypothetical study, from a total of 18 patients, three patients are
randomly assigned to each of the six groups.

Although it is natural to display these data in a table with three rows and two columns
as in Figure 9.1, we can also display the data as a one-way layout in terms of the six
groups or cells as in Figure 9.2. Seeing the data in the one-way layout makes it clear
that we can use any of the sets of contrast codes developed in the previous chapter to
analyze these data. To illustrate this, we will first do an analysis with one-way contrast
codes that are statistically correct but that do not ask questions that are usually interesting.
In this first set of contrast codes we form the first contrast "1 by comparing Group 1
(Drug A combined with psychotherapy Treatment: A,T) with all the other groups; the
corresponding contrast-coded predictor is Z1.

1 The contrast "2 compares Group 2 against
all the remaining groups except Group 1, and so on. These contrast codes are also
displayed in Figure 9.2. We can verify that these codes are orthogonal by checking that
the sum of each set of crossproducts is zero. For example:
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FIGURE 9.1 Hypothetical data (mood scores) in a Drug (3) by Psychotherapy (2) experimental
design

Psychotherapy

Drug Treatment Control

A 31 31 34 17 15 19
B 25 25 28 23 18 16
Placebo 17 18 16 9 10 8

FIGURE 9.2 Hypothetical data of Figure 9.1 arrayed as a one-way design

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
(A,T) (B,T) (P,T) (A,C) (B,C) (P,C)

31 25 17 17 23 9
31 25 18 15 18 10
34 28 16 19 16 8

Mean 32 26 17 17 19 9

Group

Contrast codes Predictor 1 2 3 4 5 6

"1 1 vs. 2, 3, 4, 5, 6 Z1 5 −1 −1 −1 −1 −1
"2 2 vs. 3, 4, 5, 6 Z2 0 4 −1 −1 −1 −1
"3 3 vs. 4, 5, 6 Z3 0 0 3 −1 −1 −1
"4 4 vs. 5, 6 Z4 0 0 0 2 −1 −1
"5 5 vs. 6 Z5 0 0 0 0 1 −1



We can regress Yi, the mood scores, on the predictor variables Z1, Z2, . . ., Z5 using a
standard multiple regression program or, equivalently, we could use the one-way ANOVA
formulas from Chapter 8. Figure 9.3 shows the actual data matrix we would use to regress
Yi on Z1, Z2, . . ., Z5. Note that the mean for each contrast-coded predictor is zero because
there are equal numbers of observations in each group.

We can ask whether all six group means are equal by comparing these models:

MODEL A: Yi = #0 + #1Z1i + #2Z2i + #3Z3i + #4Z4i + #5Z5i + $i

MODEL C: Yi = #0 + $i

H0: %1 = %2 = %3 = %4 = %5

Regressing the mood scores on the five contrast-coded predictors yields the analysis in
Figure 9.4. The two estimated models are:

MODEL A: Ŷi = 20 + 2.4Z1i + 2.1Z2i + 0.5Z3i + 1Z4i + 5Z5i

MODEL C: Yi = 20

λ λ
6

k = 1
1k 2k= 5(0) − 1(4) − 1(−1) − 1(−1) − 1(−1) − 1(−1)

= 0 − 4 + 1 + 1 + 1 + 1
= 0
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FIGURE 9.3 Data matrix for analyzing mood scores using multiple regression and one-way
coded predictors

Group Mood scores Predictors

Drug Psychotherapy Y Z1 Z2 Z3 Z4 Z5

A T 31 5 0 0 0 0
A T 31 5 0 0 0 0
A T 34 5 0 0 0 0
B T 25 −1 4 0 0 0
B T 25 −1 4 0 0 0
B T 28 −1 4 0 0 0
P T 17 −1 −1 3 0 0
P T 18 −1 −1 3 0 0
P T 16 −1 −1 3 0 0
A C 17 −1 −1 −1 2 0
A C 15 −1 −1 −1 2 0
A C 19 −1 −1 −1 2 0
B C 23 −1 −1 −1 −1 1
B C 18 −1 −1 −1 −1 1
B C 16 −1 −1 −1 −1 1
P C 9 −1 −1 −1 −1 −1
P C 10 −1 −1 −1 −1 −1
P C 8 −1 −1 −1 −1 −1

Mean 20 0 0 0 0 0



The augmented model using all five predictors reduces the error of the compact model
using the mean by 960/1010 = .9505. We calculate F in the usual way:

This omnibus tests rejects Model C in favor of Model A because the large value of PRE
(.95) is statistically surprising (F5,12 = 46.1, p < .0001), which implies, as it did in one-
way ANOVA, that the means for the six groups are not all equal to one another. That
is, the six groups cannot be adequately represented by the overall mean.

But which groups are different from each other? The test of the Z1 contrast indicates
that the estimate b1 = 2.4 is significantly different from zero and it reduces 91% of the
error remaining after all the other codes are in the equation.2 Remember that this test is
obtained by comparing an augmented model including all the Z values with a compact
model including all the Z values except Z1. In particular:

MODEL A: Yi = #0 + #1Z1i + #2Z2i + #3Z3i + #4Z4i + #5Z5i + $i

MODEL C: Yi = #0 + #2Z2i + #3Z3i + #4Z4i + #5Z5i + $i

H0: #1 = 0

In this case, we can reject Model C in favor of Model A and therefore reject the null
hypothesis that #1 = 0. The corresponding contrast "1 codes the comparison between
Group 1 (Drug A with psychotherapy treatment) and the average of all the other groups;
thus, we can conclude that Group 1 is significantly different from the average of all
other cells in the study.

We interpret the value of the coefficient the same as we always have. Specifically,
the coefficient b1 = 2.4 means that for a one-unit increase in Z1 the predicted mood score
increases, on average, by 2.4 points. To verify this, reexamine Figure 9.2 to see that 
the value of Z1 for all the other groups is –1 but for Group 1 the value of Z1 is 5. Thus,
there is a change of six units on Z1 between the two comparison groups. Model A therefore
predicts the mean for Group 1 to be 6 ! 2.4 = 14.4 higher than the average in all the
other groups. This is indeed the case: the mean for Group 1 is 32 and the mean for all
the other groups combined is (26 + 17 + 17 + 19 + 9)/5 = 17.6, thus 32 – 17.6 = 14.4.
But why is Group 1 better, on average, than all the other groups? Is it because of Drug
A? Or is it because patients receiving psychotherapy score higher regardless of which

F5,12 =
.9505/5

(1 − .9505)/12
= 46.1

208 Data Analysis: A Model Comparison Approach

FIGURE 9.4 ANOVA table of the hypothetical mood scores using the model:
Yi = #0 + #1Z1i + #2Z2i + #3Z3i + #4Z4i + #5Z5i + $i

Source bj SS df MS F p PRE

Between groups 960.0 5 192.0 46.1 .0001 .95
Z1 2.4 518.4 1 518.4 124.4 .0001 .91
Z2 2.1 264.6 1 264.6 63.5 .0001 .84
Z3 0.5 9.0 1 9.0 2.2 .17 .15
Z4 1.0 18.0 1 18.0 4.3 .06 .26
Z5 5.0 150.0 1 150.0 36.0 .0001 .75

Within groups (MSE) 50.0 12 4.2

Total 1010.0 17



drug they receive? Or is it because Drug A is especially effective for patients who also
receive psychotherapy treatment? The contrast "1 cannot tell us. It simply indicates that
there is a difference.

We can similarly interpret the results for the contrast-coded predictor Z2. That the
estimate b2 = 2.1 is significantly different from zero indicates that Group 2 (Drug B
administered to those receiving psychotherapy treatment) is different from the average
of all the subsequent groups (i.e., excluding Group 1). The difference in means equals
5 ! 2.1 = 10.5. But again we do not know whether the higher average mood scores of
Group 2 are due to Drug B or psychotherapy treatment or their combination.

The other contrast-coded predictor whose coefficient is significantly different from
zero (using & = .05) is Z5; the corresponding contrast "5 compares Groups 5 and 6 or
the difference between taking Drug B versus placebo for those in the Control condition.
We know in this case that the higher average score for Group 5 (2 ! 5 = 10) is due to
Drug B relative to the placebo because all patients in this comparison are in the control
group not receiving psychotherapy. But is Drug B also better than the placebo for those
patients who do receive psychotherapy treatment? None of the Z contrasts help to answer
that question.

A BETTER SET OF CONTRAST CODES

Even though the one-way analysis of variance using the Z contrast-coded predictors is
statistically correct, it has failed to answer important questions we want to ask of the
data. One solution would be to use the multiple comparison procedures of Chapter 8 to
address some of the unanswered questions. However, a much more efficient strategy is
to begin with a set of contrast codes that do ask many of the questions we would naturally
want to consider. Given the two-way layout of the data (as in Figure 9.1), there are
several sets of codes that are more natural than the Z codes. “Two-way” ANOVA is
nothing more than one-way ANOVA using one of these natural sets of codes.

To develop a more natural set of codes, we begin by considering each of the two
categorical variables separately. The strategy is to develop contrast codes identical to
the ones that we would use if each categorical variable were considered alone in its own
one-way ANOVA. That is, our first step is to code each categorical variable as if the
other one did not exist. For the Drug variable an interesting question is whether the
drugs (either A or B), on average, do better than the placebo. The contrast code "1 (and
its corresponding contrast-coded predictor X1) in Figure 9.5 makes precisely that
comparison with the pattern (1, 1, –2). This pattern is repeated for each level of the other
categorical variable (in this case, Psychotherapy). The contrast code "2 (and its
corresponding contrast-coded predictor X2) then asks whether there is any difference
between Drugs A and B. We can verify that "1 and "2 are orthogonal by checking whether
the sum of their crossproducts equals zero. That is:

λ λ
6

k = 1
1k 2k= 1(1) + 1(−1) − 2(0) + 1(1) + 1(−1) − 2(0)

= 1 − 1 + 0 + 1 − 1 + 0
= 0
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The orthogonality combined with the equal numbers of observations in each cell ensures
that the coded predictors X1 and X2 are uncorrelated or not redundant. With three levels
of the Drug categorical variable, we can only have two orthogonal codes so "1 and "2

are sufficient for the one-way analysis of that variable.
There are only two levels of the Psychotherapy categorical variable, so we need

only one code. Hence, "3 codes the contrast between receiving psychotherapy treatment
versus being in the control condition and provides the complete one-way ANOVA for
that variable.

So far we have only three codes, "1, "2, and "3, for the two separate one-way analyses
of the categorical variables, but five orthogonal contrast codes are required for the
complete analysis of six groups. To generate the other two necessary codes, we simply
multiply the contrast codes between the two categorical variables; that is, "4 = "1 ! "3

and "5 = "2 ! "3. These are the same kind of product terms we considered in Chapter
7 when we introduced the concept of interactions between variables. In the context of
two-way ANOVA these product terms ask especially interesting questions. The code
"4, the product of "1 and "3, asks whether the difference coded by "1 (Drugs vs. Placebo)
depends on the level of psychotherapy (Treatment vs. Control). In other words, might
there be one drug effect for those receiving psychotherapy treatment and a different drug
effect for those in the control group. Similarly, "5, the product of "2 and "3, asks whether
the comparison coded by "2 (Drug A vs. Drug B) depends on the level of Psychotherapy
(Treatment vs. Control). The order of multiplication is arbitrary, so either statement could
be reversed. That is, "4 asks whether the effectiveness of psychotherapy (the Treatment
vs. Control difference) depends on whether the patient also received a drug or the placebo.
We consider the interpretation of interactions like these in greater detail later.

Note that we do not form a code by multiplying "1 ! "2 because that would yield
another code for just the Drug categorical variable that could not be orthogonal to the
other two codes for that variable. However, the two codes formed from products, "4 and
"5, are orthogonal to each other and to the other codes. You may want to compute some
of the crossproducts to verify this claim. This gives a total of five orthogonal contrast
codes, precisely the number we need for the analysis of six groups.
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FIGURE 9.5 Hypothetical data of Figure 9.1 coded for two-way ANOVA

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
(A,T) (B,T) (P,T) (A,C) (B,C) (P,C)

31 25 17 17 23 9
31 25 18 15 18 10
34 28 16 19 16 8

Mean 32 26 17 17 19 9

Group

Contrast codes Predictor 1 2 3 4 5 6

"1 Drugs vs. Placebo X1 1 1 −2 1 1 −2
"2 Drug A vs. Drug B X2 1 −1 0 1 −1 0
"3 Treatment vs. Control X3 1 1 1 −1 −1 −1
"4 Interaction: "1 x "3 X4 1 1 −2 −1 −1 2
"5 Interaction: "2 x "3 X5 1 −1 0 −1 1 0



Figure 9.6 shows the data matrix that we can analyze with a multiple regression
program to model mood scores in terms of the X variables. That is, we can regress Yi

on X1 to X5. Note again that the mean for each predictor is zero because we are using
contrast codes and there are an equal number of observations for each group.

Figure 9.7 presents the results of the regression analysis using the X contrast-
coded predictors. Note that the sum of squares for the augmented model including all
the predictors, and the F and PRE for the omnibus test of the complete model are exactly
the same as when we used the Z predictors. This must be the case because in each analysis
we used a complete set of codes so that, as in one-way ANOVA, the predicted value 
Ŷ for each group is the mean Y

–
for that group. If the predictions of the two models are
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FIGURE 9.6 Data matrix for analyzing mood scores using multiple regression and two-way
coded predictors

Group Mood scores Predictors

Drug Psychotherapy Y X1 X2 X3 X4 X5

A T 31 1 1 1 1 1
A T 31 1 1 1 1 1
A T 34 1 1 1 1 1
B T 25 1 −1 1 1 −1
B T 25 1 −1 1 1 −1
B T 28 1 −1 1 1 −1
P T 17 −2 0 1 −2 0
P T 18 −2 0 1 −2 0
P T 16 −2 0 1 −2 0
A C 17 1 1 −1 −1 −1
A C 15 1 1 −1 −1 −1
A C 19 1 1 −1 −1 −1
B C 23 1 −1 −1 −1 1
B C 18 1 −1 −1 −1 1
B C 16 1 −1 −1 −1 1
P C 9 −2 0 −1 2 0
P C 10 −2 0 −1 2 0
P C 8 −2 0 −1 2 0

Mean 20 0 0 0 0 0

FIGURE 9.7 ANOVA table of the hypothetical mood scores using the model: 
Yi = #0 + #1X1i + #2X2i + #3X3i + #4X4i + #5X5i + $i

Source bj SS df MS F p PRE

Between groups 960 5 192.0 46.1 .0001 .95
Drug 453 2 226.5 53.9 .0001 .90

X1 3.5 441 1 441 105.8 .0001 .90
X2 1.0 12 1 12 2.9 .11 .19

Psychotherapy 450 1 450 108.0 .0001 .90
X3 5.0 450 1 450 108.0 .0001 .90

Drug x Psychotherapy 57 2 28.5 6.8 .01 .53
X4 0.5 9 1 9 2.2 .16 .15
X5 2.0 48 1 48 11.5 .005 .49

Within groups (MSE) 50.0 12 4.2

Total 1010.0 17



the same, then the total error and the total error reduced must be the same. The only
difference in the two analyses is how that total error reduction is divided into separate
components. The X predictors ask different questions than the Z predictors, so the
individual error reduction associated with each of the X predictors differs from that of
the Z predictors, but the total error reduction must be the same.

There are nine PRE and F values in Figure 9.7. Each one corresponds to a comparison
between a particular Model C and a Model A. To understand the meaning of each test,
it is important to be precise about those models for each test. The omnibus test is reported
in the row labeled “Between groups” and represents the comparison between the
following two models:

MODEL A: Yi = #0 + #1X1i + #2X2i + #3X3i + #4X4i + #5X5i + $i

MODEL C: Yi = #0 + $i

H0: #1 = #2 = #3 = #4 = #5 = 0

This corresponding null hypothesis, equivalent to assuming that all the group means are
equal, is rejected by the large values of PRE and F.

The rows for each of the Xj compare a Model A that uses all the contrast-coded
predictors to a Model C that includes all the predictors except Xj. For example, the PRE
and F in the row labeled X1 compare:

MODEL A: Yi = #0 + #1X1i + #2X2i + #3X3i + #4X4i + #5X5i + $i

MODEL C: Yi = #0 +       #2X2i + #3X3i + #4X4i + #5X5i + $i

H0: #1 = 0

We generated the predictors X1 and X2 as one-way codes for the Drug categorical
variable for the data matrix in Figure 9.1. The row labeled “Drug” in Figure 9.7 reports
the results from testing a model including all the contrast codes to one that omits both
the drug codes X1 and X2. That is, we are comparing:

MODEL A: Yi = #0 + #1X1i + #2X2i + #3X3i + #4X4i + #5X5i + $i

MODEL C: Yi = #0 +             #3X3i + #4X4i + #5X5i + $i

H0: #1 = #2 =  0

In other words, we are asking whether the predictions would suffer if we were to ignore
the Drug categorical variable. The large PRE and F indicate that we cannot ignore which
drug a patient received. In the traditional language of ANOVA, this is known as the test
of the main effect of the Drug categorical variable. In this case, we would conclude that
overall there is a statistically significant main effect for the Drug categorical variable.
Note that because X1 and X2 are uncorrelated in this instance, their sums of squares add
to produce the sum of squares attributable to both of them.

We prefer the single-degree-of-freedom tests of the focused comparisons X1 and X2

to this global test of the drug effect because rejection of the hypothesis #1 = #2 = 0 is
ambiguous. We do not know which part of this multiple-degree-of-freedom hypothesis
is at fault. Maybe the global hypothesis is rejected because #1 ≠ 0 or because #2 ≠ 0 or
because both #1 and #2 are not equal to zero. We present the omnibus test for the Drug
variable in Figure 9.7 not as a recommended practice, but only to show what hypothesis
is being tested by the “main effect” in the traditional approach to analysis of variance.
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Unfortunately, in the traditional approach usually only the omnibus tests in Figure 9.7
are presented in a source table. Doing so ignores readily available detailed information
about the data revealed by the single-degree-of-freedom contrast codes.

We can similarly assess the main effect for the Psychotherapy variable. In this case
there is only one code so that test is the same as the test of the null hypothesis that #3

= 0. Finally, we can group together the two codes X4 and X5, which we constructed from
products of other codes. Each of these two products involved one code for the Drug
categorical variable and one code for the Psychotherapy categorical variables. So, in the
traditional language of ANOVA, they are known together as the “Drug ! Psychotherapy
Interaction.” Testing the Drug ! Psychotherapy interaction is equivalent to comparing:

MODEL A: Yi = #0 + #1X1i + #2X2i + #3X3i + #4X4i + #5X5i + $i

MODEL C: Yi = #0 + #1X1i + #2X2i + #3X3i + $i

H0: #4 = #5 =  0

A traditional ANOVA source table similar to the one in Figure 9.7 would contain
rows only for Drug, Psychotherapy, Drug ! Psychotherapy, Within groups (or Error),
and Total. Such a source table, because it aggregates individual contrasts into more global
effects, omits information that is readily available in the individual contrasts. In other
words, the traditional ANOVA table fails to analyze the variance as much as is possible
using the focused comparisons of contrast codes.

Any standard multiple regression program can produce the analysis in Figure 9.7.
Equivalently, one can use the equations from Chapter 8 expressing the parameter
estimates and their corresponding sums of squares as a function of the contrast codes
and the cell means. As an illustration, we use the formulas to calculate the estimate b1

and its associated SSR. The coefficient that estimates #1 is:

Then the sum of squared error reduced by including X1 in the model along with all the
other predictors is:

λ

λ
b1 =

k 1kȲk

k
2
k

=
1(32) + 1(26) − 2(17) + 1(17) + 1(19) − 2(9)

12 + 12 + (−2)2 + 12 + 12 + (−2)2

=
42
12

= 3.5

λ

λ
SSRb1

=
k 1kȲk

2

k
2

1k/nk

=
[1(32)+ 1(26) − 2(17) + 1(17) + 1(19) − 2(9)]2

(12 + 12 + (−2)2 + 12 + 12 + (−2)2)/3

=
422

12/3
= 441
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Note that because two-way ANOVA is exactly the same as a one-way ANOVA with a
clever set of codes, the formulas and all other details from Chapter 8 apply unaltered to
two-way ANOVA. Thus, in terms of parameter estimates and statistical tests there is
nothing new that needs to be learned to do two-way ANOVA—it is exactly the same
as one-way ANOVA.

INTERPRETATION OF COEFFICIENTS

The one new difficulty introduced by the generalization of one-way ANOVA to two-
way and higher ANOVA is the interpretation of the coefficients. But it is simply an
interpretation problem and not a difficulty involving statistical procedures. And the
strategy for interpreting coefficients in two-way and higher ANOVA is the same as the
strategies we have developed in Chapters 7 and 8. The new difficulty is interpretation
of the coefficients for the predictor variables that code the interactions—the products
between one-way codes. Newcomers to ANOVA, whether using our approach or more
traditional approaches, often have initial difficulty understanding the concept of an
interaction. We therefore devote considerable attention in this section to the interpretation
of interactions. We do so by considering two different approaches to interpreting the
coefficients in a model with two-way codes such as those in Figure 9.5. Those two
approaches are (a) re-expression of the codes in terms of the cell means, as was done
in Chapter 8, and (b) interpretation of product predictors as changes in simple slopes,
as was done in Chapter 7. In each approach we also consider the interpretation of the
coefficients for predictors not involving products because interactions are best understood
in comparison.

Interpretation in Terms of Cell Means

The interpretation of the parameter estimates associated with the X predictors proceeds
in the same manner as for any set of predictors in the one-way analyses of Chapter 8.
The surprisingly large values, relative to Model C being correct, of F1,12 = 105.8 and
PRE = .95 for X1 reject the null hypothesis that #1 = 0. To see exactly what the rejection
of this null hypothesis means, we express #1 in terms of the contrast code using the
equation from Chapter 8 that expresses the parameter estimate as a function of the codes
and the cell means. That is, an equivalent statement of the null hypothesis #1 = 0 is:

where %AT represents the true but unknown mean for the group that received Drug A
and participated in Psychotherapy treatment, etc. Doing a little algebra (multiplying by
12 and moving the terms for the placebo conditions to the right side of the equation)
yields the following equivalent statement of the hypothesis:

%AT + %AC + %BT + %BC = 2(%PT + %PC)

λ

λ
β

% % % % % % %
1 =

k 1k k

k
2

1k

= AT + BT − 2 PT + AC + BC − 2 PC

12
= 0
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Dividing each side of this equation by 2 gives:

If we let %A. = (%AT + %AC)/2, which is the mean of the Drug A conditions averaged
(indicated by the dot) across both the Treatment and Control levels of the Psycho-
therapy variable, %B. = (%BT + %BC)/2 and %P. = (%PT + %PC)/2, then the null hypothesis
reduces to:

H0: %A. + %B. = 2%P.

Dividing each side of this equation by 2 gives:

That is, concluding that #1 ≠ 0 is equivalent to concluding that the average of the drug
conditions combined is not equal to the average for the placebo groups, ignoring whether
the patients received psychotherapy treatment or not. Thus, unlike the ambiguous
conclusions using the Z contrast codes, rejection of the null hypothesis for #1 clearly
implies that the mood scores for the drug groups, on average, differed from the mood
scores of the placebo groups. With experience it is usually easy to go directly from the
contrast codes to a statement of the null hypothesis without doing the formal derivation
as above. For example, the (1, –1, 0) code for X2 compares the Drug A groups with the
Drug B groups so that the null hypothesis #2 = 0 is equivalent to the following null
hypothesis:

H0: %A. – %B. = 0  or  H0: %A. = %B.

The direction and magnitude of a difference revealed by rejecting the null hypothesis
is given by bj, the estimate of #j. For X1, this estimate is b1 = 3.5. As with all regression
coefficients, this means that our model prediction Ŷi increases, on average, by 3.5 units
for each unit increase in X1. The change on X1 from the placebo groups (X1 = –2) to the
drug groups (X1 = 1) is a change of 3 units, so the predicted difference between the
placebo and drug groups is 3 ! 3.5 = 10.5. Indeed, the average of the four drug groups,
(32 + 26 + 17 + 19)/4 = 23.5, exceeds by 10.5 the average of the two placebo groups,
(17 + 9)/2 = 13. Figure 9.8(a) depicts graphically the means compared by the first contrast.

We cannot conclude in this analysis that the estimate b2 = 1.0 for #2 is reliably
different from zero. Nevertheless, it is useful to interpret it to see which means are not
significantly different from one another. On X2 there is a two-unit difference between
those taking Drug B and those taking Drug A, regardless of whether they were also
receiving psychotherapy treatment or not. Thus, the mood scores of those taking Drug
A are 2 ! 1 = 2 points higher than the mood scores of those taking Drug B, but this
difference is not statistically significant. Figure 9.8(b) depicts this comparison graphically.

The coefficient b3 = 5.0 is significantly different from zero. The predictor X3 codes
the difference between the two psychotherapy groups, so we can conclude that, on
average, there is a significant difference between the mood scores of those receiving
treatment compared to those in the control group. That is, we can reject the null
hypothesis:

% % % % % %AT + AC

2
+ BT + BC

2
= 2 PT + PC

2

% %
%A. + B.

2
= P.
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H0: %.T = %.C

where the dots in the subscript indicate that we averaged across levels of drug. To be
specific about the amount of difference in mood scores between receiving psychotherapy
versus not, we need to interpret the meaning of the estimate b3 = 5.0 as before. There
is a two-unit difference on X3 between receiving Treatment (X3 = 1) and receiving the
Control (X3 = –1). Thus, the predicted average difference between the two groups is 
2 ! 5 = 10. Indeed, the average of the three groups receiving Treatment (32 + 26 + 17)/3
= 25, exceeds by 10 the average of the three Control groups (17 + 19 + 9)/3 = 15. Figure
9.8(c) depicts these means and their comparison.

Even though the coefficient for b4 = 0.5 is not significantly different from zero, its
interpretation provides a good introduction to understanding interactions: products of
contrast codes. We begin by considering the full expression for #4 in terms of the
unknown means:

Except for the signs on the last three terms, this is very similar to the expression for #1

above. Putting the T and C terms on opposite sides of the equation gives:

Dividing the numerators and denominators on both sides by 2 yields:

Note that the terms in each of the two brackets are identical to the question asked by
the first code: Is there a difference in mood scores between those taking either drug
compared to those taking the placebo? The first coded predictor X1 asked whether there
was a difference regardless of whether the patient was also receiving psychotherapy
treatment or not. The interaction code X4 = X1 ! X3 asks whether that difference,
whatever it might be, is the same for those receiving psychotherapy treatment:

as it is for those in the control condition:

In other words, the null hypothesis for this and all interactions is whether two differences
are equal. Different differences imply an interaction. Figure 9.8(d) depicts the means
and differences involved in this comparison. For the Treatment groups, the means for
those receiving a drug (either A or B) are 32 and 26 (the top-left oval) and their mean
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of 29 differs from the mean of the Treatment group taking the placebo (17) by 12 points.
For the Control group, the mean of those taking either Drug A or Drug B (the top-right
oval) is (17 + 19)/2 = 18, which exceeds the mean of those taking the placebo (9) by 9
points. The statistical test for #4 is therefore equivalent to asking whether these two
differences—12 for the Treatment group and 9 for the Control group—are significantly
different from each other. Or, equivalently, whether the difference of the differences 
(12 – 9 = 3) is significantly different from zero. In this case, because we could not reject
the null hypothesis that #4 = 0, we also cannot reject the null hypothesis that the Drug
versus Placebo difference is the same for the Treatment group as it is for the Control
group. Note that the algebra above shows that the estimated coefficient b4 = 0.5 equals
one-sixth of the difference of the differences. Indeed, 0.5 ! 6 = 3, which is the difference
of the differences depicted in Figure 9.8(d).

The algebra to determine which differences are being compared in an interaction
may seem complicated at first, but again with experience it is usually easy to jump 
from the code to a specification of the differences being compared. For example, X5 =
X2 ! X3 so the null hypothesis:

H0: #5 = 0

is equivalent to testing whether the difference coded by X2—the difference between those
taking Drug A versus Drug B—depends on the level coded by X3, whether the patient
is in the Treatment or Control groups. Thus, the equivalent null hypothesis is:

H0: %AT – %BT = %AC – %BC

In words, the null hypothesis is that the difference between Drugs A and B is the same
for those receiving Psychotherapy treatment as it is for those in the Control group.
Knowing that b5 = 2 is reliably different from zero allows us to conclude that the drug
effect is different for those receiving treatment than for those in the control group. Figure
9.8(e) depicts this difference and shows its magnitude. For those receiving Treatment,
the difference in mood scores for those taking Drug A compared to those taking Drug
B equals 32 – 26 = 6, whereas for those in the Control group the difference is in the
other direction: 17 – 19 = –2. The difference of the differences is 8 and is significantly
different from zero. Note that although it appears that Drug A is better for those receiving
Treatment but Drug B is better for those in the Control group, we have no statistical test
of these two individual differences. In other words, we do not know whether the drug
difference of 6 for the Treatment group or the difference of –2 for the Control group
differs significantly from zero. We simply know that 6 is significantly different from –2.
We return later to address the specific question of whether there are significant differences
between the drugs within each treatment condition.

In Chapter 7 we noted that we can always interpret an interaction with either
variable in the product as the focal variable. The same is true for products of categorical
predictors. Thus, we can focus on whether the Treatment versus Control difference is
the same for those taking Drug A as it is for those taking Drug B. That is, the null
hypothesis is:

H0 : %AT – %AC = %BT – %BC

Figure 9.8(f) depicts this way of viewing the same interaction depicted in Figure 9.8(e)
and displays the differences being compared. For those receiving Drug A, the
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Treatment—Control difference equals 32 – 17 = 15, but for those receiving Drug B the
difference is only 26 – 19 = 7. The difference of the differences is 15 – 7 = 8, the same
as before, as it must be. In other words, Treatment is more effective if one takes Drug
A instead of Drug B. We therefore have two equivalent interpretations for the interaction
implied by rejecting the null hypothesis that #5 = 0. Indeed, for any interaction there
will be multiple ways to express it. It will often help to understand the interaction if all
the possible interpretations are considered, but it is important to realize that they are all
equivalent statements of the same effect.

Interpretation in Terms of Slopes

It is also useful to examine the coefficients for two-way contrast-coded predictors using
the same procedures we developed in Chapter 7 for multiple regression models involving
product terms. We begin with the estimated equation for Model A:

Ŷ = 20 + 3.5X1 + X2 + 5X3 + 0.5X4 + 2X5

Then we substitute for the product definitions (X4 = X1X3 and X5 = X2X3) to get:

Ŷ = 20 + 3.5X1 + X2 + 5X3 + 0.5X1X3 + 2X2X3

Next we regroup the terms to express the “simple” linear relationship between Ŷ and
one of the three predictors X1, X2, or X3. We will begin with X3; regrouping terms yields:

Ŷ = (20 + 3.5X1 + X2) + (5 + 0.5X1 + 2X2)X3

which expresses the “simple” linear relationship between Ŷ and X3. The term in the first
set of parentheses represents the intercept (given specific values of X1 and X2), and the
term in the second set of parentheses represents the slope (i.e., as always, the change in
Ŷ given a unit change in X3, given specific values of X1 and X2). Remember that X3 codes
whether or not the patient received psychotherapy treatment, so this linear relationship
reflects the effectiveness of treatment versus control—the steeper the slope, the more
effective the treatment relative to the control.

To understand the equation expressing Ŷ as a linear function of X3, we begin by
examining Figure 9.9, which displays the relationship between Ŷ and X3 when X1 = 0
and X2 = 0.

Both X1 and X2 are contrast-coded predictors with an equal number of observations
in each cell, so average values of X1 and X2 are zero; hence, the line in Figure 9.9 depicts
the average relationship between Ŷ and X3. For X1 = 0 and X2 = 0, the relationship between
Ŷ and X3 reduces to:

Ŷ = 20 + 5 ! 3

The intercept of 20 is, as always, the predicted value when X3 = 0. Although X3 is
never zero (it is either +1 or –1), its average value is zero. Hence, we can interpret the
intercept as the average value across levels of X3. Indeed, 20 is the grand mean for these
data. The slope for X3 is 5, which implies that for every unit change in X3 the predicted
value Ŷ changes by 5. The two-unit change from X3 = –1 (Control) to X3 = +1 (Treatment)
predicts a change in Ŷ (mood scores) of 2(5) = 10 points. This, as it must be, is the same
interpretation we obtained for b3 = 5 in terms of cell means. On average, ignoring the
Drug condition, those receiving Treatment had mood scores 10 points higher than those
in the Control condition.
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What happens to the simple relationship between Ŷ and X3 if we do not focus on
the average relationship, but instead allow X1 and X2 to be different from zero? The
intercept term in the “simple” relationship is:

(20 + 3.5X1 + X2)

so if X1 = 1 (indicating Drug A or B) then the intercept will increase by 3.5 points and
if X1 = –2 (indicating Placebo) then the intercept will decrease by 7 points. These represent
the changes in Ŷ due to X1 when X3 equals zero (which it does equal on average). On
average, then, Ŷ for the four drug groups ought to be 3.5 + 7 =  10.5 points higher than
Ŷ for the two placebo groups. That is, on average, mood scores for those receiving Drug
A or B are 10.5 points higher than for those in the Control group. This is necessarily
the same interpretation we obtained in terms of cell means. Similarly, for X2 = +1 (Drug
A), X2 = 0 (Placebo), and X2 = –1 (Drug B), the intercept increases, stays the same, or
decreases. These changes in Ŷ (mood scores) are similarly interpreted.

Now we turn to the slope in the “simple” relationship between Ŷ and X3 and observe
what happens when X1 and X2 are not equal to zero. The slope term is:

(5 + 0.5X1 + 2X2)

so the slope relating Ŷ and X3 changes as a function of both X1 and X2. If X2 = +1 (Drug
A), then the slope for the prediction increases by 2 ! 1 = 2 units. If X2 = –1 (Drug B)
then the slope decreases by 2 ! –1 = –2 units. The steepness of the slope for X3 represents
the relative effectiveness of Treatment versus Control. Hence, the steeper slope for Drug
A indicates that the relative effectiveness of Treatment versus Control is greater for Drug
A than for Drug B. This is the essence of any ANOVA interaction. If there is an
interaction, the effect of one categorical variable depends on the level of another
variable. In this case, the relative effectiveness of Treatment depends on whether the
patient is taking Drug A or Drug B.

Similarly, different values of X1 also yield different slopes. If X1 = +1 (either Drug
A or B), then the slope for X3 increases slightly by b4 = 0.5 units, and if X1 = –2 (Placebo)
then the slope decreases by 0.5(–2) = –1 units. However, b4 = 0.5 is not statistically
different from zero so there is no evidence that the Treatment versus Control difference
depends on whether any Drug was administered (X1 = –1) as compared to the Placebo.

FIGURE 9.9 Simple relationship between Ŷ and X3 when X1 = 0 and X2 = 0



Figure 9.10 depicts the changes in the intercept and the slope for X3 as X1 and X2

change. Clearly, the different values of X1 (Drug versus Placebo) yield noticeably
different intercepts, but the changes in the slope for X3 (Treatment versus Control) due
to changes in X1 are minimal. Although it may not appear to be the case, the slope for
the bottom line (X1 = –2, or Placebo) is slightly flatter than the average of the slopes 
of the top two lines (X1 = +1, Drugs). In contrast, the intercept changes due to X2 (Drug
A versus Drug B) are noticeable but much smaller than those due to X1 (any Drug versus
Placebo). However, the slope changes due to X2 are obvious. Indeed, the lines cross
within the range of values used in this study. That is, mood scores are higher for Drug
A (X2 = +1) than for Drug B (X2 = –1) for those receiving Treatment (X3 = +1). For
those in the Control condition (X3 = –1) the reverse is true—mood scores for Drug B
are higher than those for Drug A. These differences in slopes are the essence of an
interaction.

Similar to the above interpretation of the augmented model in terms of the simple
linear relationship between Ŷ and X3, we could also do the interpretation in terms of Ŷ
and X2. Although the interpretation of the interaction between X2 and X3 must necessarily
be equivalent, the alternative interpretation in terms of the relationship between Ŷ and
X2 may produce different insights. We do not provide that interpretation here, but it is
recommended as an exercise for the reader to construct and interpret the relevant graph
similar to Figure 9.10. Finally, we could do the interpretation in terms of the simple
linear relationship between Ŷ and X1. However, that is unlikely to be useful for these
data because the only interaction involving X1 is X4 = X1 ! X3 and the coefficient b4 for
that interaction was not significantly different from zero.

Summary of Interpretation

Although both interpretation strategies yield the same interpretation, each is useful for
providing a slightly different perspective. For interpreting a given ANOVA, you should
use as many of the strategies as necessary until a clear interpretation of the model emerges.
Below we suggest a summary interpretation that one might include in a research report:

On average, both drug treatments produced higher mood scores (M = 23.5) than 
did the placebo (M = 13), PRE =  .90, F(1, 12) = 105.8, p < .0001. There was not
a statistically significant difference in the average mood scores produced by Drug
A (M = 24.5) versus Drug B (M = 22.5), PRE = .19, F(1, 12) = 2.9, p= .11. Averaged
across all three drug conditions, patients receiving psychotherapy treatment had
higher mood scores (M = 25) than did those in the control group (M = 15), PRE =
.90, F(1, 12) = 108, p < .0001. However there was a significant interaction between
type of drug administered (A versus B) and whether or not the patient received
psychotherapy treatment, PRE = .49, F(1, 12) = 11.5, p < .005, such that Drug A,
relative to Drug B, produced an increase in mood scores of 6 points for those
receiving treatment, but a slight decrease of 2 points for those in the control group.

Useful adjuncts to the above journal summary are graphs of the cell means (which of
course are also the predicted values for the full model) as a function of the drug and
psychotherapy variables. Figure 9.10 (which we developed in the section on interpreting
slopes) and Figure 9.11 present two views of these data. In Figure 9.10, the differences
between the lines for the drug treatments represent the “Drug” differences. In particular,
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the relatively large difference between the two lines for Drug A and Drug B and the
line for Placebo corresponds to the large value for b1, and the small difference between
the Drug A and Drug B lines corresponds to the small value for b2. That the three lines
for the drug treatment groups are not parallel—the differences between lines are not
constant— indicates the interaction between the drug and psychotherapy variables. In
particular, the crossing of the Drug A and Drug B lines corresponds to the statistically
significant value of b5 (X5 = X2X3), which asks whether the difference between the 
Drug A and Drug B lines is constant or dependent on whether the patient was in the
Treatment or Control groups. The relatively large difference between the two treat-
ment lines in Figure 9.11 similarly corresponds to the large value of b3 and the non -
parallelism corresponds to the statistically significant value of b5. Each of these graphs
depicts the interaction, but from different perspectives, just as we were able to examine
the interaction from different perspectives in each of the interpretation strategies presented
above.

FIGURE 9.10 Simple relationship between Ŷ and X3 for different values of X1 and X2 (filled
circles represent cell means)

FIGURE 9.11 Cell means for mood scores by drug and psychotherapy treatment
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HIGHER ORDER ANOVA

Our strategy for two-way ANOVA was to generate an appropriate set of contrast codes
reflecting that two-way structure and then do the statistical analysis exactly as we did
for one-way ANOVA. We can use that same strategy when we have three or more
categorical predictor variables. Once we have an appropriate set of contrast codes for
an experimental design with more than two categorical variables, the statistical analysis
proceeds just as before. We therefore only need to learn a procedure for generating the
appropriate codes. That procedure is a generalization of the same procedure we used for
two-way ANOVA. For a factorial design of q categorical variables, the appropriate
contrast codes are constructed according to the following rules:

1. For each of the q categorical variables, develop a set of orthogonal one-way contrast
codes.

2. For each pair of categorical variables, construct additional contrast codes by
multiplying all possible pairs of contrast codes, one from each categorical variable.

3. For each triple of categorical variables, construct additional contrast codes by
multiplying all possible triads of contrast codes, one from each categorical variable.

4. Continue this procedure for each quadruple, quintuple, etc., until products are
formed using codes from all q categorical variables simultaneously.

If k1, k2, . . . , kq are the respective number of categories for each of the q categorical
variables, then the above algorithm for generating contrast codes will produce the
complete set of k1 ! k2 ! . . . ! kq – 1 orthogonal contrast codes.

As an example, suppose we also wanted to use the patient’s gender as a predictor
variable in the study of mood scores. Figure 9.12 shows the design of such a study with
12 groups, for which we will need 11 orthogonal contrast codes. We can use the five
contrast codes we have already specified for the Drug by Psychotherapy design. Let "6

be the code for gender, with –1 indicating males and +1 indicating females. Then we
need to form the products between that code and each code from the other variables.
For the Drug by Gender interactions:

"7 = "1 ! "6

"8 = "2 ! "6

and for the Psychotherapy by Gender interaction:

"9 = "3 ! "6

Finally, for the Drug by Psychotherapy by Gender three-way interactions, we form the
products of each triple of categorical codes:

"10 = "1 ! "3 ! "6

"11 = "2 ! "3 ! "6

This provides the 11 orthogonal contrast codes required by the 12 groups of the three-
way design. Figure 9.13 shows the codes for each group. Select some codes and verify
that they sum to zero as required for contrasts. Select several pairs of codes and verify
that their crossproducts sum to zero as required by orthogonality.



Interpretation of the one-way codes "1,"2,"3, and "6 and the two-way codes "4,"5,"7,"8,
and "9 use the same strategy illustrated for interpreting codes in two-way ANOVA. The
three-way codes "10 and "11 ask whether a given two-way interaction depends on the level
of the third variable. For example, we can represent "10 = "1"3"6 as "1"3 ! "6, asking
whether the two-way interaction of "1 (Drug versus Placebo) by "3 (Treatment versus
Control) is the same for each level of "6 (Female versus Male). Equivalently, the
representation "10 = "1"6 ! "3 shows that the three-way interaction equally asks whether
the two-way interaction of "1 (Drug versus Placebo) by "6 (Female versus Male) depends
on the level of "3 (Treatment versus Control). Finally, the representation "10 = "3"6 ! "1

asks whether the two-way interaction of "3 (Treatment versus Control) by "6 (Female versus
Male) depends on the level of "1 (Drug versus Placebo). At a fundamental level, these
three questions are the same. However, depending on the focus of the study (is it about
drug effects, psychotherapy effects, or gender differences?), one representation of each
three-way interaction will be most appropriate to report.

The global tests, as for one-way ANOVA, are not generally as useful as the focused
questions represented by the one-degree-of-freedom contrasts. However, the testing of
interactions is one instance for which global tests are sometimes useful. The proliferation
of interaction contrasts in factorial designs makes testing and interpreting individual
contrasts unwieldy. Interpretations of three-way and higher order interactions are often
so theoretically ad hoc that some data analysts recommend examining only those
interactions having a priori theoretical predictions. If the higher order interactions are
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FIGURE 9.12 A three-way factorial design: Drug (3) by Psychotherapy (2) by Gender (2)

Gender

Male Female

Psychotherapy Psychotherapy

Drug Control Treatment Control Treatment

A
B
Placebo

FIGURE 9.13 Orthogonal contrast codes for the three-way design of Figure 9.12

Group

A,C,M B,C,M P,C,M A,T,M B,T,M P,T,M A,C,F B,C,F P,C,F A,T,F B,T,F P,T,F

"1 1 1 −2 1 1 −2 1 1 −2 1 1 −2
"2 1 −1 0 1 −1 0 1 −1 0 1 −1 0
"3 −1 −1 −1 1 1 1 −1 −1 −1 1 1 1
"4 = "1"3 −1 −1 2 1 1 −2 −1 −1 2 1 1 −2
"5 = "2"3 −1 1 0 1 −1 0 −1 1 0 1 −1 0
"6 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1
"7 = "1"6 −1 −1 2 −1 −1 2 1 1 −2 1 1 −2
"8 = "2"6 −1 1 0 −1 1 0 1 −1 0 1 −1 0
"9 = "3"6 1 1 1 −1 −1 −1 −1 −1 −1 1 1 1
"10 = "1"3"6 1 1 −2 −1 −1 2 −1 −1 2 1 1 −2
"11 = "2"3"6 1 −1 0 −1 1 0 −1 1 0 1 −1 0



not expected and not to be examined, then it might be better to eliminate them from the
analysis, using only those contrasts that will be considered. This effectively includes
those eliminated interaction contrast codes in the “Error” term of the source table. Rather
than eliminating the higher order interactions outright, a more conservative strategy that
is frequently recommended is to do a global test of the higher order interactions and
then pool those contrasts in the Error term only if the null hypothesis is not rejected for
the global test. This strategy protects against missing something very unusual in the data
while greatly simplifying the data analysis and its presentation. An extra benefit is that
the statistical power of the other contrasts will be increased if the F for the higher order
interactions is < 1, because then more will be gained by adding degrees of freedom to
the within-group (Error) term than will be lost by adding extra SS in that term.

When eliminating interaction terms one must remember the rule from Chapter 7
that products represent interactions only if all the components of the product are also
included in the model. This implies, for example, that if the three-way interactions are
retained, then none of the one-way contrasts can be eliminated. Less obviously, it also
implies that none of the two-way contrasts can be eliminated because, as illustrated above,
any three-way interaction can be represented as the product of any of the two-way
interactions and one of the one-way contrasts.

OTHER DETAILS IN FACTORIAL ANOVA

In all other details factorial ANOVA with two or more categorical variables is exactly
the same as one-way ANOVA with one categorical variable. Specifically, confidence
intervals, problems with nonorthogonal codes, handling unequal numbers of observations
in each group, source tables, computational formulas for bj and SSRj for contrast-coded
predictors, planned and post hoc comparisons, and statistical power are exactly the same.
However, we provide additional details on two issues—asking other questions and
assessing statistical power—in order to highlight some issues that frequently arise in
factorial ANOVA.

Asking Other Questions

It is sometimes not possible to generate a set of orthogonal contrast codes addressing all
the theoretical questions that one might want to ask of a given set of data. This is often
true for questions that span two or more categorical variables. The strategy above for
generating codes for a standard factorial design allows choice of the one-way codes for
each categorical variable but then determines the remaining interaction codes as products
of those one-way codes. Those products may not ask the most relevant theoretical questions.
For example, in a 2 ! 2 design there is only one choice (+1, –1) for each one-way code,
so there is no choice for the interaction code, which must be the product of the two one-
way codes. Thus, the necessary codes for two variables A and B are:

A1B1 A1B2 A2B1 A2B2

"1 1 1 –1 –1
"2 1 –1 1 –1
"3 1 –1 –1 1
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The interaction code "3 asks whether the average of the A1B1 and A2B2 groups equals
the average of the other two groups. However, the theoretical question of interest might
be whether the mean of one group, say A2B2, differs from the average of the other three
groups. For example, the research hypothesis might be that both A2 and B2 must be present
for an effect to exist. If so, the code of interest is [–1, –1, –1, 3]. This is not an interaction
because it cannot be represented as the product of two contrast codes, one for each
categorical variable. Nevertheless, if it is the question of interest, then it should be asked.
We can compute its SSR with the usual formula and then compare it as a planned
comparison (as in Chapter 8) to the mean within-group error (MSE) resulting from the
analysis of variance using "1 through "3. Or, if that question is the focus of the study,
one may simply ignore the factorial structure of the design and analyze the data using
a set of one-way codes for four groups.

Other questions may also present themselves after the initial analysis. We can use
the same post hoc comparison procedures that we used in Chapter 8. For example, in
the mood score data, whether Drug A was better than Drug B depended on whether the
patient was also receiving psychotherapy. Examining the means, it appears that Drug A
is more effective for those in Treatment but Drug B is more effective for those in the
Control group. This suggests the recommendation that Drug A, even though it was
superior on average, only be administered to those concurrently receiving psychotherapy.
But before making such a recommendation we ought to test with post hoc comparisons
whether the difference between the means within levels of Psychotherapy are statistically
significant. Comparisons such as this between categories (Drug A versus Drug B) of
one variable within a single level (Treatment) are known as simple effects. We do the
calculation for this comparison as an example. The codes for the two relevant simple
effects are:

A,T B,T P,T A,C B,C P,C

"6 1 –1 0 0 0 0
"7 0 0 0 1 –1 0

The code "6 asks whether there is a difference between Drug A and Drug B for those
receiving Treatment and the code "7 asks the same drug difference question for those
in the Control condition. Then:

The MSE (from Figure 9.4 or 9.7) is 4.2, so:

If this were not a theoretically motivated, planned comparison, but only became a
relevant question after examining the data, it would be advisable to compare F with the
Scheffé adjusted critical value of:

(m – 1)Fm–1;n–PA;& = 5F5,12;.05 = 5(3.11) = 15.55

λ

λ
SSR6 =

k kȲk

2

k k/nk

=
(32 − 26)2

1 /3 + (−1)22
2 /3

= 54

F =
SSR
MSE

=
54
4.2

= 12.86



F = 12.86 is below the adjusted critical value, so we would not be able to conclude for
a post hoc comparison that Drug A was significantly better than Drug B for those patients
receiving Treatment. The difference for "7 is even smaller, so we know without
calculation that it too would not be statistically significant as a post hoc comparison.

Note that we have the odd situation in which we know that the effects of the drugs
were different in the two conditions (the interaction coded by "5 was significant, so the
Drug A vs. Drug B difference of 6 for Treatment is significantly different from the
difference of –2 for Control), but neither simple effect is significant (for Treatment, 6
is not statistically different from 0; and for Control, –2 is not statistically different from
0). They are different questions, so in any analysis they certainly can have different
answers. The remedy would be to conduct a replication study with more statistical power
or with the simple effects as now legitimate planned comparisons.

Power in Factorial ANOVA

The methods we have presented before for estimating power work equally well for
estimating statistical power in factorial ANOVA. It is interesting to examine how the
power is affected for questions we ask about a given variable when additional categorical
variables are added to the analysis. As an example, again consider the mood score data
of Figure 9.1. If we were mainly interested in the questions about the effects of the
drugs, we could have performed a one-way analysis of variance on these data, completely
ignoring the psychotherapy variable. If we ignored whether patients were in the Treatment
or Control groups, we would have three groups—Drug A, Drug B, and Placebo—each
with six observations. The respective means would be (32 + 17)/2 = 24.5, (26 + 19)/2
= 22.5, and (17 + 9)/2 = 13. The two contrast codes would be (1, 1, –2) and (1, –1, 0).
Applying the usual formulas from Chapter 8, we obtain b1 = 3.5 with SSR = 441 and
b2 = 1 with SSR = 12, exactly the same values as before. However, PRE and F would
be different because we are now testing the null hypothesis #1 = 0 by comparing:

MODEL A: Yi = #0 + #1X1 + #2X2 + $i

MODEL C: Yi = #0 + #2X2 + $i

This is the same basic question asked when testing #1 = 0 in the complete two-way
analysis. However, the statistical power is not the same because the question is being
tested in the context of a different Model A/C comparison.

To see the likely changes in power due to ignoring the other categorical variable,
let us consider Figure 9.14, which presents the complete source table for the one-way
ANOVA ignoring the psychotherapy variable. The parameter estimates, the sums of
squares, the degrees of freedom, and the mean square errors reduced are exactly as they
were in Figure 9.7. However, the error sum of squares and the error degrees of freedom
have increased substantially. The reason is that the sums of squares that were reduced
by X3, X4, and X5 in the two-way analysis are now included in the error because those
predictors are not used in this analysis. Given the same SSRs for X1 and X2 and increased
SSE, then the F and PRE values must be considerably less than they were before. For
example, in the complete two-way analysis of Figure 9.7, for X1 F1,12 = 105.8 and PRE
= .90, but in the one-way analysis only considering the Drug treatment variable, F1,15 =
11.9 and PRE = .44. The differences between the means for Drug A, Drug B, and Placebo
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have not changed, so clearly the two-way analysis provided considerably more statistical
power for testing #1 = 0 and #2 = 0. This increase in power is generally the case in
multi way factorial ANOVA. Using one or more other categorical variables to reduce
SSE allows a more powerful test of hypothesis concerning another categorical variable.
The only situation for which there would be a decrease in statistical power would be 
if the F values for the codes of the additional variables and the codes for the inter-
actions were < 1.0. If F < 1.0 for a contrast, then the proportional reduction in error
associated with that contrast is less than we would expect for a randomly chosen
parameter. Hence, including that contrast-coded predictor would not be worth the loss
of a degree of freedom due to the extra parameter, and so power goes down. Therefore,
one should add other categorical variables for the purpose of increasing statistical power
only if one expects those variables and their interactions to themselves reduce error in
the criterion variable. Interactions proliferate rapidly as other categorical variables with
many levels are added. One must be cautious that those many interactions do not thereby
reduce statistical power.
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FIGURE 9.14 One-way ANOVA of mood scores ignoring the psychotherapy variable

Source bj SS df MS F p PRE

Between groups (Drug) 453 2 226.5 6.1 .012 .45
X1 3.5 441 1 441 11.9 .004 .44
X2 1.0 12 1 12 0.3 .58 .02

Within groups (MSE) 557 15 37.1

Total 1010.0 17

SUMMARY

In a factorial design, there are two or more categorical predictor variables, and all levels
of each categorical variable are combined with all levels of other categorical variables.
We analyze data from a two-way or higher order factorial design by applying the one-
way ANOVA techniques from Chapter 8 to an appropriate set of contrast codes. We
generate this set of codes by developing separate sets of one-way contrast codes for each
categorical variable and then forming appropriate products among these codes to represent
the interaction between categorical variables. Interpreting the interaction contrasts can
be difficult, but the same interpretative techniques from Chapters 7 and 8 apply.

Notes
1 We use Z here instead of the customary X because subsequently we will do an analysis of

these same data using a different set of contrast codes. The Z values are the contrast-coded
predictor variables for the first analysis and the X values will be the contrast-coded predictor
variables for the second analysis.

2 Note that the Z values are independent of each other, because they are based on orthogonal
contrast codes and there are equal numbers of observations in each group. Hence, the sums
of squares in Figure 9.4 for the individual contrast-coded predictors sum to the overall sum
of squares for the complete model.


