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Chapter 12

Transformations and regression

It is not always best to fit a regression using data in their raw form. In this chapter we start by
discussing linear transformations for standardizing predictors and outcomes in a regression, which
connects to “regression to the mean,” earlier discussed in Chapter 6, and how it relates to linear
transformations and correlation. We then discuss logarithmic and other transformations with a series
of examples in which input and outcome variables are transformed and combined in various ways
in order to get more understandable models and better predictions. This leads us to more general
thoughts about building and comparing regression models in applications, which we develop in the
context of an additional example.

12.1 Linear transformations
Scaling of predictors and regression coefficients

The coe�cient � j represents the average di�erence in y , comparing items that di�er by 1 unit on theExample:
Earnings
and height

j
th predictor and are otherwise identical. In some cases, though, a di�erence of 1 unit in x is not the

most relevant comparison. Consider, from page 12, a model fit to data we downloaded from a survey
of adult Americans in 1990 that predicts their earnings (in dollars) given their height (in inches):

earnings = �85 000 + 1600 ⇤ height + error, (12.1)

with a residual standard deviation of 22 000.
A linear model is not really appropriate for this problem, as we shall discuss soon, but we’ll stick

with the simple example for introducing the concept of linear transformations.
Figure 12.1a shows the regression line and uncertainty along with the data, and Figure 12.1b

extends the x-axis to zero to display the intercept—the point on the y-axis where the line crosses
zero. The estimated intercept of �85 000 has little meaning since it corresponds to the predicted
earnings for a person of zero height!

Now consider the following alternative forms of the model:

earnings = �85 000 + 63 ⇤ height (in millimeters) + error,
earnings = �85 000 + 101 000 000 ⇤ height (in miles) + error.

How important is height? While $63 does not seem to matter much, $101 000 000 is a lot. Yet,
both these equations reflect the same underlying information. To understand these coe�cients better,
we need some sense of the variation in height in the population to which we plan to apply the
model. One approach is to scale by the standard deviation of heights in the data, which is 3.8 inches
(or 97 millimeters, or 0.000 060 miles). The expected di�erence in earnings corresponding to a
3.8-inch di�erence in height is $1600 ⇤ 3.8 = $63 ⇤ 97 = $101 000 000 ⇤ 0.000 060 = $6100, which
is reasonably large but much smaller than the residual standard deviation of $22 000 unexplained by
the regression.

Linear transformations of the predictors X or the outcome y do not a�ect the fit of a classical

Note:
The code examples in this chapter use R. But we’ve see how to do similar 
transformations using polars expressions in Python.
We haven’t discussed all of them, so feel free to try them out yourself



This book has been published by Cambridge University Press as Regression and Other Stories by Andrew Gelman, Jennifer Hill, and Aki
Vehtari. This PDF is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.
© Copyright by Andrew Gelman, Jennifer Hill, and Aki Vehtari 2020–2023. The book web page https://avehtari.github.io/
ROS-Examples/

184 12. T�������������� ��� ����������

60 65 70 75 80
height

ea
rn

in
gs

Fitted linear model

0
10

00
00

20
00

00

0 20 40 60 80
height

ea
rn

in
gs

x−axis extended to 0

−1
00

00
0

0
10

00
00

Figure 12.1 (a) Regression of earnings on height, earnings = �85 000 + 1600 ⇤ height, with lines indicating
uncertainty in the fitted regression. (b) Extending the x-scale to zero reveals the estimate and uncertainty for the
intercept of the regression line. To improve resolution, a data point at earnings of $400 000 has been excluded
from the graphs.

regression model, and they do not a�ect predictions; the changes in the inputs and the coe�cients
cancel in forming the predicted value X �. However, well-chosen linear transformations can improve
interpretability of coe�cients and make a fitted model easier to understand. We saw in Chapters 4
and 10 how linear transformations can help with the interpretation of the intercept; this section and
the next provide examples involving the interpretation of the other coe�cients in the model.

Standardization using z-scores

Another way to scale the coe�cients is to standardize the predictor by subtracting the mean and
dividing by the standard deviation to yield a “z-score.” For these height would be replaced by
z_height = (height� 66.6)/3.8, and the coe�cient for z_height becomes 6100. Then coe�cients
are interpreted in units of standard deviations with respect to the corresponding predictor just as they
were, after the fact, in the previous example. This is helpful because standard deviations can be seen
as a measure of practical significance; in this case, a di�erence in one standard deviation on the input
scale is a meaningful di�erence in that it roughly reflects a typical di�erence between the mean and a
randomly drawn observation. In addition, standardizing predictors using z-scores will change our
interpretation of the intercept to the mean of y when all predictor values are at their mean values.

It can often be preferable, however, to divide by 2 standard deviations to allow inferences to be
more consistent with those for binary inputs, as we discuss in Section 12.2.

Standardization using the sample mean and standard deviation of the predictors uses raw estimates
from the data and thus should be used only when the number of observations is big enough that these
estimates are stable. When sample size is small, we recommend standardizing using an externally
specified population distribution or other externally specified reasonable scales.

Standardization using an externally specified population distribution

A related approach is to rescale based on some standard set outside the data. For example, in analyses
of test scores it is common to express estimates on the scale of standard deviations of test scores
across all students in a grade. A test might be on a 0–100 scale, with fourth graders having a national
mean score of 55 and standard deviation of 18. Then if the analysis is done on the scale of points on
the exam, all coe�cient estimates and standard errors from analyses of fourth graders are divided by
18 so that they are on this universal scale. Equivalently, one could first define z = (y � 55)/18 for
all fourth graders and then run all regressions on z. The virtue of using a fixed scaling, rather than
standardizing each dataset separately, is that estimates are all directly comparable.
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Standardization using reasonable scales

Sometimes it is useful to keep inputs on familiar scales such as inches, dollars, or years, but make
convenient rescalings to aid in the interpretability of coe�cients. For example, we might work with
income/$10 000 or age in decades.

For another example, in Section 10.9 we analyzed party identification, a variable on a 1–7 scale:
1 = strong Democrat, 2 = Democrat, 3 = weak Democrat, 4 = independent, 5 = weak Republican,
6=Republican, 7=strong Republican. Rescaling to (pid � 4)/4 gives us a variable that equals �0.5
for Democrats, 0 for moderates, and +0.5 for Republicans, and so the coe�cient on this variable is
directly interpretable, with a change of 1 comparing a Democrat to a Republican.

12.2 Centering and standardizing for models with interactions
Figure 12.1b illustrates the di�culty of interpreting the intercept term in a regression in a settingExample:

Children’s
IQ tests

where it does not make sense to consider predictors set to zero. More generally, similar challenges
arise in interpreting coe�cients in models with interactions, as we saw in Section 10.3 with the
following model:1

Median MAD_SD
(Intercept) -8.0 13.2
mom_hs 47.0 14.5
mom_iq 0.9 0.1
mom_hs:mom_iq -0.5 0.2

Auxi�iary parameter(s):
Median MAD_SD

sigma 18.0 0.6

The coe�cient on mom_hs is 47.0—does this mean that children with mothers who graduated from
high school perform, on average, 47.0 points better on their tests? No. The model includes an
interaction, and 47.0 is the predicted di�erence for kids that di�er in mom_hs, among those with
mom_iq = 0. Since mom_iq is never even close to zero (see Figure 10.4), the comparison at zero, and
thus the coe�cient of 47.0, is essentially meaningless.

Similarly, the coe�cient of 0.9 for the “main e�ect” of mom_iq is the slope for this variable,
among those children for whom mom_hs= 0. This is less of a stretch, as mom_hs actually does equal
zero for many of the cases in the data (see Figure 10.1) but still can be somewhat misleading since
mom_hs= 0 is at the edge of the data so that this coe�cient cannot be interpreted as an average over
the general population.

Centering by subtracting the mean of the data

We can simplify the interpretation of the regression model by first subtracting the mean of each input
variable:

kidiq$c_mom_hs <- kidiq$mom_hs - mean(kidiq$mom_hs)
kidiq$c_mom_iq <- kidiq$mom_iq - mean(kidiq$mom_iq)

Each main e�ect now corresponds to a predictive di�erence with the other input at its average value:
Median MAD_SD

(Intercept) 87.6 0.9
c_mom_hs 2.9 2.4
c_mom_iq 0.6 0.1
c_mom_hs:c_mom_iq -0.5 0.2

1Data and code for this example are in the folder KidIQ.
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Auxi�iary parameter(s):
Median MAD_SD

sigma 18.0 0.6

The residual standard deviation does not change—linear transformation of the predictors does not
a�ect the fit of the model—and the coe�cient and standard error of the interaction did not change,
but the main e�ects and the intercept change a lot and are now interpretable based on comparison to
the mean of the data.

Using a conventional centering point

Another option is to center based on an understandable reference point, for example, the midpoint of
the range for mom_hs and the population average IQ:

kidiq$c2_mom_hs <- kidiq$mom_hs - 0.5
kidiq$c2_mom_iq <- kidiq$mom_iq - 100

In this parameterization, the coe�cient of c2_mom_hs is the average predictive di�erence between
a child with mom_hs = 1 and a child with mom_hs = 0, among those children with mom_iq = 100.
Similarly, the coe�cient of c2_mom_iq corresponds to a comparison under the condition mom_hs = 0.5,
which includes no actual data but represents a midpoint of the range.

Median MAD_SD
(Intercept) 86.8 1.2
c2_mom_hs 2.9 2.3
c2_mom_iq 0.7 0.1
c2_mom_hs:c2_mom_iq -0.5 0.2

Auxi�iary parameter(s):
Median MAD_SD

sigma 18.0 0.6

Once again, the residual standard deviation and coe�cient for the interaction have not changed. The
intercept and main e�ect have changed very little, because the points 0.5 and 100 happen to be close
to the mean of mom_hs and mom_iq in the data.

Standardizing by subtracting the mean and dividing by 2 standard deviations

Centering helped us interpret the main e�ects in the regression, but it still leaves us with a scaling
problem. The coe�cient of mom_hs is much larger than that of mom_iq, but this is misleading,
considering that we are comparing the complete change in one variable (mother completed high
school or not) to a mere 1-point change in mother’s IQ, which is not much at all; see Figure 10.4.

A natural step is to scale the predictors by dividing by 2 standard deviations—we shall explain
shortly why we use 2 rather than 1—so that a 1-unit change in the rescaled predictor corresponds
to a change from 1 standard deviation below the mean, to 1 standard deviation above. Here are the
rescaled predictors in the child testing example:

kidiq$z_mom_hs <- (kidiq$mom_hs - mean(kidiq$mom_hs))/(2*sd(kidiq$mom_hs))
kidiq$z_mom_iq <- (kidiq$mom_iq - mean(kidiq$mom_iq))/(2*sd(kidiq$mom_iq))

We can now interpret all the coe�cients on a roughly common scale (except for the intercept, which
now corresponds to the average predicted outcome with all inputs at their mean):

Median MAD_SD
(Intercept) 87.6 0.9
z_mom_hs 2.3 2.1
z_mom_iq 17.7 1.8
z_mom_hs:z_mom_iq -11.9 4.0
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Auxi�iary parameter(s):
Median MAD_SD

sigma 18.0 0.6

Why scale by 2 standard deviations?

We divide by 2 standard deviations rather than 1 because this is consistent with what we do with
binary input variables. To see this, consider the simplest binary x variable, which takes on the
values 0 and 1, each with probability 0.5. The standard deviation of x is then

p
0.5 ⇤ 0.5 = 0.5, and

so the standardized variable, (x � µx )/(2�x ), takes on the values ± 0.5, and its coe�cient reflects
comparisons between x = 0 and x = 1. In contrast, if we had divided by 1 standard deviation,
the rescaled variable takes on the values ±1, and its coe�cient corresponds to half the di�erence
between the two possible values of x. This identity is close to precise for binary inputs even when the
frequencies are not exactly equal, since

p
p(1 � p) ⇡ 0.5 when p is not too far from 0.5.

In a complicated regression with many predictors, it can make sense to leave binary inputs as
is and linearly transform continuous inputs, possibly by scaling using the standard deviation. In
this case, dividing by 2 standard deviations ensures a rough comparability in the coe�cients. In
our children’s testing example, the predictive di�erence corresponding to 2 standard deviations of
mother’s IQ is clearly much higher than the comparison of mothers with and without a high school
education.

Multiplying each regression coefficient by 2 standard deviations of its predictor

For models with no interactions, we can get the same inferences for the coe�cients other than the
intercept by leaving the regression predictors as is and then creating rescaled regression coe�cients
by multiplying each � by two times the standard deviation of its corresponding x. This gives a sense
of the importance of each variable, adjusting for all the others in the linear model. As noted, scaling
by 2 (rather than 1) standard deviations allows these scaled coe�cients to be comparable to unscaled
coe�cients for binary predictors.

12.3 Correlation and “regression to the mean”
Consider a regression with a constant term and one predictor; thus, y = a + bx + error. If both of
the variables x and y are standardized—that is, if they are defined as x <- (x-mean(x))/sd(x)
and y <- (y-mean(y))/sd(y)—then the regression intercept is zero, and the slope is simply the
correlation between x and y. Thus, the slope of a regression of two standardized variables must
always be between �1 and 1, or, to put it another way, if a regression slope is more than 1 in absolute
value, then the variance of y must exceed that of x. In general, the slope of a regression with one
predictor is b = ⇢�y/�x , where ⇢ is the correlation between the two variables and �x and �y are
the standard deviations of x and y .

The principal component line and the regression line

Some of the confusing aspects of regression can be understood in the simple case of standardized
variables. Figure 12.2 shows a simulated-data example of standardized variables with correlation
(and thus regression slope) 0.5. Figure 12.2a shows the principal component line, which goes closest
through the cloud of points, in the sense of minimizing the sum of squared distances between the
points and the line. The principal component line in this case is simply y = x.

Figure 12.2b shows the regression line, which minimizes the sum of the squares of the vertical
distances between the points and the line—it is the familiar least squares line, y = â + b̂x, with â, b̂



This book has been published by Cambridge University Press as Regression and Other Stories by Andrew Gelman, Jennifer Hill, and Aki
Vehtari. This PDF is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.
© Copyright by Andrew Gelman, Jennifer Hill, and Aki Vehtari 2020–2023. The book web page https://avehtari.github.io/
ROS-Examples/

188 12. T�������������� ��� ����������

principal component line

x

y

regression line of y on x

x

y

Figure 12.2 Data simulated from a bivariate normal distribution with correlation 0.5. (a) The principal
component line goes closest through the cloud of points. (b) The regression line, which represents the best
prediction of y given x, has half the slope of the principal component line.

chosen to minimize
P

n

i=1(yi � (â + b̂xi))2. In this case, â = 0 and b̂ = 0.5; the regression line thus
has slope 0.5.

When given this sort of scatterplot (without any lines superimposed) and asked to draw the
regression line of y on x, students tend to draw the principal component line, which is shown in
Figure 12.2a. However, for the goal of predicting y from x, or for estimating the average of y for any
given value of x, the regression line is in fact better—even if it does not appear so at first.

The superiority of the regression line for estimating the average of y given x can be seen from a
careful study of Figure 12.2. For example, consider the points at the extreme left of either graph. They
all lie above the principal component line but are roughly half below and half above the regression
line. Thus, the principal component line underpredicts y for low values of x. Similarly, a careful
study of the right side of each graph shows that the principal component line overpredicts y for high
values of x. In contrast, the regression line again gives unbiased predictions, in the sense of going
through the average of y given x.

Regression to the mean

This all connects to our earlier discussion of “regression to the mean” in Section 6.5. When x and y
are standardized (that is, placed on a common scale, as in Figure 12.2), the regression line always
has slope less than 1. Thus, when x is 1 standard deviation above the mean, the predicted value of
y is somewhere between 0 and 1 standard deviations above the mean. This phenomenon in linear
models—that y is predicted to be closer to the mean (in standard-deviation units) than x—is called
regression to the mean and occurs in many vivid contexts.

For example, if a woman is 10 inches taller than the average for her sex, and the correlation of
mothers’ and adult daughters’ heights is 0.5, then her daughter’s predicted height is 5 inches taller
than the average. She is expected to be taller than average, but not so much taller—thus a “regression”
(in the nonstatistical sense) to the average.

A similar calculation can be performed for any variables that are not perfectly correlated. For
example, let xi and yi be the number of games won by football team i in two successive seasons.
They will not be correlated 100%; thus, we expect the teams that did the best in season 1 (that is,
with highest values of x) to do not as well in season 2 (that is, we expect their values of y to be closer
to the average for all the teams). Similarly, we expect teams with poor records in season 1 to improve
on average in season 2, relative to the other teams.

A naive interpretation of regression to the mean is that heights, or football records, or other
variable phenomena become more and more “average” over time. As discussed in Section 6.5, this
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view is mistaken because it ignores the error in the regression predicting y from x. For any data
point xi , the point prediction for its yi will be regressed toward the mean, but the actual observed yi
will not be exactly where it is predicted. Some points end up falling closer to the mean and some fall
further. This can be seen in Figure 12.2b.

12.4 Logarithmic transformations
When additivity and linearity are not reasonable assumptions (see Section 11.1), a nonlinear
transformation can sometimes remedy the situation. It commonly makes sense to take the logarithm
of outcomes that are all-positive. For outcome variables, this becomes clear when we think about
making predictions on the original scale. The regression model imposes no constraints that would
force these predictions to be positive as well. However, if we take the logarithm of the variable,
run the model, make predictions on the log scale, and then transform back by exponentiating, the
resulting predictions are necessarily positive because for any real a, exp(a) > 0.

Perhaps more important, a linear model on the logarithmic scale corresponds to a multiplicative
model on the original scale. Consider the linear regression model,

log yi = b0 + b1Xi1 + b2Xi2 + · · · + ✏ i .

Exponentiating both sides yields

yi = e
b0+b1Xi1+b2Xi2+· · ·+✏i

= B0B
Xi1
1 B

Xi2
2 · · · Ei,

where B0 = e
b0 , B1 = e

b1 , B2 = e
b2 , . . . are exponentiated regression coe�cients (and thus are

positive), and Ei = e
✏i is the exponentiated error term (also positive). On the scale of the original

data yi , the predictors Xi1, Xi2, . . . come in multiplicatively.
In Section 3.4, we discussed the connections between logarithmic transformations and exponential

and power-law relationships; here we consider these in the context of regression.

Earnings and height example

We illustrate logarithmic regression by considering models predicting earnings from height.2Example:
Earnings
and height

Expression (12.1) shows a linear regression of earnings on height. However, it really makes more
sense to model earnings on the logarithmic scale, as long as we exclude those people who reported
zero earnings. We can fit a regression to log earnings and then take the exponential to get predictions
on the original scale.
Direct interpretation of small coefficients on the log scale. We take the logarithm of earnings and
regress on height,

�ogmode�_1 <- stan_g�m(�og(earn) ~ height, data=earnings, subset=earn>0)
print(�ogmode�_1)

yielding the following estimate:

Median MAD_SD
(Intercept) 5.91 0.38
height 0.06 0.01

Auxi�iary parameter(s):
Median MAD_SD

sigma 0.88 0.02

2Data and code for this example are in the folder Earnings.
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Figure 12.3 Regression of earnings on log(height), with curves showing uncertainty the model, log(earnings) =
a + b ⇤ height, fit to data with positive earnings. The data and fit are plotted on the logarithmic and original
scales. Compare to the linear model, shown in Figure 12.1a. To improve resolution, a data point at earnings of
$400 000 has been excluded from the original-scale graph.

−1 0 1

0
1

coefficient

ex
p 

(c
oe

ffi
ci

en
t) 
− 

1

Figure 12.4 Interpretation of exponentiated coe�cients in a logarithmic regression model as relative di�erence
(curved upper line), and the approximation exp(x) = 1 + x, which is valid for small coe�cients x (straight line).

Figure 12.3 shows the data and fitted regression on the log and linear scales.
The estimate �̂1 = 0.06 implies that a di�erence of 1 inch in height corresponds to an expected

di�erence of 0.06 in log(earnings), so that earnings are multiplied by exp(0.06). But exp(0.06) ⇡ 1.06
(more precisely, 1.062). Thus, a di�erence of 1 in the predictor corresponds to an expected positive
di�erence of about 6% in the outcome variable. Similarly, if �1 were �0.06, then a positive di�erence
of 1 inch of height would correspond to an expected negative di�erence of about 6% in earnings.

This correspondence becomes more nonlinear as the magnitude of the coe�cient increases.
Figure 12.4 displays the deterioration of the correspondence as the coe�cient size increases. The plot
is restricted to coe�cients in the range (�1, 1) because, on the log scale, regression coe�cients are
typically (though not always) less than 1. A coe�cient of 1 on the log scale implies that a change of
one unit in the predictor is associated with a change of exp(1) = 2.7 in the outcome, and, if predictors
are parameterized in a reasonable way, it is unusual to see e�ects of this magnitude.
Predictive checking. One way to get a sense of fit is to simulate replicated datasets from the fitted
model and compare them to the observed data. We demonstrate for the height and earnings regression.

First we simulate new data:

yrep_1 <- posterior_predict(fit_1)

The above code returns a matrix in which each row is a replicated dataset from the posterior
distribution of the fitted regression of earnings on height. We then plot the density of the observed
earnings data, along with 100 draws of the distribution of replicated data:

n_sims <- nrow(yrep_1)
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Figure 12.5 Posterior predictive checks comparing the density plot of earnings data (dark line) to 100 predictive
replications (gray lines) of replicated data from fitted models (a) on the original scale, and (b) on the log scale.
Both models show some lack of fit. The problem is particularly obvious with the linear-scale regression, as the
observed earnings are all positive (with the density function including a small negative tail just as an artifact of
the smoothing procedure) and the replicated data include many negative values. The non-smoothed aspects of
the observed data arise from discreteness in the survey responses.

subset <- samp�e(n_sims, 100)
�ibrary(�bayesp�ot�)
ppc_dens_over�ay(earnings$earn, yrep_1[subset,])

The result is shown in Figure 12.5a. Unsurprisingly, the fit on the untransformed scale is poor:
observed earnings in these data are always positive, while the predictive replications contain many
negative values.

We can then do the same predictive checking procedure for the model fit on the log scale, first
simulating the predictions:

yrep_�og_1 <- posterior_predict(�ogmode�_1)

Then we plot 100 simulations along with the observed data:

n_sims <- nrow(yrep_�og_1)
subset <- samp�e(n_sims, 100)
ppc_dens_over�ay(�og(earnings$earn[earnings$earn>0]), yrep_�og_1[subset,])

The resulting fit on the log scale is not perfect (see Figure 12.5b), which could be of interest,
depending on one’s goal in fitting the model. The point of this example is that, as a model is altered,
we can perform predictive checks to assess di�erent aspects of fit. Here we looked at the marginal
distribution of the data, but more generally one can look at other graphical summaries.

Why we use natural log rather than log base 10

We prefer natural logs (that is, logarithms base e) because, as described above, coe�cients on the
natural-log scale are directly interpretable as approximate proportional di�erences: with a coe�cient
of 0.05, a di�erence of 1 in x corresponds to an approximate 5% di�erence in y , and so forth. Natural
log is sometimes written as “ln,” but we simply write “log” since this is our default.

Another approach is to take logarithms base 10, which we write as log10. The connection between
the two di�erent scales is that log10(x) = log(x)/ log(10) = log(x)/2.30. The advantage of log10 is
that the predicted values themselves are easier to interpret; for example, when considering the earnings
regressions, log10(10 000) = 4 and log10(100 000) = 5, and with some experience we can also
quickly read o� intermediate values—for example, if log10(earnings) = 4.5, then earnings ⇡ 30 000.

The disadvantage of log10 is that the resulting coe�cients are harder to interpret. For example, if
we fit the earnings regression on the log10 scale,
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�ogmode�_1a <- stan_g�m(�og10(earn) ~ height, data=earnings, subset=earn>0)

we get,

Median MAD_SD
(Intercept) 2.57 0.16
height 0.02 0.00

Auxi�iary parameter(s):
Median MAD_SD

sigma 0.38 0.01

The coe�cient of 0.02 tells us that a di�erence of 1 inch in height corresponds to a di�erence of 0.02
in log10(earnings), that is, a multiplicative di�erence of 100.02 = 1.06 (after fixing roundo� error).
This is the same 6% change as before, but it cannot be seen by simply looking at the coe�cient as
could be done on the natural-log scale.

Building a regression model on the log scale

Adding another predictor. A di�erence of an inch of height corresponds to a di�erence of 6% in
earnings—that seems like a lot! But men are mostly taller than women and also tend to have higher
earnings. Perhaps the 6% predictive di�erence can be understood by di�erences between the sexes.
Do taller people earn more, on average, than shorter people of the same sex?

�ogmode�_2 <- stan_g�m(�og(earn) ~ height + ma�e, data=earnings, subset=earn>0)

Median MAD_SD
(Intercept) 7.97 0.51
height 0.02 0.01
ma�e 0.37 0.06

Auxi�iary parameter(s):
Median MAD_SD

sigma 0.87 0.02

After adjusting for sex, each inch of height corresponds to an estimated predictive di�erence of 2%:
under this model, two people of the same sex but di�ering by 1 inch in height will di�er, on average,
by 2% in earnings. The predictive comparison of sex, however, is huge: comparing a man and a
woman of the same height, the man’s earnings are exp(0.37) = 1.45 times the woman’s, that is, 45%
more. (We cannot simply convert the 0.37 to 45% because this coe�cient is not so close to zero; see
Figure 12.4.) This coe�cient also is not easily interpretable. Does it mean that “being a man” causes
one to earn nearly 50% more than a woman? We will explore this sort of troubling question in the
causal inference chapters in Part 5 of the book.
Naming inputs. Incidentally, we named this new input variable ma�e so that it could be immediately
interpreted. Had we named it sex, for example, we would always have to go back to the coding to
check whether 0 and 1 referred to men and women, or vice versa. Another approach would be to
consider sex as a factor with two named levels, ma�e and fema�e; see page 198. Our point here is
that, if the variable is coded numerically, it is convenient to give it the name ma�e corresponding to
the coding of 1.
Residual standard deviation and R

2. Finally, the regression model has a residual standard deviation
� of 0.87, implying that approximately 68% of log earnings will be within 0.87 of the predicted value.
On the original scale, approximately 68% of earnings will be within a factor of exp(0.87) = 2.4 of
the prediction. For example, a 70-inch person has predicted earnings of 7.97+ 0.02 ⇤ 70 = 9.37, with
a predictive standard deviation of approximately 0.87. Thus, there is an approximate 68% chance
that this person has log earnings in the range [9.37 ± 0.87] = [8.50, 10.24], which corresponds to
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earnings in the range [exp(8.50), exp(10.24)]] = [5000, 28 000]. This wide range tells us that the
regression model does not predict earnings well—it is not very impressive to have a prediction that
can be wrong by a factor of 2.4—and this is also reflected in R

2, which is only 0.08, indicating that
only 8% of the variance in the log transformed data is explained by the regression model. This low
R

2 manifests itself graphically in Figure 12.3, where the range of the regression predictions is clearly
much narrower than the range of the data.
Including an interaction. We now consider a model with an interaction between height and sex, so
that the predictive comparison for height can di�er for men and women:

�ogmode�_3 <- stan_g�m(�og(earn) ~ height + ma�e + height:ma�e,
data=earnings, subset=earn>0)

which yields,
Median MAD_SD

(Intercept) 8.48 0.66
height 0.02 0.01
ma�e -0.76 0.94
height:ma�e 0.02 0.01

Auxi�iary parameter(s):
Median MAD_SD

sigma 0.87 0.02

That is,

log(earnings) = 8.48 + 0.02 ⇤ height � 0.76 ⇤male + 0.02 ⇤ height ⇤male. (12.2)

We shall try to interpret each of the four coe�cients in this model.
• The intercept is the predicted log earnings if height and ma�e both equal zero. Because heights

are never close to zero, the intercept has no direct interpretation.
• The coe�cient for height, 0.02, is the predicted di�erence in log earnings corresponding to a

1-inch di�erence in height, if ma�e equals zero. Thus, the estimated predictive di�erence per inch
of height is 2% for women, with some uncertainty as indicated by the standard error of 0.01.

• The coe�cient for ma�e is the predicted di�erence in log earnings between women and men, if
height equals 0. Heights are never close to zero, and so the coe�cient for ma�e has no direct
interpretation in this model. If you want to interpret it, you can move to a more relevant value for
height; as discussed in Section 12.2, it makes sense to use a centered parameterization.

• The coe�cient for height:ma�e is the di�erence in slopes of the lines predicting log earnings
on height, comparing men to women. Thus, a di�erence of an inch of height corresponds to 2%
more of a di�erence in earnings among men than among women, and the estimated predictive
di�erence per inch of height among men is 2% + 2% = 4%.

The interaction coe�cient has a large standard error, which tells us that the point estimate is uncertain
and could change in sign and magnitude if additional data were fed into the analysis.
Linear transformation to make coefficients more interpretable. We can make the parameters in
the interaction model more easily interpretable by rescaling the height predictor to have a mean of 0
and standard deviation 1:

earnings$z_height <- (earnings$height - mean(earnings$height))/sd(earnings$height)

The mean and standard deviation of heights in these data are 66.6 inches and 3.8 inches, respectively.
Fitting the model to z_height, ma�e, and their interaction yields,

Median MAD_SD
(Intercept) 9.55 0.04
z_height 0.06 0.04
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ma�e 0.35 0.06
z_height:ma�e 0.08 0.06

Auxi�iary parameter(s):
Median MAD_SD

sigma 0.87 0.02

We can now interpret all four of the coe�cients:
• The intercept is the predicted log earnings if z_height and ma�e both equal zero. Thus, a

66.6-inch-tall woman is predicted to have log earnings of 9.55, or earnings of exp(9.55) = 14 000.
• The coe�cient for z_height is the predicted di�erence in log earnings corresponding to a 1

standard deviation di�erence in height, if ma�e equals zero. Thus, the estimated predictive
di�erence for a 3.8-inch increase in height is 6% for women (but with a standard error indicating
much uncertainty in this coe�cient).

• The coe�cient for ma�e is the predicted di�erence in log earnings between women and men, if
z_height equals 0. Thus, a 66.6-inch-tall man is predicted to have log earnings that are 0.35
higher than that of a 66.6-inch-tall woman. This corresponds to a ratio of exp(0.35) = 1.42, so
the man is predicted to have 42% higher earnings than the woman.

• The coe�cient for z_height:ma�e is the di�erence in slopes between the predictive di�erences for
height among women and men. Thus, comparing two men who di�er by 3.8 inches in height, the
model predicts a di�erence of 0.06+ 0.08 = 0.14 in log earnings, thus a ratio of exp(0.14) = 1.15,
a di�erence of 15%.

One might also consider centering the predictor for sex, but here it is easy enough to interpret
ma�e = 0, which corresponds to the baseline category (in this case, women).

Further difficulties in interpretation

For a glimpse into yet another challenge in interpreting regression coe�cients, consider the simpler
log earnings regression without the interaction term. The predictive interpretation of the height
coe�cient is simple enough: comparing two adults of the same sex, the taller person will be expected
to earn 2% more per inch of height; see the model on page 192. This seems to be a reasonable
comparison.

To interpret the coe�cient for ma�e, we would say that comparing two adults of the same height
but di�erent sex, the man will be expected to earn 45% more on average. But how clear is it for us to
interpret this comparison? For example, if we are comparing a 66-inch woman to a 66-inch man,
then we are comparing a tall woman to a short man. So, in some sense, they do not di�er only in sex.
Perhaps a more reasonable or relevant comparison would be of an “average woman” to an “average
man.”

The ultimate solution to this sort of problem must depend on why the model is being fit in the
first place. For now we shall focus on the technical issues of fitting reasonable models to data. We
discuss causal interpretations in Chapters 18–21.

Log-log model: transforming the input and outcome variables

If the log transformation is applied to an input variable as well as the outcome, the coe�cient can be
interpreted as the expected proportional di�erence in y per proportional di�erence in x. For example:

earnings$�og_height <- �og(earnings$height)
�ogmode�_5 <- stan_g�m(�og(earn) ~ �og_height + ma�e, data=earnings, subset=earn>0)

yields,
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Median MAD_SD
(Intercept) 2.76 2.19
�og_height 1.62 0.53
ma�e 0.37 0.06

Auxi�iary parameter(s):
Median MAD_SD

sigma 0.87 0.01

For each 1% di�erence in height, the predicted di�erence in earnings is approximately 1.62%. To be
precise, when comparing two people who di�er in height by a factor of 1.01, this corresponds to a
di�erence in log(height) of log(1.01) = 0.01, which corresponds to a di�erence of 0.0162 in the
predicted value of log y, so the expected value of y is larger by a factor of exp(0.0162) = 1.0163.
The other input, ma�e, is categorical so it does not make sense to take its logarithm.

In economics, the coe�cient in a log-log model is sometimes called an “elasticity”; see Exercise
12.11 for an example.

Taking logarithms even when not necessary

If a variable has a narrow dynamic range (that is, if the ratio between the high and low values is
close to 1), then it will not make much of a di�erence in fit if the regression is on the logarithmic or
the original scale. For example, the standard deviation of �og_height in our survey data is 0.06,
meaning that heights in the data vary by only approximately a factor of 6%.

In such a situation, it might seem to make sense to stay on the original scale for reasons of
simplicity. However, the logarithmic transformation can make sense even here, because coe�cients
are often more easily understood on the log scale. The choice of scale comes down to interpretability:
whether it is easier to understand the model as proportional increase in earnings per inch, or per
proportional increase in height. For an input with a larger amount of relative variation (for example,
heights of children, or weights of animals), it would make sense to work with its logarithm immediately,
both as an aid in interpretation and likely as an improvement in fit too.

12.5 Other transformations
Square root transformations

The square root is sometimes useful for compressing high values more mildly than is done by the
logarithm. Consider again our height and earnings example.

Fitting a linear model on the raw, untransformed scale seemed inappropriate. Expressed in a
di�erent way than before, we would expect the di�erences between people earning nothing versus
those earning $10 000 to be far greater than the di�erences between people earning, say, $80 000
versus $90 000. But under the linear model, these are all equal increments as in model (12.1), where
an extra inch is worth $1300 more in earnings at all levels.

On the other hand, the log transformation seems too severe with these data. With logarithms,
the di�erences between populations earning $5000 versus $10 000 is equivalent to the di�erences
between those earning $40 000 and those earning $80 000. On the square root scale, however,
the predicted di�erences between the $0 earnings and $10 000 earnings groups are the same as
comparisons between $10 000 and $40 000 or between $40 000 and $90 000, in each case stepping up
by 100 in square root of earnings. See Chapter 17 for more on this example.

Unfortunately, models on the square root scale lack the clean interpretation of the original-scale
and log-transformed models. For one thing, large negative predictions on this scale get squared and
become large positive values on the original scale, thus introducing a nonmonotonicity in the model.
We are more likely to use the square root model for prediction than within models whose coe�cients
we want to understand.
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Handedness score
−1.0 −0.5 0.0 0.5 1.0

0
5

10

Figure 12.6 Histogram of handedness scores of a sample of students. Scores range from �1 (completely
left-handed) to +1 (completely right-handed) and are based on the responses to 10 questions such as “Which
hand do you write with?” and “Which hand do you use to hold a spoon?” The continuous range of responses
shows the limitations of treating handedness as a dichotomous variable.

Idiosyncratic transformations

Sometimes it is useful to develop transformations tailored for specific problems. For example, with
the original height-earnings data, it would have not been possible to simply take the logarithm of
earnings, as many observations had zero values. Instead, a model can be constructed in two steps:
first model the probability that earnings exceed zero (for example, using a logistic regression; see
Chapter 13); then fit a linear regression, conditional on earnings being positive, which is what we did
in the example above. One could also model total income, but economists are often interested in
modeling earnings alone, excluding so-called unearned income.

In any case, plots and simulations should definitely be used to summarize inferences, since the
coe�cients of the two parts of the model combine nonlinearly in their joint prediction of earnings.
We discuss this sort of model further in Section 15.8.

What sort of transformed scale would be appropriate for a variable such as “assets” that can be
negative, positive, or zero? One possibility is a discrete coding that compresses the high range, for
example, 0 for assets between �$100 and $100, 1 for assets between $100 and $1000, 2 for assets
between $1000 and $10 000, �1 for assets between �$100 and �$1000, and so forth. Such a mapping
could be expressed more fully as a continuous transformation, but for explanatory purposes it can be
convenient to use a discrete scale.

Using continuous rather than discrete predictors

Many variables that appear binary or discrete can usefully be viewed as continuous. For example,
rather than define “handedness” as �1 for left-handers and +1 for right-handers, one can use a
standard 10-question handedness scale that gives an essentially continuous scale from �1 to 1 (see
Figure 12.6).

We avoid discretizing continuous variables (except as a way of simplifying a complicated
transformation, as described previously, or to model nonlinearity, as described later). A common
mistake is to take a numerical measure and replace it with a binary “pass/fail” score. For example,
suppose we tried to predict election winners, rather than continuous votes. Such a model would not
work as well, as it would discard much of the information in the data (for example, the distinction
between a candidate receiving 51% or 65% of the vote). Even if our only goal is to predict the winners,
we are better o� predicting continuous vote shares and then transforming them into predictions about
winners, as in our example with congressional elections in Section 10.6.

Using discrete rather than continuous predictors

In some cases, however, it is convenient to discretize a continuous variable if a simple parametric
relation does not seem appropriate. For example, in modeling political preferences, it can make sense
to include age with four indicator variables: 18–29, 30–44, 45–64, and 65+, to allow for di�erent



This book has been published by Cambridge University Press as Regression and Other Stories by Andrew Gelman, Jennifer Hill, and Aki
Vehtari. This PDF is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.
© Copyright by Andrew Gelman, Jennifer Hill, and Aki Vehtari 2020–2023. The book web page https://avehtari.github.io/
ROS-Examples/

12.5. O���� ��������������� 197

sorts of generational patterns. This kind of discretization is convenient, since, conditional on the
discretization, the model remains linear. We briefly mention more elaborate nonlinear models for
continuous predictors in Section 22.7.

We demonstrate inference with discrete predictors using an example from Chapter 10 of modelsExample:
Children’s
IQ tests

for children’s test scores given information about their mothers. Another input variable that can be
used in these models is maternal employment, which is defined on a four-point ordered scale:
• mom_work = 1: mother did not work in first three years of child’s life
• mom_work = 2: mother worked in second or third year of child’s life
• mom_work = 3: mother worked part-time in first year of child’s life
• mom_work = 4: mother worked full-time in first year of child’s life.

Fitting a simple model using discrete predictors yields,
Median MAD_SD

(Intercept) 82.0 2.2
as.factor(mom_work)2 3.8 3.0
as.factor(mom_work)3 11.4 3.5
as.factor(mom_work)4 5.1 2.7

Auxi�iary parameter(s):
Median MAD_SD

sigma 20.2 0.7

This parameterization of the model allows for di�erent averages for the children of mothers
corresponding to each category of maternal employment. The “baseline” category (mom_work = 1)
corresponds to children whose mothers do not go back to work at all in the first three years after
the child is born; the average test score for these children is estimated by the intercept, 82.0. The
average test scores for the children in the other categories is found by adding the corresponding
coe�cient to this baseline average. This parameterization allows us to see that the children of
mothers who work part-time in the first year after the child is born achieve the highest average test
scores, 82.0+ 11.4. These families also tend to be the most advantaged in terms of many other
sociodemographic characteristics as well, so a causal interpretation is not warranted unless these
variables are included in the model.

Index and indicator variables

Index variables divide a population into categories. For example:
• ma�e = 1 for males and 0 for females
• age = 1 for ages 18–29, 2 for ages 30–44, 3 for ages 45–64, 4 for ages 65+
• state = 1 for Alabama, . . ., 50 for Wyoming
• county indexes for the 3082 counties in the United States.

Indicator variables are 0/1 predictors based on index variables, as discussed in Section 10.4. For
example:
• sex_1 = 1 for females and 0 otherwise

sex_2 = 1 for males and 0 otherwise
• age_1 = 1 for ages 18–29 and 0 otherwise

age_2 = 1 for ages 30–44 and 0 otherwise
age_3 = 1 for ages 45–64 and 0 otherwise
age_4 = 1 for ages 65+ and 0 otherwise

• 50 indicators for state
• 3082 indicators for county.
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Linear regression
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Discretized age predictors
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Figure 12.7 Support for same-sex marriage as a function of age, from a national survey taken in 2004. Fits are
shown from two linear regression: (a) using age as a predictor, (b) using indicators for age, discretized into
categories.

Including these variables as regression predictors allows for di�erent means for the populations
corresponding to each of the categories delineated by the variable.

When an input has only two levels, we prefer to code it with a single variable and name it
appropriately; for example, as discussed earlier with the earnings example, the name ma�e is more
descriptive than sex_1 and sex_2.

R also allows variables to be included as factors with named levels; for example, sex could have
the levels ma�e and fema�e.

Figure 12.7 demonstrates with a simple example showing support for same-sex marriage as a
function of age (and with the few respondents reporting ages greater than 90 all assigned the age of
91 for the purpose of this analysis). Here is the result of a linear regression using an indicator for
each decade of age, with age under 30 as the reference category:

Median MAD_SD
(Intercept) 0.46 0.01
factor(age_discrete)(29,39] -0.10 0.01
factor(age_discrete)(39,49] -0.14 0.01
factor(age_discrete)(49,59] -0.14 0.01
factor(age_discrete)(59,69] -0.25 0.01
factor(age_discrete)(69,79] -0.28 0.01
factor(age_discrete)(79,100] -0.32 0.01

Auxi�iary parameter(s):
Median MAD_SD

sigma 0.03 0.00

Figure 12.7a shows the fitted linear regression on age, and Figure 12.7b shows the fit from the linear
regression using age indicators: the first bar is at y = 0.46, the second is at 0.46� 0.10, the third is at
0.46 � 0.14, and so on. Neither of the two fits in Figure 12.7 is perfect; indeed Figure 12.7b gives a
somewhat misleading picture, with the eye being drawn too strongly to the horizontal lines. One
reason why we show both graphs is to give two perspectives on the data. For example, the dots in
Figure 12.7a show a steady downward trend between the ages of 25 and 40, but in Figure 12.7b, that
pattern is obscured by the fitted lines.

Indicator variables, identifiability, and the baseline condition

As discussed in Section 10.7, a regression model is nonidentifiable if its predictors are collinear,
that is, if there is a linear combination of them that equals 0 for all the data. This can arise with
indicator variables. If a factor takes on J levels, then there are J associated indicator variables. A



This book has been published by Cambridge University Press as Regression and Other Stories by Andrew Gelman, Jennifer Hill, and Aki
Vehtari. This PDF is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.
© Copyright by Andrew Gelman, Jennifer Hill, and Aki Vehtari 2020–2023. The book web page https://avehtari.github.io/
ROS-Examples/

12.6. B������� ��� ��������� ����������� 199

classical regression can include only J�1 of any set of indicators—if all J were included, they would
be collinear with the constant term. You could include a full set of J indicators by excluding the
constant term, but then the same problem would arise if you wanted to include a new set of indicators.
For example, you could not include both of the sex categories and all four of the age categories. It is
simpler just to keep the constant term and all but one of each set of indicators.

For each index variable, the indicator that is excluded from the regression is known as the default,
reference, or baseline condition because it is the implied category if all the J�1 indicators are set to
zero. As discussed in Section 10.4, the default in R is to set the alphabetically first level of a factor as
the reference condition; other options include using the last level as baseline, selecting the baseline,
and constraining the coe�cients to sum to zero. An option that we often prefer is to embed the
varying coe�cients in a multilevel model, but this goes beyond the scope of this book.

12.6 Building and comparing regression models for prediction
A model must be created before it can be fit and checked, and yet we put “model building” near the
end of this chapter. Why? It is best to have a theoretical model laid out before any data analyses
begin. But in practical data analysis it is usually easiest to start with a simple model and then build in
additional complexity, taking care to check for problems along the way.

There are typically many reasonable ways in which a model can be constructed. Models may
di�er depending on the inferential goals or the way the data were collected. Key choices include how
the input variables should be combined or transformed in creating predictors, and which predictors
should be included in the model. In classical regression, these are huge issues, because if you include
too many predictors in a model, the parameter estimates become so variable as to be useless. Some
of these issues are less important in regularized regression (as we discuss in our follow-up book on
advanced regression and multilevel models) but they certainly do not disappear completely.

This section focuses on the problem of building models for prediction. Building models that can
yield causal inferences is a related but separate topic that is addressed in Chapters 18–21.

General principles

Our general principles for building regression models for prediction are as follows:
1. Include all input variables that, for substantive reasons, might be expected to be important in

predicting the outcome.
2. It is not always necessary to include these inputs as separate predictors—for example, sometimes

several inputs can be averaged or summed to create a “total score” that can be used as a single
predictor in the model, and that can result in more stable predictions when coe�cients are estimated
using maximum likelihood or least squares.

3. For inputs that have large e�ects, consider including their interactions as well.
4. Use standard errors to get a sense of uncertainties in parameter estimates. Recognize that if new

data are added to the model, the estimate can change.
5. Make decisions about including or excluding predictors based on a combination of contextual

understanding (prior knowledge), data, and the uses to which the regression will be put:
(a) If the coe�cient of a predictor is estimated precisely (that is, if it has a small standard error), it

generally makes sense to keep it in the model as it should improve predictions.
(b) If the standard error of a coe�cient is large and there seems to be no good substantive reason

for the variable to be included, it can make sense to remove it, as this can allow the other
coe�cients in the model to be estimated more stably and can even reduce prediction errors.

(c) If a predictor is important for the problem at hand (for example, indicators for groups that we
are interested in comparing or adjusting for), then we generally recommend keeping it in, even
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if the estimate has a large standard error and is not “statistically significant.” In such settings
one must acknowledge the resulting uncertainty and perhaps try to reduce it, either by gathering
more data points for the regression or by adding a Bayesian prior (see Section 9.5).

(d) If a coe�cient seems not to make sense (for example, a negative coe�cient for years of
education in an income regression), try to understand how this could happen. If the standard
error is large, the estimate could be explainable from random variation. If the standard error is
small, it can make sense to put more e�ort into understanding the coe�cient. In the education
and income example, for example, the data could be coming from a subpopulation in which the
more educated people are younger and have been in their jobs for a shorter period of time and
have lower average incomes.

These strategies do not completely solve our problems, but they help keep us from making
mistakes such as discarding important information. They are predicated on having thought hard
about these relationships before fitting the model. It’s always easier to justify a coe�cient’s sign
once we have seen it than to think hard ahead of time about what we expect. On the other hand, an
explanation that is determined after running the model can still be valid. We should be able to adjust
our theories in light of new information.

It is important to record and describe the choices made in modeling, as these choices represent
degrees of freedom that, if not understood, can lead to a garden of forking paths and overconfident
conclusions. Model performance estimates such as LOO log score can alleviate the problem if there
are not too many models.

Example: predicting the yields of mesquite bushes

We illustrate some ideas of model checking with a real-data example that is nonetheless somewhatExample:
Mesquite
bushes

artificial in being presented in isolation from its applied context. Partly because this example is not
a clear success story and our results are inconclusive, it represents the sort of analysis one might
perform in exploring a new dataset.

Data were collected in order to develop a method of estimating the total production (biomass) of
mesquite leaves using easily measured parameters of the plant, before actual harvesting takes place.3
Two separate sets of measurements were taken, one on a group of 26 mesquite bushes and the other
on a di�erent group of 20 mesquite bushes measured at a di�erent time of year. All the data were
obtained in the same geographical location (ranch), but neither constituted a strictly random sample.

The outcome variable is the total weight (in grams) of photosynthetic material as derived from
actual harvesting of the bush. The input variables are:

diam1: diameter of the canopy (the leafy area of the bush) in meters,
measured along the longer axis of the bush

diam2: canopy diameter measured along the shorter axis
canopy_height: height of the canopy
tota�_height: total height of the bush
density: plant unit density (# of primary stems per plant unit)
group: group of measurements (0 for the first group, 1 for the second)

It is reasonable to predict the leaf weight using some sort of regression model. Many formulations are
possible. The simplest approach is to regress weight on all of the predictors, yielding the estimates,

fit_1 <- stan_g�m(formu�a = weight ~ diam1 + diam2 + canopy_height +
tota�_height + density + group, data=mesquite)

Median MAD_SD
(Intercept) -1092.1 176.0
diam1 195.7 118.6

3Data and code for this example are in the folder Mesquite.


