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Chapter 6

Background on regression modeling

At a purely mathematical level, the methods described in this book have two purposes: prediction and
comparison. We can use regression to predict an outcome variable, or more precisely the distribution
of the outcome, given some set of inputs. And we can compare these predictions for di�erent values
of the inputs, to make simple comparisons between groups, or to estimate causal e�ects, a topic to
which we shall return in Chapters 18–21. In this chapter we use our favored technique of fake-data
simulation to understand a simple regression model, use a real-data example of height and earnings
to warn against unwarranted causal interpretations, and discuss the historical origins of regression as
it relates to comparisons and statistical adjustment.

6.1 Regression models

The simplest regression model is linear with a single predictor:

Basic regression model: y = a + bx + error.

The quantities a and b are called coe�cients or, more generally, parameters of the model.
The simple linear model can be elaborated in various ways, including:

• Additional predictors: y = �0 + �1x1 + �2x2 + · · · + �k xk + error, written in vector-matrix
notation as y = X � + error.

• Nonlinear models such as log y = a + b log x + error.
• Nonadditive models such as y = �0+ �1x1+ �2x2+ �3x1x2+error, which contains an interaction

between the input variables x1 and x2.
• Generalized linear models, which extend the linear regression model to work with discrete

outcomes and other data that cannot be fit well with normally distributed additive errors, for
example predicting support for the Republican or Democratic presidential candidate based on the
age, sex, income, etc. of the survey respondent.

• Nonparametric models, which include large numbers of parameters to allow essentially arbitrary
curves for the predicted value of y given x.

• Multilevel models, in which coe�cients in a regression can vary by group or by situation. For
example, a model predicting college grades given admissions test scores can have coe�cients that
vary by college.

• Measurement-error models, in which predictors x as well as outcomes y are measured with error
and there is a goal of estimating the relationship between the underlying quantities. An example is
estimating the e�ect of a drug under partial compliance so that the dose taken by each individual
patient is not exactly known.

In this book we shall focus on the first four of the generalizations above.

Note: 
This chapter includes several code examples in R. 
Feel free to skip those parts as they’re not essential.
If you’re feeling motivated, you can skim them and try reproducing them in Python
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6.2 Fitting a simple regression to fake data
We demonstrate linear regression with a simple example in R.1 First we load in the rstanarm package,Example:

Regression
fit to
simulated
data

which allows us to fit regression models using the statistical inference engine Stan:
�ibrary(�rstanarm�)

We then simulate 20 fake data points yi from the model, yi = a + bxi + ✏ i , where the predictor xi

takes on the values from 1 to 20, the intercept is a = 0.2, the slope is b = 0.3, and the errors ✏ i
are normally distributed with mean 0 and standard deviation � = 0.5, so that we expect roughly
two-thirds of the points to fall within ±1 standard error of the line. Here is the code:2

x <- 1:20
n <- �ength(x)
a <- 0.2
b <- 0.3
sigma <- 0.5
y <- a + b*x + sigma*rnorm(n)

Fitting a regression and displaying the results

To fit the regression we set up a data frame containing predictor and outcome. The data frame can
have any name; here we call it fake to remind ourselves that this is a fake-data simulation:

fake <- data.frame(x, y)

And then we can fit the model using the stan_g�m (using Stan to fit a generalized linear model)
function in R;3 we can save the fit using any name:

fit_1 <- stan_g�m(y ~ x, data=fake)

And then we can display the result:
print(fit_1, digits=2)

which yields:
Median MAD_SD

(Intercept) 0.40 0.23
x 0.28 0.02

Auxi�iary parameter(s):
Median MAD_SD

sigma 0.49 0.08

The first two rows of output tell us that the estimated intercept is 0.40 with uncertainty 0.23, and the
estimated slope is 0.28 with uncertainty 0.02. The residual standard deviation � is estimated at 0.49
with an uncertainty of 0.08.

Under the hood, fitting the model in Stan produced a set of simulations summarizing our inferences
about the parameters a, b, and �, and the output on the screen shows the median and mad sd (see
Section 5.3) to produce a point estimate and uncertainty for each parameter.

It can be helpful to plot the data and fitted regression line:
p�ot(fake$x, fake$y, main=�Data and fitted regression �ine�)
a_hat <- coef(fit_1)[1]
b_hat <- coef(fit_1)[2]
ab�ine(a_hat, b_hat)

For convenience we can also put the formula on the graph:

1See Appendix A for instructions on how to set up and use R.
2Code for this example is in the folder Simp�est.
3See Sections 1.6 and 8.4 for background on the stan_g�m function.
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Figure 6.1 Simple example of a regression line fit to fake data. The 20 data points were simulated from the model,
y = 0.2 + 0.3x + error, with errors that were independent and normally distributed with mean 0 and standard
deviation 0.5.

Parameter Assumed value Estimate Uncertainty
a 0.2 0.40 0.23
b 0.3 0.28 0.02
� 0.5 0.49 0.08

Figure 6.2 After simulating 20 fake data points from a simple linear regression, yi = a + bxi + ✏ i , with errors
✏ i drawn from a normal distribution with mean 0 and standard deviation �, we then fit a linear regression to
these data and obtain estimates and uncertainties for the three parameters from the model. We can then see that
the estimates are roughly consistent with the specified parameter values.

x_bar <- mean(fake$x)
text(x_bar, a_hat + b_hat*x_bar,

paste(�y =�, round(a_hat, 2), �+�, round(b_hat, 2), �* x�), adj=0)

The result is shown in Figure 6.1.

Comparing estimates to assumed parameter values

Having fit the model to fake data, we can now compare the parameter estimates to their assumed
values. For simplicity we summarize the results in Figure 6.2, which simply repeats the results from
the fitted regression model on page 82.

To read these results, start with the intercept a, which we set to 0.2 in the simulations. After
fitting the model to fake data, the estimate is 0.40, which is much di�erent from the assumed 0.2—but
the uncertainty, or standard error, in the estimate is 0.23. Roughly speaking, we expect the di�erence
between the estimate and the true value to be within 1 standard error 68% of the time, and within 2
standard errors 95% of the time; see Figure 4.1. So if the true value is 0.2, and the standard error is
0.23, it’s no surprise for the estimate to happen to be 0.40. Similarly, the estimates for b and � are
approximately one standard error away from their true values.

As just illustrated, any given fake-data simulation with continuous data would not exactly
reproduce the assumed parameter values. Under repeated simulations, though, we should see
appropriate coverage, as illustrated in Figure 4.2. We demonstrate fake-data simulation for linear
regression more fully in Section 7.2.
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6.3 Interpret coefficients as comparisons, not effects
Regression coe�cients are commonly called “e�ects,” but this terminology can be misleading. WeExample:

Height and
earnings

illustrate with an example of a regression model fit to survey data from 1816 respondents, predicting
yearly earnings in thousands of dollars, given height in inches and sex, coded as ma�e = 1 for men
and 0 for women:4

earnings$earnk <- earnings$earn/1000
fit_2 <- stan_g�m(earnk ~ height + ma�e, data=earnings)
print(fit_2)

This yields,
Median MAD_SD

(Intercept) -26.0 11.8
height 0.6 0.2
ma�e 10.6 1.5

Auxi�iary parameter(s):
Median MAD_SD

sigma 21.4 0.3

The left column above shows the estimated parameters of the model, and the right column gives the
uncertainties in these parameters. We focus here on the estimated model, putting o� discussion of
inferential uncertainty until the next chapter.

The table begins with the regression coe�cients, which go into the fitted model:

earnings = �26.0 + 0.6 ⇤ height + 10.6 ⇤male + error.

Then comes sigma, the residual standard deviation, estimated at 21.4, which indicates that earnings
will be within ± 21 400 of the linear predictor for about 68% of the data points and will be within
± 2 ⇤ $21 400 = $42 800 of the linear predictor approximately 95% of the time. The 68% and 95%
come from the properties of the normal distribution reviewed in Figure 3.7; even though the errors
in this model are not even close to normally distributed, we can use these probabilities as a rough
baseline when interpreting the residual standard deviation.

We can get a sense of this residual standard deviation by comparing it to the standard deviation of
the data and then estimating the proportion of variance explained, which we compute as 1 minus the
proportion of variance unexplained:

R2 <- 1 - sigma(fit_2)^2 / sd(earnings$earnk)^2

which returns the value R
2 = 0.10, meaning that the linear model accounts for only 10% of the

variance in earnings in these data. This makes sense, given that people’s earnings vary a lot, and
most of this variation has nothing to do with height or sex. We discuss R

2 further in Section 11.6; for
now, you can just think of it as a way of putting a scale on �, the residual standard deviation.

We have to be careful not to overinterpret the fitted model. For example, it might seem natural to
report that the estimated e�ect of height is $600 and the estimated e�ect of sex is $10 600.

Strictly speaking, though, it is inappropriate to label these as “e�ects”—at least, not without a lot
of assumptions. We say this because we define an e�ect as the change associated with some treatment,
or intervention. To say that “the e�ect of height on earnings” is $600 is to suggest that, if we were to
increase someone’s height by one inch, his or her earnings would increase by an expected amount of
$600. But this is not really what’s being estimated from the model. Rather, what is observed is an
observational pattern, that taller people in the sample have higher earnings on average. These data
allow between-person comparisons, but to speak of e�ect of height is to reference a hypothetical
within-person comparison.

4The survey was conducted in 1990, and for the analyses in this book we exclude respondents with missing values of height
or earnings. Data and code for this example are in the folder Earnings.
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●

The fitted regression line and the average of the data      

Figure 6.3 (a) Scatterplot adapted from data from Pearson and Lee (1903) of the heights of mothers and their
adult daughters, along with the regression line predicting daughters’ from mothers’ heights. (b) The regression
line by itself, just to make the pattern easier to see. The line automatically goes through the mean of the data,
and it has a slope of 0.54, implying that, on average, the di�erence of a daughter’s height from the average
(mean) of women’s heights is only about half the di�erence of her mother’s height from the average.

How, then, can we think of the coe�cient for height in the fitted model? We can say that, under
the fitted model, the average di�erence in earnings, comparing two people of the same sex but one
inch di�erent in height, is $600. The safest interpretation of a regression is as a comparison.

Similarly, it would be inappropriate to say that the estimated “e�ect of sex” is $10 600. Better to
say that, when comparing two people with the same height but di�erent sex, the man’s earnings will
be, on average, $10 600 more than the woman’s in the fitted model.

Under some conditions, the between-person inferences from a regression analysis can be
interpreted as causal e�ects—see Chapters 18–21—but as a starting point we recommend describing
regression coe�cients in predictive or descriptive, rather than causal, terms.

To summarize: regression is a mathematical tool for making predictions. Regression coe�cients
can sometimes be interpreted as e�ects, but they can always be interpreted as average comparisons.

6.4 Historical origins of regression
“Regression” is defined in the dictionary as “the process or an instance of regressing, as to a lessExample:

Mothers’
and
daughters’
heights

perfect or less developed state.” How did this term come to be used for statistical prediction? This
connection comes from Francis Galton, one of the original quantitative social scientists, who fit
linear models to understand the heredity of human height. Predicting children’s heights from parent’s
heights, he noticed that children of tall parents tended to be taller than average but less tall than their
parents. From the other direction, children of shorter parents tended to be shorter than average but
less short than their parents. Thus, from one generation to the next, people’s heights have “regressed”
to the average or mean, in statistics jargon.

Daughters’ heights “regressing” to the mean

We illustrate with a classic study of the heredity of height, published in 1903 by Karl Pearson and
Alice Lee.5 Figure 6.3a shows the data of mothers’ and daughters’ heights along with the regression

5Data and code for this example are in the folder PearsonLee.
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The line, y = 30 + 0.54 x, in the context of the data

Figure 6.4 (a) Fitted regression line, y = 30 + 0.54 x, graphed using intercept and slope. (b) Di�culty of
the intercept-slope formulation in the context of the data in the height example. The intercept of 30 inches
corresponds to the predicted height of a daughter whose mother is a meaningless 0 inches tall.

line—the best-fit line for predicting daughters’ from mothers’ heights. The line goes through the
mean (average) of x and y , shown with a large dot in the center of the graph.

Figure 6.3b shows the line by itself, the formula, y = 30 + 0.54x, which we can also write as,

y = 30 + 0.54x + error, (6.1)

to emphasize that the model does not fit individual data points perfectly. We shall give R code for
displaying the data and fitting the line, but first we briefly discuss the line itself.

The equation y = 30 + 0.54x describes a line with intercept 30 and slope 0.54, as shown in
Figure 6.4a. The intercept-slope formula is an easy way to visualize a line, but it can have problems
in various real-world settings, as we demonstrate in Figure 6.4b. The line’s slope of 0.54 is clearly
interpretable in any case—adding one inch to mother’s height corresponds to an increase of 0.54
inches in daughter’s predicted height—but the intercept of 30 is hard to understand on its own: it
corresponds to the predicted height of a daughter whose mother is a meaningless 0 inches tall.

Instead we can use a di�erent expression of the regression line, centering it not at 0 but at the
mean of the data. The equation y = 30 + 0.54x can equivalently be written as,

y = 63.9 + 0.54(x � 62.5), (6.2)

as shown in Figure 6.3b. This formula shows that when x = 62.5, y is predicted to be 63.9.
To put this in the context of the example, if a mother has average height, her adult daughter is

predicted to have average height. And then for each inch that a mother is taller (or shorter) than the
average height, her daughter is expected to be about half an inch taller (or shorter) than the average
for her generation.

Fitting the model in R

The equation y = 30 + 0.54x is the approximate best-fit line, where “best fit” is defined as
minimizing the sum of squared errors; that is, an algorithm finds the values a and b that minimizeP

n

i=1(yi � (a + bxi))2. Section 8.1 discusses the formula by which this solution is calculated, but
here we show how to get the answer in R.

We start by reading in the data and looking at the first five rows, just to check the numbers:
heights <- read.tab�e(�Heights.txt�, header=TRUE)
print(heights[1:5,])
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This is what appears:

daughter_height mother_height
1 52.5 59.5
2 52.5 59.5
3 53.5 59.5
4 53.5 59.5
5 55.5 59.5

One can more easily look at the beginning of a matrix by typing head(data) but here we explicitly
choose the first five rows to demonstrate R’s indexing capabilities. We continue by fitting a regression
to predict daughters’ from mothers’ heights:

fit_1 <- stan_g�m(daughter_height ~ mother_height, data=heights)
print(fit_1)

And this is what we see:

Median MAD_SD
(Intercept) 29.8 0.8
mother_height 0.5 0.0

Auxi�iary parameter(s):
Median MAD_SD

sigma 2.3 0.0

The data has heights from 5524 mother-daughter pairs, and the model has three parameters: an
intercept, a coe�cient for mothers’ height, and a residual standard deviation.

Our next step is to graph the data. The numbers are reported discretely in one-inch bins (for
example, “59.5” corresponds to a height between 59 and 60 inches); to be able to display them as a
scatterplot, we impute random values within these ranges:

n <- nrow(heights)
mother_height_jitt <- heights$mother_height + runif(n, -0.5, 0.5)
daughter_height_jitt <- heights$daughter_height + runif(n, -0.5, 0.5)

We then make the scatterplot:

p�ot(mother_height_jitt, daughter_height_jitt, x�ab=�Mother�s height (inches)�,
y�ab=�Adu�t daughter�s height (inches)�)

And we extract the coe�cients from the regression and add the fitted line to the graph:

a_hat <- coef(fit_1)[1]
b_hat <- coef(fit_1)[2]
ab�ine(a_hat, b_hat)

If you do these steps yourself, you’ll get a graph that looks like Figure 6.3a but without some of the
pretty features that require a few more lines of R to render.

6.5 The paradox of regression to the mean
Now that we have gone through the steps of fitting and graphing the line that predicts daughters’ from
mothers’ heights, we can return to the question of heights “regressing to the mean.”

When looked at a certain way, the regression slope of 0.54 in Figure 6.3—indeed, any slope other
than 1—seems paradoxical. If tall mothers are likely to have daughters who are only tallish, and short
mothers are likely to have shortish daughters, does this not imply that daughters will be more average
than their mothers, and that if this continues, each generation will be more average than the last, until,
after a few generations, everyone will be just about of average height? For example, a mother who
is 8 inches taller than average is predicted to have a daughter 4 inches taller than average, whose
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Figure 6.5 Scatterplot of simulated midterm and final exam scores with fitted regression line, which has a slope
of 0.45, implying that if a student performs well on the midterm, he or she is expected to do not so well on
the final, and if a student performs poorly on the midterm, he or she is expected to improve on the final; thus,
regression to the mean.

daughter would be predicted to be only 2 inches taller than average, with her daughter predicted to be
only an inch taller than average, and so forth.

But clearly this is not happening. We are already several generations after Pearson and Lee, and
women’s heights are as variable as ever.

The resolution of the apparent paradox is that yes, the predicted height of a woman is closer
to the average, compared to her mother’s height, but the actual height is not the same thing as
the prediction, which has error; recall equation (6.1). The point predictions regress toward the
mean—that’s the coe�cient less than 1—and this reduces variation. At the same time, though, the
error in the model—the imperfection of the prediction—adds variation, just enough to keep the total
variation in height roughly constant from one generation to the next.

Regression to the mean thus will always arise in some form whenever predictions are imperfect
in a stable environment. The imperfection of the prediction induces variation, and regression in the
point prediction is required in order to keep the total variation constant.

How regression to the mean can confuse people about causal inference; demonstration
using fake data

Regression to the mean can be confusing and it has led people to mistakenly attribute causality.Example:
Simulated
midterm
and final
exams

To see how this can happen, we move from heights of parents and children to the mathematically
equivalent scenario of students who take two tests.

Figure 6.5 shows a hypothetical dataset of 1000 students’ scores on a midterm and final exam.
Rather than using real data, we have simulated exam scores using the following simple process
representing signal and noise:6
1. Each student is assumed to have a true ability drawn from a distribution with mean 50 and standard

deviation 10.
2. Each student’s score on the midterm exam is the sum of two components: the student’s true ability,

and a random component with mean 0 and standard deviation 10, reflecting that performance on
any given test will be unpredictable: a midterm exam is far from a perfect measuring instrument.

6Code for this example is in the folder FakeMidtermFina�.
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3. Likewise, each student’s score on the final exam is his or her true ability, plus another, independent,
random component.

Here’s our code for simulating the fake data:

n <- 1000
true_abi�ity <- rnorm(n, 50, 10)
noise_1 <- rnorm(n, 0, 10)
noise_2 <- rnorm(n, 0, 10)
midterm <- true_abi�ity + noise_1
fina� <- true_abi�ity + noise_2
exams <- data.frame(midterm, fina�)

We then plot the data and the fitted regression line:

fit_1 <- stan_g�m(fina� ~ midterm, data=exams)
p�ot(midterm, fina�, x�ab=�Midterm exam score�, y�ab=�Fina� exam score�)
ab�ine(coef(fit_1))

And here’s the regression output:

Median MAD_SD
(Intercept) 24.8 1.4
midterm 0.5 0.0

Auxi�iary parameter(s):
Median MAD_SD

sigma 11.6 0.3

The estimated slope is 0.5 (see also Figure 6.5), which by being less than 1 is an example of regression
to the mean: students who score high on the midterm tend to score only about half as high, compared
to the average, on the final; students who score low on the midterm score low, but typically not as
low, compared to the average, on the final. For example, on the far left of Figure 6.5 are two students
who scored zero on the midterm and 33 and 42 on the final; on the far right of the graph are three
students who scored 91 on the midterm and between 61 and 75 on the final.

It might seem natural to interpret this causally, to say that students who score well on the midterm
have high ability but then they tend to get overconfident and goof o�; hence, they typically don’t do
so well on the final. From the other direction, the appealing causal story is that poor-scoring students
on the midterm are motivated to try extra hard, so they improve when the final exam comes along.

Actually, though, the data were simulated from a theoretical model that contained no motivational
e�ects at all; both the midterm and the final were a function of true ability plus random noise. We
know this because we created the simulation!

The pattern of regression to the mean—that is, the slope of the line in Figure 6.5 being less than
1—is a consequence of variation between the first and second observations: a student who scores
very well on the midterm is likely to have been somewhat lucky and also to have a high level of skill,
and so in the final exam it makes sense for the student to do better than the average but worse than on
the midterm.

The point is that a naive interpretation of the data in Figure 6.5 could lead you to infer an e�ect
(better-scoring students being lazy on the final; worse-scoring students studying harder) that is entirely
spurious. This error is called the “regression fallacy.”

A famous real-world example was reported by the psychologists Amos Tversky and DanielExample:
Flight
school

Kahneman in 1973:
The instructors in a flight school adopted a policy of consistent positive reinforcement recommended
by psychologists. They verbally reinforced each successful execution of a flight maneuver. After some
experience with this training approach, the instructors claimed that contrary to psychological doctrine,
high praise for good execution of complex maneuvers typically results in a decrement of performance on
the next try.
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Actually, though, they explain:

Regression is inevitable in flight maneuvers because performance is not perfectly reliable and progress
between successive maneuvers is slow. Hence, pilots who did exceptionally well on one trial are likely
to deteriorate on the next, regardless of the instructors’ reaction to the initial success. The experienced
flight instructors actually discovered the regression but attributed it to the detrimental e�ect of positive
reinforcement. This true story illustrates a saddening aspect of the human condition. We normally
reinforce others when their behavior is good and punish them when their behavior is bad. By regression
alone, therefore, they are most likely to improve after being punished and most likely to deteriorate after
being rewarded. Consequently, we are exposed to a lifetime schedule in which we are most often rewarded
for punishing others, and punished for rewarding.

The point of this story is that a quantitative understanding of prediction clarifies a fundamental
qualitative confusion about variation and causality. From purely mathematical considerations, it is
expected that the best pilots will decline, relative to the others, while the worst will improve in their
rankings, in the same way that we expect daughters of tall mothers to be, on average, tall but not quite
as tall as their mothers, and so on.

Relation of “regression to the mean” to the larger themes of the book

The regression fallacy described above is a particular example of a misinterpretation of a comparison.
The key idea is that, for causal inference, you should compare like with like.

We can apply this idea to the examples of regression to the mean. In the test scores problem, the
causal claim is that doing poorly on the midterm exam is a motivation for students to study hard for
the final, while students who do well on the midterm are more likely to relax. In this comparison, the
outcome y is the final exam score, and the predictor x is the midterm score. The striking result is
that, comparing students who di�er by 1 unit on x, their expected di�erence is only 1

2 unit on y .
And why is this striking? Because it is being compared to the slope of 1. The observed pattern as

shown in the regression table and in Figure 6.5 is being compared to an implicit default model in
which midterm and final exam scores are the same. But the comparison between these two models is
inappropriate because the default model is not correct—there is not, in fact, any reason to suspect that
midterm and final exam scores would be identical in the absence of any motivational intervention.

Our point here is not that there is a simple analysis which would allow us to perform causal
inference in this setting. Rather, we are demonstrating regression to the mean, along with a comparison
to an implicit (but, upon reflection, inappropriate) model can lead to incorrect causal inferences.

Again, in the flight school example, a comparison is being made to an implicit model in which,
absent any positive or negative reinforcement, individual performance would stay still. But such a
model is inappropriate in the context of real variation from trial to trial.

6.6 Bibliographic note
For background on the height and earnings example, see Ross (1990) and the bibliographic note at
the end of Chapter 12.

The data on mothers’ and daughters’ heights in Figure 6.3 come from Pearson and Lee (1903);
see also Wachsmuth, Wilkinson, and Dallal (2003), and Pagano and Anoke (2013) for more on
this example. The idea of regression coe�cients as comparisons relates to the four basic statistical
operations of Efron (1982).

The historical background of regression to the mean is covered by Stigler (1986), and some of its
connections to other statistical ideas are discussed by Stigler (1983). Lord (1967, 1969) considers
how regression to the mean can lead to confusion about causal inference. The story of the pilots’
training comes from Kahneman and Tversky (1973).
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6.7 Exercises
6.1 Data and fitted regression line: A teacher in a class of 50 students gives a midterm exam with

possible scores ranging from 0 to 50 and a final exam with possible scores ranging from 0 to 100.
A linear regression is fit, yielding the estimate y = 30 + 1.2 ⇤ x with residual standard deviation
10. Sketch (by hand, not using the computer) the regression line, along with hypothetical data
that could yield this fit.

6.2 Programming fake-data simulation: Write an R function to: (i) simulate n data points from
the model, y = a + bx + error, with data points x uniformly sampled from the range (0, 100)
and with errors drawn independently from the normal distribution with mean 0 and standard
deviation �; (ii) fit a linear regression to the simulated data; and (iii) make a scatterplot of the
data and fitted regression line. Your function should take as arguments, a, b, n,�, and it should
return the data, print out the fitted regression, and make the plot. Check your function by trying
it out on some values of a, b, n,�.

6.3 Variation, uncertainty, and sample size: Repeat the example in Section 6.2, varying the number
of data points, n. What happens to the parameter estimates and uncertainties when you increase
the number of observations?

6.4 Simulation study: Perform the previous exercise more systematically, trying out a sequence
of values of n, for each simulating fake data and fitting the regression to obtain estimate and
uncertainty (median and mad sd) for each parameter. Then plot each of these as a function of n

and report on what you find.
6.5 Regression prediction and averages: The heights and earnings data in Section 6.3 are in the

folder Earnings. Download the data and compute the average height for men and women in the
sample.

(a) Use these averages and fitted regression model displayed on page 84 to get a model-based
estimate of the average earnings of men and of women in the population.

(b) Assuming 52% of adults are women, estimate the average earnings of adults in the population.
(c) Directly from the sample data compute the average earnings of men, women, and everyone.

Compare these to the values calculated in parts (a) and (b).
6.6 Selection on x or y:

(a) Repeat the analysis in Section 6.4 using the same data, but just analyzing the observations for
mothers’ heights less than the mean. Confirm that the estimated regression parameters are
roughly the same as were obtained by fitting the model to all the data.

(b) Repeat the analysis in Section 6.4 using the same data, but just analyzing the observations for
daughters’ heights less than the mean. Compare the estimated regression parameters and
discuss how they di�er from what was obtained by fitting the model to all the data.

(c) Explain why selecting on daughters’ heights had so much more of an e�ect on the fit than
selecting on mothers’ heights.

6.7 Regression to the mean: Gather before-after data with a structure similar to the mothers’ and
daughters’ heights in Sections 6.4 and 6.5. These data could be performance of athletes or sports
teams from one year to the next, or economic outcomes in states or countries in two successive
years, or any other pair of measurements taken on a set of items. Standardize each of the two
variables so it has a mean of 0 and standard deviation of 1.

(a) Following the steps of Section 6.4, read in the data, fit a linear regression, and plot the data
and fitted regression line.

(b) Repeat the above steps with fake data that look similar to the data you have gathered.
6.8 Regression to the mean with fake data: Perform a fake-data simulation as in Section 6.5, but using

the flight school example on page 89. Simulate data from 500 pilots, each of whom performs
two maneuvers, with each maneuver scored continuously on a 0–10 scale, that each pilot has a
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true ability that is unchanged during the two tasks, and that the score for each test is equal to this
true ability plus independent errors. Further suppose that when pilots score higher than 7 on
the scale during the first maneuver, that they get praised, and that scores lower than 3 on the
first maneuver result in negative reinforcement. Also suppose, though, that this feedback has no
e�ect on performance on the second task.

(a) Make a scatterplot with one dot for each pilot, showing score on the second maneuver vs.
score on the first maneuver. Color the dots blue for the pilots who got praised, red for those
who got negative reinforcement, and black for the other cases.

(b) Compute the average change in scores for each group of pilots. If you did your simulation
correctly, the pilots who were praised did worse, on average, and the pilots who got negative
reinforcement improved, on average, for the second maneuver. Explain how this happened,
given that your data were simulated under a model in which the positive and negative messages
had no e�ects.

6.9 Working through your own example: Continuing the example from the final exercises of the earlier
chapters, find two variables that represent before-and-after measurements of some sort. Make
a scatterplot and discuss challenges of “regression to the mean” when interpeting before-after
changes here.


