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Chapter 8

Fitting regression models

Most of this book is devoted to examples and tools for the practical use and understanding of
regression models, starting with linear regression with a single predictor and moving to multiple
predictors, nonlinear models, and applications in prediction and causal inference. In this chapter
we lay out some of the mathematical structure of inference for regression models and some algebra
to help understand estimation for linear regression. We also explain the rationale for the use of the
Bayesian fitting routine stan_g�m and its connection to classical linear regression. This chapter thus
provides background and motivation for the mathematical and computational tools used in the rest of
the book.

8.1 Least squares, maximum likelihood, and Bayesian inference
We now step back and consider inference: the steps of estimating the regression model and assessing
uncertainty in the fit. We start with least squares, which is the most direct approach to estimation,
based on finding the values of the coe�cients a and b that best fit the data. We then discuss maximum
likelihood, a more general framework that includes least squares as a special case and to which we
return in later chapters when we get to logistic regression and generalized linear models. Then we
proceed to Bayesian inference, an even more general approach that allows the probabilistic expression
of prior information and posterior uncertainty.

Least squares

In the classical linear regression model, yi = a + bxi + ✏ i , the coe�cients a and b are estimated so as
to minimize the errors ✏ i . If the number of data points n is greater than 2, it is not generally possible
to find a line that gives a perfect fit (that would be yi = a + bxi , with no error, for all data points
i = 1, . . . , n), and the usual estimation goal is to choose the estimate (â, b̂) that minimizes the sum of
the squares of the residuals,

ri = yi � (â + b̂xi).

We distinguish between the residuals ri = yi � (â + b̂xi) and the errors ✏ i = yi � (a + bxi).
The model is written in terms of the errors, but it is the residuals that we can work with: we cannot
calculate the errors as to do so would require knowing a and b.

The residual sum of squares is

RSS =
nX

i=1
(yi � (â + b̂xi))2. (8.1)

The (â, b̂) that minimizes RSS is called the least squares or ordinary least squares or OLS estimate
and can be written in matrix notation as,

�̂ = (X
t
X )�1

X
t y, (8.2)

Note: We won’t be covering Bayesian Inference in 201b! As such, I’ve blanked some of those 
chapter sections throughout
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where � = (a, b) is the vector of coe�cients and X = (1, x) is the matrix of predictors in the
regression. In this notation, 1 represents a column of ones—the constant term in the regression—and
must be included because we are fitting a model with an intercept as well as a slope. We show more
general notation for linear regression with multiple predictors in Figure 10.8.

Expression (8.2) applies to least squares regression with any number of predictors. In the case of
regression with just one predictor, we can write the solution as,

b̂ =

P
n

i=1(xi � x̄) yi
P

n

i=1(xi � x̄)2 , (8.3)

â = ȳ � b̂x̄. (8.4)

We can then can write the least squares line as,

yi = ȳ + b̂ (xi � x̄) + ri;

thus, the line goes through the mean of the data, ( x̄, ȳ), as illustrated in Figure 6.3.
Formula (8.2) and the special case (8.3)–(8.4) can be directly derived using calculus as the solution

to the problem of minimizing the residual sum of squares (8.1). In practice, these computations are
done using e�cient matrix solution algorithms in R or other software.

Estimation of residual standard deviation �

In the regression model, the errors ✏ i come from a distribution with mean 0 and standard deviation �:
the mean is zero by definition (any nonzero mean is absorbed into the intercept, a), and the standard
deviation of the errors can be estimated from the data. A natural way to estimate � would be to
simply take the standard deviation of the residuals,

q
1
n

P
n

i=1 r
2
i
=

q
1
n

P
n

i=1(yi � (â + b̂xi))2 , but
this would slightly underestimate � because of overfitting, as the coe�cients â and b̂ have been
set based on the data to minimize the sum of squared residuals. The standard correction for this
overfitting is to replace n by n � 2 in the denominator (with the subtraction of 2 coming from the
estimation of two coe�cients in the model, the intercept and the slope); thus,

�̂ =

vt
1

n � 2

nX

i=1
(yi � (â + b̂xi))2. (8.5)

When n = 1 or 2 this expression is meaningless, which makes sense: with only two data points you
can fit a line exactly and so there is no way of estimating error from the data alone.

More generally, in a regression with k predictors (that is, y = X � + ✏ , with an n ⇥ k predictor
matrix X), expression (8.5) becomes �̂ =

q
1

n�k
P

n

i=1(yi � (Xi �̂))2, with n � k in the denominator
rather than n, adjusting for the k coe�cients fit by least squares.

Computing the sum of squares directly

The least squares estimates of the coe�cients can be computed directly using the formula in (8.2).
But to develop understanding it can be helpful to write an R function to compute the sum of squares
and then play around with di�erent values of a and b.

First we write the function, which we call rss for “residual sum of squares”:
rss <- function(x, y, a, b){ # x and y are vectors, a and b are sca�ars
resid <- y - (a + b*x)
return(sum(resid^2))

}
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The above function is somewhat crude and is intended for home consumption and not production use,
as we have not, for example, added lines to check that x and y are vectors of the same length, nor
have we incorporated any methods for handling missing data (NA entries). Hence we are at the mercy
of the R defaults if the function arguments are not specified exactly as desired. For exploration on our
own, however, this simple function will do.

We can try it out: rss(hibbs$growth, hibbs$vote, 46.2, 3.1) evaluates the residual sum
of squares at the least squares estimate, (a, b) = (46.2, 3.1), and we can experiment with other values
of (a, b) to check that it’s not possible to get any lower with these data; see Exercise 8.1.

Maximum likelihood

If the errors from the linear model are independent and normally distributed, so that yi ⇠ normal(a +
bxi,�) for each i, then the least squares estimate of (a, b) is also the maximum likelihood estimate.
The likelihood function in a regression model is defined as the probability density of the data given
the parameters and predictors; thus, in this example,

p(y |a, b,�, X ) =
nY

i=1
normal(yi |a + bxi,�), (8.6)

where normal(·|·, ·) is the normal probability density function,

normal(y | m,�) =
1p

2⇡�
exp

 
�1

2

✓ y � m

�

◆2!
. (8.7)

A careful study of (8.6) reveals that maximizing the likelihood requires minimizing the sum of
squared residuals; hence the least squares estimate �̂ = (â, b̂) can be viewed as a maximum likelihood
estimate under the normal model.

There is a small twist in fitting regression models, in that the maximum likelihood estimate of �
is

q
1
n

P
n

i=1(yi � (â + b̂xi))2, without the 1
n�2 adjustment given in (8.5).

In Bayesian inference, the uncertainty for each parameter in the model automatically accounts for
the uncertainty in the other parameters. This property of Bayesian inference is particularly relevant
for models with many predictors, and for advanced and hierarchical models.

Where do the standard errors come from? Using the likelihood surface to assess
uncertainty in the parameter estimates

In maximum likelihood estimation, the likelihood function can be viewed as a hill with its peak at the
maximum likelihood estimate.

Figure 8.1a displays the likelihood for a simple example as a function of the coe�cients a and b.
Strictly speaking, this model has three parameters—a, b, and �—but for simplicity we display the
likelihood of a and b conditional on the estimated �̂.

Figure 8.1b shows the maximum likelihood estimate (â, b̂) = (46.2, 3.1). This is the value of the
parameters where the likelihood function—the hill in Figure 8.1a—has its peak. Figure 8.1b also
includes uncertainty bars showing ±1 standard error for each parameter. For example, the data are
consistent with a being roughly in the range 46.2 ± 1.6 and with b being in the range 3.1 ± 0.7.

The likelihood function does not just have a maximum and a range; it also has a correlation. The
area with highest likelihood surrounding the peak can be represented by an ellipse as is shown in
Figure 8.1c. The shape of the uncertainty ellipse tells us something about the information in the data
and model about the two parameters jointly. In this case the correlation is negative.

To understand this inferential correlation, see the scatterplot of the data from Figure 7.2 which we
have reproduced in Figure 8.2a: the regression line goes through the cloud of points, most of which
have positive values for x. Figure 8.2b shows a range of lines that are consistent with the data, with
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Figure 8.1 (a) Likelihood function for the parameters a and b in the linear regression y = a + bx + error, of
election outcomes, yi , on economic growth, xi . (b) Mode of the likelihood function (that is, the maximum
likelihood estimate (â, b̂)) with ± 1 standard error bars shown for each parameter. (c) Mode of the likelihood
function with an ellipse summarizing the inverse-second-derivative-matrix of the log likelihood at the mode.
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Figure 8.2 (a) Election data with the linear fit, y = 46.3 + 3.0x, repeated from Figure 7.2b. (b) Several lines
that are are roughly consistent with the data. Where the slope is higher, the intercept (the value of the line when
x = 0) is lower; hence there is a negative correlation between a and b in the likelihood.

the lines representing 50 draws from the Bayesian posterior distribution (see below). Lines of higher
slope (for which b is higher) intersect the y-axis at lower values (and thus have lower values of a),
and vice versa, hence the negative correlation in Figure 8.1c.

Bayesian inference

Least squares or maximum likelihood finds the parameters that best fit the data (according to some
pre-specified criterion), but without otherwise constraining or guiding the fit. But, as discussed
in Section 9.3 and elsewhere, we typically have prior information about the parameters of the
model. Bayesian inference produces a compromise between prior information and data, doing this by
multiplying the likelihood with a prior distribution that probabilistically encodes external information
about the parameters. The product of the likelihood (in the above example, it is p(y |a, b,�) in (8.6),
considered as a function of a, b, and �) and the prior distribution is called the posterior distribution
and it summarizes our knowledge of the parameter, after seeing the data. (“Posterior” is Latin for
“later.”)

In Chapter 9 we consider Bayesian inference from many angles. In the present section we focus
on the posterior distribution as a modification of the likelihood function. The generalization of
maximum likelihood estimation is maximum penalized likelihood estimation, in which the prior
distribution is considered as a “penalty function” that downgrades the likelihood for less-favored
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values of the parameter, again, thus giving an estimate that is typically somewhere in between the
prior and what would be obtained by the data alone. Because of the anchoring of the prior, the
maximum penalized likelihood estimate can be more stable than the raw maximum likelihood or
least squares estimate.

In addition to adding prior information, Bayesian inference is also distinctive in that it expresses
uncertainty using probability. When we fit a model using stan_g�m, we obtain a set of simulation
draws that represent the posterior distribution, and which we typically summarize using medians,
median absolute deviations, and uncertainty intervals based on these simulations, as we shall discuss
in Section 9.1.

We prefer to use Bayesian methods because of the flexibility of propagation of uncertainty using
probability and simulation, and because inclusion of prior information can make inferences more
stable. That said, it can be helpful to see the connections to least squares and maximum likelihood,
as these simpler methods can be easier to understand and are overwhelmingly the most popular ways
to fit regression in current practice. So in the following section we show how to fit models in both the
classical and Bayesian frameworks.

Point estimate, mode-based approximation, and posterior simulations

The least squares solution is a point estimate that represents the vector of coe�cients that provides
the best overall fit to data. For a Bayesian model, the corresponding point estimate is the posterior
mode, which provides the best overall fit to data and prior distribution. The least squares or maximum
likelihood estimate is the posterior mode corresponding to the model with a uniform or flat prior
distribution.

But we do not just want an estimate; we also want uncertainty. For a model with just one
parameter, the uncertainty can be represented by the estimate ± standard error; more generally we
use a bell-shaped probability distribution representing the multivariate uncertainty, as illustrated in
Figure 8.1.

As discussed more fully in Chapter 9, it is convenient to summarize uncertainty using simulations
from this mode-based approximation or, more generally, from the posterior distribution of the
model parameters. By default, when we fit models using stan_g�m, we get posterior simulations
summarized by median and mad sd; see Section 5.3.

8.2 Influence of individual points in a fitted regression
From expressions (8.3) and (8.4), we can see that the least squares estimated regression coe�cients
â and b̂ are linear functions of the data, y. We can use these linear expressions to understand the
influence of each data point by looking at how much a change in each yi would change b̂. We could
also work out the influence on the intercept—the predicted value when x = 0—or any other prediction
under the model, but typically it is the slope that is most of interest.

From equation (8.3), we see that an increase of 1 in yi corresponds to a change in b̂ that is
proportional to (xi � x̄):
• If xi = x̄, the influence of point i on the regression slope is 0. This makes sense: taking a point in

the center and moving it up or down will a�ect the height of the fitted line but not its slope.
• If xi > x̄, the influence of point i is positive, with greater influence the further xi is from the mean.
• If xi < x̄, the influence of point i is negative, with greater absolute influence the further xi is from

the mean.
One way to understand influence is to consider the fitted regression line as a rod attached to the data
by rubber bands; then imagine how the position and orientation of the rod changes as individual data
points are moved up and down. Figure 8.3 illustrates.

Influence can also be computed for multiple regression, using the matrix expression (equation
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Figure 8.3 Understanding the influence of individual data points on the fitted regression line. Picture the vertical
lines as rubber bands connecting each data point to the least squares line. Take one of the points on the left side
of the graph and move it up, and the slope of the line will decrease. Take one of the points on the right side and
move it up, and the slope will increase. Moving the point in the center of the graph up or down will not change
the slope of the fitted line.

(8.2)), which reveals how the estimated vector of regression coe�cients �̂ is a linear function of the
data vector y , and for generalized linear models, by re-fitting the regression after altering data points
one at a time.

8.3 Least squares slope as a weighted average of slopes of pairs
In Section 7.3, we discussed that, when a regression y = a + bx + error is fit with just an indicator
variable (that is, where x just takes on the values 0 and 1), the least squares estimate of its coe�cient
b is simply the average di�erence in the outcome between the two groups; that is, ȳ1 � ȳ0.

There is a similar identity when the predictor x is continuous; in this case, we can express the
estimated slope b̂ from (8.3) as a weighted average of slopes.

The basic idea goes as follows. With n data points (x, y) there are n
2 pairs (including the

possibility of taking the same data point twice). For each pair i, j we can compute the slope of the
line connecting them:

slope
i j
=
yj � yi
x j � xi

.

This expression is not defined when the two points have the same value of the predictor—that is, when
xi = x j—but don’t worry about that now; it will turn out that these cases drop out of our equation.

We would like to define the best-fit regression slope as an average of the individual slopes, but it
makes sense to use a weighted average, in which slope

i j
counts more if the two points are further

apart in x. We might, then, weight each slope by the di�erence between the two values, |x j � xi |. For
mathematical reasons that we do not discuss here but which relate to the use of the normal distribution
for errors (which is in turn motivated by the Central Limit Theorem, as discussed in Section 3.5), it
makes sense to weight each slope by the squared separation, (x j � xi)2.

We can then compute the weighted average:

weighted average of slopes =

P
i, j (x j � xi)2 yj�yi

x j�xiP
i, j (x j � xi)2

=

P
i, j (x j � xi)(yj � yi)

P
i, j (x j � xi)2 . (8.8)
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If you collect the terms carefully, you can show that this expression is the same as b̂ in (8.3), so
we can interpret the estimated coe�cient b̂ as the weighted average slope in the data, and we can
interpret the underlying parameter b as the weighted average slope in the population.

8.4 Comparing two fitting functions: �m and stan_g�m

The standard routine for fitting linear regressions in R is �m, which performs classical least squares
regression and returns estimates and standard errors; indeed, that is what we used in our earlier
book on regression, and there are comparable functions in all other statistical software. In this
book, though, we use stan_g�m, a program that performs Bayesian inference and returns estimates,
standard errors, and posterior simulations.

We switch to stan_g�m for two reasons. First, the simulations automatically computed by the new
program represent uncertainty and can be used to obtain standard errors and predictive distributions
for any function of current data, future data, and parameters. Second, the new program performs
Bayesian inference, which can be used to get more stable estimates and predictions incorporating
prior information. We discuss both these aspects of Bayesian inference—the probabilistic expression
of uncertainty, and the inclusion of prior information—in Chapter 9, along with examples of how to
perform probabilistic predictions and express prior information using regressions in stan_g�m.

For many simple problems, classical and Bayesian inferences are essentially the same. For
example, in Chapters 6 and 7, we fit regressions of earnings on incomes, daughters’ height on
mothers’ heights, and elections on economic growth, in each case using stan_g�m with its default
settings. Switching to �m would give essentially identical results. The default prior is weak, hence it
yields similar inferences to those obtained under maximum likelihood in these examples. The main
role of the default prior in this sort of regression is to keep the coe�cient estimates stable in some
pathological cases such as near-collinearity; otherwise, it does not make much di�erence.

Bayesian inference makes more of a di�erence with weak data or strong priors. In addition,
for advanced and hierarchical models, there are more di�erences between classical and Bayesian
inferences: this is because more complex models can have latent or weakly identified parameters,
so that a Bayesian inferential structure can provide smoother estimates more generally. In addition,
advanced and multilevel models tend to increase in complexity as sample sizes increases, and so
Bayesian inference can make a di�erence even with large datasets.

Reproducing maximum likelihood using stan_g�m with flat priors and optimization

Here we demonstrate the commands for bridging between the Bayesian and classical estimates. Our
default regression fit to some data frame mydata is

stan_g�m(y ~ x, data=mydata)

When stan_g�m is called without setting the prior arguments, it by default uses weak priors that
partially pool the coe�cients toward zero, as discussed in Section 9.5.

If we want to get a closer match to classical inference, we can use a flat prior, so that the posterior
distribution is the same as the likelihood. Here is the function call:

stan_g�m(y ~ x, data=mydata, prior_intercept=NULL, prior=NULL, prior_aux=NULL)

The three di�erent NULLs set flat priors for the intercept, the other coe�cients in the model, and �,
respectively.

Again, we explain all this in the next chapter; at this point we just want to demonstrate the function
calls.

To move even closer to standard regression, we can tell Stan to perform optimization instead of
sampling. This yields the maximum penalized likelihood estimate, which in the case of a flat prior is
simply the maximum likelihood estimate:


