Chapter 8

Fitting regression models

Most of this book is devoted to examples and tools for the practical use and understanding of
regression models, starting with linear regression with a single predictor and moving to multiple
predictors, nonlinear models, and applications in prediction and causal inference. In this chapter
we lay out some of the mathematical structure of inference for regression models and some algebra
to help understand estimation for linear regression. We also explain the rationale for the use of the
Bayesian fitting routine stan_glm and its connection to classical linear regression. This chapter thus
provides background and motivation for the mathematical and computational tools used in the rest of
the book.

Note: We won't be covering Bayesian Inference in 201b: As such, I've blanked some of thc
. . . . . chapter sections throughout
8.1 Least squares, maximum likelihood, and Beyesian-inferemee

We now step back and consider inference: the steps of estimating the regression model and assessing
uncertainty in the fit. We start with least squares, which is the most direct approach to estimation,
based on finding the values of the coeflicients a and b that best fit the data. We then discuss maximum
likelihood, a more general framework that includes least squares as a special case and to which we
return in later chapters when we get to logistic regression and generalized linear models. Then we
proceed to Bayesian inference, an even more general approach that allows the probabilistic expression
of prior information and posterior uncertainty.

Least squares

In the classical linear regression model, y; = a + bx; + €;, the coeflicients a and b are estimated so as
to minimize the errors €;. If the number of data points » is greater than 2, it is not generally possible
to find a line that gives a perfect fit (that would be y; = a + bx;, with no error, for all data points
i =1,...,n), and the usual estimation goal is to choose the estimate (4, 13) that minimizes the sum of
the squares of the residuals, .

ri = y; — (a+ bx;).

We distinguish between the residuals r; = y; — (4 + 5xi) and the errors €; = y; — (a + bx;).
The model is written in terms of the errors, but it is the residuals that we can work with: we cannot
calculate the errors as to do so would require knowing a and b.

The residual sum of squares is

RSS = Z(yi —(a+bx))~. (8.1)
i=1

The (@, b) that minimizes RSS is called the least squares or ordinary least squares or OLS estimate
and can be written in matrix notation as,

B=X'X)"X"y, (8.2)
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where S = (a, b) is the vector of coefficients and X = (1, x) is the matrix of predictors in the
regression. In this notation, 1 represents a column of ones—the constant term in the regression—and
must be included because we are fitting a model with an intercept as well as a slope. We show more
general notation for linear regression with multiple predictors in Figure 10.8.

Expression (8.2) applies to least squares regression with any number of predictors. In the case of
regression with just one predictor, we can write the solution as,

A Z?:](xi - Xy

h=" 83
Z?;](xi - %)? 63

a=ip-bx. (8.4)

We can then can write the least squares line as,
Yyi=y+b(x;—X)+r;

thus, the line goes through the mean of the data, (X, i), as illustrated in Figure 6.3.

Formula (8.2) and the special case (8.3)—(8.4) can be directly derived using calculus as the solution
to the problem of minimizing the residual sum of squares (8.1). In practice, these computations are
done using efficient matrix solution algorithms in R or other software.

Estimation of residual standard deviation o

In the regression model, the errors €; come from a distribution with mean 0 and standard deviation o :
the mean is zero by definition (any nonzero mean is absorbed into the intercept, a), and the standard
deviation of the errors can be estimated from the data. A natural way to estimate o would be to

simply take the standard deviation of the residuals, \/ % IV ri2 = \/ % > o(yi—(a+ bx))?, but

i=1

this would slightly underestimate o because of overfitting, as the coefficients @ and b have been
set based on the data to minimize the sum of squared residuals. The standard correction for this
overfitting is to replace n by n — 2 in the denominator (with the subtraction of 2 coming from the
estimation of two coefficients in the model, the intercept and the slope); thus,

1 < .
&= n—zl;(yi — (@ +bx))2. (8.5)

When n = 1 or 2 this expression is meaningless, which makes sense: with only two data points you
can fit a line exactly and so there is no way of estimating error from the data alone.
More generally, in a regression with k predictors (that is, y = X 8 + €, with an n X k predictor

matrix X), expression (8.5) becomes & = \/ﬁ Zl’.'zl (yi — (Xi,@))z, with n — k in the denominator
rather than n, adjusting for the k coefficients fit by least squares.
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Maximum likelihood

If the errors from the linear model are independent and normally distributed, so that y; ~ normal(a +
bx;, o) for each i, then the least squares estimate of (a, b) is also the maximum likelihood estimate.
The likelihood function in a regression model is defined as the probability density of the data given
the parameters and predictors; thus, in this example,

n
p(yla.b.o. X) = [ | normal(y;la + bxi. o), (8.6)

i=1

where normal(:|-, -) is the normal probability density function,

normal(y | m, o) = \/%a’ exp (—% (%)2) . (8.7)

A careful study of (8.6) reveals that maximizing the likelihood requires minimizing the sum of
squared residuals; hence the least squares estimate [? = (a, l;) can be viewed as a maximum likelihood
estimate under the normal model.

There is a small twist in fitting regression models, in that the maximum likelihood estimate of o

is \/% > (yi — (@ + bx;))2, without the - adjustment given in (8.5).

i=1

Where do the standard errors come from? Using the likelihood surface to assess
uncertainty in the parameter estimates

In maximum likelihood estimation, the likelihood function can be viewed as a hill with its peak at the
maximum likelihood estimate.

Figure 8.1a displays the likelihood for a simple example as a function of the coefficients a and b.
Strictly speaking, this model has three parameters—a, b, and o—but for simplicity we display the
likelihood of a and b conditional on the estimated ¢-.

Figure 8.1b shows the maximum likelihood estimate (4, 13) = (46.2,3.1). This is the value of the
parameters where the likelihood function—the hill in Figure 8.1a—has its peak. Figure 8.1b also
includes uncertainty bars showing +1 standard error for each parameter. For example, the data are
consistent with a being roughly in the range 46.2 + 1.6 and with b being in the range 3.1 + 0.7.

The likelihood function does not just have a maximum and a range; it also has a correlation. The
area with highest likelihood surrounding the peak can be represented by an ellipse as is shown in
Figure 8.1c. The shape of the uncertainty ellipse tells us something about the information in the data
and model about the two parameters jointly. In this case the correlation is negative.

To understand this inferential correlation, see the scatterplot of the data from Figure 7.2 which we
have reproduced in Figure 8.2a: the regression line goes through the cloud of points, most of which
have positive values for x. Figure 8.2b shows a range of lines that are consistent with the data, with
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Figure 8.1 (a) Likelihood function for the parameters a and b in the linear regression y = a + bx + error, of
election outcomes, y;, on economic growth, x;. (b) Mode of the likelihood function (that is, the maximum
likelihood estimate (a4, I;) ) with = 1 standard error bars shown for each parameter. (c) Mode of the likelihood
function with an ellipse summarizing the inverse-second-derivative-matrix of the log likelihood at the mode.

Data and linear fit Data and range of possible linear fits

Figure 8.2 (a) Election data with the linear fit, y = 46.3 + 3.0x, repeated from Figure 7.2b. (b) Several lines
that are are roughly consistent with the data. Where the slope is higher, the intercept (the value of the line when
x = 0) is lower; hence there is a negative correlation between a and b in the likelihood.

the lines representing 50 draws from the Bayesian posterior distribution (see below). Lines of higher
slope (for which b is higher) intersect the y-axis at lower values (and thus have lower values of a),
and vice versa, hence the negative correlation in Figure 8.1c.
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8.2 Influence of individual points in a fitted regression

From expressions (8.3) and (8.4), we can see that the least squares estimated regression coefficients
4 and b are linear functions of the data, y. We can use these linear expressions to understand the
influence of each data point by looking at how much a change in each y; would change b. We could
also work out the influence on the intercept—the predicted value when x = O—or any other prediction
under the model, but typically it is the slope that is most of interest.
From equation (8.3), we see that an increase of 1 in y; corresponds to a change in b that is
proportional to (x; — X):
 If x; = X, the influence of point i on the regression slope is 0. This makes sense: taking a point in
the center and moving it up or down will affect the height of the fitted line but not its slope.

» If x; > X, the influence of point i is positive, with greater influence the further x; is from the mean.
» If x; < X, the influence of point i is negative, with greater absolute influence the further x; is from
the mean.
One way to understand influence is to consider the fitted regression line as a rod attached to the data
by rubber bands; then imagine how the position and orientation of the rod changes as individual data

points are moved up and down. Figure 8.3 illustrates.
Influence can also be computed for multiple regression, using the matrix expression (equation
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Figure 8.3 Understanding the influence of individual data points on the fitted regression line. Picture the vertical
lines as rubber bands connecting each data point to the least squares line. Take one of the points on the left side
of the graph and move it up, and the slope of the line will decrease. Take one of the points on the right side and
move it up, and the slope will increase. Moving the point in the center of the graph up or down will not change
the slope of the fitted line.

(8.2)), which reveals how the estimated vector of regression coefficients ﬁ is a linear function of the
data vector y, and for generalized linear models, by re-fitting the regression after altering data points
one at a time.

8.3 Least squares slope as a weighted average of slopes of pairs

In Section 7.3, we discussed that, when a regression y = a + bx + error is fit with just an indicator
variable (that is, where x just takes on the values 0 and 1), the least squares estimate of its coefficient
b is simply the average difference in the outcome between the two groups; that is, ij; — ¥o.

There is a similar identity when the predictor x is continuous; in this case, we can express the
estimated slope b from (8.3) as a weighted average of slopes.

The basic idea goes as follows. With n data points (x, y) there are n”> pairs (including the
possibility of taking the same data point twice). For each pair i, j we can compute the slope of the
line connecting them:

Yji— Yi
Xj— Xi ’

slope;; =

This expression is not defined when the two points have the same value of the predictor—that is, when
x; = x;—but don’t worry about that now; it will turn out that these cases drop out of our equation.

We would like to define the best-fit regression slope as an average of the individual slopes, but it
makes sense to use a weighted average, in which slope;; counts more if the two points are further
apart in x. We might, then, weight each slope by the difference between the two values, |x; — x;|. For
mathematical reasons that we do not discuss here but which relate to the use of the normal distribution
for errors (which is in turn motivated by the Central Limit Theorem, as discussed in Section 3.5), it
makes sense to weight each slope by the squared separation, (x; — x;)%.

We can then compute the weighted average:

By = xi)? =
Yij(xj—xi)?

i = xi)(yj - yi)

IETICTEENE

weighted average of slopes =

(8.8)



If you collect the terms carefully, you can show that this expression is the same as b in (8.3), so
we can interpret the estimated coeflicient b as the weighted average slope in the data, and we can
interpret the underlying parameter b as the weighted average slope in the population.



