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Exploration, Inference, and Prediction in

Neuroscience and Biomedicine
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Recent decades have seen dramatic progress in brain research. These advan-
ces were often buttressed by probing single variables to make circumscribed
discoveries, typically through null hypothesis significance testing. New ways
for generating massive data fueled tension between the traditional methodol-
ogy that is used to infer statistically relevant effects in carefully chosen var-
iables, and pattern-learning algorithms that are used to identify predictive
signatures by searching through abundant information. In this article we detail
the antagonistic philosophies behind two quantitative approaches: certifying
robust effects in understandable variables, and evaluating how accurately a
built model can forecast future outcomes. We discourage choosing analytical
tools via categories such as ‘statistics’ or ‘machine learning’. Instead, to
establish reproducible knowledge about the brain, we advocate prioritizing
tools in view of the core motivation of each quantitative analysis: aiming
towards mechanistic insight or optimizing predictive accuracy.

‘[Deep] neural networks are elaborate regression methods aimed solely at prediction, not
estimation or explanation.” (Efron and Hastie [1], p. 371).

The Emergence of Richer Datasets Alters Everyday Data-Analysis Practices
There is a burgeoning controversy in neuroscience on what data analysis should be about.
Similarly to other biomedical disciplines, there are differing perspectives among researchers,
clinicians, and regulators about the best approaches to make sense of the unprecedented data
resources. Traditional statistical approaches, such as null hypothesis significance testing, were
introduced in a time of data scarcity and have been revisited, revised, or even urged to be
abandoned. Currently, a growing literature advertises predictive pattern-learning algorithms
that are hailed to provide some traction on the data deluge [2,3]. Such tools for algorithmic
predictions are increasingly discussed in particular fields of neuroscience ([4-9] for some
excellent sources). Ensuing friction is aggravated by the incongruent historical trajectories
of mainstream statistics and emerging pattern-learning algorithms — the former long centered
on significance testing procedures to obtain P values, the latter with a stronger heritage in
computer science [10-12]. We argue here that the endeavor of sorting each analytical tool into
categories such as ‘statistics’ or ‘machine-learning’ is futile [13,14].

Take forinstance ordinary linear regression, as routinely applied by many neuroscientists. The same
tool and its underlying mathematical prosthetics can be used to achieve three diverging goals ([15],
pp. 82-83; [16], chapter 4.12): (i) exploration, to obtain afirst broad impression of the dependencies
between a set of measured variables in the data at hand; (i) inference, to discern which particular
input variables contribute to the target variable beyond chance level; and (i) prediction, to enable
statements about how well target variables can be guessed based on data measured in the future.
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As a prevalent misconception in neu-
roscience and biomedicine, null
hypothesis significance testing is often
thought to be the only existing, or most
rigorous, framework for deriving repro-
ducible conclusions from data.

Data analysis should be guided by the
actual modeling goal. Exploration pro-
vides a first cursory glance that sum-
marizes what can potentially be
interesting in the data at hand. Infer-
ence typically focuses on isolating vari-
ables deemed individually important
above some chance level, often based
on P values. Prediction commonly
aims at identifying variable sets that
together enable accurate guessing of
outcomes based on other or future
data.

P values do not measure the predictive
accuracy of a model. Variables
declared important by null hypothesis
significance testing can be incongru-
ent with the variables that maximize
predictive performance in new indivi-
duals or settings.
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Confusion can arise because it is the motivation for using linear regression that differs between
these scenarios. The mathematical mechanics underlying model parameter fitting are indistin-
guishable. Taken more broadly, instead of attaching labels of opposing camps to each
analytical tool, it would be more productive, we would argue, to focus on the desired goal
of a specific quantitative analysis. The goal, rather than the choice of a particular tool, is the
major factor that ultimately determines what statements can confidently be made about brains,
behavior, or genes, or, for that matter, any other question of interest.

Exploration, Inference, Prediction: A Typology of Different Modeling Goals
The initial description of correlative relations in brain data is a common first step in many
research projects. A crucial distinction arises when deciding on how to venture into identifying
reproducible findings in quantitative analysis. How a particular analytical tool is used in a specific
application domain may often be more important than which class of tool is chosen.

Exploration of Correlative Associations

In various studies, a straightforward approach to charting candidate associations in brain data
is Pearson’s correlation (without computing P values). A simple statistic is thus computed
between two series of measurements for descriptive purposes. As one concrete example, this
analysis can quantify the relationship between amygdala activity measured in an fMRI experi-
ment and some behavioral response. Such tentative data exploration can also be done in
situations involving one input and one output variable by fitting a linear regression to the data. In
these informal settings, the modeling goal is limited to a descriptive, correlational summary of
the raw data that one happened to observe. Estimating linear-regression parameters alone
does not license the importance of particular variable relationships (i.e., inference). Neither does
a fitted linear regression itself declare whether these variable relationships hold up for other
individuals or future datapoints (i.e., prediction).

Inference of Statistically Significant (and Possibly Causal) Associations

Another goal is to try to isolate the specific contributions of single variables so as to reveal how
the observed response depends on each particular measurement. This is a common agenda in
many well-controlled experimental designs. For instance, in studies looking into the effects of a
gene knockout in mice, or in clinical trials examining the impact of a specific treatment in
patients. Historically, this type of deductive reasoning has often drawn on null hypothesis
significance testing (NHST). The framework however is sometimes ill-suited and frequently
misunderstood [17-19]. As an alternative to NHST, one may draw formal inference by means of
false discovery rate (FDR), Bayesian posterior inference, or other tools ([1], chapters 3 and 15).
Inferences also need to take into account various biases [20] to avoid making claims that
represent false positives (in the NHST framework), underestimated FDR (in the FDR frame-
work), or exaggerated posterior parameter distributions (in the Bayesian framework) ([1],
chapter 3; [21], chapter 18.7). Much debate has emerged about what inferential statements
about relevant variable contributions mean [10,13,22], and how significant associations tends
towards the holy grail of uncovering causal influences [23].

Generalization of Predictive Associations

One way to substantiate the explored correlations or inferred significance statements is by
verifying whether these quantitative relationships still hold up for other datapoints or in new
individuals. This goal is common to many observational, naturalistic, and prospective epide-
miological studies. For instance, increasingly, predictive pattern-learning algorithms are used to
derive the behavioral response of individuals from whole-brain neural activity or derive health
risk from genomic profiling (cf [24—26]). Predictive modeling can also be carried out based on
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standard linear regression. Several fields of clinical medicine have already accumulated a large
literature of predictive scores and tools [27,28]. Currently, usage of predictive approaches lacks
standardization and few extracted prediction rules are rigorously validated [29]. Even fewer are
evaluated for replication in different settings and groups of individuals [30]. Increasingly
complex predictive models use hundreds and thousands of parameters and/or try to benefit
from non-linear interactions in extensive data such as electronic health records [31]. Notably, it
has so far rarely been shown that accounting for complex non-linearity in ‘big’ medical data has
considerably improved predictive performance. The low success rate is perhaps partly due to
the still insufficient sample sizes or to limited quality of the measurements [7,20,32].

To be clear, exploration, inference, and prediction are not strictly mutually exclusive. Instead,
quantitative investigations often involve a combination of the three approaches, prioritized to
different degrees. In many neuroscience domains that are starting to amass ‘big data’,
predictive pattern-learning algorithms are becoming popular alternatives to classic linear-
regression applications [2,3]. Such algorithmic tools include support-vector machines, random
forests, or artificial neural networks. Regardless of whether linear-regression approaches or
pattern-learning algorithms are used, the main goal of the prediction enterprise is to put the built
model, with already estimated model parameters, to the test against some independent data
([21], chapter 7). In this analysis regime, the investigator wishes to achieve the highest-possible
forecasting performance. She is not necessarily worrying about how the model works or
whether its fitted parameters carry biological insight.

Inference and Prediction Serve Distinct Goals

Scientific insight has been a primary focus of the statistical methodology traditionally used in
fields such as psychology and experimental neuroscience, as well as in assessments in
evidence-based medicine. The underlying inferential approach is particularly well-suited for
asking questions such as: which specific gene location contributes to or has an effect on a
behavioral trait? Somewhat counterintuitively, in many cases genetic variants identified via such
an inferential approach may not serve best to detect whether somebody has that behavioral
trait or not [33,34]. This is because modeling for prediction typically asks a more heuristic type
of question: which gene locations are collectively useful to distinguish individuals with or without
the behavioral trait? Finding answers to this latter type of question follows the perhaps more
superficial agenda of prioritizing successful recognition of any data relationships that are able to
derive the specified outcome in independent individuals. Such predictive approaches put less
emphasis on mechanistic insight into the biological underpinnings of the coherent behavioral
phenotype (Table 1).

Inferring new scientific insight is often about answering questions such as: which input variable
within a given dataset is an important contributor to the outcome? (or, is it a relatively more
important contributor compared to other input variables?) Ideally, this modeling regime aims at
mechanistic understanding of the impact of the input on the target variable. The investigator is
interested in understanding the way in which an outcome y is affected by a change in the input
variables x4, . . ., Xp. To put it more mathematically, with X denoting the measurement vectors
X1, ..., Xp, She wants to know ‘how y changes as a function of x’ ([35], p. 19]). Consequently,
inferential data analysis becomes difficult to the extent that the statistical model is a black box.
Further, inferential statements about individual measurements of brain phenomena have their
best chance of being reproducible if derived in the context of careful experimental controls (e.g.,
randomized trials in clinical assessments). Importantly, however, many, if not most, questionsin
neuroscience and biomedicine cannot even be addressed using randomization (cf [1],
epilogue).
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Table 1. The Inference-Prediction Continuum of Modeling Goals (cf Figure 1)

Inference

> Prediction

Commonly Used Tools for Inference Goals

Null hypothesis significance testing to compute P
values for specific target variables. Tools for this
purpose include, for example, ANOVA, the t test, or x?
test. Increasingly popular alternatives include false
discovery rate and Bayesian posterior inference, as
well as some pattern-learning algorithms (e.qg., feature
importance scores from random-forest algorithms).

Knowledge-Guided

Candidate variables are often hand-picked by the
investigator in a targeted fashion based on existing
substantive knowledge. Research questions are
explicitly articulated before data collection in a
carefully controlled experiment. The chosen variables
are evaluated by an often simple but inflexible model
that ideally is prespecified by the investigator before
seeing the data. However, data dredging, and thus a
high false-positive rate, are common in practice.

Explainable Narrative

Statements about the specific contribution of
individual input variables are the priority. Such claims
of variable relevance are often more readily available in
simple linear-regression models. Accordingly, these
models tend to be preferred in the context of inference
such that every single parameter, and its
corresponding unit, can be cleanly attributed its share
of the explained variance. Usually, the meaning of
each parameter should be readily understood, and
hence the model often allows for a simplified narrative;
statements are centered on single parameters rather
than on the prediction performance of the collective
model parameters.

Formally Justified

Many traditional analysis techniques were rigorously
characterized and validated by mathematical theory;
simple linear models lend themselves well to
theoretical model criticism, and carry well-understood
modeling limits; another benefit of formal performance
guarantees is the typically lower computational load.

Data-Efficient

Many methods from classical statistics were designed
long ago to handle data that are scarce, as well as
being laborious and expensive to collect.

Problem-Tailored

Each approach is designed to solve a particular data-
analysis question, typically based on problem-
specificprobabilistic and distributional assumptions
about how the investigator believes the data have
come about.
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Commonly Used Tools for Prediction Goals

Empirical validation schemes to compute prediction
accuracy of the built model as a whole. Exemplary tools
include support-vector machines, random-forest
algorithms, and other ensemble and boosting techniques,
the rapidly evolving ‘deep’-learning algorithms, as well as
ordinary and penalized linear regression.

Pattern-Guided

A large and diverse array of ‘found’ variables is typically
considered in the statistical analysis in a heuristic data-led
fashion. It can be unknown how the data were generated,
and the exact research question may be detailed as the
data are being analyzed. The adaptive and sometimes very
flexible model extracts a general prediction rule directly
from the data in the spirit of ‘letting the data speak for
themselves’.

Opaque Black Box

Although simple linear-regression models may perform
reasonably well in terms of predictive power, if the goal is to
maximize prediction accuracy, it is often beneficial to
exploit complex non-additive associations in the data. In
many real-world situations the target variable depends on
the input variables in convoluted ways, which can hinder
assigning to single input variables a clear relative
contribution to the output, and model parameters are often
treated as instrumental intermediates to achieve high
prediction performance without necessarily aiming to
assign specific meaning to each parameter estimate per
se.

Empirically Justified

Predictive models can be explicitly and quantitatively
evaluated by applying the entire set of estimated model
parameters to unseen independent, newly generated, or
future observations or individuals; formal performance
guarantees are often challenging; these models are often
informally validated by means of more computationally
demanding cross-validation, bootstrapping, and other
resampling schemes.

Data-Hungry

Compared to classical statistics methods, many
sophisticated predictive approaches require more data,
especially when complex non-linear relationships are to be
modeled and more hyperparameters need to be tuned;
comparably more data also tend to be needed if each
observation has many input variables, and if random noise
is expected to be prominent (e.g., medical data).

Versatile
Approaches are devised to provide useful solutions to
various types of data and data-analysis questions.
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Quantitative analyses that strive to mechanistically explain the inner workings of brain phe-
nomena have a different epistemic value than research aimed to model brain phenomena for
the goal of accurate future predictions. In the prediction case, the investigator wants to extract
knowledge about regularities by sieving through configurations of candidate patterns (and
possibly very complex ones) [2,3]. Prediction accuracy is the core metric to capture how well
the overall quantitative model — that is, the collection of fitted parameters — can emulate a high-
level abstraction of mechanisms in nature. The predictive approach thus asks: how well can the
built model reproduce the studied brain phenomenon that has been quantitatively captured in
the measurements?

The priority to maximize prediction performance may require exploitation of more complex non-
linear relationships in brain data, in contrast to widely adopted linear modeling. Recognizing
complex relationships between variables is something that many black box pattern-learning
algorithms excel at. The more transparent linear-regression approaches have served well in
neuroscience and medicine, and are arguably epitomized in the successful era of genome-wide
association studies (GWAS) [36]. By contrast, the data-led identification of predictive principles
from non-linear relationships between variables has a strong legacy in the machine-learning
community ([10]; [37], chapter 1.2).

A contrast between modeling goals lies in the readiness of non-linear predictive models to
capture and capitalize on higher-order interactions among variables. Complex variable-variable
(—variable— . . . ) interactions are probably common in brain phenomena. However, to best
‘see’ these higher-order interactions, the data need to be measured with little noise. When
adequate data are available, more sophisticated analytical tools are generally advantageous in
cases of higher-order variable interactions. Some non-transparent pattern-learning algorithms,
capitalizing on non-linear interactions, have frequently ranked among the top solutions in
international data-analysis competitions involving a diversity of challenging data types (e.g.,
www.kaggle.com). Many areas of brain research are experiencing advances in the granularity
of quantitative measurements, increasing the potential to capture higher-order intervariable
interactions. Thus, advanced pattern-learning algorithms may eventually outperform linear
models even more often than is currently the case. Note, however, that the superiority of
modeling complex patterns over simple linear approaches should not be taken for granted, and
merits case-by-case evaluation. Altogether, compared to modeling for inference, the predictive
analyst may favor tools that extract regularities from data in a way that is advantageous for
prediction accuracy. High forecasting accuracy is favored even if opaque to human intuition,
with ‘deep’ neural-network algorithms offering an extreme example of such tools.

Besides challenges added to parameter interpretation, predictive tools are typically less suited
to detect causal relationships in data [23]. Nevertheless, a useful predictive model with high
accuracy may be built based on measurements that are expected to have little causal relation to
the outcome of interest. For instance, it has been acknowledged that ‘Neuroimaging studies
perse| . .. ]onlyprovide insights into neural correlates but not into neural causes of cognition’
[38]. Neuroimaging measurements such as fMRI are only indirectly related to the dynamic
activity changes in neuronal assemblies underlying cognitive processes. However, such signals
carry intermediate information that can be used for accurate predictions of interindividual
differences in cognition, such as propensity to attentional lapses, general intelligence, or health
status [39,40].

To recapitulate, we have emphasized two distinct motivations that could drive a specific
scientific inquiry: ‘providing insight’, for the purpose of inference, and ‘accurately modeling
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Figure 1. The Trade-Off between Model Transparency, Which Allows Scientific Understanding, and
Theoretical Model Capacity, Which Affords Sophisticated Predictions. Neuroscience and biomedicine have
had a long-dominating focus on scientific insight by using simple and thus transparent models. Such approaches are well
suited to work towards the goal of inference regarding mechanistic understanding. This goal is epistemologically distinct
from, and sometimes practically incompatible with, maximizing predictive power. The pragmatic goal of optimizing
predictive accuracy can exploit large datasets even at the cost of opting for black box models that cannot easily be
interrogated. In practice, the actual ratio between transparency and predictability depends on the specific analytical tool
being used and the particular dataset at hand. Abbreviations: GLM, generalized linear models; LASSO, least absolute
shrinkage and selection operator: a recently introduced constrained regression for high-dimensional data analysis, which
is a special instance of GLM.

the world’, for prediction. The inferential regime prioritizes statements about the relevance of
each individual input variable. The predictive regime instead prioritizes the relevance of the
output of the model () for precise forecasting. Predictive modeling describes what ‘does’
happen. Prediction often does not equally well address the question of ‘how’, and may be less
apt for the question of ‘why’. In addition, prediction is not always feasible and may remain
mediocre in some applications, despite recent technical advances in data analytics. These
considerations encourage trade-offs between model transparency for easy interpretability and
model complexity that would enable predicting particularly complex relationships (Figure 1).
One could make the case that some brain phenomena are so complex that impenetrable
predictive pattern-learning algorithms may be all neuroscientists can hope for (cf [22]). More-
over, accelerating data aggregation and the wider availability of computation power are
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opening a ‘shortcut’ path to useful outcome predictions, circumventing the traditional mile-
stone of mechanistic discovery as an essential step towards effective predictive capabilities.

Implications for Clinical Brain Research

Many clinical studies in brain research set out to identify variables that are statistically
significantly associated with a disease. This includes significant differences in specific brain
regions, their neural activity or anatomical abnormality, connections between brain regions,
gene variants, and more. Deviations in such measurements in patients, however, may not
always be the best-possible choices for building successful predictive approaches ([20]; [41],
p. 185). This is perhaps not too surprising given that some questions beg modeling for the
inference goal. For instance: which particular demographic indicator, ethnic background, or
clinical parameter is robustly associated with adverse reaction of patients to a drug? The
context of predictive modeling begs a different question at the heart of the study, even when
using the same statistical technique. For instance: how well can we know in advance the risk
in a particular patient for an adverse reaction to that drug? Predictive modeling regimes, we
would argue, provide a natural path towards clinical relevance by immediately acting on
clinical endpoints [42]. In fact, an official report of the American Statistical Association (ASA)
emphasized that ‘Statistical significance is not equivalent to scientific, human, or economic
significance. Smaller p-values do not necessarily imply the presence of larger or more
important effects, and larger p-values do not imply a lack of importance or even lack of
effect.” [17].

Modeling for inference and prediction are two different tasks. Increasing this awareness will
probably foster new research directions. Centering on clinical endpoint predictions can com-
plement the quest for identifying the biological causes of disease. Historically, in research on the
neural and genetic basis of brain disease, a prevailing philosophy has been to progress in two
consecutive steps: discovery of new pathophysiological mechanisms, which are then used as a
stepping stone to designing new targeted treatments [43]. Nevertheless, one might argue, after
>50 years of biological research on the brain aimed at inference, there are relatively few
definitively established etiopathological pathways. Neither are there many reliable biomarkers
for most mental disorders [44].

Evenin the ideal case of brain diseases caused by a single gene with considerable penetrance —
such as the 22g11.2 deletion linked to schizophrenia risk [45], and the expansion of CAG triplet
repeats linked to Huntington’s disease [46] medical doctors could be assisted by patient-
tailored predictive approaches. All individuals with such a genetic variant carry an escalated risk
of developing the disease. However, various interindividual differences can still arise, including
the timing of symptom onset, the constellation of symptoms displayed, disease severity, clinical
trajectory, and treatment response. These clinical scenarios illustrate the distinction between
the pursuit of scientific insight and the wish to forecast patient-specific disease manifestations —
aiming at elucidating disease-causing biological mechanisms or creating prognostic value with
relevance for medical care. Without doubt, there are potentially immediate gains from the
pragmatic intention to search for signatures in complex data that can be exploited to predict
clinical endpoints. Such a research program does not conflict with or belittle the importance of
the longer-term endeavor to understand the primary biology of brain diseases.

Predictive approaches are increasingly adopted, recommended, and even expected by policy-
makers [47,48]. However, there are several requirements before they can be considered to be
suitable for wide application in real-world clinical settings (Box 1). Beneficial conditions for
successfully translating new predictive approaches into clinical practice include the following:
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Box 1. Stages of Translating Predictive Approaches in Brain Research into Practice
(i) Model Building

To fit the parameters of the chosen predictive model, one first needs empirical measurements from the brain systems of
interest. One common preparatory analysis is to probe variable-variable relationships using pairwise correlation plots.
Another is to estimate genetic relatedness between the participants using principal component analysis of their genomic
profiles. In behavioral experiments in animals or humans, exploratory data summaries can identify collinearity in response
times. Such collinearity in response times foreshadows hindered statements about the relevance of individual experimental
conditions (i.e., inference), but hardly affects forecasting condition response latencies in new participants (i.e., prediction).

(i) Internal Validation

These procedures guard against overly optimistic modeling performances. Internal validation procedures, unlike
external procedures (point iii), do not require new and independent data and are based only on the original subject
sample or dataset that was used during model building [65]. Cross-validation and bootstrapping are resampling
schemes ([21], chapter 7) that can estimate metrics of model quality [47], such as expected prediction accuracy for
future data, uncertainty of parameter estimates, and variability of prediction errors. Indeed, ‘working scientists often find
the most interesting aspect of the analysis in the lack of fit rather than the fit itself’ ((16], p. 92). Nevertheless,
interindividual variability may still be underappreciated by using such internal validations alone [24].

(iii) External Validation

For stronger validation, predictive associations identified from the original subject sample or dataset need to be ascertained in
other individuals or in datasets measured later [60,64,66]. Successful application of a predictive model of disease risk, for
instance, requires validation in different groups of individuals [24,29]. This step is important to combat reproducibility issues [67].
Currently,external model validations are not done as often as they should be [68]. However, it is important to comprehensively
benchmark the value of each predictive approach for clinicians, policymakers, and clinical guidelines [69]. For instance, external
validation may be performed in different geographical areas, time periods, and settings (e.g., secondary vs primary care).
Generally, some authors have proposed that ‘the most stringent external validation involves testing a final model developed in
one country or setting on subjects in another country or setting at another time. This validation would test whether the data
collection instrument was translated into another language properly, whether cultural differences make earlier findings
nonapplicable, and whether secular trends have changed associations or base rates’ ([16], chapter 5.3.1).

(iv) Generalizability and Transposability

When evaluating the predictions of a model on new individuals, the more different these individuals are from the original
subject sample, the stronger the test for generalizability [59,65]. Prediction accuracies are typically lower than in preceding
steps. For instance, our ability to predict the clinical utility of drugs tends to be hindered for particular groups of patients,
including women, children, and the elderly. Common comorbidities are also frequently under-represented or intentionally
excluded in clinical studies. Meta-analysis methods can be useful for summarizing and examining the predictive perfor-
mance of a model across different scenarios. Large datasets from multiple studies and electronic health records or registry
databases provide promising opportunities for examining the generalizability of predictive approaches [70].

To enhance reproducibility, accurate and complete reporting is imperative for studies applying predictive models. Such
reporting is crucial for being able to critically appraise predictive models, to perform acid-test validations of them, to
evaluate their impact, and ultimately to translate them into clinical practice [27,71].

(i) Input variables for the predictive approach should be unambiguously defined as well as
measured in a straightforward and standardized way.

(i) Prediction performance needs to be better than what can be achieved using existing
clinical methods for diagnosis and monitoring.

(i) Accurate predictions need to be carefully validated in diverse settings [49]. It is important to
accommodate variability that results from contextual factors such as circadian rhythm,
menstrual cycle, and periods of stress.

(iv) The predictive approach must also show reproducibility in different groups of individuals
and different ethnicities that did not contribute to model building. By analogy to drug
treatments, a candidate predictive model may be found, for instance, to work better in
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males than females or to be less effective in the elderly. Drug treatments can also have
adverse effects in individuals with specific genetic profiles (cf [7]).

(v) Predictive successes can only result in better patient management and clinical outcomes if
effectiveinterventions are available. In Alzheimer’s disease, forinstance, amajor current effort
is directed to improving disease prediction years before symptom onset. Translating such
prediction to better clinical outcome, however, would depend on whether treatment inter-
ventions are available that can leverage diagnosis in a much earlier stage of the disease.

(vi) Successful predictive models that are easy to use and transparent are likely to be adopted
more readily by the medical community. Health professionals will probably avoid complex
modeling approaches that are more difficult to interpret, require extra training, or depend
on hard-to-obtain information.

(vi) Randomized clinical trials may need to certify the utility and safety of a new predictive
approach for patients [50,51]. This cornerstone of evidence-based medicine will most
likely continue to bolster clinical guidelines in the ‘big data’ era.

Finally, we outline various obstacles in the journey towards establishing predictive approaches

for clinical management and intervention:

(i) When using medical data, strong non-linear effects have seldom been explicitly modeled or
reported [52]. Even if complex interactions exist between measured variables, they may be
difficult to extract from present day datasets, particularly those of still imited sample sizes [20].
Consequently, simple and less data-hungry predictive approaches are likely to remain among
the go-to choicesin many clinical settings. Elaborate predictive pattern-learning algorithms often
cannot yet be used to their full potential, let alone ‘deep’ neural-network algorithms (cf [53]).

(i) It is often difficult to know the optimal sample size for a particular prediction-oriented
clinical research program beforehand. This limitation stands in contrast to the availability of
power calculations in classical statistics. Reasons include the unknown complexity of the
aspired prediction function, the amount of relevant input variables, and noise in the data
([20,54]; [55], p. 124).

(i) A small signal-to-noise ratio plagues various forms of medical data. Examples of noisy
measurements include readouts of histone modifications in genomics and brain activity
changes scanned using fMRI, electroencephalography (EEG), or magnetoencephalography
(MEG). As arule of thumb, the more complex the predictive model, the higher its susceptibility
torandom variationinthe data. Hence, innoisy data, itis trickier foradvanced pattern-learning
algorithms to identify reproducible signatures among the measured variables.

(iv) Similarly, flexible predictive pattern-learning algorithms are more prone to overfitting
idiosyncrasies in the data, such as batch effects in multi-site studies [56]. To guard
against fragile patterns, the various ‘bells and whistles’ of many of the sophisticated
predictive approaches need to be chosen in a principled fashion [52]. These consider-
ations invigorate the need for reproducible modeling practices as a core activity in
computational biomedical research (cf [57]).

(v) The lack of transparency of predictive approaches that go beyond mainstream linear
modeling is a particular concern that can erode the trust needed for implementation in
clinical practice [47,52]. Indeed, skewed or wrong predictive approaches can systemati-
cally inflict harm by driving poor decision making [58].

Because of methodological constraints, much clinical brain research may not directly

target real-world settings. Instead, clinical studies routinely enroll patients based on

stringent exclusion criteria such as medication use or common comorbidities. These
study designs may impede our ability to make predictions in realistic clinical settings.

For instance, assessing the effectiveness of drugs or other treatments is particularly

hindered when it comes to patient groups that are relatively rarely recruited in clinical

studies, such as children and the elderly [59].

(vi
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(vii) Electronic health records are soon likely to provide rich resources to build effective
predictive approaches. However, there is still a scarcity of standardized health records
involving large samples of patients. In addition, a bias towards sicker people has been
noted in the few existing studies using such patient data being gathered by medical
institutions [30,60].

Concluding Remarks and Future Perspectives

The advent of ‘big data’ in neuroscience and biomedicine has started to transform many
important sectors. In the 21st century, large-scale data aggregation, catalyzed by new modes
of data dissemination and open science [61], has reached an unprecedented scale. Nonethe-
less, it remains unclear whether these emerging opportunities also prompt a deeper revision of
the traditional ‘value system’ pertaining to scientific evidence. The data-rich neuroscientist can
ask many new questions that could probably never be addressed quantitatively before. We
encourage investigators and clinicians to rethink data analysis in the context of a repertoire of
modeling goals (see Outstanding Questions). Choosing a data-analytic strategy for a research
question at hand should not be a matter of tradition, habit, or taste.

It is worth reiterating that a specific analytical tool can serve multiple modeling goals. Linear
regression, for instance, has been often used for exploratory summaries of possible relation-
ships among measured variables. The same tool, however, can be used for inferring the most
relevant mechanistic candidates among the measured variables, as well as for predicting
outcomes by applying the built regression model to new datapoints. Conversely, many
machine-learning algorithms have a long-standing track record in serving the predictive goal.
Nevertheless, despite the increased complexity of many of these algorithmic tools, they can
also be used towards the aim of data exploration, or even inference to isolate individually
important input variables.

More broadly, as with any scientific method, modeling for either inference or prediction each
comes with strengths and weaknesses [19,34,62,63]. Inferential modeling has been an
established practice for decades [50,64]. By contrast, the most effective use cases still need
to be identified for deploying predictive approaches in neuroscience and personalized medi-
cine. Ultimately, deducing scientific insights and making pragmatic predictions are intimately
related, but also importantly different.
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