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ABSTRACT
We review the most important statistical ideas of the past half century, which we categorize as: counter-
factual causal inference, bootstrapping and simulation-based inference, overparameterized models and
regularization, Bayesian multilevel models, generic computation algorithms, adaptive decision analysis,
robust inference, and exploratory data analysis. We discuss key contributions in these subfields, how they
relate to modern computing and big data, and how they might be developed and extended in future
decades. The goal of this article is to provoke thought and discussion regarding the larger themes of
research in statistics and data science.
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1. The Most Important Statistical Ideas of the Past 50
Years

A lot has happened in the past half century! The eight ideas
reviewed below represent a categorization based on our expe-
riences and reading of the literature and are not listed in a
chronological order or in order of importance. They are separate
concepts capturing different useful and general developments in
statistics. The present review is intended to cover the territory
and is influenced not just by our own experiences but also
by discussions with others; nonetheless we recognize that any
short overview will be incomplete, and we welcome further
discussions from other perspectives.

Each of these ideas has pre-1970 antecedents, both in the
theoretical statistics literature and in the practice of various
applied fields. But each has developed enough in the past 50
years to have become something new.

1.1. Counterfactual Causal Inference

We begin with a cluster of different ideas that have appeared
in statistics, econometrics, psychometrics, epidemiology, and
computer science, all revolving around the challenges of causal
inference, and all in some way bridging the gap between, on
one hand, naive causal interpretation of observational infer-
ences and, on the other, the recognition that correlation does
not imply causation. The key idea is that causal identification
is possible, under assumptions, and that one can state these
assumptions rigorously and address them, in various ways,
through design and analysis. Debate continues on the specifics
of how to apply causal models to real data, but the work in
this area over the past 50 years has allowed much more pre-
cision on the assumptions required for causal inference, and
this in turn has stimulated work in statistical methods for these
problems.

CONTACT Andrew Gelman gelman@stat.columbia.edu Department of Statistics, Department of Political Science, Columbia University, New York, NY 10027.

Different methods for causal inference have developed in
different fields. In econometrics, the focus has been on the
structural models and their implications for average treatment
effects (Imbens and Angrist 1994), in epidemiology the focus
has been on inference with observational data (Greenland and
Robins 1986), psychologists have been aware of the impor-
tance of interactions and varying treatment effects (Cronbach
1975), in statistics there has been work on matching and other
approaches to adjust for and measure differences between treat-
ment and control groups (Rosenbaum and Rubin 1983). In all
this work, there has been a common thread of modeling causal
questions in terms of counterfactuals or potential outcomes,
which is a big step beyond the earlier standard approach which
did not clearly distinguish between descriptive and causal infer-
ences. Key developments include Neyman (1923), Welch (1937),
Rubin (1974), and Haavelmo (1943); see Heckman and Pinto
(2015) for some background and VanderWeele (2015) for a
recent review.

The purpose of the aforementioned methods is to define
and estimate the effect of some specified treatment or expo-
sure, adjusting for biases arising from imbalance, selection, and
measurement errors. Another important area of research has
been in causal discovery, where the goal is not to estimate a
particular treatment effect but rather to learn something about
the causal relations among several variables. There is a long
history of such ideas using methods of path analysis, from
researchers in various fields of application such as genetics
(Wright 1923), economics (Wold 1954), and sociology (Duncan
1975); as discussed by Wermouth (1980), these can be framed
in terms of simultaneous equation models. Influential recent
work in this area has linked to probabilistic ideas of graphi-
cal models (Spirtes, Glymour and Scheines 1993; Heckerman,
Geiger, and Chickering 1995; Peters, Janzing, and Schölkopf
2017). An important connection to psychology and computer
science has arisen based on the idea that causal identification
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is a central task of cognition and thus should be a computable
problem that can be formalized mathematically (Pearl 2009).
Path analysis and causal discovery can be framed in terms
of potential outcomes, and vice versa (Morgan and Winship
2014). However formulated, ideas and methods of counterfac-
tual reasoning and causal structure have been influential within
statistics and computer science and also in applied research and
policy analysis.

1.2. Bootstrapping and Simulation-Based Inference

A trend of statistics in the past 50 years has been the substitution
of computing for mathematical analysis, a move that began
even before the onset of “big data” analysis. Perhaps, the purest
example of a computationally defined statistical method is the
bootstrap, in which some estimator is defined and applied to
a set of randomly resampled datasets (Efron 1979; Efron and
Tibshirani 1993). The idea is to consider the estimate as an
approximate sufficient statistic of the data and to consider the
bootstrap distribution as an approximation to the sampling
distribution of the data. At a conceptual level, there is an appeal
to thinking of prediction and resampling as fundamental prin-
ciples from which one can derive statistical operations such as
bias correction and shrinkage (Geisser 1975).

Antecedents include the jackknife and cross-validation
(Quenouille 1949; Tukey 1958; Stone 1974; Geisser 1975), but
there was something particularly influential about the bootstrap
idea in that its generality and simple computational implemen-
tation allowed it to be immediately applied to a wide variety of
applications where conventional analytic approximations failed;
see, for example, Felsenstein (1985). Availability of sufficient
computational resources also helped as it became trivial to
repeat inferences for many resampled datasets.

The increase in computational resources has made other
related resampling and simulation-based approaches popular as
well. In permutation testing, resampled datasets are generated
by breaking the (possible) dependency between the predictors
and target by randomly shuffling the target values. Parametric
bootstrapping, prior and posterior predictive checking (Box
1980; Rubin 1984), and simulation-based calibration all create
replicated datasets from a model instead of directly resampling
from the data. Sampling from a known data-generating mech-
anism is commonly used to create simulation experiments to
complement or replace mathematical theory when analyzing
complex models or algorithms.

1.3. Overparameterized Models and Regularization

A major change in statistics since the 1970s, coming from
many different directions, is the idea of fitting a model with
a large number of parameters—sometimes more parameters
than data points—using some regularization procedure to get
stable estimates and good predictions. The idea is to get the
flexibility of a nonparametric or highly parameterized approach,
while avoiding the overfitting problem. Regularization can be
implemented as a penalty function on the parameters or on the
predicted curve (Good and Gaskins 1971).

Early examples of richly parameterized models include
Markov random fields (Besag 1974), splines (Wahba and Wold
1975; Wahba 1978), and Gaussian processes (O’Hagan 1978),
followed by classification and regression trees (Breiman et al.
1984), neural networks (Werbos 1981; Rumelhart, Hinton, and
Williams 1987; Buntine and Weigend 1991; MacKay 1992; Neal
1996), wavelet shrinkage (Donoho and Johnstone 1994), lasso,
horseshoe, and other alternatives to least squares (Dempster,
Schatzoff, and Wermuth 1977; Tibshirani 1996; Carvalho, Pol-
son, and Scott 2010), and support vector machines (Cortes and
Vapnik 1995) and related theory (Vapnik 1998).

The 1970s also saw the start of the development of Bayesian
nonparametric priors on infinite dimensional families of prob-
ability models (Müller and Mitra 2013), such as Dirich-
let processes (Ferguson 1973), Chinese restaurant processes
(Aldous 1985), Polya trees (Lavine 1992; Mauldin, Sudderth,
and Williams 1992) and Pitman and Yor (1997) processed, and
many other examples since then All these models have the
feature of expanding with sample size, and with parameters
that did not always have a direct interpretation but rather were
part of a larger predictive system. In the Bayesian approach,
the prior could be first considered in a function space, with
the corresponding prior for the model parameters then derived
indirectly.

Many of these models had limited usage until enough com-
putational resources became easily available. Overparameter-
ized models have continued to be developed in image recogni-
tion (Wu, Guo, and Zhu 2004) and deep neural nets (Bengio,
LeCun, and Hinton 2015; Schmidhuber 2015). Hastie, Tibshi-
rani, and Wainwright (2015) had framed much of this work as
the estimation of sparse structure, but we view regularization as
being more general in that it also allows for dense models to be
fit to the extent supported by data.

Along with a proliferation of statistical methods and their
application to larger datasets, researchers have developed meth-
ods for tuning, adapting, and combining inferences from mul-
tiple fits, including stacking (Wolpert 1992), Bayesian model
averaging (Hoeting et al. 1999), boosting (Freund and Schapire
1997), and gradient boosting (Friedman 2001). These advances
have been accompanied by an alternative view of the foun-
dations of statistics based on prediction rather than modeling
(Breiman 2001).

1.4. Bayesian Multilevel Models

Multilevel or hierarchical models have parameters that vary by
group, allowing models to adapt to cluster sampling, longitudi-
nal studies, time-series cross-sectional data, meta-analysis, and
other structured settings. In a regression context, a multilevel
model can be viewed as a particular parameterized covariance
structure or as a probability distribution where the number of
parameters increases in proportion to the data.

Multilevel models can be seen as Bayesian in that they include
probability distributions for unknown latent characteristics or
varying parameters. Conversely, Bayesian models have a multi-
level structure with distributions for data given parameters and
for parameters given hyperparameters.
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The idea of partial pooling of local and general information
is inherent in the mathematics of prediction from noisy data
and, as such, dates back to Laplace and Gauss and is implicit
in the ideas of Galton. Partial pooling was used in specific
application areas such as animal breeding (Henderson et al.
1959), and its general relevance to multiplicity in statistical
estimation problems was given a theoretical boost by the work
of Stein (1955) and James and Stein (1960), ultimately inspiring
work in areas ranging from psychology (Novick et al. 1972)
to pharmacology (Sheiner, Rosenberg, and Melmon 1972) to
survey sampling (Fay and Herriot 1979). Lindley and Smith
(1972) and Lindley and Novick (1981) supplied a mathematical
structure based on estimating hyperparameters of the multivari-
ate normal distribution, with Efron and Morris (1971, 1972)
provided a corresponding decision-theoretic justification, and
then these ideas were folded into regression modeling and
applied to a wide range of problems with structured data (e.g.,
Liang and Zeger 1986; Lax and Phillips 2012). From a different
direction, shrinkage of multivariate parameters has been given
an information-theoretic justification (Donoho 1995). Rather
than considering multilevel modeling as a specific statistical
model or computational procedure, we prefer to think of it as a
framework for combining different sources of information, and
as such it arises whenever we wish to make inferences from a
subset of data (small-area estimation) or to generalize data to
new problems (meta-analysis). Similarly, Bayesian inference has
been valuable not just as a way of combining prior information
with data but also as a way of accounting for uncertainty for
inference and decision making.

1.5. Generic Computation Algorithms

The advances in modeling we have discussed have only become
possible due to modern computing. But this is not just larger
memory, faster CPUs, efficient matrix computations, user-
friendly languages, and other innovations in computing. A key
component has been advances in statistical algorithms for effi-
cient computing.

The innovative statistical algorithms of the past 50 years are
statistical in the sense of being motivated and developed in the
context of the structure of a statistical problem. The EM algo-
rithm (Dempster, Laird, and Rubin 1977; Meng and van Dyk
1997), Gibbs sampler (Geman and Geman 1984; Gelfand and
Smith 1990), particle filters (Kitagawa 1993; Gordon, Salmond,
and Smith 1993; Del Moral 1996), variational inference (Jordan
et al. 1999), and expectation propagation (Minka 2001, Hes-
kes et al. 2005) in different ways make use of the conditional
independence structures of statistical models. The Metropolis
algorithm (Hastings, 1970) and hybrid or Hamiltonian Monte
Carlo (Duane et al. 1987) were less directly motivated by statis-
tical concerns—these were methods that were originally devel-
oped to compute high-dimensional probability distributions in
physics—but they have become adapted to statistical computing
in the same way that optimization algorithms were adopted in
an earlier era to compute least squares and maximum likelihood
estimates. The method called approximate Bayesian computa-
tion, in which posterior inferences are obtained by simulating
from the generative model instead of evaluating the likelihood
function, can be useful if the analytic form of the likelihood

is intractable or very costly to compute (Rubin 1984; Tavaré
et al. 1997; Marin et al. 2012). Martin, Frazier, and Robert’s
(2020) review the history of computational methods in Bayesian
statistics.

Throughout the history of statistics, advances in data anal-
ysis, probability modeling, and computing have gone together,
with new models motivating innovative computational algo-
rithms and new computing techniques opening the door to
more complex models and new inferential ideas, as we have
already noted in the context of high-dimensional regularization,
multilevel modeling, and the bootstrap. The generic automatic
inference algorithms allowed decoupling the development of the
models so that changing the model did not require changes to
the algorithm implementation.

1.6. Adaptive Decision Analysis

From the 1940s through the 1960s, decision theory was often
framed as foundational to statistics, via utility maximization
(Wald 1949; Savage 1954), error-rate control (Tukey 1953;
Scheffé 1959), and empirical Bayes analysis (Robbins 1956,
1964), and recent decades have seen developments following up
this work, in the Bayesian decision theory (Berger 1985) and
false discovery rate analysis (Benjamini and Hochberg 1995).
Decision theory has also been influenced from the outside by
psychology research on heuristics and biases in human decision
making (Kahneman, Slovic, and Tversky 1982; Gigerenzer and
Todd 1999).

One can also view decision making as an area of statis-
tical application. Some important developments in statistical
decision analysis involve Bayesian optimization (Mockus 1974;
Mockus 2012; Shahriari et al. 2015) and reinforcement learning
(Sutton and Barto 2018), which are related to a renaissance
in experimental design for A/B testing in industry and online
learning in many engineering applications. Recent advances in
computation have made it possible to use richly parameterized
models such as Gaussian process and neural networks as priors
for functions in adaptive decision analysis, and to perform large-
scale reinforcement learning, for example to create artificial
intelligence to control robots, generate text, and play games such
as Go (Silver et al. 2017).

Much of this work has been done outside of statistics, with
methods such as nonnegative matrix factorization (Paatero and
Tapper 1994), nonlinear dimension reduction (Lee and Verley-
sen 2007), generative adversarial networks (Goodfellow et al.
2014), and autoencoders (Goodfellow, Bengio, and Courville
2016): these are all unsupervised learning methods for finding
structures and decompositions.

1.7. Robust Inference

The idea of robustness is central to modern statistics, and it is
all about the idea that we can use models even when they have
assumptions that are not true. An important part of statistical
theory is to develop models that work well, under realistic
violations of these assumptions. Early work in this area was
synthesized by Tukey (1960), see Stigler (2010) for a historical
review. Following the theoretical work of Huber (1972) and
others, researchers have developed robust methods that have



2090 A. GELMAN AND A. VEHTARI

been influential in practice, especially in economics, where there
is acute awareness of the imperfections of statistical models. In
economic theory there is the idea of the “as if ” analysis and the
reduced-form model, so it makes sense that econometricians are
interested in statistical procedures that work well under a range
of assumptions. For example, applied researchers in economics
and other social sciences make extensive use of robust standard
errors (White 1980) and partial identification (Manski 1990).

In general, though, the main impact of robustness in sta-
tistical research is not in the development of particular meth-
ods, so much as in the idea of evaluating statistical procedures
under what Bernardo and Smith (1994) call the M-open world
in which the data-generating process does not fall within the
class of fitted probability models. Greenland (2005) argued that
researchers should explicitly account for sources of error that
are not traditionally included in statistical models. Concerns of
robustness are relevant for the densely parameterized models
that are characteristic of much of modern statistics, and this
has implications for model evaluation more generally (Navarro
2019). There is a connection between robustness of a statistical
method to model misspecification, and a workflow involving
model checking and model improvement (Box 1980).

1.8. Exploratory Data Analysis

The statistical ideas discussed above all involve some mix-
ture of intense theory and intense computation. From a com-
pletely different direction, there has been an influential back-
to-basics movement, eschewing probability models and focus-
ing on graphical visualization of data. The virtues of statistical
graphics were convincingly argued in influential books by Tukey
(1977) and Tufte (1983), and many of these ideas entered statis-
tical practice through their implementation in the data analysis
environment S (Chambers et al. 1983), a precursor to R, which
is currently the dominant statistics software in many areas of
statistics and its application.

Following Tukey (1962), the proponents of exploratory data
analysis have emphasized the limitations of asymptotic theory
and the corresponding benefits of open-ended exploration and
communication (Cleveland 1985) along with a general view
of data science as going beyond statistical theory (Chambers
1993; Donoho 2017). This fits into a view of statistical modeling
that is focused more on discovery than on the testing of fixed
hypotheses, and as such has been influential not just in the
development of specific graphical methods but also in moving
the field of statistics away from theorem-proving and toward
a more open and, we would say, healthier perspective on the
role of learning from data in science. An example in medical
statistics is the much-cited article by Bland and Altman (1986)
that recommended graphical methods for data comparison in
place of correlations and regressions.

In addition, attempts have been made to formalize
exploratory data analysis: Gelman (2003) connected data
display and visualization to Bayesian predictive checks,
and Wilkinson (2005) formalized the comparisons and
data structures inherent in statistical graphics, in a way that
Wickham (2016) was able to implement into a highly influential
set of R packages that has transformed statistical practice in
many fields.

Advances in computation have allowed practitioners to build
large complicated models quickly, leading to a process in which
ideas of statistical graphics are useful in understanding the
relation between data, fitted model, and predictions. The term
“exploratory model analysis” (Unwin, Volinsky, and Winkler
2003, Wickham 2006) has sometimes been used to capture the
experimental nature of the data analysis process, and efforts
have been made to include visualization within the workflow
of model building and data analysis (Gabry et al. 2019, Gelman
et al. 2020).

2. What These Ideas Have in Common and How They
Differ

It would be tempting to say that a common feature of all these
methods is catchy names and good marketing. But we suspect
that the names of these methods are catchy only in retro-
spect. Terms such as “counterfactual,” “bootstrap,” “stacking,”
and “boosting” could well sound jargony rather than impressive,
and we suspect it is the value of the methods that has made the
names sound appealing, rather than the reverse.

2.1. Ideas Lead to Methods and Workflows

The benefit of application to statistical theory is clear. What
about the benefits the other way? Most directly, one can view
theory as a shortcut to computation. Such shortcuts will always
be needed: demands for modeling inevitably grow with comput-
ing power; hence, the value of analytic summaries and approx-
imations. In addition, theory can help us understand how a
statistical method works, and the logic of mathematics can
inspire new models and approaches to data analysis.

We consider the ideas listed above to be particularly impor-
tant in that each of them was not so much a method for solving
an existing problem, as an opening to new ways of thinking
about statistics and new ways of data analysis.

To put it another way, each of these ideas was a codification,
bringing inside the tent an approach that had been considered
more a matter of taste or philosophy than statistics:

• The counterfactual framework placed causal inference
within a statistical or predictive framework in which causal
estimands could be precisely defined and expressed in terms
of unobserved data within a statistical model, connecting to
ideas in survey sampling and missing-data imputation (Little
1993; Little and Rubin 2002).

• The bootstrap opened the door to a form of implicit nonpara-
metric modeling.

• Overparameterized models and regularization formalized
and generalized the existing practice of restricting a model’s
size based on the ability to estimate its parameters from the
data, which is related to cross-validation and information
criteria (Akaike 1973; Mallows 1973; Watanabe 2010).

• Multilevel models formalized “empirical Bayes” techniques
of estimating a prior distribution from data, leading to the use
of such methods with more computational and inferential
stability in a much wider class of problems.
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• Generic computation algorithms make it possible for applied
practitioners to quickly fit advanced models for causal infer-
ence, multilevel analysis, reinforcement learning, and many
other areas, leading to a broader impact of core ideas in
statistics and machine learning.

• Adaptive decision analysis connects engineering problems of
optimal control to the field of statistical learning, going far
beyond classical experimental design.

• Robust inference formalized intuitions about inferential sta-
bility, framing these questions in a way that allowed formal
evaluation and modeling of different procedures to handle
otherwise nebulous concerns about outliers and model mis-
specification, and ideas of robust inference have informed
ideas of nonparametric estimation (Owen 1988).

• Exploratory data analysis moved graphical techniques and
discovery into the mainstream of statistical practice, just in
time for the use of these tools to better understand and
diagnose problems of new complex classes of probability
models that are being fit to data.

2.2. Advances in Computing

Meta-algorithms—workflows that make use of existing models
and inferential procedures—have always been with us in statis-
tics: consider least squares, the method of moments, maximum
likelihood, and so forth. One characteristic aspect of many of the
machine learning meta-algorithms that have been developed in
the past 50 years is that they involve splitting the data or model
in some way. The learning meta-algorithms are associated with
divide-and-conquer computational methods, most notably vari-
ational Bayes and expectation propagation, which can be viewed
as generalizations of algorithms that iterate over parameters or
that combine inference from subsets of the data.

Meta-algorithms and iterative computations are an impor-
tant development in statistics for two reasons. First, the general
idea of combining information from multiple sources, or creat-
ing a strong learner by combining weak learners, can be applied
broadly, beyond the examples where such meta-algorithms were
originally developed. Second, adaptive algorithms play well with
online learning and ultimately can be viewed as representing a
modern view of statistics in which data and computation are
dispersed, a view in which information exchange and compu-
tational architecture are part of the meta-model or inferential
procedure (Efron and Hastie 2016).

It is no surprise that new methods take advantage of new
technical tools: as computing improves in speed and scope,
statisticians are no longer limited to simple models with ana-
lytic solutions and simple closed-form algorithms such as least
squares. We can outline how the above-listed ideas make use of
modern computation:

• Several of the ideas—bootstrapping, overparameterized
models, and machine learning meta-analysis—directly take
advantage of computing speed and could not easily be imag-
ined in a pre-computer world. For example, the popularity
of neural networks increased substantially only after the
introduction of efficient GPU cards and cloud computing.

• Also important, beyond computing power, is the disper-
sion of computing resources: desktop computers allowed

statisticians and computer scientists to experiment with new
methods and then allowed practitioners to use them.

• Exploratory data analysis began with pencil-and-paper
graphs but has completely changed with developments in
computer graphics.

• In the past, Bayesian inference was constrained to simple
models that could be solved analytically. With the increase in
computing power, variational and Markov chain simulation
methods have allowed separation of model building and
development of inference algorithms, leading to probabilistic
programming that has freed domain experts in different
fields to focus on model building and get inference done
automatically. This resulted in an increase in popularity of
Bayesian methods in many applied fields starting in the
1990s.

• Adaptive decision analysis, Bayesian optimization, and
online learning are used in computationally and data-
intensive problems such as optimizing big machine learning
and neural network models, real-time image processing, and
natural language processing.

• Robust statistics are not necessarily computationally inten-
sive, but their use was associated with a computation-fueled
move away from closed-form estimates such as least squares.
The development and understanding of robust methods was
facilitated by a simulation study that used extensive compu-
tation for its time (Andrews et al. 1972).

• Shrinkage for multivariate inference can be justified not just
by statistical efficiency but also on computational grounds,
motivating a new kind of asymptotic theory (Donoho 2006;
Candès, Romberg, and Tao 2008).

• The key ideas of counterfactual causal inference are theoret-
ical, not computational, but in recent years causal inference
has advanced by the use of computationally intensive non-
parametric methods, leading to a unification of causal and
predictive modeling in statistics, economics, and machine
learning (Hill 2011; Chernozhukov et al. 2018; Wager and
Athey 2018).

2.3. Big Data

In addition to the opportunities opened up for statistical anal-
ysis, modern computing has also yielded big data in ways that
have inspired the application and development of new statistical
methods: examples include gene arrays, streaming image and
text data, and online control problems such as self-driving cars.
Indeed, one reason for the popularity of the term “data science”
is because, in such problems, data processing and efficient com-
puting can be as important as the statistical methods used to fit
the data.

A common feature of all the ideas discussed in this article
and they facilitate the use of more data, compared to previously
existing approaches:

• The counterfactual framework allows causal inference from
observational data using the same structure used to model
controlled experiments.

• Bootstrapping can be used for bias correction and variance
estimation for complex surveys, experimental designs, and
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other data structures where analytical calculations are not
possible.

• Regularization allows users to include more predictors in a
model without so much concern about overfitting.

• Multilevel models use partial pooling to incorporate infor-
mation from different sources, applying the principle of
meta-analysis more generally.

• Generic computation algorithms allow users to fit larger
models, which can be necessary to connect available data to
underlying questions of interest.

• Adaptive decision analysis makes use of stochastic optimiza-
tion methods developed in numerical analysis.

• Robust inference allows more routine use of data with out-
liers, correlations, and other aspects that could get in the way
of conventional statistical modeling.

• Exploratory data analysis opens the door to visualization
of complex datasets and has motivated the development of
tidy data analysis and the integration of statistical analysis,
computation, and communication.

The past 50 years have also seen the development of sta-
tistical programming environments, most notably S (Becker,
Chambers, and Wilks 1988) and then R (Ihaka and Gentleman
1996), and general-purpose inference engines beginning with
BUGS (Spiegelhalter 1994) and its successors (Lunn et al. 2009).
More recently, ideas of numerical analysis, automated inference,
and statistical computing have started to mix, in the form of
reproducible research environments such as Jupyter notebooks
and probabilistic programming environments such as Stan, Ten-
sorflow, and Pyro (Stan Development Team 2020; Tensorflow
2000; Pyro 2020). So we can expect at least some partial unifica-
tion of inferential and computing methods, as demonstrated for
example by the use of automatic differentiation for optimization,
sampling, and sensitivity analysis.

2.4. Connections and Interactions Among These Ideas

Stigler (2016) has argued for the relevance of certain common
themes underlying apparently disparate areas of statistics. This
idea of interconnection can be seen to apply to recent devel-
opments as well. For example, what is the connection between
robust statistics (which focuses on departures from particular
model assumptions) and exploratory data analysis (which is
traditionally presented as being not interested in models at
all)? Exploratory methods such as residual plots and hanging
rootograms can be derived from specific model classes (additive
regression and the Poisson distribution, respectively) but their
value comes in large part from their interpretability without
reference to the models that inspired them. One can similarly
consider a method such as least squares on its own terms, as
an operation on data, then study the class of data-generating
processes for which it will perform well, and then use the
results of such a theoretical analysis to propose more robust
procedures that extend the range of useful applicability, whether
defined based on breakdown point, minimax risk, or otherwise.
Conversely, purely computational methods such as Monte Carlo
evaluation of integrals can fruitfully be interpreted as solutions
to statistical inference problems (Kong et al. 2003).

For another connection, the potential outcome framework
for causal inference, which allows a different treatment effect
for each unit in the population, lends itself naturally to a meta-
analytic approach in which effects can vary, and this can be
modeled using multilevel regression in the analyses of exper-
iments or observational studies. Work on the bootstrap can,
in retrospect, give us a new perspective on empirical Bayes
(multilevel) inference as a nonparametric approach in which
a normal distribution or other parametric model is used for
partial pooling but final estimates are not restricted to any para-
metric form. And research on regularizing wavelets and other
richly parameterized models has an unexpected connection to
the stable inferential procedures developed in the context of
robustness.

Other methodological connections are more obvious.
Regularized overparameterized models are optimized using
machine-learning meta-algorithms, which in turn can yield
inferences that are robust to contamination. To draw these
connections another way, robust regression models correspond
to mixture distributions which can be viewed as multilevel
models, and these can be fitted using Bayesian inference.
Deep learning models are related to a form of multilevel
logistic regression and relates to reproducing kernel Hilbert
spaces, which are used in splines and support vector machines
(Kimeldorf and Wahba 1971; Wahba 2002).

Highly parameterized machine learning methods can be
framed as Bayesian hierarchical models, with regularizing
penalty functions corresponding to hyperpriors, and unsuper-
vised learning models can be framed as mixture models with
unknown group memberships. In many cases the choice of
whether to use a Bayesian generative framework depends on
computation, and this can go in both ways: Bayesian compu-
tational methods can help capture uncertainty in inference and
prediction, and efficient optimization algorithms can be used to
approximate model-based inference.

Many of the ideas we have been discussing involve rich
parameterizations followed by some statistical or computational
tools for regularization. As such, they can be considered as more
general implementations of the idea of sieves—models that get
larger as more data become available (Grenander 1981; Geman
and Hwang 1982; Shen and Wong 1994).

2.5. Links to Other New and Useful Developments in
Statistics

Where do particular statistical models fit into our story? Here,
we are thinking of influential work such as hazard regression
(Cox 1972), generalized linear models (Nelder 1977; McCullagh
and Nelder 1989), structural equation models (Baron and Kenny
1986), latent classification (Blei, Ng, and Jordan 2003), Gaus-
sian processes (O’Hagan 1978; Rasmussen and Williams 2006),
and deep learning (Hinton, Osindero, and Teh 2006; Bengio,
LeCun, and Hinton 2015; Schmidhuber 2015), and models for
structured data such as time series (Box and Jenkins 1976;
Brillinger 1981), spatial processes (Besag 1974; Besag 1986), net-
work data (Kolaczyk 2009), and self-similar processes (Künsch
1987). These models and their associated applied successes can
be thought of demonstrations of the ideas developed in the first
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section of this article, or as challenges that motivated many of
these developments (e.g., generalized linear models with many
predictors motivating regularization methods, or Gaussian pro-
cess models motivating advances in approximate computation
and a shift toward predictive evaluation), or as bridges between
different statistical ideas (e.g., structural equation models con-
necting graphical models and causal inference, or deep learn-
ing connecting Bayesian multilevel models and generic com-
putation algorithms). It is not possible to disentangle models,
methods, applications, and principles, and alternative histories
of statistics take any of these as an organizing principle.

To discuss the connections among different conceptual
advances is not to deny that debates remain regarding appropri-
ate use and interpretation of statistical methods. For example,
there is a duality between false discovery rate and multilevel
modeling, but procedures based on these different principles
can give different results. Multilevel models are typically fit
using Bayesian methods, and nothing is pooled all the way to
zero in the posterior distribution. In contrast, false discovery
rate methods are typically applied using p-value thresholds,
with the goal of identifying some small number of statistically
significantly nonzero results. For another example, in causal
inference, there is increasing interest in densely parameterized
machine learning predictions followed by poststratification to
obtain population causal estimates of specified exposures or
treatments, but in more open-ended settings there is the goal of
discovering nonzero causal relationships. Again, different meth-
ods are used, depending on whether the aim is dense prediction
or sparse discovery.

Finally, we can connect research in statistical methods to
trends in the application of statistics within science and engi-
neering. An entire series of articles could be written just on this
topic. Here, we mention one such area, the replication crisis
or reproducibility revolution in biology, psychology, economics,
and other sciences. Landmark papers in the reproducibility
revolution include Meehl (1978) outlining the philosophical
flaws in the standard use of null hypothesis significance testing
to make scientific claims, Ioannidis (2005) arguing that most
published studies in medicine were making claims unsupported
by their statistical data, and Simmons, Nelson, and Simonsohn
(2011) explaining how “researcher degrees of freedom” can
enable researchers to routinely obtain statistical significance
even from data that are pure noise. Some of the proposed reme-
dies are procedural (e.g., Amrhein, Greenland, and McShane
2019), but there have also been suggestions that some of the
problems with nonreplicable research can be resolved using
multilevel models, partially pooling estimates toward zero to
better reflect the population of effect sizes under study (van
Zwet, Schwab, and Senn 2020). Questions of reproducibility and
stability also relate directly to bootstrapping and robust statistics
(Yu 2013).

3. What Will be the Important Statistical Ideas of the
Next Few Decades?

3.1. Looking Backward

In considering the most important developments since 1970,
it could also make sense to reflect upon the most important

statistical ideas of 1920–1970 (these could include quality con-
trol, latent-variable modeling, sampling theory, experimental
design, classical and Bayesian decision analysis, confidence
intervals and hypothesis testing, maximum likelihood, the anal-
ysis of variance, and objective Bayesian inference—quite a list!),
1870–1920 (classification of probability distributions, regression
to the mean, phenomenological modeling of data), and previous
centuries, as studied by Stigler (1986) and others.

In this article, we have attempted to offer a broad perspective,
reflecting the different perspectives of the authors. But others
will have their own takes on what are the most important
statistical ideas of the past 50 years, and another view is gained
by looking at the topics of articles published in statistics journals
(Anderlucci, Montanari, and Viroli 2019). Indeed, the point
of asking what are the most important ideas is not so much
to answer the question, as to stimulate discussion of what it
means for a statistical idea to be important. In the present article,
we have avoided ranking papers by citation counts or other
numerical measure, but implicitly we are measuring intellectual
influence in a page-rank-like way, in that we are trying to focus
on the ideas that have influenced the development of methods
that have influenced statistical practice.

We are interested in the others’ views on what are the most
influential statistical ideas of the last half century and how
these ideas have combined to affect the practice of statistics and
scientific learning.

3.2. Looking Forward

What will come next? We agree with Popper (1957) that one can-
not anticipate all future scientific developments, but we might
have some ideas about how current trends will continue, beyond
the general observation that important work will be driven by
applications.

The safest bet is that there will be continuing progress on
existing combinations of methods: causal inference with rich
models for potential outcomes, estimated using regularization;
complex models for structured data such as networks evolving
over time, robust inference for multilevel models; exploratory
data analysis for overparameterized models (Mimno, Blei,
and Engelhardt 2015); subsetting and machine-learning meta-
algorithms for different computational problems; and so forth.
In addition we expect progress on experimental design and
sampling for structured data.

We can also be sure to see advances in computation. From
one direction, large and complex applied problems are being fit
on faster computers, and we do not seem to have yet reached
theoretical limits on efficiency of computational algorithms.
From the other direction, the availability of fast computation
allows applied researchers to routinely do big computations, and
this has direct impact on statistics research. We have already
seen this with hierarchical regressions, topic models, random
forests, and deep nets, which have revolutionized many fields
of application through their general availability.

Another general area that is ripe for development is model
understanding, sometimes called interpretable machine learn-
ing (Murdoch et al. 2019; Molnar 2020). The paradox here is
that the best way to understand a complicated model is often to
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approximate it with a simpler model, but then the question is,
what is really being communicated here? One potentially useful
approach is to compute sensitivities of inferences to perturba-
tions of data and model parameters (Giordano, Broderick, and
Jordan 2018), combining ideas of robustness and regularization
with gradient-based computational methods that are used in
many different statistical algorithms.

What are the biggest challenges and opportunities facing
statisticians? Three related trends in applications are big data,
messy data, and complicated questions. In some ways, these
trends go together: when using data from more sources, it
should be possible to make more finely grained inferences and
decisions in problems ranging from personalized medicine to
recommender systems to robot cars.

Does this mean that, as sample sizes get bigger and bigger,
statistical inference will become less and less important than
in the past, to the point that the machine-learning approach
of purely predictive inference will replace the role of statistics
except in some specialized “small data” applications? We antic-
ipate that no, there will always be a “last mile problem” by
which researchers and decision makers will always be concerned
with statistical issues of uncertainty and variation. For example,
machine learning methods can be used in drug discovery, and
hierarchical differential equation models can be used in dosing
models, but when estimating efficacy in the population, we think
there is no way to avoid statistical issues of generalizing from
sample to population, generalizing from treatment to control
group, and generalizing from observed data to underlying con-
structs of interest. This suggests to us that some of the most
important statistical research of the next 50 years will lie at the
interface of high-dimensional and nonparametric modeling and
computation on one hand, and causal inference and decision
making on the other.

A related question is what statistical ideas will be devel-
oped outside the area of statistics. In the past 20 years, deep
learning has had huge success, with traditional statistical theory
often seeming to struggle to catch up. Can we anticipate what
new areas might arise, about which statisticians should become
aware? Much of the history of statistics can be viewed as the
incorporation of ideas from outside. Indeed, as a field we can
count ourselves lucky that many of the new ideas of the past
50 years in topics as varied as causal inference, robustness,
and exploratory data analysis were developed by researchers
within statistics. One strength of our field is its connection to
applications, and to the extent that applied statistics or data
science is now often done within applied fields of science and
engineering, we can expect many of the new developments to
come from there too, in the same way that earlier developments
in statistics came from within applied fields such as psychology
and genetics. Statistics should continue to be open to ideas—
general theoretical frameworks as well as specific models and
methods—coming from other fields.

Finally, given that just about all new statistical and data
science ideas are computationally expensive, we envision future
research on validation of inferential methods, taking ideas such
as unit testing from software engineering and applying them to
problems of learning from noisy data. As our statistical methods
become more advanced, there will be continuing need to under-
stand the links between data, models, and substantive theory.
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