Chapter 7
Sampling

One of the foundational ideas in statistics is that we can make inferences about
an entire population based on a relatively small sample of individuals from
that population. In this chapter we will introduce the concept of statistical
sampling and discuss why it works.

Anyone living in the United States will be familiar with the concept of
sampling from the political polls that have become a central part of our
electoral process. In some cases, these polls can be incredibly accurate at
predicting the outcomes of elections. The best known example comes from
the 2008 and 2012 US Presidential elections, when the pollster Nate Silver
correctly predicted electoral outcomes for 49/50 states in 2008 and for all 50
states in 2012. Silver did this by combining data from 21 different polls, which
vary in the degree to which they tend to lean towards either the Republican
or Democratic side. Each of these polls included data from about 1000 likely
voters — meaning that Silver was able to almost perfectly predict the pattern
of votes of more than 125 million voters using data from only about 21,000
people, along with other knowledge (such as how those states have voted in
the past).

7.1 How do we sample?

Our goal in sampling is to determine the value of a statistic for an entire
population of interest, using just a small subset of the population. We do
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this primarily to save time and effort — why go to the trouble of measuring
every individual in the population when just a small sample is sufficient to
accurately estimate the statistic of interest?

In the election example, the population is all registered voters in the region
being polled, and the sample is the set of 1000 individuals selected by the
polling organization. The way in which we select the sample is critical to
ensuring that the sample is representative of the entire population, which is a
main goal of statistical sampling. It’s easy to imagine a non-representative
sample; if a pollster only called individuals whose names they had received
from the local Democratic party, then it would be unlikely that the results
of the poll would be representative of the population as a whole. In general,
we would define a representative poll as being one in which every member
of the population has an equal chance of being selected. When this fails,
then we have to worry about whether the statistic that we compute on the
sample is biased - that is, whether its value is systematically different from
the population value (which we refer to as a parameter). Keep in mind that
we generally don’t know this population parameter, because if we did then
we wouldn’t need to sample! But we will use examples where we have access
to the entire population, in order to explain some of the key ideas.

It’s important to also distinguish between two different ways of sampling;:
with replacement versus without replacement. In sampling with replacement,
after a member of the population has been sampled, they are put back into
the pool so that they can potentially be sampled again. In sampling without
replacement, once a member has been sampled they are not eligible to be
sampled again. It’s most common to use sampling without replacement, but
there will be some contexts in which we will use sampling with replacement,
as when we discuss a technique called bootstrapping in Chapter 8.

7.2 Sampling error

Regardless of how representative our sample is, it’s likely that the statistic
that we compute from the sample is going to differ at least slightly from the
population parameter. We refer to this as sampling error. If we take multiple
samples, the value of our statistical estimate will also vary from sample to
sample; we refer to this distribution of our statistic across samples as the
sampling distribution.
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Table 7.1: Example means and standard deviations for several samples of
Height variable from NHANES.

sampleMean | sampleSD
167 9.1
171 8.3
170 10.6
166 9.5
168 9.5

Sampling error is directly related to the quality of our measurement of the
population. Clearly we want the estimates obtained from our sample to be
as close as possible to the true value of the population parameter. However,
even if our statistic is unbiased (that is, we expect it to have the same value
as the population parameter), the value for any particular estimate will differ
from the population value, and those differences will be greater when the
sampling error is greater. Thus, reducing sampling error is an important step
towards better measurement.

We will use the NHANES dataset as an example; we are going to assume that
the NHANES dataset is the entire population of interest, and then we will
draw random samples from this population. We will have more to say in the
next chapter about exactly how the generation of “random” samples works in
a computer.

In this example, we know the adult population mean (168.35) and standard
deviation (10.16) for height because we are assuming that the NHANES
dataset is the population. Table 7.1 shows the statistics computed from a
few samples of 50 individuals from the NHANES population.

The sample mean and standard deviation are similar but not exactly equal
to the population values. Now let’s take a large number of samples of 50
individuals, compute the mean for each sample, and look at the resulting
sampling distribution of means. We have to decide how many samples to take
in order to do a good job of estimating the sampling distribution — in this
case we will take 5000 samples so that we are very confident in the answer.
Note that simulations like this one can sometimes take a few minutes to run,
and might make your computer huff and puff. The histogram in Figure 7.1
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shows that the means estimated for each of the samples of 50 individuals vary
somewhat, but that overall they are centered around the population mean.
The average of the 5000 sample means (168.3463) is very close to the true
population mean (168.3497).
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Figure 7.1: The blue histogram shows the sampling distribution of the mean
over 5000 random samples from the NHANES dataset. The histogram for
the full dataset is shown in gray for reference.

7.3 Standard error of the mean

Later in the book it will become essential to be able to characterize how
variable our samples are, in order to make inferences about the sample
statistics. For the mean, we do this using a quantity called the standard
error of the mean (SEM), which one can think of as the standard deviation
of the sampling distribution of the mean. To compute the standard error of
the mean for our sample, we divide the estimated standard deviation by the
square root of the sample size:

)
vn

Note that we have to be careful about computing SEM using the estimated

SEM =
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standard deviation if our sample is small (less than about 30).

Because we have many samples from the NHANES population and we actually
know the population SEM (which we compute by dividing the population
standard deviation by the size of the population), we can confirm that the
SEM computed using the population parameter (1.44) is very close to the
observed standard deviation of the means for the samples that we took from
the NHANES dataset (1.43).

The formula for the standard error of the mean implies that the quality of
our measurement involves two quantities: the population variability, and
the size of our sample. Because the sample size is the denominator in the
formula for SEM, a larger sample size will yield a smaller SEM when holding
the population variability constant. We have no control over the population
variability, but we do have control over the sample size. Thus, if we wish to
improve our sample statistics (by reducing their sampling variability) then we
should use larger samples. However, the formula also tells us something very
fundamental about statistical sampling — namely, that the utility of larger
samples diminishes with the square root of the sample size. This means that
doubling the sample size will not double the quality of the statistics; rather,
it will improve it by a factor of v/2. In Section 10.3 we will discuss statistical
power, which is intimately tied to this idea.

7.4 The Central Limit Theorem

The Central Limit Theorem tells us that as sample sizes get larger, the
sampling distribution of the mean will become normally distributed, even if
the data within each sample are not normally distributed.

First, let’s say a little bit about the normal distribution. It’s also known as
the Gaussian distribution, after Carl Friedrich Gauss, a mathematician who
didn’t invent it but played a role in its development. The normal distribution
is described in terms of two parameters: the mean (which you can think
of as the location of the peak), and the standard deviation (which specifies
the width of the distribution). The bell-like shape of the distribution never
changes, only its location and width. The normal distribution is commonly
observed in data collected in the real world, as we have already seen in
Chapter 3 — and the central limit theorem gives us some insight into why
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that occurs.

To see the central limit theorem in action, let’s work with the variable
AlcoholYear from the NHANES dataset, which is highly skewed, as shown
in the left panel of Figure 7.2. This distribution is, for lack of a better
word, funky — and definitely not normally distributed. Now let’s look at
the sampling distribution of the mean for this variable. Figure 7.2 shows
the sampling distribution for this variable, which is obtained by repeatedly
drawing samples of size 50 from the NHANES dataset and taking the mean.
Despite the clear non-normality of the original data, the sampling distribution
is remarkably close to the normal.

900 - 0.03-

0.02 -

o. IJ“ immmmi .

i |
200 300 50 75 100 125
AlcoholYear mean AlcoholYear

count
density

Figure 7.2: Left: Distribution of the variable AlcoholYear in the NHANES
dataset, which reflects the number of days that the individual drank in a
year. Right: The sampling distribution of the mean for AlcoholYear in the
NHANES dataset, obtained by drawing repeated samples of size 50, in blue.
The normal distribution with the same mean and standard deviation is shown
in red.

The Central Limit Theorem is important for statistics because it allows us to
safely assume that the sampling distribution of the mean will be normal in
most cases. This means that we can take advantage of statistical techniques
that assume a normal distribution, as we will see in the next section. It’s also
important because it tells us why normal distributions are so common in the
real world; any time we combine many different factors into a single number,
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the result is likely to be a normal distribution. For example, the height of
any adult depends on a complex mixture of their genetics and experience;
even if those individual contributions may not be normally distributed, when
we combine them the result is a normal distribution.

7.5 Learning objectives

Having read this chapter, you should be able to:

Distinguish between a population and a sample, and between population
parameters and sample statistics

Describe the concepts of sampling error and sampling distribution
Compute the standard error of the mean

Describe how the Central Limit Theorem determines the nature of the
sampling distribution of the mean

7.6 Suggested readings

The Signal and the Noise: Why So Many Predictions Fail - But Some
Don’t, by Nate Silver
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